1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
4 #include <linux/delay.h>
5 #include <linux/iopoll.h>
6 #include "ice_common.h"
7 #include "ice_ptp_hw.h"
8 #include "ice_ptp_consts.h"
9 #include "ice_cgu_regs.h"
11 static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
12 DPLL_PIN_FREQUENCY_1PPS,
13 DPLL_PIN_FREQUENCY_10MHZ,
16 static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
17 DPLL_PIN_FREQUENCY_1PPS,
20 static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
21 DPLL_PIN_FREQUENCY_10MHZ,
24 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
25 { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
26 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
27 { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
28 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
29 { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
30 { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
31 { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
32 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
33 { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
34 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
35 { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
36 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
39 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
40 { "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
41 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
42 { "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
43 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
44 { "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
45 { "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
46 { "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
47 { "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
48 { "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
49 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
50 { "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
51 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
52 { "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
53 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
56 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
57 { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
58 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
59 { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
60 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
61 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
62 { "MAC-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
63 { "CVL-SDP21", ZL_OUT4, DPLL_PIN_TYPE_EXT,
64 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
65 { "CVL-SDP23", ZL_OUT5, DPLL_PIN_TYPE_EXT,
66 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
69 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
70 { "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
71 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
72 { "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
73 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
74 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
75 { "PHY2-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
76 { "MAC-CLK", ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
77 { "CVL-SDP21", ZL_OUT5, DPLL_PIN_TYPE_EXT,
78 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
79 { "CVL-SDP23", ZL_OUT6, DPLL_PIN_TYPE_EXT,
80 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
83 static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
84 { "NONE", SI_REF0P, 0, 0 },
85 { "NONE", SI_REF0N, 0, 0 },
86 { "SYNCE0_DP", SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
87 { "SYNCE0_DN", SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
88 { "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
89 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
90 { "NONE", SI_REF2N, 0, 0 },
91 { "EXT_PPS_OUT", SI_REF3, DPLL_PIN_TYPE_EXT,
92 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
93 { "INT_PPS_OUT", SI_REF4, DPLL_PIN_TYPE_EXT,
94 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
97 static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
98 { "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
99 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
100 { "PHY-CLK", SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
101 { "10MHZ-SMA2", SI_OUT2, DPLL_PIN_TYPE_EXT,
102 ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
103 { "PPS-SMA1", SI_OUT3, DPLL_PIN_TYPE_EXT,
104 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
107 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
108 { "NONE", ZL_REF0P, 0, 0 },
109 { "INT_PPS_OUT", ZL_REF0N, DPLL_PIN_TYPE_EXT,
110 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
111 { "SYNCE0_DP", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
112 { "SYNCE0_DN", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
113 { "NONE", ZL_REF2P, 0, 0 },
114 { "NONE", ZL_REF2N, 0, 0 },
115 { "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
116 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
117 { "NONE", ZL_REF3N, 0, 0 },
118 { "EXT_PPS_OUT", ZL_REF4P, DPLL_PIN_TYPE_EXT,
119 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
120 { "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
123 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
124 { "PPS-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
125 ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
126 { "10MHZ-SMA2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
127 ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
128 { "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
129 { "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
130 { "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
131 ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
132 { "NONE", ZL_OUT5, 0, 0 },
135 /* Low level functions for interacting with and managing the device clock used
136 * for the Precision Time Protocol.
138 * The ice hardware represents the current time using three registers:
140 * GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
141 * +---------------+ +---------------+ +---------------+
142 * | 32 bits | | 32 bits | | 32 bits |
143 * +---------------+ +---------------+ +---------------+
145 * The registers are incremented every clock tick using a 40bit increment
146 * value defined over two registers:
148 * GLTSYN_INCVAL_H GLTSYN_INCVAL_L
149 * +---------------+ +---------------+
150 * | 8 bit s | | 32 bits |
151 * +---------------+ +---------------+
153 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
154 * registers every clock source tick. Depending on the specific device
155 * configuration, the clock source frequency could be one of a number of
158 * For E810 devices, the increment frequency is 812.5 MHz
160 * For E822 devices the clock can be derived from different sources, and the
161 * increment has an effective frequency of one of the following:
169 * The hardware captures timestamps in the PHY for incoming packets, and for
170 * outgoing packets on request. To support this, the PHY maintains a timer
171 * that matches the lower 64 bits of the global source timer.
173 * In order to ensure that the PHY timers and the source timer are equivalent,
174 * shadow registers are used to prepare the desired initial values. A special
175 * sync command is issued to trigger copying from the shadow registers into
176 * the appropriate source and PHY registers simultaneously.
178 * The driver supports devices which have different PHYs with subtly different
179 * mechanisms to program and control the timers. We divide the devices into
180 * families named after the first major device, E810 and similar devices, and
181 * E822 and similar devices.
183 * - E822 based devices have additional support for fine grained Vernier
184 * calibration which requires significant setup
185 * - The layout of timestamp data in the PHY register blocks is different
186 * - The way timer synchronization commands are issued is different.
188 * To support this, very low level functions have an e810 or e822 suffix
189 * indicating what type of device they work on. Higher level abstractions for
190 * tasks that can be done on both devices do not have the suffix and will
191 * correctly look up the appropriate low level function when running.
193 * Functions which only make sense on a single device family may not have
194 * a suitable generic implementation
198 * ice_get_ptp_src_clock_index - determine source clock index
199 * @hw: pointer to HW struct
201 * Determine the source clock index currently in use, based on device
202 * capabilities reported during initialization.
204 u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
206 return hw->func_caps.ts_func_info.tmr_index_assoc;
210 * ice_ptp_read_src_incval - Read source timer increment value
211 * @hw: pointer to HW struct
213 * Read the increment value of the source timer and return it.
215 static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
220 tmr_idx = ice_get_ptp_src_clock_index(hw);
222 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
223 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
225 return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
229 * ice_read_cgu_reg_e82x - Read a CGU register
230 * @hw: pointer to the HW struct
231 * @addr: Register address to read
232 * @val: storage for register value read
234 * Read the contents of a register of the Clock Generation Unit. Only
235 * applicable to E822 devices.
237 * Return: 0 on success, other error codes when failed to read from CGU
239 static int ice_read_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 *val)
241 struct ice_sbq_msg_input cgu_msg = {
242 .opcode = ice_sbq_msg_rd,
248 err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
250 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
261 * ice_write_cgu_reg_e82x - Write a CGU register
262 * @hw: pointer to the HW struct
263 * @addr: Register address to write
264 * @val: value to write into the register
266 * Write the specified value to a register of the Clock Generation Unit. Only
267 * applicable to E822 devices.
269 * Return: 0 on success, other error codes when failed to write to CGU
271 static int ice_write_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 val)
273 struct ice_sbq_msg_input cgu_msg = {
274 .opcode = ice_sbq_msg_wr,
276 .msg_addr_low = addr,
281 err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
283 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
292 * ice_clk_freq_str - Convert time_ref_freq to string
293 * @clk_freq: Clock frequency
295 * Return: specified TIME_REF clock frequency converted to a string
297 static const char *ice_clk_freq_str(enum ice_time_ref_freq clk_freq)
300 case ICE_TIME_REF_FREQ_25_000:
302 case ICE_TIME_REF_FREQ_122_880:
304 case ICE_TIME_REF_FREQ_125_000:
306 case ICE_TIME_REF_FREQ_153_600:
308 case ICE_TIME_REF_FREQ_156_250:
310 case ICE_TIME_REF_FREQ_245_760:
318 * ice_clk_src_str - Convert time_ref_src to string
319 * @clk_src: Clock source
321 * Return: specified clock source converted to its string name
323 static const char *ice_clk_src_str(enum ice_clk_src clk_src)
326 case ICE_CLK_SRC_TCXO:
328 case ICE_CLK_SRC_TIME_REF:
336 * ice_cfg_cgu_pll_e82x - Configure the Clock Generation Unit
337 * @hw: pointer to the HW struct
338 * @clk_freq: Clock frequency to program
339 * @clk_src: Clock source to select (TIME_REF, or TCXO)
341 * Configure the Clock Generation Unit with the desired clock frequency and
342 * time reference, enabling the PLL which drives the PTP hardware clock.
346 * * %-EINVAL - input parameters are incorrect
347 * * %-EBUSY - failed to lock TS PLL
348 * * %other - CGU read/write failure
350 static int ice_cfg_cgu_pll_e82x(struct ice_hw *hw,
351 enum ice_time_ref_freq clk_freq,
352 enum ice_clk_src clk_src)
354 union tspll_ro_bwm_lf bwm_lf;
355 union nac_cgu_dword19 dw19;
356 union nac_cgu_dword22 dw22;
357 union nac_cgu_dword24 dw24;
358 union nac_cgu_dword9 dw9;
361 if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
362 dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
367 if (clk_src >= NUM_ICE_CLK_SRC) {
368 dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
373 if (clk_src == ICE_CLK_SRC_TCXO &&
374 clk_freq != ICE_TIME_REF_FREQ_25_000) {
375 dev_warn(ice_hw_to_dev(hw),
376 "TCXO only supports 25 MHz frequency\n");
380 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
384 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
388 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
392 /* Log the current clock configuration */
393 ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
394 dw24.ts_pll_enable ? "enabled" : "disabled",
395 ice_clk_src_str(dw24.time_ref_sel),
396 ice_clk_freq_str(dw9.time_ref_freq_sel),
397 bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
399 /* Disable the PLL before changing the clock source or frequency */
400 if (dw24.ts_pll_enable) {
401 dw24.ts_pll_enable = 0;
403 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
408 /* Set the frequency */
409 dw9.time_ref_freq_sel = clk_freq;
410 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
414 /* Configure the TS PLL feedback divisor */
415 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
419 dw19.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
420 dw19.tspll_ndivratio = 1;
422 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
426 /* Configure the TS PLL post divisor */
427 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
431 dw22.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
432 dw22.time1588clk_sel_div2 = 0;
434 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
438 /* Configure the TS PLL pre divisor and clock source */
439 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
443 dw24.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
444 dw24.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
445 dw24.time_ref_sel = clk_src;
447 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
451 /* Finally, enable the PLL */
452 dw24.ts_pll_enable = 1;
454 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
458 /* Wait to verify if the PLL locks */
459 usleep_range(1000, 5000);
461 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
465 if (!bwm_lf.plllock_true_lock_cri) {
466 dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
470 /* Log the current clock configuration */
471 ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
472 dw24.ts_pll_enable ? "enabled" : "disabled",
473 ice_clk_src_str(dw24.time_ref_sel),
474 ice_clk_freq_str(dw9.time_ref_freq_sel),
475 bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
481 * ice_cfg_cgu_pll_e825c - Configure the Clock Generation Unit for E825-C
482 * @hw: pointer to the HW struct
483 * @clk_freq: Clock frequency to program
484 * @clk_src: Clock source to select (TIME_REF, or TCXO)
486 * Configure the Clock Generation Unit with the desired clock frequency and
487 * time reference, enabling the PLL which drives the PTP hardware clock.
491 * * %-EINVAL - input parameters are incorrect
492 * * %-EBUSY - failed to lock TS PLL
493 * * %other - CGU read/write failure
495 static int ice_cfg_cgu_pll_e825c(struct ice_hw *hw,
496 enum ice_time_ref_freq clk_freq,
497 enum ice_clk_src clk_src)
499 union tspll_ro_lock_e825c ro_lock;
500 union nac_cgu_dword16_e825c dw16;
501 union nac_cgu_dword23_e825c dw23;
502 union nac_cgu_dword19 dw19;
503 union nac_cgu_dword22 dw22;
504 union nac_cgu_dword24 dw24;
505 union nac_cgu_dword9 dw9;
508 if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
509 dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
514 if (clk_src >= NUM_ICE_CLK_SRC) {
515 dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
520 if (clk_src == ICE_CLK_SRC_TCXO &&
521 clk_freq != ICE_TIME_REF_FREQ_156_250) {
522 dev_warn(ice_hw_to_dev(hw),
523 "TCXO only supports 156.25 MHz frequency\n");
527 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
531 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
535 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, &dw16.val);
539 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
543 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
547 /* Log the current clock configuration */
548 ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
549 dw24.ts_pll_enable ? "enabled" : "disabled",
550 ice_clk_src_str(dw23.time_ref_sel),
551 ice_clk_freq_str(dw9.time_ref_freq_sel),
552 ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
554 /* Disable the PLL before changing the clock source or frequency */
555 if (dw23.ts_pll_enable) {
556 dw23.ts_pll_enable = 0;
558 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C,
564 /* Set the frequency */
565 dw9.time_ref_freq_sel = clk_freq;
567 /* Enable the correct receiver */
568 if (clk_src == ICE_CLK_SRC_TCXO) {
570 dw9.clk_eref0_en = 1;
573 dw9.clk_eref0_en = 0;
575 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
579 /* Choose the referenced frequency */
580 dw16.tspll_ck_refclkfreq =
581 e825c_cgu_params[clk_freq].tspll_ck_refclkfreq;
582 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, dw16.val);
586 /* Configure the TS PLL feedback divisor */
587 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
591 dw19.tspll_fbdiv_intgr =
592 e825c_cgu_params[clk_freq].tspll_fbdiv_intgr;
593 dw19.tspll_ndivratio =
594 e825c_cgu_params[clk_freq].tspll_ndivratio;
596 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
600 /* Configure the TS PLL post divisor */
601 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
605 /* These two are constant for E825C */
606 dw22.time1588clk_div = 5;
607 dw22.time1588clk_sel_div2 = 0;
609 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
613 /* Configure the TS PLL pre divisor and clock source */
614 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
618 dw23.ref1588_ck_div =
619 e825c_cgu_params[clk_freq].ref1588_ck_div;
620 dw23.time_ref_sel = clk_src;
622 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
626 dw24.tspll_fbdiv_frac =
627 e825c_cgu_params[clk_freq].tspll_fbdiv_frac;
629 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
633 /* Finally, enable the PLL */
634 dw23.ts_pll_enable = 1;
636 err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
640 /* Wait to verify if the PLL locks */
641 usleep_range(1000, 5000);
643 err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
647 if (!ro_lock.plllock_true_lock_cri) {
648 dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
652 /* Log the current clock configuration */
653 ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
654 dw24.ts_pll_enable ? "enabled" : "disabled",
655 ice_clk_src_str(dw23.time_ref_sel),
656 ice_clk_freq_str(dw9.time_ref_freq_sel),
657 ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
662 #define ICE_ONE_PPS_OUT_AMP_MAX 3
665 * ice_cgu_cfg_pps_out - Configure 1PPS output from CGU
666 * @hw: pointer to the HW struct
667 * @enable: true to enable 1PPS output, false to disable it
669 * Return: 0 on success, other negative error code when CGU read/write failed
671 int ice_cgu_cfg_pps_out(struct ice_hw *hw, bool enable)
673 union nac_cgu_dword9 dw9;
676 err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
680 dw9.one_pps_out_en = enable;
681 dw9.one_pps_out_amp = enable * ICE_ONE_PPS_OUT_AMP_MAX;
682 return ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
686 * ice_cfg_cgu_pll_dis_sticky_bits_e82x - disable TS PLL sticky bits
687 * @hw: pointer to the HW struct
689 * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
690 * losing TS PLL lock, but always show current state.
692 * Return: 0 on success, other error codes when failed to read/write CGU
694 static int ice_cfg_cgu_pll_dis_sticky_bits_e82x(struct ice_hw *hw)
696 union tspll_cntr_bist_settings cntr_bist;
699 err = ice_read_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
704 /* Disable sticky lock detection so lock err reported is accurate */
705 cntr_bist.i_plllock_sel_0 = 0;
706 cntr_bist.i_plllock_sel_1 = 0;
708 return ice_write_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
713 * ice_cfg_cgu_pll_dis_sticky_bits_e825c - disable TS PLL sticky bits for E825-C
714 * @hw: pointer to the HW struct
716 * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
717 * losing TS PLL lock, but always show current state.
719 * Return: 0 on success, other error codes when failed to read/write CGU
721 static int ice_cfg_cgu_pll_dis_sticky_bits_e825c(struct ice_hw *hw)
723 union tspll_bw_tdc_e825c bw_tdc;
726 err = ice_read_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, &bw_tdc.val);
730 bw_tdc.i_plllock_sel_1_0 = 0;
732 return ice_write_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, bw_tdc.val);
736 * ice_init_cgu_e82x - Initialize CGU with settings from firmware
737 * @hw: pointer to the HW structure
739 * Initialize the Clock Generation Unit of the E822 device.
741 * Return: 0 on success, other error codes when failed to read/write/cfg CGU
743 static int ice_init_cgu_e82x(struct ice_hw *hw)
745 struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
748 /* Disable sticky lock detection so lock err reported is accurate */
749 if (ice_is_e825c(hw))
750 err = ice_cfg_cgu_pll_dis_sticky_bits_e825c(hw);
752 err = ice_cfg_cgu_pll_dis_sticky_bits_e82x(hw);
756 /* Configure the CGU PLL using the parameters from the function
759 if (ice_is_e825c(hw))
760 err = ice_cfg_cgu_pll_e825c(hw, ts_info->time_ref,
761 (enum ice_clk_src)ts_info->clk_src);
763 err = ice_cfg_cgu_pll_e82x(hw, ts_info->time_ref,
764 (enum ice_clk_src)ts_info->clk_src);
770 * ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value
771 * @hw: pointer to HW struct
772 * @cmd: Timer command
774 * Return: the source timer command register value for the given PTP timer
777 static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw,
778 enum ice_ptp_tmr_cmd cmd)
780 u32 cmd_val, tmr_idx;
783 case ICE_PTP_INIT_TIME:
784 cmd_val = GLTSYN_CMD_INIT_TIME;
786 case ICE_PTP_INIT_INCVAL:
787 cmd_val = GLTSYN_CMD_INIT_INCVAL;
789 case ICE_PTP_ADJ_TIME:
790 cmd_val = GLTSYN_CMD_ADJ_TIME;
792 case ICE_PTP_ADJ_TIME_AT_TIME:
793 cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
796 case ICE_PTP_READ_TIME:
797 cmd_val = GLTSYN_CMD_READ_TIME;
800 dev_warn(ice_hw_to_dev(hw),
801 "Ignoring unrecognized timer command %u\n", cmd);
805 tmr_idx = ice_get_ptp_src_clock_index(hw);
807 return tmr_idx << SEL_CPK_SRC | cmd_val;
811 * ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value
812 * @hw: pointer to HW struct
813 * @cmd: Timer command
815 * Note that some hardware families use a different command register value for
816 * the PHY ports, while other hardware families use the same register values
817 * as the source timer.
819 * Return: the PHY port timer command register value for the given PTP timer
822 static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw,
823 enum ice_ptp_tmr_cmd cmd)
825 u32 cmd_val, tmr_idx;
827 /* Certain hardware families share the same register values for the
828 * port register and source timer register.
830 switch (ice_get_phy_model(hw)) {
832 return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810;
838 case ICE_PTP_INIT_TIME:
839 cmd_val = PHY_CMD_INIT_TIME;
841 case ICE_PTP_INIT_INCVAL:
842 cmd_val = PHY_CMD_INIT_INCVAL;
844 case ICE_PTP_ADJ_TIME:
845 cmd_val = PHY_CMD_ADJ_TIME;
847 case ICE_PTP_ADJ_TIME_AT_TIME:
848 cmd_val = PHY_CMD_ADJ_TIME_AT_TIME;
850 case ICE_PTP_READ_TIME:
851 cmd_val = PHY_CMD_READ_TIME;
857 dev_warn(ice_hw_to_dev(hw),
858 "Ignoring unrecognized timer command %u\n", cmd);
862 tmr_idx = ice_get_ptp_src_clock_index(hw);
864 return tmr_idx << SEL_PHY_SRC | cmd_val;
868 * ice_ptp_src_cmd - Prepare source timer for a timer command
869 * @hw: pointer to HW structure
870 * @cmd: Timer command
872 * Prepare the source timer for an upcoming timer sync command.
874 void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
876 u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd);
878 wr32(hw, GLTSYN_CMD, cmd_val);
882 * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
883 * @hw: pointer to HW struct
885 * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
886 * write immediately. This triggers the hardware to begin executing all of the
887 * source and PHY timer commands synchronously.
889 static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
891 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
893 guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
894 wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
898 /* 56G PHY device functions
900 * The following functions operate on devices with the ETH 56G PHY.
904 * ice_write_phy_eth56g - Write a PHY port register
905 * @hw: pointer to the HW struct
906 * @phy_idx: PHY index
907 * @addr: PHY register address
908 * @val: Value to write
910 * Return: 0 on success, other error codes when failed to write to PHY
912 static int ice_write_phy_eth56g(struct ice_hw *hw, u8 phy_idx, u32 addr,
915 struct ice_sbq_msg_input phy_msg;
918 phy_msg.opcode = ice_sbq_msg_wr;
920 phy_msg.msg_addr_low = lower_16_bits(addr);
921 phy_msg.msg_addr_high = upper_16_bits(addr);
924 phy_msg.dest_dev = hw->ptp.phy.eth56g.phy_addr[phy_idx];
926 err = ice_sbq_rw_reg(hw, &phy_msg, ICE_AQ_FLAG_RD);
929 ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
936 * ice_read_phy_eth56g - Read a PHY port register
937 * @hw: pointer to the HW struct
938 * @phy_idx: PHY index
939 * @addr: PHY register address
940 * @val: Value to write
942 * Return: 0 on success, other error codes when failed to read from PHY
944 static int ice_read_phy_eth56g(struct ice_hw *hw, u8 phy_idx, u32 addr,
947 struct ice_sbq_msg_input phy_msg;
950 phy_msg.opcode = ice_sbq_msg_rd;
952 phy_msg.msg_addr_low = lower_16_bits(addr);
953 phy_msg.msg_addr_high = upper_16_bits(addr);
956 phy_msg.dest_dev = hw->ptp.phy.eth56g.phy_addr[phy_idx];
958 err = ice_sbq_rw_reg(hw, &phy_msg, ICE_AQ_FLAG_RD);
960 ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
971 * ice_phy_res_address_eth56g - Calculate a PHY port register address
972 * @port: Port number to be written
973 * @res_type: resource type (register/memory)
974 * @offset: Offset from PHY port register base
975 * @addr: The result address
979 * * %EINVAL - invalid port number or resource type
981 static int ice_phy_res_address_eth56g(u8 port, enum eth56g_res_type res_type,
982 u32 offset, u32 *addr)
984 u8 lane = port % ICE_PORTS_PER_QUAD;
985 u8 phy = ICE_GET_QUAD_NUM(port);
987 if (res_type >= NUM_ETH56G_PHY_RES)
990 *addr = eth56g_phy_res[res_type].base[phy] +
991 lane * eth56g_phy_res[res_type].step + offset;
996 * ice_write_port_eth56g - Write a PHY port register
997 * @hw: pointer to the HW struct
998 * @offset: PHY register offset
1000 * @val: Value to write
1001 * @res_type: resource type (register/memory)
1005 * * %EINVAL - invalid port number or resource type
1006 * * %other - failed to write to PHY
1008 static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1009 u32 val, enum eth56g_res_type res_type)
1011 u8 phy_port = port % hw->ptp.ports_per_phy;
1012 u8 phy_idx = port / hw->ptp.ports_per_phy;
1016 if (port >= hw->ptp.num_lports)
1019 err = ice_phy_res_address_eth56g(phy_port, res_type, offset, &addr);
1023 return ice_write_phy_eth56g(hw, phy_idx, addr, val);
1027 * ice_read_port_eth56g - Read a PHY port register
1028 * @hw: pointer to the HW struct
1029 * @offset: PHY register offset
1030 * @port: Port number
1031 * @val: Value to write
1032 * @res_type: resource type (register/memory)
1036 * * %EINVAL - invalid port number or resource type
1037 * * %other - failed to read from PHY
1039 static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1040 u32 *val, enum eth56g_res_type res_type)
1042 u8 phy_port = port % hw->ptp.ports_per_phy;
1043 u8 phy_idx = port / hw->ptp.ports_per_phy;
1047 if (port >= hw->ptp.num_lports)
1050 err = ice_phy_res_address_eth56g(phy_port, res_type, offset, &addr);
1054 return ice_read_phy_eth56g(hw, phy_idx, addr, val);
1058 * ice_write_ptp_reg_eth56g - Write a PHY port register
1059 * @hw: pointer to the HW struct
1060 * @port: Port number to be written
1061 * @offset: Offset from PHY port register base
1062 * @val: Value to write
1066 * * %EINVAL - invalid port number or resource type
1067 * * %other - failed to write to PHY
1069 static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1072 return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1076 * ice_write_mac_reg_eth56g - Write a MAC PHY port register
1078 * @hw: pointer to the HW struct
1079 * @port: Port number to be written
1080 * @offset: Offset from PHY port register base
1081 * @val: Value to write
1085 * * %EINVAL - invalid port number or resource type
1086 * * %other - failed to write to PHY
1088 static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1091 return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1095 * ice_write_xpcs_reg_eth56g - Write a PHY port register
1096 * @hw: pointer to the HW struct
1097 * @port: Port number to be written
1098 * @offset: Offset from PHY port register base
1099 * @val: Value to write
1103 * * %EINVAL - invalid port number or resource type
1104 * * %other - failed to write to PHY
1106 static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1109 return ice_write_port_eth56g(hw, port, offset, val,
1110 ETH56G_PHY_REG_XPCS);
1114 * ice_read_ptp_reg_eth56g - Read a PHY port register
1115 * @hw: pointer to the HW struct
1116 * @port: Port number to be read
1117 * @offset: Offset from PHY port register base
1118 * @val: Pointer to the value to read (out param)
1122 * * %EINVAL - invalid port number or resource type
1123 * * %other - failed to read from PHY
1125 static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1128 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1132 * ice_read_mac_reg_eth56g - Read a PHY port register
1133 * @hw: pointer to the HW struct
1134 * @port: Port number to be read
1135 * @offset: Offset from PHY port register base
1136 * @val: Pointer to the value to read (out param)
1140 * * %EINVAL - invalid port number or resource type
1141 * * %other - failed to read from PHY
1143 static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1146 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1150 * ice_read_gpcs_reg_eth56g - Read a PHY port register
1151 * @hw: pointer to the HW struct
1152 * @port: Port number to be read
1153 * @offset: Offset from PHY port register base
1154 * @val: Pointer to the value to read (out param)
1158 * * %EINVAL - invalid port number or resource type
1159 * * %other - failed to read from PHY
1161 static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1164 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS);
1168 * ice_read_port_mem_eth56g - Read a PHY port memory location
1169 * @hw: pointer to the HW struct
1170 * @port: Port number to be read
1171 * @offset: Offset from PHY port register base
1172 * @val: Pointer to the value to read (out param)
1176 * * %EINVAL - invalid port number or resource type
1177 * * %other - failed to read from PHY
1179 static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1182 return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1186 * ice_write_port_mem_eth56g - Write a PHY port memory location
1187 * @hw: pointer to the HW struct
1188 * @port: Port number to be read
1189 * @offset: Offset from PHY port register base
1190 * @val: Pointer to the value to read (out param)
1194 * * %EINVAL - invalid port number or resource type
1195 * * %other - failed to write to PHY
1197 static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1200 return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1204 * ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register
1205 * @low_addr: the low address to check
1206 * @high_addr: on return, contains the high address of the 64bit register
1208 * Write the appropriate high register offset to use.
1210 * Return: true if the provided low address is one of the known 64bit PHY values
1211 * represented as two 32bit registers, false otherwise.
1213 static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1216 case PHY_REG_TX_TIMER_INC_PRE_L:
1217 *high_addr = PHY_REG_TX_TIMER_INC_PRE_U;
1219 case PHY_REG_RX_TIMER_INC_PRE_L:
1220 *high_addr = PHY_REG_RX_TIMER_INC_PRE_U;
1222 case PHY_REG_TX_CAPTURE_L:
1223 *high_addr = PHY_REG_TX_CAPTURE_U;
1225 case PHY_REG_RX_CAPTURE_L:
1226 *high_addr = PHY_REG_RX_CAPTURE_U;
1228 case PHY_REG_TOTAL_TX_OFFSET_L:
1229 *high_addr = PHY_REG_TOTAL_TX_OFFSET_U;
1231 case PHY_REG_TOTAL_RX_OFFSET_L:
1232 *high_addr = PHY_REG_TOTAL_RX_OFFSET_U;
1234 case PHY_REG_TX_MEMORY_STATUS_L:
1235 *high_addr = PHY_REG_TX_MEMORY_STATUS_U;
1243 * ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register
1244 * @low_addr: the low address to check
1245 * @high_addr: on return, contains the high address of the 40bit value
1247 * Write the appropriate high register offset to use.
1249 * Return: true if the provided low address is one of the known 40bit PHY
1250 * values split into two registers with the lower 8 bits in the low register and
1251 * the upper 32 bits in the high register, false otherwise.
1253 static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1256 case PHY_REG_TIMETUS_L:
1257 *high_addr = PHY_REG_TIMETUS_U;
1259 case PHY_PCS_REF_TUS_L:
1260 *high_addr = PHY_PCS_REF_TUS_U;
1262 case PHY_PCS_REF_INC_L:
1263 *high_addr = PHY_PCS_REF_INC_U;
1271 * ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers
1272 * @hw: pointer to the HW struct
1273 * @port: PHY port to read from
1274 * @low_addr: offset of the lower register to read from
1275 * @val: on return, the contents of the 64bit value from the PHY registers
1276 * @res_type: resource type
1278 * Check if the caller has specified a known 40 bit register offset and read
1279 * the two registers associated with a 40bit value and return it in the val
1284 * * %EINVAL - not a 64 bit register
1285 * * %other - failed to read from PHY
1287 static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1288 u64 *val, enum eth56g_res_type res_type)
1294 if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1297 err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type);
1299 ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d",
1304 err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type);
1306 ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d",
1311 *val = ((u64)hi << 32) | lo;
1317 * ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers
1318 * @hw: pointer to the HW struct
1319 * @port: PHY port to read from
1320 * @low_addr: offset of the lower register to read from
1321 * @val: on return, the contents of the 64bit value from the PHY registers
1323 * Check if the caller has specified a known 40 bit register offset and read
1324 * the two registers associated with a 40bit value and return it in the val
1329 * * %EINVAL - not a 64 bit register
1330 * * %other - failed to read from PHY
1332 static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1335 return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val,
1336 ETH56G_PHY_REG_PTP);
1340 * ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY
1341 * @hw: pointer to the HW struct
1342 * @port: port to write to
1343 * @low_addr: offset of the low register
1344 * @val: 40b value to write
1345 * @res_type: resource type
1347 * Check if the caller has specified a known 40 bit register offset and write
1348 * provided 40b value to the two associated registers by splitting it up into
1349 * two chunks, the lower 8 bits and the upper 32 bits.
1353 * * %EINVAL - not a 40 bit register
1354 * * %other - failed to write to PHY
1356 static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1357 u16 low_addr, u64 val,
1358 enum eth56g_res_type res_type)
1364 if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr))
1367 lo = FIELD_GET(P_REG_40B_LOW_M, val);
1368 hi = (u32)(val >> P_REG_40B_HIGH_S);
1370 err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1372 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1377 err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1379 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1388 * ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY
1389 * @hw: pointer to the HW struct
1390 * @port: port to write to
1391 * @low_addr: offset of the low register
1392 * @val: 40b value to write
1394 * Check if the caller has specified a known 40 bit register offset and write
1395 * provided 40b value to the two associated registers by splitting it up into
1396 * two chunks, the lower 8 bits and the upper 32 bits.
1400 * * %EINVAL - not a 40 bit register
1401 * * %other - failed to write to PHY
1403 static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1404 u16 low_addr, u64 val)
1406 return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val,
1407 ETH56G_PHY_REG_PTP);
1411 * ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers
1412 * @hw: pointer to the HW struct
1413 * @port: PHY port to read from
1414 * @low_addr: offset of the lower register to read from
1415 * @val: the contents of the 64bit value to write to PHY
1416 * @res_type: resource type
1418 * Check if the caller has specified a known 64 bit register offset and write
1419 * the 64bit value to the two associated 32bit PHY registers.
1423 * * %EINVAL - not a 64 bit register
1424 * * %other - failed to write to PHY
1426 static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1427 u16 low_addr, u64 val,
1428 enum eth56g_res_type res_type)
1434 if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1437 lo = lower_32_bits(val);
1438 hi = upper_32_bits(val);
1440 err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1442 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1447 err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1449 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1458 * ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers
1459 * @hw: pointer to the HW struct
1460 * @port: PHY port to read from
1461 * @low_addr: offset of the lower register to read from
1462 * @val: the contents of the 64bit value to write to PHY
1464 * Check if the caller has specified a known 64 bit register offset and write
1465 * the 64bit value to the two associated 32bit PHY registers.
1469 * * %EINVAL - not a 64 bit register
1470 * * %other - failed to write to PHY
1472 static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1473 u16 low_addr, u64 val)
1475 return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val,
1476 ETH56G_PHY_REG_PTP);
1480 * ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory
1481 * @hw: pointer to the HW struct
1482 * @port: the port to read from
1483 * @idx: the timestamp index to read
1484 * @tstamp: on return, the 40bit timestamp value
1486 * Read a 40bit timestamp value out of the two associated entries in the
1487 * port memory block of the internal PHYs of the 56G devices.
1491 * * %other - failed to read from PHY
1493 static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx,
1496 u16 lo_addr, hi_addr;
1500 lo_addr = (u16)PHY_TSTAMP_L(idx);
1501 hi_addr = (u16)PHY_TSTAMP_U(idx);
1503 err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo);
1505 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
1510 err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi);
1512 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
1517 /* For 56G based internal PHYs, the timestamp is reported with the
1518 * lower 8 bits in the low register, and the upper 32 bits in the high
1521 *tstamp = FIELD_PREP(TS_PHY_HIGH_M, hi) |
1522 FIELD_PREP(TS_PHY_LOW_M, lo);
1528 * ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block
1529 * @hw: pointer to the HW struct
1530 * @port: the quad to read from
1531 * @idx: the timestamp index to reset
1533 * Read and then forcibly clear the timestamp index to ensure the valid bit is
1534 * cleared and the timestamp status bit is reset in the PHY port memory of
1535 * internal PHYs of the 56G devices.
1537 * To directly clear the contents of the timestamp block entirely, discarding
1538 * all timestamp data at once, software should instead use
1539 * ice_ptp_reset_ts_memory_quad_eth56g().
1541 * This function should only be called on an idx whose bit is set according to
1542 * ice_get_phy_tx_tstamp_ready().
1546 * * %other - failed to write to PHY
1548 static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx)
1554 /* Read the timestamp register to ensure the timestamp status bit is
1557 err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp);
1559 ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n",
1563 lo_addr = (u16)PHY_TSTAMP_L(idx);
1565 err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0);
1567 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n",
1576 * ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block
1577 * @hw: pointer to the HW struct
1579 static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw)
1583 for (port = 0; port < hw->ptp.num_lports; port++) {
1584 ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
1586 ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U,
1592 * ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time
1593 * @hw: pointer to the HW struct
1594 * @port: port number
1595 * @time: time to initialize the PHY port clocks to
1597 * Write a new initial time value into registers of a specific PHY port.
1601 * * %other - failed to write to PHY
1603 static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port,
1609 err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1615 return ice_write_64b_ptp_reg_eth56g(hw, port,
1616 PHY_REG_RX_TIMER_INC_PRE_L, time);
1620 * ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time
1621 * @hw: pointer to the HW struct
1622 * @time: Time to initialize the PHY port clocks to
1624 * Program the PHY port registers with a new initial time value. The port
1625 * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
1626 * command. The time value is the upper 32 bits of the PHY timer, usually in
1627 * units of nominal nanoseconds.
1631 * * %other - failed to write to PHY
1633 static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time)
1638 /* The time represents the upper 32 bits of the PHY timer, so we need
1639 * to shift to account for this when programming.
1641 phy_time = (u64)time << 32;
1643 for (port = 0; port < hw->ptp.num_lports; port++) {
1646 err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time);
1648 ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1658 * ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust
1659 * @hw: pointer to HW struct
1660 * @port: Port number to be programmed
1661 * @time: time in cycles to adjust the port clocks
1663 * Program the port for an atomic adjustment by writing the Tx and Rx timer
1664 * registers. The atomic adjustment won't be completed until the driver issues
1665 * an ICE_PTP_ADJ_TIME command.
1667 * Note that time is not in units of nanoseconds. It is in clock time
1668 * including the lower sub-nanosecond portion of the port timer.
1670 * Negative adjustments are supported using 2s complement arithmetic.
1674 * * %other - failed to write to PHY
1676 static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time)
1681 l_time = lower_32_bits(time);
1682 u_time = upper_32_bits(time);
1685 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1690 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U,
1696 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L,
1701 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U,
1709 ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1715 * ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment
1716 * @hw: pointer to HW struct
1717 * @adj: adjustment in nanoseconds
1719 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1720 * Tx and Rx port registers. The actual adjustment is completed by issuing an
1721 * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
1725 * * %other - failed to write to PHY
1727 static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj)
1732 /* The port clock supports adjustment of the sub-nanosecond portion of
1733 * the clock (lowest 32 bits). We shift the provided adjustment in
1734 * nanoseconds by 32 to calculate the appropriate adjustment to program
1735 * into the PHY ports.
1737 cycles = (s64)adj << 32;
1739 for (port = 0; port < hw->ptp.num_lports; port++) {
1742 err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles);
1751 * ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment
1752 * @hw: pointer to HW struct
1753 * @incval: new increment value to prepare
1755 * Prepare each of the PHY ports for a new increment value by programming the
1756 * port's TIMETUS registers. The new increment value will be updated after
1757 * issuing an ICE_PTP_INIT_INCVAL command.
1761 * * %other - failed to write to PHY
1763 static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval)
1767 for (port = 0; port < hw->ptp.num_lports; port++) {
1770 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L,
1773 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1783 * ice_ptp_read_port_capture_eth56g - Read a port's local time capture
1784 * @hw: pointer to HW struct
1785 * @port: Port number to read
1786 * @tx_ts: on return, the Tx port time capture
1787 * @rx_ts: on return, the Rx port time capture
1789 * Read the port's Tx and Rx local time capture values.
1793 * * %other - failed to read from PHY
1795 static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port,
1796 u64 *tx_ts, u64 *rx_ts)
1801 err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L,
1804 ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1809 ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts);
1812 err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L,
1815 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1820 ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts);
1826 * ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command
1827 * @hw: pointer to HW struct
1828 * @port: Port to which cmd has to be sent
1829 * @cmd: Command to be sent to the port
1831 * Prepare the requested port for an upcoming timer sync command.
1835 * * %other - failed to write to PHY
1837 static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port,
1838 enum ice_ptp_tmr_cmd cmd)
1840 u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
1844 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val);
1846 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1852 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val);
1854 ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1863 * ice_phy_get_speed_eth56g - Get link speed based on PHY link type
1864 * @li: pointer to link information struct
1866 * Return: simplified ETH56G PHY speed
1868 static enum ice_eth56g_link_spd
1869 ice_phy_get_speed_eth56g(struct ice_link_status *li)
1871 u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low,
1875 case ICE_AQ_LINK_SPEED_1000MB:
1876 return ICE_ETH56G_LNK_SPD_1G;
1877 case ICE_AQ_LINK_SPEED_2500MB:
1878 return ICE_ETH56G_LNK_SPD_2_5G;
1879 case ICE_AQ_LINK_SPEED_10GB:
1880 return ICE_ETH56G_LNK_SPD_10G;
1881 case ICE_AQ_LINK_SPEED_25GB:
1882 return ICE_ETH56G_LNK_SPD_25G;
1883 case ICE_AQ_LINK_SPEED_40GB:
1884 return ICE_ETH56G_LNK_SPD_40G;
1885 case ICE_AQ_LINK_SPEED_50GB:
1886 switch (li->phy_type_low) {
1887 case ICE_PHY_TYPE_LOW_50GBASE_SR:
1888 case ICE_PHY_TYPE_LOW_50GBASE_FR:
1889 case ICE_PHY_TYPE_LOW_50GBASE_LR:
1890 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1891 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1892 case ICE_PHY_TYPE_LOW_50G_AUI1:
1893 return ICE_ETH56G_LNK_SPD_50G;
1895 return ICE_ETH56G_LNK_SPD_50G2;
1897 case ICE_AQ_LINK_SPEED_100GB:
1898 if (li->phy_type_high ||
1899 li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2)
1900 return ICE_ETH56G_LNK_SPD_100G2;
1902 return ICE_ETH56G_LNK_SPD_100G;
1904 return ICE_ETH56G_LNK_SPD_1G;
1909 * ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle
1910 * @hw: pointer to the HW struct
1911 * @port: port to configure
1913 * Configure the number of TUs for the PAR and PCS clocks used as part of the
1914 * timestamp calibration process.
1918 * * %other - PHY read/write failed
1920 static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port)
1922 u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
1926 err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH,
1927 ICE_ETH56G_NOMINAL_THRESH4);
1929 ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d",
1934 switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
1935 case ICE_ETH56G_LNK_SPD_1G:
1936 case ICE_ETH56G_LNK_SPD_2_5G:
1937 err = ice_read_ptp_reg_eth56g(hw, port_blk,
1938 PHY_GPCS_CONFIG_REG0, &val);
1940 ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d",
1945 val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M;
1946 val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M,
1947 ICE_ETH56G_NOMINAL_TX_THRESH);
1949 err = ice_write_ptp_reg_eth56g(hw, port_blk,
1950 PHY_GPCS_CONFIG_REG0, val);
1952 ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d",
1961 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L,
1962 ICE_ETH56G_NOMINAL_PCS_REF_TUS);
1964 ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d",
1969 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L,
1970 ICE_ETH56G_NOMINAL_PCS_REF_INC);
1972 ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d",
1981 * ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings
1982 * @hw: Pointer to the HW struct
1983 * @port: Port to configure
1987 * * %other - PHY read/write failed
1989 int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port)
1991 u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
1992 u8 blk_port = port & (ICE_PORTS_PER_QUAD - 1);
1993 bool enable, sfd_ena;
1994 u32 val, peer_delay;
1997 enable = hw->ptp.phy.eth56g.onestep_ena;
1998 peer_delay = hw->ptp.phy.eth56g.peer_delay;
1999 sfd_ena = hw->ptp.phy.eth56g.sfd_ena;
2001 /* PHY_PTP_1STEP_CONFIG */
2002 err = ice_read_ptp_reg_eth56g(hw, port_blk, PHY_PTP_1STEP_CONFIG, &val);
2011 val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M);
2013 err = ice_write_ptp_reg_eth56g(hw, port_blk, PHY_PTP_1STEP_CONFIG, val);
2017 /* PHY_PTP_1STEP_PEER_DELAY */
2018 val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay);
2020 val |= PHY_PTP_1STEP_PD_ADD_PD_M;
2021 val |= PHY_PTP_1STEP_PD_DLY_V_M;
2022 err = ice_write_ptp_reg_eth56g(hw, port_blk,
2023 PHY_PTP_1STEP_PEER_DELAY(blk_port), val);
2027 val &= ~PHY_PTP_1STEP_PD_DLY_V_M;
2028 err = ice_write_ptp_reg_eth56g(hw, port_blk,
2029 PHY_PTP_1STEP_PEER_DELAY(blk_port), val);
2033 /* PHY_MAC_XIF_MODE */
2034 err = ice_read_mac_reg_eth56g(hw, port, PHY_MAC_XIF_MODE, &val);
2038 val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M |
2039 PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M);
2041 switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
2042 case ICE_ETH56G_LNK_SPD_1G:
2043 case ICE_ETH56G_LNK_SPD_2_5G:
2044 val |= PHY_MAC_XIF_GMII_TS_SEL_M;
2050 val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) |
2051 FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) |
2052 FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena);
2054 return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_XIF_MODE, val);
2058 * mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values
2059 * @a: multiplier value
2060 * @b: multiplicand value
2062 * Return: result of multiplication
2064 static u32 mul_u32_u32_fx_q9(u32 a, u32 b)
2066 return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W);
2070 * add_u32_u32_fx - Add two u32 fixed point values and discard overflow
2074 * Return: result of addition
2076 static u32 add_u32_u32_fx(u32 a, u32 b)
2078 return lower_32_bits(((u64)a + b));
2082 * ice_ptp_calc_bitslip_eth56g - Calculate bitslip value
2083 * @hw: pointer to the HW struct
2084 * @port: port to configure
2085 * @bs: bitslip multiplier
2086 * @fc: FC-FEC enabled
2087 * @rs: RS-FEC enabled
2090 * Return: calculated bitslip value
2092 static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs,
2094 enum ice_eth56g_link_spd spd)
2096 u8 port_offset = port & (ICE_PORTS_PER_QUAD - 1);
2097 u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
2104 if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G)
2105 err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP,
2108 err = ice_read_ptp_reg_eth56g(hw, port_blk,
2109 PHY_REG_SD_BIT_SLIP(port_offset),
2114 if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) {
2115 /* Bitslip register value of 0 corresponds to 10 so substitute
2116 * it for calculations
2119 } else if (spd == ICE_ETH56G_LNK_SPD_10G ||
2120 spd == ICE_ETH56G_LNK_SPD_25G) {
2122 bitslip = bitslip * 2 + 32;
2124 bitslip = (u32)((s32)bitslip * -1 + 20);
2127 bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W;
2128 return mul_u32_u32_fx_q9(bitslip, bs);
2132 * ice_ptp_calc_deskew_eth56g - Calculate deskew value
2133 * @hw: pointer to the HW struct
2134 * @port: port to configure
2135 * @ds: deskew multiplier
2136 * @rs: RS-FEC enabled
2139 * Return: calculated deskew value
2141 static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds,
2142 bool rs, enum ice_eth56g_link_spd spd)
2144 u32 deskew_i, deskew_f;
2150 read_poll_timeout(ice_read_ptp_reg_eth56g, err,
2151 FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500,
2152 50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0,
2157 deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i);
2158 deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i);
2160 if (rs && spd == ICE_ETH56G_LNK_SPD_50G2)
2161 ds = 0x633; /* 3.1 */
2162 else if (rs && spd == ICE_ETH56G_LNK_SPD_100G)
2163 ds = 0x31b; /* 1.552 */
2165 deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i);
2166 /* Shift 3 fractional bits to the end of the integer part */
2167 deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W;
2168 return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds);
2172 * ice_phy_set_offsets_eth56g - Set Tx/Rx offset values
2173 * @hw: pointer to the HW struct
2174 * @port: port to configure
2176 * @cfg: structure to store output values
2177 * @fc: FC-FEC enabled
2178 * @rs: RS-FEC enabled
2182 * * %other - failed to write to PHY
2184 static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port,
2185 enum ice_eth56g_link_spd spd,
2186 const struct ice_eth56g_mac_reg_cfg *cfg,
2189 u32 rx_offset, tx_offset, bs_ds;
2192 onestep = hw->ptp.phy.eth56g.onestep_ena;
2193 sfd = hw->ptp.phy.eth56g.sfd_ena;
2194 bs_ds = cfg->rx_offset.bs_ds;
2197 rx_offset = cfg->rx_offset.fc;
2199 rx_offset = cfg->rx_offset.rs;
2201 rx_offset = cfg->rx_offset.no_fec;
2203 rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes);
2205 rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd);
2207 if (spd < ICE_ETH56G_LNK_SPD_40G)
2208 bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs,
2211 bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd);
2212 rx_offset = add_u32_u32_fx(rx_offset, bs_ds);
2213 rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT |
2214 ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC;
2217 tx_offset = cfg->tx_offset.fc;
2219 tx_offset = cfg->tx_offset.rs;
2221 tx_offset = cfg->tx_offset.no_fec;
2222 tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd +
2223 cfg->tx_offset.onestep * onestep;
2225 ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset);
2226 return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset);
2230 * ice_phy_cfg_mac_eth56g - Configure MAC for PTP
2231 * @hw: Pointer to the HW struct
2232 * @port: Port to configure
2236 * * %other - failed to write to PHY
2238 static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port)
2240 const struct ice_eth56g_mac_reg_cfg *cfg;
2241 enum ice_eth56g_link_spd spd;
2242 struct ice_link_status *li;
2249 onestep = hw->ptp.phy.eth56g.onestep_ena;
2250 li = &hw->port_info->phy.link_info;
2251 spd = ice_phy_get_speed_eth56g(li);
2252 if (!!(li->an_info & ICE_AQ_FEC_EN)) {
2253 if (spd == ICE_ETH56G_LNK_SPD_10G) {
2256 fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN);
2257 rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN);
2260 cfg = ð56g_mac_cfg[spd];
2262 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0);
2266 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0);
2270 val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M,
2271 cfg->tx_mode.def + rs * cfg->tx_mode.rs) |
2272 FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) |
2273 FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M,
2274 cfg->tx_cw_dly.def +
2275 onestep * cfg->tx_cw_dly.onestep) |
2276 FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M,
2277 cfg->rx_mode.def + rs * cfg->rx_mode.rs) |
2278 FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M,
2279 cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) |
2280 FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M,
2281 cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) |
2282 FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk);
2283 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val);
2287 err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME,
2292 err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs);
2296 if (spd == ICE_ETH56G_LNK_SPD_25G && !rs)
2301 return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val);
2305 * ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt
2306 * @hw: pointer to the HW struct
2307 * @port: the timestamp port
2308 * @ena: enable or disable interrupt
2309 * @threshold: interrupt threshold
2311 * Configure TX timestamp interrupt for the specified port
2315 * * %other - PHY read/write failed
2317 int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold)
2322 err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val);
2327 val |= PHY_TS_INT_CONFIG_ENA_M;
2328 val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M;
2329 val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold);
2331 val &= ~PHY_TS_INT_CONFIG_ENA_M;
2334 return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val);
2338 * ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time
2339 * @hw: pointer to the HW struct
2340 * @port: the PHY port to read
2341 * @phy_time: on return, the 64bit PHY timer value
2342 * @phc_time: on return, the lower 64bits of PHC time
2344 * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
2345 * and PHC timer values.
2349 * * %other - PHY read/write failed
2351 static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port,
2352 u64 *phy_time, u64 *phc_time)
2354 u64 tx_time, rx_time;
2359 tmr_idx = ice_get_ptp_src_clock_index(hw);
2361 /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
2362 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2364 /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
2365 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
2369 /* Issue the sync to start the ICE_PTP_READ_TIME capture */
2370 ice_ptp_exec_tmr_cmd(hw);
2372 /* Read the captured PHC time from the shadow time registers */
2373 zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2374 lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2375 *phc_time = (u64)lo << 32 | zo;
2377 /* Read the captured PHY time from the PHY shadow registers */
2378 err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time);
2382 /* If the PHY Tx and Rx timers don't match, log a warning message.
2383 * Note that this should not happen in normal circumstances since the
2384 * driver always programs them together.
2386 if (tx_time != rx_time)
2387 dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2388 port, tx_time, rx_time);
2390 *phy_time = tx_time;
2396 * ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer
2397 * @hw: pointer to the HW struct
2398 * @port: the PHY port to synchronize
2400 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2401 * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
2402 * simultaneous read of the PHY timer and PHC timer. Then we use the
2403 * difference to calculate an appropriate 2s complement addition to add
2404 * to the PHY timer in order to ensure it reads the same value as the
2405 * primary PHC timer.
2409 * * %-EBUSY- failed to acquire PTP semaphore
2410 * * %other - PHY read/write failed
2412 static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2414 u64 phc_time, phy_time, difference;
2417 if (!ice_ptp_lock(hw)) {
2418 ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2422 err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2426 /* Calculate the amount required to add to the port time in order for
2427 * it to match the PHC time.
2429 * Note that the port adjustment is done using 2s complement
2430 * arithmetic. This is convenient since it means that we can simply
2431 * calculate the difference between the PHC time and the port time,
2432 * and it will be interpreted correctly.
2435 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2436 difference = phc_time - phy_time;
2438 err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference);
2442 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
2446 /* Issue the sync to activate the time adjustment */
2447 ice_ptp_exec_tmr_cmd(hw);
2449 /* Re-capture the timer values to flush the command registers and
2450 * verify that the time was properly adjusted.
2452 err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2456 dev_info(ice_hw_to_dev(hw),
2457 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2458 port, phy_time, phc_time);
2466 * ice_stop_phy_timer_eth56g - Stop the PHY clock timer
2467 * @hw: pointer to the HW struct
2468 * @port: the PHY port to stop
2469 * @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS
2471 * Stop the clock of a PHY port. This must be done as part of the flow to
2472 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2473 * initialized or when link speed changes.
2477 * * %other - failed to write to PHY
2479 int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset)
2483 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0);
2487 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0);
2491 ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2497 * ice_start_phy_timer_eth56g - Start the PHY clock timer
2498 * @hw: pointer to the HW struct
2499 * @port: the PHY port to start
2501 * Start the clock of a PHY port. This must be done as part of the flow to
2502 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2503 * initialized or when link speed changes.
2507 * * %other - PHY read/write failed
2509 int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2516 tmr_idx = ice_get_ptp_src_clock_index(hw);
2518 err = ice_stop_phy_timer_eth56g(hw, port, false);
2522 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2524 err = ice_phy_cfg_parpcs_eth56g(hw, port);
2528 err = ice_phy_cfg_ptp_1step_eth56g(hw, port);
2532 err = ice_phy_cfg_mac_eth56g(hw, port);
2536 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2537 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2538 incval = (u64)hi << 32 | lo;
2540 err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval);
2544 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
2548 ice_ptp_exec_tmr_cmd(hw);
2550 err = ice_sync_phy_timer_eth56g(hw, port);
2554 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1);
2558 err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1);
2562 ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2568 * ice_sb_access_ena_eth56g - Enable SB devices (PHY and others) access
2569 * @hw: pointer to HW struct
2570 * @enable: Enable or disable access
2572 * Enable sideband devices (PHY and others) access.
2574 static void ice_sb_access_ena_eth56g(struct ice_hw *hw, bool enable)
2576 u32 val = rd32(hw, PF_SB_REM_DEV_CTL);
2579 val |= BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1);
2581 val &= ~(BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1));
2583 wr32(hw, PF_SB_REM_DEV_CTL, val);
2587 * ice_ptp_init_phc_eth56g - Perform E82X specific PHC initialization
2588 * @hw: pointer to HW struct
2590 * Perform PHC initialization steps specific to E82X devices.
2594 * * %other - failed to initialize CGU
2596 static int ice_ptp_init_phc_eth56g(struct ice_hw *hw)
2598 ice_sb_access_ena_eth56g(hw, true);
2599 /* Initialize the Clock Generation Unit */
2600 return ice_init_cgu_e82x(hw);
2604 * ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status
2605 * @hw: pointer to the HW struct
2606 * @ts_status: the timestamp mask pointer
2608 * Read the PHY Tx timestamp status mask indicating which ports have Tx
2609 * timestamps available.
2613 * * %other - failed to read from PHY
2615 int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status)
2617 const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g;
2621 mask = (1 << hw->ptp.ports_per_phy) - 1;
2624 for (phy = 0; phy < params->num_phys; phy++) {
2627 err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status);
2631 *ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy);
2634 ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status);
2640 * ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register
2641 * @hw: pointer to the HW struct
2642 * @port: the PHY port to read from
2643 * @tstamp_ready: contents of the Tx memory status register
2645 * Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in
2646 * the PHY are ready. A set bit means the corresponding timestamp is valid and
2647 * ready to be captured from the PHY timestamp block.
2651 * * %other - failed to read from PHY
2653 static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port,
2658 err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
2661 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n",
2670 * ice_is_muxed_topo - detect breakout 2x50G topology for E825C
2671 * @hw: pointer to the HW struct
2673 * Return: true if it's 2x50 breakout topology, false otherwise
2675 static bool ice_is_muxed_topo(struct ice_hw *hw)
2681 val = rd32(hw, GLGEN_SWITCH_MODE_CONFIG);
2682 mux = FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, val);
2683 val = rd32(hw, GLGEN_MAC_LINK_TOPO);
2684 link_topo = FIELD_GET(GLGEN_MAC_LINK_TOPO_LINK_TOPO_M, val);
2686 return (mux && link_topo == ICE_LINK_TOPO_UP_TO_2_LINKS);
2690 * ice_ptp_init_phy_e825c - initialize PHY parameters
2691 * @hw: pointer to the HW struct
2693 static void ice_ptp_init_phy_e825c(struct ice_hw *hw)
2695 struct ice_ptp_hw *ptp = &hw->ptp;
2696 struct ice_eth56g_params *params;
2699 ptp->phy_model = ICE_PHY_ETH56G;
2700 params = &ptp->phy.eth56g;
2701 params->onestep_ena = false;
2702 params->peer_delay = 0;
2703 params->sfd_ena = false;
2704 params->phy_addr[0] = eth56g_phy_0;
2705 params->phy_addr[1] = eth56g_phy_1;
2706 params->num_phys = 2;
2707 ptp->ports_per_phy = 4;
2708 ptp->num_lports = params->num_phys * ptp->ports_per_phy;
2710 ice_sb_access_ena_eth56g(hw, true);
2711 for (phy = 0; phy < params->num_phys; phy++) {
2715 err = ice_read_phy_eth56g(hw, phy, PHY_REG_REVISION, &phy_rev);
2716 if (err || phy_rev != PHY_REVISION_ETH56G) {
2717 ptp->phy_model = ICE_PHY_UNSUP;
2722 ptp->is_2x50g_muxed_topo = ice_is_muxed_topo(hw);
2725 /* E822 family functions
2727 * The following functions operate on the E822 family of devices.
2731 * ice_fill_phy_msg_e82x - Fill message data for a PHY register access
2732 * @hw: pointer to the HW struct
2733 * @msg: the PHY message buffer to fill in
2734 * @port: the port to access
2735 * @offset: the register offset
2737 static void ice_fill_phy_msg_e82x(struct ice_hw *hw,
2738 struct ice_sbq_msg_input *msg, u8 port,
2741 int phy_port, phy, quadtype;
2743 phy_port = port % hw->ptp.ports_per_phy;
2744 phy = port / hw->ptp.ports_per_phy;
2745 quadtype = ICE_GET_QUAD_NUM(port) %
2746 ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy);
2748 if (quadtype == 0) {
2749 msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
2750 msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
2752 msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
2753 msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
2757 msg->dest_dev = rmn_0;
2759 msg->dest_dev = rmn_1;
2761 msg->dest_dev = rmn_2;
2765 * ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register
2766 * @low_addr: the low address to check
2767 * @high_addr: on return, contains the high address of the 64bit register
2769 * Checks if the provided low address is one of the known 64bit PHY values
2770 * represented as two 32bit registers. If it is, return the appropriate high
2771 * register offset to use.
2773 static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2776 case P_REG_PAR_PCS_TX_OFFSET_L:
2777 *high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
2779 case P_REG_PAR_PCS_RX_OFFSET_L:
2780 *high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
2782 case P_REG_PAR_TX_TIME_L:
2783 *high_addr = P_REG_PAR_TX_TIME_U;
2785 case P_REG_PAR_RX_TIME_L:
2786 *high_addr = P_REG_PAR_RX_TIME_U;
2788 case P_REG_TOTAL_TX_OFFSET_L:
2789 *high_addr = P_REG_TOTAL_TX_OFFSET_U;
2791 case P_REG_TOTAL_RX_OFFSET_L:
2792 *high_addr = P_REG_TOTAL_RX_OFFSET_U;
2794 case P_REG_UIX66_10G_40G_L:
2795 *high_addr = P_REG_UIX66_10G_40G_U;
2797 case P_REG_UIX66_25G_100G_L:
2798 *high_addr = P_REG_UIX66_25G_100G_U;
2800 case P_REG_TX_CAPTURE_L:
2801 *high_addr = P_REG_TX_CAPTURE_U;
2803 case P_REG_RX_CAPTURE_L:
2804 *high_addr = P_REG_RX_CAPTURE_U;
2806 case P_REG_TX_TIMER_INC_PRE_L:
2807 *high_addr = P_REG_TX_TIMER_INC_PRE_U;
2809 case P_REG_RX_TIMER_INC_PRE_L:
2810 *high_addr = P_REG_RX_TIMER_INC_PRE_U;
2818 * ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register
2819 * @low_addr: the low address to check
2820 * @high_addr: on return, contains the high address of the 40bit value
2822 * Checks if the provided low address is one of the known 40bit PHY values
2823 * split into two registers with the lower 8 bits in the low register and the
2824 * upper 32 bits in the high register. If it is, return the appropriate high
2825 * register offset to use.
2827 static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2830 case P_REG_TIMETUS_L:
2831 *high_addr = P_REG_TIMETUS_U;
2833 case P_REG_PAR_RX_TUS_L:
2834 *high_addr = P_REG_PAR_RX_TUS_U;
2836 case P_REG_PAR_TX_TUS_L:
2837 *high_addr = P_REG_PAR_TX_TUS_U;
2839 case P_REG_PCS_RX_TUS_L:
2840 *high_addr = P_REG_PCS_RX_TUS_U;
2842 case P_REG_PCS_TX_TUS_L:
2843 *high_addr = P_REG_PCS_TX_TUS_U;
2845 case P_REG_DESK_PAR_RX_TUS_L:
2846 *high_addr = P_REG_DESK_PAR_RX_TUS_U;
2848 case P_REG_DESK_PAR_TX_TUS_L:
2849 *high_addr = P_REG_DESK_PAR_TX_TUS_U;
2851 case P_REG_DESK_PCS_RX_TUS_L:
2852 *high_addr = P_REG_DESK_PCS_RX_TUS_U;
2854 case P_REG_DESK_PCS_TX_TUS_L:
2855 *high_addr = P_REG_DESK_PCS_TX_TUS_U;
2863 * ice_read_phy_reg_e82x - Read a PHY register
2864 * @hw: pointer to the HW struct
2865 * @port: PHY port to read from
2866 * @offset: PHY register offset to read
2867 * @val: on return, the contents read from the PHY
2869 * Read a PHY register for the given port over the device sideband queue.
2872 ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
2874 struct ice_sbq_msg_input msg = {0};
2877 ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2878 msg.opcode = ice_sbq_msg_rd;
2880 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2882 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2893 * ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers
2894 * @hw: pointer to the HW struct
2895 * @port: PHY port to read from
2896 * @low_addr: offset of the lower register to read from
2897 * @val: on return, the contents of the 64bit value from the PHY registers
2899 * Reads the two registers associated with a 64bit value and returns it in the
2900 * val pointer. The offset always specifies the lower register offset to use.
2901 * The high offset is looked up. This function only operates on registers
2902 * known to be two parts of a 64bit value.
2905 ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
2911 /* Only operate on registers known to be split into two 32bit
2914 if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
2915 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
2920 err = ice_read_phy_reg_e82x(hw, port, low_addr, &low);
2922 ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
2927 err = ice_read_phy_reg_e82x(hw, port, high_addr, &high);
2929 ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
2934 *val = (u64)high << 32 | low;
2940 * ice_write_phy_reg_e82x - Write a PHY register
2941 * @hw: pointer to the HW struct
2942 * @port: PHY port to write to
2943 * @offset: PHY register offset to write
2944 * @val: The value to write to the register
2946 * Write a PHY register for the given port over the device sideband queue.
2949 ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val)
2951 struct ice_sbq_msg_input msg = {0};
2954 ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2955 msg.opcode = ice_sbq_msg_wr;
2958 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2960 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2969 * ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY
2970 * @hw: pointer to the HW struct
2971 * @port: port to write to
2972 * @low_addr: offset of the low register
2973 * @val: 40b value to write
2975 * Write the provided 40b value to the two associated registers by splitting
2976 * it up into two chunks, the lower 8 bits and the upper 32 bits.
2979 ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
2985 /* Only operate on registers known to be split into a lower 8 bit
2986 * register and an upper 32 bit register.
2988 if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) {
2989 ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
2993 low = FIELD_GET(P_REG_40B_LOW_M, val);
2994 high = (u32)(val >> P_REG_40B_HIGH_S);
2996 err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
2998 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
3003 err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
3005 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
3014 * ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers
3015 * @hw: pointer to the HW struct
3016 * @port: PHY port to read from
3017 * @low_addr: offset of the lower register to read from
3018 * @val: the contents of the 64bit value to write to PHY
3020 * Write the 64bit value to the two associated 32bit PHY registers. The offset
3021 * is always specified as the lower register, and the high address is looked
3022 * up. This function only operates on registers known to be two parts of
3026 ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
3032 /* Only operate on registers known to be split into two 32bit
3035 if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
3036 ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
3041 low = lower_32_bits(val);
3042 high = upper_32_bits(val);
3044 err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
3046 ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
3051 err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
3053 ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
3062 * ice_fill_quad_msg_e82x - Fill message data for quad register access
3063 * @hw: pointer to the HW struct
3064 * @msg: the PHY message buffer to fill in
3065 * @quad: the quad to access
3066 * @offset: the register offset
3068 * Fill a message buffer for accessing a register in a quad shared between
3073 * * %-EINVAL - invalid quad number
3075 static int ice_fill_quad_msg_e82x(struct ice_hw *hw,
3076 struct ice_sbq_msg_input *msg, u8 quad,
3081 if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports))
3084 msg->dest_dev = rmn_0;
3086 if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy)))
3087 addr = Q_0_BASE + offset;
3089 addr = Q_1_BASE + offset;
3091 msg->msg_addr_low = lower_16_bits(addr);
3092 msg->msg_addr_high = upper_16_bits(addr);
3098 * ice_read_quad_reg_e82x - Read a PHY quad register
3099 * @hw: pointer to the HW struct
3100 * @quad: quad to read from
3101 * @offset: quad register offset to read
3102 * @val: on return, the contents read from the quad
3104 * Read a quad register over the device sideband queue. Quad registers are
3105 * shared between multiple PHYs.
3108 ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
3110 struct ice_sbq_msg_input msg = {0};
3113 err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3117 msg.opcode = ice_sbq_msg_rd;
3119 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3121 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3132 * ice_write_quad_reg_e82x - Write a PHY quad register
3133 * @hw: pointer to the HW struct
3134 * @quad: quad to write to
3135 * @offset: quad register offset to write
3136 * @val: The value to write to the register
3138 * Write a quad register over the device sideband queue. Quad registers are
3139 * shared between multiple PHYs.
3142 ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
3144 struct ice_sbq_msg_input msg = {0};
3147 err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3151 msg.opcode = ice_sbq_msg_wr;
3154 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3156 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3165 * ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block
3166 * @hw: pointer to the HW struct
3167 * @quad: the quad to read from
3168 * @idx: the timestamp index to read
3169 * @tstamp: on return, the 40bit timestamp value
3171 * Read a 40bit timestamp value out of the two associated registers in the
3172 * quad memory block that is shared between the internal PHYs of the E822
3173 * family of devices.
3176 ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
3178 u16 lo_addr, hi_addr;
3182 lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
3183 hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
3185 err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo);
3187 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
3192 err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi);
3194 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
3199 /* For E822 based internal PHYs, the timestamp is reported with the
3200 * lower 8 bits in the low register, and the upper 32 bits in the high
3203 *tstamp = FIELD_PREP(TS_PHY_HIGH_M, hi) | FIELD_PREP(TS_PHY_LOW_M, lo);
3209 * ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block
3210 * @hw: pointer to the HW struct
3211 * @quad: the quad to read from
3212 * @idx: the timestamp index to reset
3214 * Read the timestamp out of the quad to clear its timestamp status bit from
3215 * the PHY quad block that is shared between the internal PHYs of the E822
3218 * Note that unlike E810, software cannot directly write to the quad memory
3219 * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
3220 * to determine which timestamps are valid. Reading a timestamp auto-clears
3223 * To directly clear the contents of the timestamp block entirely, discarding
3224 * all timestamp data at once, software should instead use
3225 * ice_ptp_reset_ts_memory_quad_e82x().
3227 * This function should only be called on an idx whose bit is set according to
3228 * ice_get_phy_tx_tstamp_ready().
3231 ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx)
3236 err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp);
3238 ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
3247 * ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block
3248 * @hw: pointer to the HW struct
3249 * @quad: the quad to read from
3251 * Clear all timestamps from the PHY quad block that is shared between the
3252 * internal PHYs on the E822 devices.
3254 void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad)
3256 ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
3257 ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
3261 * ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks
3262 * @hw: pointer to the HW struct
3264 static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw)
3268 for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++)
3269 ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
3273 * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
3274 * @hw: pointer to the HW struct
3276 * Set the window length used for the vernier port calibration process.
3278 static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
3282 for (port = 0; port < hw->ptp.num_lports; port++) {
3285 err = ice_write_phy_reg_e82x(hw, port, P_REG_WL,
3288 ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
3298 * ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization
3299 * @hw: pointer to HW struct
3301 * Perform PHC initialization steps specific to E822 devices.
3303 static int ice_ptp_init_phc_e82x(struct ice_hw *hw)
3308 /* Enable reading switch and PHY registers over the sideband queue */
3309 #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
3310 #define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
3311 val = rd32(hw, PF_SB_REM_DEV_CTL);
3312 val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0);
3313 wr32(hw, PF_SB_REM_DEV_CTL, val);
3315 /* Initialize the Clock Generation Unit */
3316 err = ice_init_cgu_e82x(hw);
3320 /* Set window length for all the ports */
3321 return ice_ptp_set_vernier_wl(hw);
3325 * ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time
3326 * @hw: pointer to the HW struct
3327 * @time: Time to initialize the PHY port clocks to
3329 * Program the PHY port registers with a new initial time value. The port
3330 * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
3331 * command. The time value is the upper 32 bits of the PHY timer, usually in
3332 * units of nominal nanoseconds.
3335 ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time)
3341 /* The time represents the upper 32 bits of the PHY timer, so we need
3342 * to shift to account for this when programming.
3344 phy_time = (u64)time << 32;
3346 for (port = 0; port < hw->ptp.num_lports; port++) {
3348 err = ice_write_64b_phy_reg_e82x(hw, port,
3349 P_REG_TX_TIMER_INC_PRE_L,
3355 err = ice_write_64b_phy_reg_e82x(hw, port,
3356 P_REG_RX_TIMER_INC_PRE_L,
3365 ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
3372 * ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust
3373 * @hw: pointer to HW struct
3374 * @port: Port number to be programmed
3375 * @time: time in cycles to adjust the port Tx and Rx clocks
3377 * Program the port for an atomic adjustment by writing the Tx and Rx timer
3378 * registers. The atomic adjustment won't be completed until the driver issues
3379 * an ICE_PTP_ADJ_TIME command.
3381 * Note that time is not in units of nanoseconds. It is in clock time
3382 * including the lower sub-nanosecond portion of the port timer.
3384 * Negative adjustments are supported using 2s complement arithmetic.
3387 ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time)
3392 l_time = lower_32_bits(time);
3393 u_time = upper_32_bits(time);
3396 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L,
3401 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U,
3407 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L,
3412 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U,
3420 ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
3426 * ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment
3427 * @hw: pointer to HW struct
3428 * @adj: adjustment in nanoseconds
3430 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
3431 * Tx and Rx port registers. The actual adjustment is completed by issuing an
3432 * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
3435 ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj)
3440 /* The port clock supports adjustment of the sub-nanosecond portion of
3441 * the clock. We shift the provided adjustment in nanoseconds to
3442 * calculate the appropriate adjustment to program into the PHY ports.
3445 cycles = (s64)adj << 32;
3447 cycles = -(((s64)-adj) << 32);
3449 for (port = 0; port < hw->ptp.num_lports; port++) {
3452 err = ice_ptp_prep_port_adj_e82x(hw, port, cycles);
3461 * ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment
3462 * @hw: pointer to HW struct
3463 * @incval: new increment value to prepare
3465 * Prepare each of the PHY ports for a new increment value by programming the
3466 * port's TIMETUS registers. The new increment value will be updated after
3467 * issuing an ICE_PTP_INIT_INCVAL command.
3470 ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval)
3475 for (port = 0; port < hw->ptp.num_lports; port++) {
3476 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L,
3485 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
3492 * ice_ptp_read_port_capture - Read a port's local time capture
3493 * @hw: pointer to HW struct
3494 * @port: Port number to read
3495 * @tx_ts: on return, the Tx port time capture
3496 * @rx_ts: on return, the Rx port time capture
3498 * Read the port's Tx and Rx local time capture values.
3500 * Note this has no equivalent for the E810 devices.
3503 ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
3508 err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
3510 ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
3515 ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
3516 (unsigned long long)*tx_ts);
3519 err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
3521 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
3526 ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
3527 (unsigned long long)*rx_ts);
3533 * ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command
3534 * @hw: pointer to HW struct
3535 * @port: Port to which cmd has to be sent
3536 * @cmd: Command to be sent to the port
3538 * Prepare the requested port for an upcoming timer sync command.
3540 * Note there is no equivalent of this operation on E810, as that device
3541 * always handles all external PHYs internally.
3545 * * %other - failed to write to PHY
3547 static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port,
3548 enum ice_ptp_tmr_cmd cmd)
3550 u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
3554 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val);
3556 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
3562 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD,
3563 val | TS_CMD_RX_TYPE);
3565 ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
3573 /* E822 Vernier calibration functions
3575 * The following functions are used as part of the vernier calibration of
3576 * a port. This calibration increases the precision of the timestamps on the
3581 * ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode
3582 * @hw: pointer to HW struct
3583 * @port: the port to read from
3584 * @link_out: if non-NULL, holds link speed on success
3585 * @fec_out: if non-NULL, holds FEC algorithm on success
3587 * Read the serdes data for the PHY port and extract the link speed and FEC
3591 ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port,
3592 enum ice_ptp_link_spd *link_out,
3593 enum ice_ptp_fec_mode *fec_out)
3595 enum ice_ptp_link_spd link;
3596 enum ice_ptp_fec_mode fec;
3600 err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes);
3602 ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
3606 /* Determine the FEC algorithm */
3607 fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
3609 serdes &= P_REG_LINK_SPEED_SERDES_M;
3611 /* Determine the link speed */
3612 if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
3614 case ICE_PTP_SERDES_25G:
3615 link = ICE_PTP_LNK_SPD_25G_RS;
3617 case ICE_PTP_SERDES_50G:
3618 link = ICE_PTP_LNK_SPD_50G_RS;
3620 case ICE_PTP_SERDES_100G:
3621 link = ICE_PTP_LNK_SPD_100G_RS;
3628 case ICE_PTP_SERDES_1G:
3629 link = ICE_PTP_LNK_SPD_1G;
3631 case ICE_PTP_SERDES_10G:
3632 link = ICE_PTP_LNK_SPD_10G;
3634 case ICE_PTP_SERDES_25G:
3635 link = ICE_PTP_LNK_SPD_25G;
3637 case ICE_PTP_SERDES_40G:
3638 link = ICE_PTP_LNK_SPD_40G;
3640 case ICE_PTP_SERDES_50G:
3641 link = ICE_PTP_LNK_SPD_50G;
3657 * ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp
3658 * @hw: pointer to HW struct
3659 * @port: to configure the quad for
3661 static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port)
3663 enum ice_ptp_link_spd link_spd;
3668 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL);
3670 ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
3675 quad = ICE_GET_QUAD_NUM(port);
3677 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
3679 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
3684 if (link_spd >= ICE_PTP_LNK_SPD_40G)
3685 val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3687 val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3689 err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
3691 ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
3698 * ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822
3699 * @hw: pointer to the HW structure
3700 * @port: the port to configure
3702 * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
3703 * hardware clock time units (TUs). That is, determine the number of TUs per
3704 * serdes unit interval, and program the UIX registers with this conversion.
3706 * This conversion is used as part of the calibration process when determining
3707 * the additional error of a timestamp vs the real time of transmission or
3708 * receipt of the packet.
3710 * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
3711 * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
3713 * To calculate the conversion ratio, we use the following facts:
3715 * a) the clock frequency in Hz (cycles per second)
3716 * b) the number of TUs per cycle (the increment value of the clock)
3717 * c) 1 second per 1 billion nanoseconds
3718 * d) the duration of 66 UIs in nanoseconds
3720 * Given these facts, we can use the following table to work out what ratios
3721 * to multiply in order to get the number of TUs per 66 UIs:
3723 * cycles | 1 second | incval (TUs) | nanoseconds
3724 * -------+--------------+--------------+-------------
3725 * second | 1 billion ns | cycle | 66 UIs
3727 * To perform the multiplication using integers without too much loss of
3728 * precision, we can take use the following equation:
3730 * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
3732 * We scale up to using 6600 UI instead of 66 in order to avoid fractional
3733 * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
3735 * The increment value has a maximum expected range of about 34 bits, while
3736 * the frequency value is about 29 bits. Multiplying these values shouldn't
3737 * overflow the 64 bits. However, we must then further multiply them again by
3738 * the Serdes unit interval duration. To avoid overflow here, we split the
3739 * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
3740 * a divide by 390,625,000. This does lose some precision, but avoids
3741 * miscalculation due to arithmetic overflow.
3743 static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port)
3745 u64 cur_freq, clk_incval, tu_per_sec, uix;
3748 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3749 clk_incval = ice_ptp_read_src_incval(hw);
3751 /* Calculate TUs per second divided by 256 */
3752 tu_per_sec = (cur_freq * clk_incval) >> 8;
3754 #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
3755 #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
3757 /* Program the 10Gb/40Gb conversion ratio */
3758 uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
3760 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L,
3763 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
3768 /* Program the 25Gb/100Gb conversion ratio */
3769 uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
3771 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L,
3774 ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
3783 * ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle
3784 * @hw: pointer to the HW struct
3785 * @port: port to configure
3787 * Configure the number of TUs for the PAR and PCS clocks used as part of the
3788 * timestamp calibration process. This depends on the link speed, as the PHY
3789 * uses different markers depending on the speed.
3792 * - Tx/Rx PAR/PCS markers
3795 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3798 * - Tx/Rx PAR/PCS markers
3799 * - Rx Deskew PAR/PCS markers
3801 * 50G RS and 100GB RS:
3802 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3803 * - Rx Deskew PAR/PCS markers
3804 * - Tx PAR/PCS markers
3806 * To calculate the conversion, we use the PHC clock frequency (cycles per
3807 * second), the increment value (TUs per cycle), and the related PHY clock
3808 * frequency to calculate the TUs per unit of the PHY link clock. The
3809 * following table shows how the units convert:
3811 * cycles | TUs | second
3812 * -------+-------+--------
3813 * second | cycle | cycles
3815 * For each conversion register, look up the appropriate frequency from the
3816 * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
3817 * this to the appropriate register, preparing hardware to perform timestamp
3818 * calibration to calculate the total Tx or Rx offset to adjust the timestamp
3819 * in order to calibrate for the internal PHY delays.
3821 * Note that the increment value ranges up to ~34 bits, and the clock
3822 * frequency is ~29 bits, so multiplying them together should fit within the
3823 * 64 bit arithmetic.
3825 static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port)
3827 u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
3828 enum ice_ptp_link_spd link_spd;
3829 enum ice_ptp_fec_mode fec_mode;
3832 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
3836 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3837 clk_incval = ice_ptp_read_src_incval(hw);
3839 /* Calculate TUs per cycle of the PHC clock */
3840 tu_per_sec = cur_freq * clk_incval;
3842 /* For each PHY conversion register, look up the appropriate link
3843 * speed frequency and determine the TUs per that clock's cycle time.
3844 * Split this into a high and low value and then program the
3845 * appropriate register. If that link speed does not use the
3846 * associated register, write zeros to clear it instead.
3849 /* P_REG_PAR_TX_TUS */
3850 if (e822_vernier[link_spd].tx_par_clk)
3851 phy_tus = div_u64(tu_per_sec,
3852 e822_vernier[link_spd].tx_par_clk);
3856 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L,
3861 /* P_REG_PAR_RX_TUS */
3862 if (e822_vernier[link_spd].rx_par_clk)
3863 phy_tus = div_u64(tu_per_sec,
3864 e822_vernier[link_spd].rx_par_clk);
3868 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L,
3873 /* P_REG_PCS_TX_TUS */
3874 if (e822_vernier[link_spd].tx_pcs_clk)
3875 phy_tus = div_u64(tu_per_sec,
3876 e822_vernier[link_spd].tx_pcs_clk);
3880 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L,
3885 /* P_REG_PCS_RX_TUS */
3886 if (e822_vernier[link_spd].rx_pcs_clk)
3887 phy_tus = div_u64(tu_per_sec,
3888 e822_vernier[link_spd].rx_pcs_clk);
3892 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L,
3897 /* P_REG_DESK_PAR_TX_TUS */
3898 if (e822_vernier[link_spd].tx_desk_rsgb_par)
3899 phy_tus = div_u64(tu_per_sec,
3900 e822_vernier[link_spd].tx_desk_rsgb_par);
3904 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L,
3909 /* P_REG_DESK_PAR_RX_TUS */
3910 if (e822_vernier[link_spd].rx_desk_rsgb_par)
3911 phy_tus = div_u64(tu_per_sec,
3912 e822_vernier[link_spd].rx_desk_rsgb_par);
3916 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L,
3921 /* P_REG_DESK_PCS_TX_TUS */
3922 if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
3923 phy_tus = div_u64(tu_per_sec,
3924 e822_vernier[link_spd].tx_desk_rsgb_pcs);
3928 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L,
3933 /* P_REG_DESK_PCS_RX_TUS */
3934 if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
3935 phy_tus = div_u64(tu_per_sec,
3936 e822_vernier[link_spd].rx_desk_rsgb_pcs);
3940 return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L,
3945 * ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port
3946 * @hw: pointer to the HW struct
3947 * @link_spd: the Link speed to calculate for
3949 * Calculate the fixed offset due to known static latency data.
3952 ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
3954 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
3956 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3957 clk_incval = ice_ptp_read_src_incval(hw);
3959 /* Calculate TUs per second */
3960 tu_per_sec = cur_freq * clk_incval;
3962 /* Calculate number of TUs to add for the fixed Tx latency. Since the
3963 * latency measurement is in 1/100th of a nanosecond, we need to
3964 * multiply by tu_per_sec and then divide by 1e11. This calculation
3965 * overflows 64 bit integer arithmetic, so break it up into two
3966 * divisions by 1e4 first then by 1e7.
3968 fixed_offset = div_u64(tu_per_sec, 10000);
3969 fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
3970 fixed_offset = div_u64(fixed_offset, 10000000);
3972 return fixed_offset;
3976 * ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset
3977 * @hw: pointer to the HW struct
3978 * @port: the PHY port to configure
3980 * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
3981 * adjust Tx timestamps by. This is calculated by combining some known static
3982 * latency along with the Vernier offset computations done by hardware.
3984 * This function will not return successfully until the Tx offset calculations
3985 * have been completed, which requires waiting until at least one packet has
3986 * been transmitted by the device. It is safe to call this function
3987 * periodically until calibration succeeds, as it will only program the offset
3990 * To avoid overflow, when calculating the offset based on the known static
3991 * latency values, we use measurements in 1/100th of a nanosecond, and divide
3992 * the TUs per second up front. This avoids overflow while allowing
3993 * calculation of the adjustment using integer arithmetic.
3995 * Returns zero on success, -EBUSY if the hardware vernier offset
3996 * calibration has not completed, or another error code on failure.
3998 int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port)
4000 enum ice_ptp_link_spd link_spd;
4001 enum ice_ptp_fec_mode fec_mode;
4002 u64 total_offset, val;
4006 /* Nothing to do if we've already programmed the offset */
4007 err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, ®);
4009 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
4017 err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, ®);
4019 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
4024 if (!(reg & P_REG_TX_OV_STATUS_OV_M))
4027 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4031 total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd);
4033 /* Read the first Vernier offset from the PHY register and add it to
4036 if (link_spd == ICE_PTP_LNK_SPD_1G ||
4037 link_spd == ICE_PTP_LNK_SPD_10G ||
4038 link_spd == ICE_PTP_LNK_SPD_25G ||
4039 link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4040 link_spd == ICE_PTP_LNK_SPD_40G ||
4041 link_spd == ICE_PTP_LNK_SPD_50G) {
4042 err = ice_read_64b_phy_reg_e82x(hw, port,
4043 P_REG_PAR_PCS_TX_OFFSET_L,
4048 total_offset += val;
4051 /* For Tx, we only need to use the second Vernier offset for
4052 * multi-lane link speeds with RS-FEC. The lanes will always be
4055 if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4056 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4057 err = ice_read_64b_phy_reg_e82x(hw, port,
4058 P_REG_PAR_TX_TIME_L,
4063 total_offset += val;
4066 /* Now that the total offset has been calculated, program it to the
4067 * PHY and indicate that the Tx offset is ready. After this,
4068 * timestamps will be enabled.
4070 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L,
4075 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1);
4079 dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
4086 * ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx
4087 * @hw: pointer to the HW struct
4088 * @port: the PHY port to adjust for
4089 * @link_spd: the current link speed of the PHY
4090 * @fec_mode: the current FEC mode of the PHY
4091 * @pmd_adj: on return, the amount to adjust the Rx total offset by
4093 * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
4094 * This varies by link speed and FEC mode. The value calculated accounts for
4095 * various delays caused when receiving a packet.
4098 ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port,
4099 enum ice_ptp_link_spd link_spd,
4100 enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
4102 u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
4107 err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val);
4109 ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
4114 pmd_align = (u8)val;
4116 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4117 clk_incval = ice_ptp_read_src_incval(hw);
4119 /* Calculate TUs per second */
4120 tu_per_sec = cur_freq * clk_incval;
4122 /* The PMD alignment adjustment measurement depends on the link speed,
4123 * and whether FEC is enabled. For each link speed, the alignment
4124 * adjustment is calculated by dividing a value by the length of
4125 * a Time Unit in nanoseconds.
4127 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
4128 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
4129 * 10G w/FEC: align * 0.1 * 32/33
4130 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
4131 * 25G w/FEC: align * 0.4 * 32/33
4132 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
4133 * 40G w/FEC: align * 0.1 * 32/33
4134 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
4135 * 50G w/FEC: align * 0.8 * 32/33
4137 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
4139 * To allow for calculating this value using integer arithmetic, we
4140 * instead start with the number of TUs per second, (inverse of the
4141 * length of a Time Unit in nanoseconds), multiply by a value based
4142 * on the PMD alignment register, and then divide by the right value
4143 * calculated based on the table above. To avoid integer overflow this
4144 * division is broken up into a step of dividing by 125 first.
4146 if (link_spd == ICE_PTP_LNK_SPD_1G) {
4150 mult = (pmd_align + 6) % 10;
4151 } else if (link_spd == ICE_PTP_LNK_SPD_10G ||
4152 link_spd == ICE_PTP_LNK_SPD_25G ||
4153 link_spd == ICE_PTP_LNK_SPD_40G ||
4154 link_spd == ICE_PTP_LNK_SPD_50G) {
4155 /* If Clause 74 FEC, always calculate PMD adjust */
4156 if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
4160 } else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4161 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4162 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4164 mult = pmd_align + 40;
4168 ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
4173 /* In some cases, there's no need to adjust for the PMD alignment */
4179 /* Calculate the adjustment by multiplying TUs per second by the
4180 * appropriate multiplier and divisor. To avoid overflow, we first
4181 * divide by 125, and then handle remaining divisor based on the link
4182 * speed pmd_adj_divisor value.
4184 adj = div_u64(tu_per_sec, 125);
4186 adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
4188 /* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
4189 * cycle count is necessary.
4191 if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
4195 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT,
4198 ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
4203 rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
4205 mult = (4 - rx_cycle) * 40;
4207 cycle_adj = div_u64(tu_per_sec, 125);
4209 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4213 } else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
4217 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT,
4220 ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
4225 rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
4227 mult = rx_cycle * 40;
4229 cycle_adj = div_u64(tu_per_sec, 125);
4231 cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4237 /* Return the calculated adjustment */
4244 * ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port
4245 * @hw: pointer to HW struct
4246 * @link_spd: The Link speed to calculate for
4248 * Determine the fixed Rx latency for a given link speed.
4251 ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
4253 u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
4255 cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4256 clk_incval = ice_ptp_read_src_incval(hw);
4258 /* Calculate TUs per second */
4259 tu_per_sec = cur_freq * clk_incval;
4261 /* Calculate number of TUs to add for the fixed Rx latency. Since the
4262 * latency measurement is in 1/100th of a nanosecond, we need to
4263 * multiply by tu_per_sec and then divide by 1e11. This calculation
4264 * overflows 64 bit integer arithmetic, so break it up into two
4265 * divisions by 1e4 first then by 1e7.
4267 fixed_offset = div_u64(tu_per_sec, 10000);
4268 fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
4269 fixed_offset = div_u64(fixed_offset, 10000000);
4271 return fixed_offset;
4275 * ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset
4276 * @hw: pointer to the HW struct
4277 * @port: the PHY port to configure
4279 * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
4280 * adjust Rx timestamps by. This combines calculations from the Vernier offset
4281 * measurements taken in hardware with some data about known fixed delay as
4282 * well as adjusting for multi-lane alignment delay.
4284 * This function will not return successfully until the Rx offset calculations
4285 * have been completed, which requires waiting until at least one packet has
4286 * been received by the device. It is safe to call this function periodically
4287 * until calibration succeeds, as it will only program the offset once.
4289 * This function must be called only after the offset registers are valid,
4290 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
4291 * has measured the offset.
4293 * To avoid overflow, when calculating the offset based on the known static
4294 * latency values, we use measurements in 1/100th of a nanosecond, and divide
4295 * the TUs per second up front. This avoids overflow while allowing
4296 * calculation of the adjustment using integer arithmetic.
4298 * Returns zero on success, -EBUSY if the hardware vernier offset
4299 * calibration has not completed, or another error code on failure.
4301 int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port)
4303 enum ice_ptp_link_spd link_spd;
4304 enum ice_ptp_fec_mode fec_mode;
4305 u64 total_offset, pmd, val;
4309 /* Nothing to do if we've already programmed the offset */
4310 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, ®);
4312 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
4320 err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, ®);
4322 ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
4327 if (!(reg & P_REG_RX_OV_STATUS_OV_M))
4330 err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4334 total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd);
4336 /* Read the first Vernier offset from the PHY register and add it to
4339 err = ice_read_64b_phy_reg_e82x(hw, port,
4340 P_REG_PAR_PCS_RX_OFFSET_L,
4345 total_offset += val;
4347 /* For Rx, all multi-lane link speeds include a second Vernier
4348 * calibration, because the lanes might not be aligned.
4350 if (link_spd == ICE_PTP_LNK_SPD_40G ||
4351 link_spd == ICE_PTP_LNK_SPD_50G ||
4352 link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4353 link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4354 err = ice_read_64b_phy_reg_e82x(hw, port,
4355 P_REG_PAR_RX_TIME_L,
4360 total_offset += val;
4363 /* In addition, Rx must account for the PMD alignment */
4364 err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd);
4368 /* For RS-FEC, this adjustment adds delay, but for other modes, it
4371 if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
4372 total_offset += pmd;
4374 total_offset -= pmd;
4376 /* Now that the total offset has been calculated, program it to the
4377 * PHY and indicate that the Rx offset is ready. After this,
4378 * timestamps will be enabled.
4380 err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L,
4385 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1);
4389 dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
4396 * ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers
4397 * @hw: pointer to the HW struct
4399 * Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted
4400 * and received timestamps as invalid.
4402 * Return: 0 on success, other error codes when failed to write to PHY
4404 int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw)
4408 for (port = 0; port < hw->ptp.num_lports; port++) {
4411 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4413 dev_warn(ice_hw_to_dev(hw),
4414 "Failed to clear PHY TX_OFFSET_READY register\n");
4418 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4420 dev_warn(ice_hw_to_dev(hw),
4421 "Failed to clear PHY RX_OFFSET_READY register\n");
4430 * ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time
4431 * @hw: pointer to the HW struct
4432 * @port: the PHY port to read
4433 * @phy_time: on return, the 64bit PHY timer value
4434 * @phc_time: on return, the lower 64bits of PHC time
4436 * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
4437 * and PHC timer values.
4440 ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time,
4443 u64 tx_time, rx_time;
4448 tmr_idx = ice_get_ptp_src_clock_index(hw);
4450 /* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
4451 ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
4453 /* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
4454 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
4458 /* Issue the sync to start the ICE_PTP_READ_TIME capture */
4459 ice_ptp_exec_tmr_cmd(hw);
4461 /* Read the captured PHC time from the shadow time registers */
4462 zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
4463 lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
4464 *phc_time = (u64)lo << 32 | zo;
4466 /* Read the captured PHY time from the PHY shadow registers */
4467 err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
4471 /* If the PHY Tx and Rx timers don't match, log a warning message.
4472 * Note that this should not happen in normal circumstances since the
4473 * driver always programs them together.
4475 if (tx_time != rx_time)
4476 dev_warn(ice_hw_to_dev(hw),
4477 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
4478 port, (unsigned long long)tx_time,
4479 (unsigned long long)rx_time);
4481 *phy_time = tx_time;
4487 * ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer
4488 * @hw: pointer to the HW struct
4489 * @port: the PHY port to synchronize
4491 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
4492 * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
4493 * simultaneous read of the PHY timer and PHC timer. Then we use the
4494 * difference to calculate an appropriate 2s complement addition to add
4495 * to the PHY timer in order to ensure it reads the same value as the
4496 * primary PHC timer.
4498 static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port)
4500 u64 phc_time, phy_time, difference;
4503 if (!ice_ptp_lock(hw)) {
4504 ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
4508 err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4512 /* Calculate the amount required to add to the port time in order for
4513 * it to match the PHC time.
4515 * Note that the port adjustment is done using 2s complement
4516 * arithmetic. This is convenient since it means that we can simply
4517 * calculate the difference between the PHC time and the port time,
4518 * and it will be interpreted correctly.
4520 difference = phc_time - phy_time;
4522 err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference);
4526 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
4530 /* Do not perform any action on the main timer */
4531 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4533 /* Issue the sync to activate the time adjustment */
4534 ice_ptp_exec_tmr_cmd(hw);
4536 /* Re-capture the timer values to flush the command registers and
4537 * verify that the time was properly adjusted.
4539 err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4543 dev_info(ice_hw_to_dev(hw),
4544 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
4545 port, (unsigned long long)phy_time,
4546 (unsigned long long)phc_time);
4558 * ice_stop_phy_timer_e82x - Stop the PHY clock timer
4559 * @hw: pointer to the HW struct
4560 * @port: the PHY port to stop
4561 * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
4563 * Stop the clock of a PHY port. This must be done as part of the flow to
4564 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4565 * initialized or when link speed changes.
4568 ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset)
4573 err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4577 err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4581 err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4585 val &= ~P_REG_PS_START_M;
4586 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4590 val &= ~P_REG_PS_ENA_CLK_M;
4591 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4596 val |= P_REG_PS_SFT_RESET_M;
4597 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4602 ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
4608 * ice_start_phy_timer_e82x - Start the PHY clock timer
4609 * @hw: pointer to the HW struct
4610 * @port: the PHY port to start
4612 * Start the clock of a PHY port. This must be done as part of the flow to
4613 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4614 * initialized or when link speed changes.
4616 * Hardware will take Vernier measurements on Tx or Rx of packets.
4618 int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port)
4625 tmr_idx = ice_get_ptp_src_clock_index(hw);
4627 err = ice_stop_phy_timer_e82x(hw, port, false);
4631 ice_phy_cfg_lane_e82x(hw, port);
4633 err = ice_phy_cfg_uix_e82x(hw, port);
4637 err = ice_phy_cfg_parpcs_e82x(hw, port);
4641 lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
4642 hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
4643 incval = (u64)hi << 32 | lo;
4645 err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval);
4649 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4653 /* Do not perform any action on the main timer */
4654 ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4656 ice_ptp_exec_tmr_cmd(hw);
4658 err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4662 val |= P_REG_PS_SFT_RESET_M;
4663 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4667 val |= P_REG_PS_START_M;
4668 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4672 val &= ~P_REG_PS_SFT_RESET_M;
4673 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4677 err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4681 ice_ptp_exec_tmr_cmd(hw);
4683 val |= P_REG_PS_ENA_CLK_M;
4684 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4688 val |= P_REG_PS_LOAD_OFFSET_M;
4689 err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4693 ice_ptp_exec_tmr_cmd(hw);
4695 err = ice_sync_phy_timer_e82x(hw, port);
4699 ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
4705 * ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register
4706 * @hw: pointer to the HW struct
4707 * @quad: the timestamp quad to read from
4708 * @tstamp_ready: contents of the Tx memory status register
4710 * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
4711 * the PHY are ready. A set bit means the corresponding timestamp is valid and
4712 * ready to be captured from the PHY timestamp block.
4715 ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
4720 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
4722 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
4727 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
4729 ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
4734 *tstamp_ready = (u64)hi << 32 | (u64)lo;
4740 * ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt
4741 * @hw: pointer to the HW struct
4742 * @quad: the timestamp quad
4743 * @ena: enable or disable interrupt
4744 * @threshold: interrupt threshold
4746 * Configure TX timestamp interrupt for the specified quad
4748 * Return: 0 on success, other error codes when failed to read/write quad
4751 int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold)
4756 err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
4760 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4762 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4763 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
4764 val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold);
4767 return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
4771 * ice_ptp_init_phy_e82x - initialize PHY parameters
4772 * @ptp: pointer to the PTP HW struct
4774 static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp)
4776 ptp->phy_model = ICE_PHY_E82X;
4777 ptp->num_lports = 8;
4778 ptp->ports_per_phy = 8;
4783 * The following functions operate on the E810 series devices which use
4784 * a separate external PHY.
4788 * ice_read_phy_reg_e810 - Read register from external PHY on E810
4789 * @hw: pointer to the HW struct
4790 * @addr: the address to read from
4791 * @val: On return, the value read from the PHY
4793 * Read a register from the external PHY on the E810 device.
4795 static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
4797 struct ice_sbq_msg_input msg = {0};
4800 msg.msg_addr_low = lower_16_bits(addr);
4801 msg.msg_addr_high = upper_16_bits(addr);
4802 msg.opcode = ice_sbq_msg_rd;
4803 msg.dest_dev = rmn_0;
4805 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4807 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4818 * ice_write_phy_reg_e810 - Write register on external PHY on E810
4819 * @hw: pointer to the HW struct
4820 * @addr: the address to writem to
4821 * @val: the value to write to the PHY
4823 * Write a value to a register of the external PHY on the E810 device.
4825 static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
4827 struct ice_sbq_msg_input msg = {0};
4830 msg.msg_addr_low = lower_16_bits(addr);
4831 msg.msg_addr_high = upper_16_bits(addr);
4832 msg.opcode = ice_sbq_msg_wr;
4833 msg.dest_dev = rmn_0;
4836 err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4838 ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4847 * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
4848 * @hw: pointer to the HW struct
4849 * @idx: the timestamp index to read
4850 * @hi: 8 bit timestamp high value
4851 * @lo: 32 bit timestamp low value
4853 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4854 * timestamp block of the external PHY on the E810 device using the low latency
4858 ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
4863 /* Write TS index to read to the PF register so the FW can read it */
4864 val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
4865 wr32(hw, PF_SB_ATQBAL, val);
4867 /* Read the register repeatedly until the FW provides us the TS */
4868 for (i = TS_LL_READ_RETRIES; i > 0; i--) {
4869 val = rd32(hw, PF_SB_ATQBAL);
4871 /* When the bit is cleared, the TS is ready in the register */
4872 if (!(FIELD_GET(TS_LL_READ_TS, val))) {
4873 /* High 8 bit value of the TS is on the bits 16:23 */
4874 *hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
4876 /* Read the low 32 bit value and set the TS valid bit */
4877 *lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
4884 /* FW failed to provide the TS in time */
4885 ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
4890 * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
4891 * @hw: pointer to the HW struct
4892 * @lport: the lport to read from
4893 * @idx: the timestamp index to read
4894 * @hi: 8 bit timestamp high value
4895 * @lo: 32 bit timestamp low value
4897 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4898 * timestamp block of the external PHY on the E810 device using sideband queue.
4901 ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
4904 u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
4905 u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
4909 err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
4911 ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
4916 err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
4918 ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
4930 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
4931 * @hw: pointer to the HW struct
4932 * @lport: the lport to read from
4933 * @idx: the timestamp index to read
4934 * @tstamp: on return, the 40bit timestamp value
4936 * Read a 40bit timestamp value out of the timestamp block of the external PHY
4937 * on the E810 device.
4940 ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
4946 if (hw->dev_caps.ts_dev_info.ts_ll_read)
4947 err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
4949 err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
4954 /* For E810 devices, the timestamp is reported with the lower 32 bits
4955 * in the low register, and the upper 8 bits in the high register.
4957 *tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
4963 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
4964 * @hw: pointer to the HW struct
4965 * @lport: the lport to read from
4966 * @idx: the timestamp index to reset
4968 * Read the timestamp and then forcibly overwrite its value to clear the valid
4969 * bit from the timestamp block of the external PHY on the E810 device.
4971 * This function should only be called on an idx whose bit is set according to
4972 * ice_get_phy_tx_tstamp_ready().
4974 static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
4976 u32 lo_addr, hi_addr;
4980 err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp);
4982 ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
4987 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
4988 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
4990 err = ice_write_phy_reg_e810(hw, lo_addr, 0);
4992 ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
4997 err = ice_write_phy_reg_e810(hw, hi_addr, 0);
4999 ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
5008 * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
5009 * @hw: pointer to HW struct
5011 * Perform E810-specific PTP hardware clock initialization steps.
5013 * Return: 0 on success, other error codes when failed to initialize TimeSync
5015 static int ice_ptp_init_phc_e810(struct ice_hw *hw)
5020 /* Ensure synchronization delay is zero */
5021 wr32(hw, GLTSYN_SYNC_DLAY, 0);
5023 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5024 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
5025 GLTSYN_ENA_TSYN_ENA_M);
5027 ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
5034 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
5035 * @hw: Board private structure
5036 * @time: Time to initialize the PHY port clock to
5038 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
5039 * initial clock time. The time will not actually be programmed until the
5040 * driver issues an ICE_PTP_INIT_TIME command.
5042 * The time value is the upper 32 bits of the PHY timer, usually in units of
5043 * nominal nanoseconds.
5045 static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
5050 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5051 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
5053 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
5058 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
5060 ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
5069 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
5070 * @hw: pointer to HW struct
5071 * @adj: adjustment value to program
5073 * Prepare the PHY port for an atomic adjustment by programming the PHY
5074 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
5075 * is completed by issuing an ICE_PTP_ADJ_TIME sync command.
5077 * The adjustment value only contains the portion used for the upper 32bits of
5078 * the PHY timer, usually in units of nominal nanoseconds. Negative
5079 * adjustments are supported using 2s complement arithmetic.
5081 static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
5086 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5088 /* Adjustments are represented as signed 2's complement values in
5089 * nanoseconds. Sub-nanosecond adjustment is not supported.
5091 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
5093 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
5098 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
5100 ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
5109 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
5110 * @hw: pointer to HW struct
5111 * @incval: The new 40bit increment value to prepare
5113 * Prepare the PHY port for a new increment value by programming the PHY
5114 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
5115 * completed by issuing an ICE_PTP_INIT_INCVAL command.
5117 static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
5123 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5124 low = lower_32_bits(incval);
5125 high = upper_32_bits(incval);
5127 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
5129 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
5134 err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
5136 ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
5145 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
5146 * @hw: pointer to HW struct
5147 * @cmd: Command to be sent to the port
5149 * Prepare the external PHYs connected to this device for a timer sync
5152 static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5154 u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
5156 return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val);
5160 * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
5161 * @hw: pointer to the HW struct
5162 * @port: the PHY port to read
5163 * @tstamp_ready: contents of the Tx memory status register
5165 * E810 devices do not use a Tx memory status register. Instead simply
5166 * indicate that all timestamps are currently ready.
5169 ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
5171 *tstamp_ready = 0xFFFFFFFFFFFFFFFF;
5175 /* E810 SMA functions
5177 * The following functions operate specifically on E810 hardware and are used
5178 * to access the extended GPIOs available.
5182 * ice_get_pca9575_handle
5183 * @hw: pointer to the hw struct
5184 * @pca9575_handle: GPIO controller's handle
5186 * Find and return the GPIO controller's handle in the netlist.
5187 * When found - the value will be cached in the hw structure and following calls
5188 * will return cached value
5191 ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5193 struct ice_aqc_get_link_topo *cmd;
5194 struct ice_aq_desc desc;
5198 /* If handle was read previously return cached value */
5199 if (hw->io_expander_handle) {
5200 *pca9575_handle = hw->io_expander_handle;
5204 /* If handle was not detected read it from the netlist */
5205 cmd = &desc.params.get_link_topo;
5206 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
5208 /* Set node type to GPIO controller */
5209 cmd->addr.topo_params.node_type_ctx =
5210 (ICE_AQC_LINK_TOPO_NODE_TYPE_M &
5211 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
5213 #define SW_PCA9575_SFP_TOPO_IDX 2
5214 #define SW_PCA9575_QSFP_TOPO_IDX 1
5216 /* Check if the SW IO expander controlling SMA exists in the netlist. */
5217 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5218 idx = SW_PCA9575_SFP_TOPO_IDX;
5219 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
5220 idx = SW_PCA9575_QSFP_TOPO_IDX;
5224 cmd->addr.topo_params.index = idx;
5226 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5230 /* Verify if we found the right IO expander type */
5231 if (desc.params.get_link_topo.node_part_num !=
5232 ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
5235 /* If present save the handle and return it */
5236 hw->io_expander_handle =
5237 le16_to_cpu(desc.params.get_link_topo.addr.handle);
5238 *pca9575_handle = hw->io_expander_handle;
5245 * @hw: pointer to the hw struct
5246 * @data: pointer to data to be read from the GPIO controller
5248 * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
5249 * PCA9575 expander, so only bits 3-7 in data are valid.
5251 int ice_read_sma_ctrl(struct ice_hw *hw, u8 *data)
5257 status = ice_get_pca9575_handle(hw, &handle);
5263 for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
5266 status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5270 *data |= (u8)(!pin) << i;
5277 * ice_write_sma_ctrl
5278 * @hw: pointer to the hw struct
5279 * @data: data to be written to the GPIO controller
5281 * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
5282 * of the PCA9575 expander, so only bits 3-7 in data are valid.
5284 int ice_write_sma_ctrl(struct ice_hw *hw, u8 data)
5290 status = ice_get_pca9575_handle(hw, &handle);
5294 for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
5297 pin = !(data & (1 << i));
5298 status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5308 * ice_read_pca9575_reg
5309 * @hw: pointer to the hw struct
5310 * @offset: GPIO controller register offset
5311 * @data: pointer to data to be read from the GPIO controller
5313 * Read the register from the GPIO controller
5315 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
5317 struct ice_aqc_link_topo_addr link_topo;
5322 memset(&link_topo, 0, sizeof(link_topo));
5324 err = ice_get_pca9575_handle(hw, &handle);
5328 link_topo.handle = cpu_to_le16(handle);
5329 link_topo.topo_params.node_type_ctx =
5330 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
5331 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
5333 addr = cpu_to_le16((u16)offset);
5335 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
5339 * ice_ptp_read_sdp_ac - read SDP available connections section from NVM
5340 * @hw: pointer to the HW struct
5341 * @entries: returns the SDP available connections section from NVM
5342 * @num_entries: returns the number of valid entries
5344 * Return: 0 on success, negative error code if NVM read failed or section does
5345 * not exist or is corrupted
5347 int ice_ptp_read_sdp_ac(struct ice_hw *hw, __le16 *entries, uint *num_entries)
5353 err = ice_acquire_nvm(hw, ICE_RES_READ);
5357 /* Read the offset of SDP_AC */
5358 offset = ICE_AQC_NVM_SDP_AC_PTR_OFFSET;
5359 err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
5364 /* Check if section exist */
5365 offset = FIELD_GET(ICE_AQC_NVM_SDP_AC_PTR_M, le16_to_cpu(data));
5366 if (offset == ICE_AQC_NVM_SDP_AC_PTR_INVAL) {
5371 if (offset & ICE_AQC_NVM_SDP_AC_PTR_TYPE_M) {
5372 offset &= ICE_AQC_NVM_SDP_AC_PTR_M;
5373 offset *= ICE_AQC_NVM_SECTOR_UNIT;
5375 offset *= sizeof(data);
5378 /* Skip reading section length and read the number of valid entries */
5379 offset += sizeof(data);
5380 err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
5384 *num_entries = le16_to_cpu(data);
5386 /* Read SDP configuration section */
5387 offset += sizeof(data);
5388 err = ice_aq_read_nvm(hw, 0, offset, *num_entries * sizeof(data),
5389 entries, false, true, NULL);
5393 dev_dbg(ice_hw_to_dev(hw), "Failed to configure SDP connection section\n");
5394 ice_release_nvm(hw);
5399 * ice_ptp_init_phy_e810 - initialize PHY parameters
5400 * @ptp: pointer to the PTP HW struct
5402 static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp)
5404 ptp->phy_model = ICE_PHY_E810;
5405 ptp->num_lports = 8;
5406 ptp->ports_per_phy = 4;
5409 /* Device agnostic functions
5411 * The following functions implement shared behavior common to both E822 and
5412 * E810 devices, possibly calling a device specific implementation where
5417 * ice_ptp_lock - Acquire PTP global semaphore register lock
5418 * @hw: pointer to the HW struct
5420 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
5421 * was acquired, false otherwise.
5423 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
5424 * value. If software sees the busy bit cleared, this means that this function
5425 * acquired the lock (and the busy bit is now set). If software sees the busy
5426 * bit set, it means that another function acquired the lock.
5428 * Software must clear the busy bit with a write to release the lock for other
5429 * functions when done.
5431 bool ice_ptp_lock(struct ice_hw *hw)
5436 #define MAX_TRIES 15
5438 for (i = 0; i < MAX_TRIES; i++) {
5439 hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
5440 hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
5442 /* Somebody is holding the lock */
5443 usleep_range(5000, 6000);
5454 * ice_ptp_unlock - Release PTP global semaphore register lock
5455 * @hw: pointer to the HW struct
5457 * Release the global PTP hardware semaphore lock. This is done by writing to
5458 * the PFTSYN_SEM register.
5460 void ice_ptp_unlock(struct ice_hw *hw)
5462 wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
5466 * ice_ptp_init_hw - Initialize hw based on device type
5467 * @hw: pointer to the HW structure
5469 * Determine the PHY model for the device, and initialize hw
5470 * for use by other functions.
5472 void ice_ptp_init_hw(struct ice_hw *hw)
5474 struct ice_ptp_hw *ptp = &hw->ptp;
5476 if (ice_is_e822(hw) || ice_is_e823(hw))
5477 ice_ptp_init_phy_e82x(ptp);
5478 else if (ice_is_e810(hw))
5479 ice_ptp_init_phy_e810(ptp);
5480 else if (ice_is_e825c(hw))
5481 ice_ptp_init_phy_e825c(hw);
5483 ptp->phy_model = ICE_PHY_UNSUP;
5487 * ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command
5488 * @hw: pointer to HW struct
5489 * @port: Port to which cmd has to be sent
5490 * @cmd: Command to be sent to the port
5492 * Prepare one port for the upcoming timer sync command. Do not use this for
5493 * programming only a single port, instead use ice_ptp_one_port_cmd() to
5494 * ensure non-modified ports get properly initialized to ICE_PTP_NOP.
5498 * %-EBUSY - PHY type not supported
5499 * * %other - failed to write port command
5501 static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port,
5502 enum ice_ptp_tmr_cmd cmd)
5504 switch (ice_get_phy_model(hw)) {
5505 case ICE_PHY_ETH56G:
5506 return ice_ptp_write_port_cmd_eth56g(hw, port, cmd);
5508 return ice_ptp_write_port_cmd_e82x(hw, port, cmd);
5515 * ice_ptp_one_port_cmd - Program one PHY port for a timer command
5516 * @hw: pointer to HW struct
5517 * @configured_port: the port that should execute the command
5518 * @configured_cmd: the command to be executed on the configured port
5520 * Prepare one port for executing a timer command, while preparing all other
5521 * ports to ICE_PTP_NOP. This allows executing a command on a single port
5522 * while ensuring all other ports do not execute stale commands.
5526 * * %other - failed to write port command
5528 int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
5529 enum ice_ptp_tmr_cmd configured_cmd)
5533 for (port = 0; port < hw->ptp.num_lports; port++) {
5536 /* Program the configured port with the configured command,
5537 * program all other ports with ICE_PTP_NOP.
5539 if (port == configured_port)
5540 err = ice_ptp_write_port_cmd(hw, port, configured_cmd);
5542 err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP);
5552 * ice_ptp_port_cmd - Prepare PHY ports for a timer sync command
5553 * @hw: pointer to HW struct
5554 * @cmd: the timer command to setup
5556 * Prepare all PHY ports on this device for the requested timer command. For
5557 * some families this can be done in one shot, but for other families each
5558 * port must be configured individually.
5562 * * %other - failed to write port command
5564 static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5568 /* PHY models which can program all ports simultaneously */
5569 switch (ice_get_phy_model(hw)) {
5571 return ice_ptp_port_cmd_e810(hw, cmd);
5576 /* PHY models which require programming each port separately */
5577 for (port = 0; port < hw->ptp.num_lports; port++) {
5580 err = ice_ptp_write_port_cmd(hw, port, cmd);
5589 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
5590 * @hw: pointer to HW struct
5591 * @cmd: the command to issue
5593 * Prepare the source timer and PHY timers and then trigger the requested
5594 * command. This causes the shadow registers previously written in preparation
5595 * for the command to be synchronously applied to both the source and PHY
5598 static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5602 /* First, prepare the source timer */
5603 ice_ptp_src_cmd(hw, cmd);
5605 /* Next, prepare the ports */
5606 err = ice_ptp_port_cmd(hw, cmd);
5608 ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
5613 /* Write the sync command register to drive both source and PHY timer
5614 * commands synchronously
5616 ice_ptp_exec_tmr_cmd(hw);
5622 * ice_ptp_init_time - Initialize device time to provided value
5623 * @hw: pointer to HW struct
5624 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
5626 * Initialize the device to the specified time provided. This requires a three
5629 * 1) write the new init time to the source timer shadow registers
5630 * 2) write the new init time to the PHY timer shadow registers
5631 * 3) issue an init_time timer command to synchronously switch both the source
5632 * and port timers to the new init time value at the next clock cycle.
5634 int ice_ptp_init_time(struct ice_hw *hw, u64 time)
5639 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5642 wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
5643 wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
5644 wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
5647 /* Fill Rx and Tx ports and send msg to PHY */
5648 switch (ice_get_phy_model(hw)) {
5649 case ICE_PHY_ETH56G:
5650 err = ice_ptp_prep_phy_time_eth56g(hw,
5651 (u32)(time & 0xFFFFFFFF));
5654 err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
5657 err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF);
5666 return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME);
5670 * ice_ptp_write_incval - Program PHC with new increment value
5671 * @hw: pointer to HW struct
5672 * @incval: Source timer increment value per clock cycle
5674 * Program the PHC with a new increment value. This requires a three-step
5677 * 1) Write the increment value to the source timer shadow registers
5678 * 2) Write the increment value to the PHY timer shadow registers
5679 * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
5680 * the source and port timers to the new increment value at the next clock
5683 int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
5688 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5691 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
5692 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
5694 switch (ice_get_phy_model(hw)) {
5695 case ICE_PHY_ETH56G:
5696 err = ice_ptp_prep_phy_incval_eth56g(hw, incval);
5699 err = ice_ptp_prep_phy_incval_e810(hw, incval);
5702 err = ice_ptp_prep_phy_incval_e82x(hw, incval);
5711 return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL);
5715 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
5716 * @hw: pointer to HW struct
5717 * @incval: Source timer increment value per clock cycle
5719 * Program a new PHC incval while holding the PTP semaphore.
5721 int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
5725 if (!ice_ptp_lock(hw))
5728 err = ice_ptp_write_incval(hw, incval);
5736 * ice_ptp_adj_clock - Adjust PHC clock time atomically
5737 * @hw: pointer to HW struct
5738 * @adj: Adjustment in nanoseconds
5740 * Perform an atomic adjustment of the PHC time by the specified number of
5741 * nanoseconds. This requires a three-step process:
5743 * 1) Write the adjustment to the source timer shadow registers
5744 * 2) Write the adjustment to the PHY timer shadow registers
5745 * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
5746 * adjustment to both the source and port timers at the next clock cycle.
5748 int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
5753 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5755 /* Write the desired clock adjustment into the GLTSYN_SHADJ register.
5756 * For an ICE_PTP_ADJ_TIME command, this set of registers represents
5757 * the value to add to the clock time. It supports subtraction by
5758 * interpreting the value as a 2's complement integer.
5760 wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
5761 wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
5763 switch (ice_get_phy_model(hw)) {
5764 case ICE_PHY_ETH56G:
5765 err = ice_ptp_prep_phy_adj_eth56g(hw, adj);
5768 err = ice_ptp_prep_phy_adj_e810(hw, adj);
5771 err = ice_ptp_prep_phy_adj_e82x(hw, adj);
5780 return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME);
5784 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
5785 * @hw: pointer to the HW struct
5786 * @block: the block to read from
5787 * @idx: the timestamp index to read
5788 * @tstamp: on return, the 40bit timestamp value
5790 * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
5791 * the block is the quad to read from. For E810 devices, the block is the
5792 * logical port to read from.
5794 int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
5796 switch (ice_get_phy_model(hw)) {
5797 case ICE_PHY_ETH56G:
5798 return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp);
5800 return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
5802 return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp);
5809 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
5810 * @hw: pointer to the HW struct
5811 * @block: the block to read from
5812 * @idx: the timestamp index to reset
5814 * Clear a timestamp from the timestamp block, discarding its value without
5815 * returning it. This resets the memory status bit for the timestamp index
5816 * allowing it to be reused for another timestamp in the future.
5818 * For E822 devices, the block number is the PHY quad to clear from. For E810
5819 * devices, the block number is the logical port to clear from.
5821 * This function must only be called on a timestamp index whose valid bit is
5822 * set according to ice_get_phy_tx_tstamp_ready().
5824 int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
5826 switch (ice_get_phy_model(hw)) {
5827 case ICE_PHY_ETH56G:
5828 return ice_clear_ptp_tstamp_eth56g(hw, block, idx);
5830 return ice_clear_phy_tstamp_e810(hw, block, idx);
5832 return ice_clear_phy_tstamp_e82x(hw, block, idx);
5839 * ice_get_pf_c827_idx - find and return the C827 index for the current pf
5840 * @hw: pointer to the hw struct
5841 * @idx: index of the found C827 PHY
5844 * * negative - failure
5846 static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
5848 struct ice_aqc_get_link_topo cmd;
5849 u8 node_part_number;
5854 if (hw->mac_type != ICE_MAC_E810)
5857 if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
5862 memset(&cmd, 0, sizeof(cmd));
5864 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
5865 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
5866 cmd.addr.topo_params.node_type_ctx = ctx;
5868 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
5870 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
5873 if (node_handle == E810C_QSFP_C827_0_HANDLE)
5875 else if (node_handle == E810C_QSFP_C827_1_HANDLE)
5884 * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
5885 * @hw: pointer to the HW struct
5887 void ice_ptp_reset_ts_memory(struct ice_hw *hw)
5889 switch (ice_get_phy_model(hw)) {
5890 case ICE_PHY_ETH56G:
5891 ice_ptp_reset_ts_memory_eth56g(hw);
5894 ice_ptp_reset_ts_memory_e82x(hw);
5903 * ice_ptp_init_phc - Initialize PTP hardware clock
5904 * @hw: pointer to the HW struct
5906 * Perform the steps required to initialize the PTP hardware clock.
5908 int ice_ptp_init_phc(struct ice_hw *hw)
5910 u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5912 /* Enable source clocks */
5913 wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
5915 /* Clear event err indications for auxiliary pins */
5916 (void)rd32(hw, GLTSYN_STAT(src_idx));
5918 switch (ice_get_phy_model(hw)) {
5919 case ICE_PHY_ETH56G:
5920 return ice_ptp_init_phc_eth56g(hw);
5922 return ice_ptp_init_phc_e810(hw);
5924 return ice_ptp_init_phc_e82x(hw);
5931 * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
5932 * @hw: pointer to the HW struct
5933 * @block: the timestamp block to check
5934 * @tstamp_ready: storage for the PHY Tx memory status information
5936 * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
5937 * which indicates which timestamps in the block may be captured. A set bit
5938 * means the timestamp can be read. An unset bit means the timestamp is not
5939 * ready and software should avoid reading the register.
5941 int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
5943 switch (ice_get_phy_model(hw)) {
5944 case ICE_PHY_ETH56G:
5945 return ice_get_phy_tx_tstamp_ready_eth56g(hw, block,
5948 return ice_get_phy_tx_tstamp_ready_e810(hw, block,
5951 return ice_get_phy_tx_tstamp_ready_e82x(hw, block,
5960 * ice_cgu_get_pin_desc_e823 - get pin description array
5961 * @hw: pointer to the hw struct
5962 * @input: if request is done against input or output pin
5963 * @size: number of inputs/outputs
5965 * Return: pointer to pin description array associated to given hw.
5967 static const struct ice_cgu_pin_desc *
5968 ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
5970 static const struct ice_cgu_pin_desc *t;
5972 if (hw->cgu_part_number ==
5973 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
5975 t = ice_e823_zl_cgu_inputs;
5976 *size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
5978 t = ice_e823_zl_cgu_outputs;
5979 *size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
5981 } else if (hw->cgu_part_number ==
5982 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
5984 t = ice_e823_si_cgu_inputs;
5985 *size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
5987 t = ice_e823_si_cgu_outputs;
5988 *size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
5999 * ice_cgu_get_pin_desc - get pin description array
6000 * @hw: pointer to the hw struct
6001 * @input: if request is done against input or output pins
6002 * @size: size of array returned by function
6004 * Return: pointer to pin description array associated to given hw.
6006 static const struct ice_cgu_pin_desc *
6007 ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
6009 const struct ice_cgu_pin_desc *t = NULL;
6011 switch (hw->device_id) {
6012 case ICE_DEV_ID_E810C_SFP:
6014 t = ice_e810t_sfp_cgu_inputs;
6015 *size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
6017 t = ice_e810t_sfp_cgu_outputs;
6018 *size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
6021 case ICE_DEV_ID_E810C_QSFP:
6023 t = ice_e810t_qsfp_cgu_inputs;
6024 *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
6026 t = ice_e810t_qsfp_cgu_outputs;
6027 *size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
6030 case ICE_DEV_ID_E823L_10G_BASE_T:
6031 case ICE_DEV_ID_E823L_1GBE:
6032 case ICE_DEV_ID_E823L_BACKPLANE:
6033 case ICE_DEV_ID_E823L_QSFP:
6034 case ICE_DEV_ID_E823L_SFP:
6035 case ICE_DEV_ID_E823C_10G_BASE_T:
6036 case ICE_DEV_ID_E823C_BACKPLANE:
6037 case ICE_DEV_ID_E823C_QSFP:
6038 case ICE_DEV_ID_E823C_SFP:
6039 case ICE_DEV_ID_E823C_SGMII:
6040 t = ice_cgu_get_pin_desc_e823(hw, input, size);
6050 * ice_cgu_get_num_pins - get pin description array size
6051 * @hw: pointer to the hw struct
6052 * @input: if request is done against input or output pins
6054 * Return: size of pin description array for given hw.
6056 int ice_cgu_get_num_pins(struct ice_hw *hw, bool input)
6058 const struct ice_cgu_pin_desc *t;
6061 t = ice_cgu_get_pin_desc(hw, input, &size);
6069 * ice_cgu_get_pin_type - get pin's type
6070 * @hw: pointer to the hw struct
6072 * @input: if request is done against input or output pin
6074 * Return: type of a pin.
6076 enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
6078 const struct ice_cgu_pin_desc *t;
6081 t = ice_cgu_get_pin_desc(hw, input, &t_size);
6093 * ice_cgu_get_pin_freq_supp - get pin's supported frequency
6094 * @hw: pointer to the hw struct
6096 * @input: if request is done against input or output pin
6097 * @num: output number of supported frequencies
6099 * Get frequency supported number and array of supported frequencies.
6101 * Return: array of supported frequencies for given pin.
6103 struct dpll_pin_frequency *
6104 ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
6106 const struct ice_cgu_pin_desc *t;
6110 t = ice_cgu_get_pin_desc(hw, input, &t_size);
6115 *num = t[pin].freq_supp_num;
6117 return t[pin].freq_supp;
6121 * ice_cgu_get_pin_name - get pin's name
6122 * @hw: pointer to the hw struct
6124 * @input: if request is done against input or output pin
6127 * * null terminated char array with name
6128 * * NULL in case of failure
6130 const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
6132 const struct ice_cgu_pin_desc *t;
6135 t = ice_cgu_get_pin_desc(hw, input, &t_size);
6147 * ice_get_cgu_state - get the state of the DPLL
6148 * @hw: pointer to the hw struct
6149 * @dpll_idx: Index of internal DPLL unit
6150 * @last_dpll_state: last known state of DPLL
6151 * @pin: pointer to a buffer for returning currently active pin
6152 * @ref_state: reference clock state
6153 * @eec_mode: eec mode of the DPLL
6154 * @phase_offset: pointer to a buffer for returning phase offset
6155 * @dpll_state: state of the DPLL (output)
6157 * This function will read the state of the DPLL(dpll_idx). Non-null
6158 * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
6159 * retrieve currently active pin, state, mode and phase_offset respectively.
6161 * Return: state of the DPLL
6163 int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
6164 enum dpll_lock_status last_dpll_state, u8 *pin,
6165 u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
6166 enum dpll_lock_status *dpll_state)
6168 u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
6169 s64 hw_phase_offset;
6172 status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state,
6173 &hw_dpll_state, &hw_config,
6174 &hw_phase_offset, &hw_eec_mode);
6179 /* current ref pin in dpll_state_refsel_status_X register */
6180 *pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
6182 *phase_offset = hw_phase_offset;
6184 *ref_state = hw_ref_state;
6186 *eec_mode = hw_eec_mode;
6190 /* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
6191 * it would never return to FREERUN. This aligns to ITU-T G.781
6192 * Recommendation. We cannot report HOLDOVER as HO memory is cleared
6193 * while switching to another reference.
6194 * Only for situations where previous state was either: "LOCKED without
6195 * HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
6197 if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
6198 if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
6199 *dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
6201 *dpll_state = DPLL_LOCK_STATUS_LOCKED;
6202 } else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
6203 last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
6204 *dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
6206 *dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
6213 * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
6214 * @hw: pointer to the hw struct
6215 * @base_idx: returns index of first recovered clock pin on device
6216 * @pin_num: returns number of recovered clock pins available on device
6218 * Based on hw provide caller info about recovery clock pins available on the
6222 * * 0 - success, information is valid
6223 * * negative - failure, information is not valid
6225 int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
6230 switch (hw->device_id) {
6231 case ICE_DEV_ID_E810C_SFP:
6232 case ICE_DEV_ID_E810C_QSFP:
6234 ret = ice_get_pf_c827_idx(hw, &phy_idx);
6237 *base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
6238 *pin_num = ICE_E810_RCLK_PINS_NUM;
6241 case ICE_DEV_ID_E823L_10G_BASE_T:
6242 case ICE_DEV_ID_E823L_1GBE:
6243 case ICE_DEV_ID_E823L_BACKPLANE:
6244 case ICE_DEV_ID_E823L_QSFP:
6245 case ICE_DEV_ID_E823L_SFP:
6246 case ICE_DEV_ID_E823C_10G_BASE_T:
6247 case ICE_DEV_ID_E823C_BACKPLANE:
6248 case ICE_DEV_ID_E823C_QSFP:
6249 case ICE_DEV_ID_E823C_SFP:
6250 case ICE_DEV_ID_E823C_SGMII:
6251 *pin_num = ICE_E82X_RCLK_PINS_NUM;
6253 if (hw->cgu_part_number ==
6254 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
6255 *base_idx = ZL_REF1P;
6256 else if (hw->cgu_part_number ==
6257 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
6258 *base_idx = SI_REF1P;
6272 * ice_cgu_get_output_pin_state_caps - get output pin state capabilities
6273 * @hw: pointer to the hw struct
6274 * @pin_id: id of a pin
6275 * @caps: capabilities to modify
6278 * * 0 - success, state capabilities were modified
6279 * * negative - failure, capabilities were not modified
6281 int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id,
6282 unsigned long *caps)
6284 bool can_change = true;
6286 switch (hw->device_id) {
6287 case ICE_DEV_ID_E810C_SFP:
6288 if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3)
6291 case ICE_DEV_ID_E810C_QSFP:
6292 if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4)
6295 case ICE_DEV_ID_E823L_10G_BASE_T:
6296 case ICE_DEV_ID_E823L_1GBE:
6297 case ICE_DEV_ID_E823L_BACKPLANE:
6298 case ICE_DEV_ID_E823L_QSFP:
6299 case ICE_DEV_ID_E823L_SFP:
6300 case ICE_DEV_ID_E823C_10G_BASE_T:
6301 case ICE_DEV_ID_E823C_BACKPLANE:
6302 case ICE_DEV_ID_E823C_QSFP:
6303 case ICE_DEV_ID_E823C_SFP:
6304 case ICE_DEV_ID_E823C_SGMII:
6305 if (hw->cgu_part_number ==
6306 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 &&
6309 else if (hw->cgu_part_number ==
6310 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 &&
6318 *caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
6320 *caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;