]> Git Repo - J-linux.git/blob - drivers/net/ethernet/intel/iavf/iavf_main.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / net / ethernet / intel / iavf / iavf_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/net/intel/libie/rx.h>
5
6 #include "iavf.h"
7 #include "iavf_prototype.h"
8 /* All iavf tracepoints are defined by the include below, which must
9  * be included exactly once across the whole kernel with
10  * CREATE_TRACE_POINTS defined
11  */
12 #define CREATE_TRACE_POINTS
13 #include "iavf_trace.h"
14
15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17 static int iavf_close(struct net_device *netdev);
18 static void iavf_init_get_resources(struct iavf_adapter *adapter);
19 static int iavf_check_reset_complete(struct iavf_hw *hw);
20
21 char iavf_driver_name[] = "iavf";
22 static const char iavf_driver_string[] =
23         "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24
25 static const char iavf_copyright[] =
26         "Copyright (c) 2013 - 2018 Intel Corporation.";
27
28 /* iavf_pci_tbl - PCI Device ID Table
29  *
30  * Wildcard entries (PCI_ANY_ID) should come last
31  * Last entry must be all 0s
32  *
33  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34  *   Class, Class Mask, private data (not used) }
35  */
36 static const struct pci_device_id iavf_pci_tbl[] = {
37         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41         /* required last entry */
42         {0, }
43 };
44
45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46
47 MODULE_ALIAS("i40evf");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_IMPORT_NS("LIBETH");
50 MODULE_IMPORT_NS("LIBIE");
51 MODULE_LICENSE("GPL v2");
52
53 static const struct net_device_ops iavf_netdev_ops;
54
55 int iavf_status_to_errno(enum iavf_status status)
56 {
57         switch (status) {
58         case IAVF_SUCCESS:
59                 return 0;
60         case IAVF_ERR_PARAM:
61         case IAVF_ERR_MAC_TYPE:
62         case IAVF_ERR_INVALID_MAC_ADDR:
63         case IAVF_ERR_INVALID_LINK_SETTINGS:
64         case IAVF_ERR_INVALID_PD_ID:
65         case IAVF_ERR_INVALID_QP_ID:
66         case IAVF_ERR_INVALID_CQ_ID:
67         case IAVF_ERR_INVALID_CEQ_ID:
68         case IAVF_ERR_INVALID_AEQ_ID:
69         case IAVF_ERR_INVALID_SIZE:
70         case IAVF_ERR_INVALID_ARP_INDEX:
71         case IAVF_ERR_INVALID_FPM_FUNC_ID:
72         case IAVF_ERR_QP_INVALID_MSG_SIZE:
73         case IAVF_ERR_INVALID_FRAG_COUNT:
74         case IAVF_ERR_INVALID_ALIGNMENT:
75         case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76         case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77         case IAVF_ERR_INVALID_VF_ID:
78         case IAVF_ERR_INVALID_HMCFN_ID:
79         case IAVF_ERR_INVALID_PBLE_INDEX:
80         case IAVF_ERR_INVALID_SD_INDEX:
81         case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82         case IAVF_ERR_INVALID_SD_TYPE:
83         case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84         case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85         case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86                 return -EINVAL;
87         case IAVF_ERR_NVM:
88         case IAVF_ERR_NVM_CHECKSUM:
89         case IAVF_ERR_PHY:
90         case IAVF_ERR_CONFIG:
91         case IAVF_ERR_UNKNOWN_PHY:
92         case IAVF_ERR_LINK_SETUP:
93         case IAVF_ERR_ADAPTER_STOPPED:
94         case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95         case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96         case IAVF_ERR_RESET_FAILED:
97         case IAVF_ERR_BAD_PTR:
98         case IAVF_ERR_SWFW_SYNC:
99         case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100         case IAVF_ERR_QUEUE_EMPTY:
101         case IAVF_ERR_FLUSHED_QUEUE:
102         case IAVF_ERR_OPCODE_MISMATCH:
103         case IAVF_ERR_CQP_COMPL_ERROR:
104         case IAVF_ERR_BACKING_PAGE_ERROR:
105         case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106         case IAVF_ERR_MEMCPY_FAILED:
107         case IAVF_ERR_SRQ_ENABLED:
108         case IAVF_ERR_ADMIN_QUEUE_ERROR:
109         case IAVF_ERR_ADMIN_QUEUE_FULL:
110         case IAVF_ERR_BAD_RDMA_CQE:
111         case IAVF_ERR_NVM_BLANK_MODE:
112         case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113         case IAVF_ERR_DIAG_TEST_FAILED:
114         case IAVF_ERR_FIRMWARE_API_VERSION:
115         case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116                 return -EIO;
117         case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118                 return -ENODEV;
119         case IAVF_ERR_NO_AVAILABLE_VSI:
120         case IAVF_ERR_RING_FULL:
121                 return -ENOSPC;
122         case IAVF_ERR_NO_MEMORY:
123                 return -ENOMEM;
124         case IAVF_ERR_TIMEOUT:
125         case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126                 return -ETIMEDOUT;
127         case IAVF_ERR_NOT_IMPLEMENTED:
128         case IAVF_NOT_SUPPORTED:
129                 return -EOPNOTSUPP;
130         case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131                 return -EALREADY;
132         case IAVF_ERR_NOT_READY:
133                 return -EBUSY;
134         case IAVF_ERR_BUF_TOO_SHORT:
135                 return -EMSGSIZE;
136         }
137
138         return -EIO;
139 }
140
141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142 {
143         switch (v_status) {
144         case VIRTCHNL_STATUS_SUCCESS:
145                 return 0;
146         case VIRTCHNL_STATUS_ERR_PARAM:
147         case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148                 return -EINVAL;
149         case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150                 return -ENOMEM;
151         case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152         case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153         case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154                 return -EIO;
155         case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156                 return -EOPNOTSUPP;
157         }
158
159         return -EIO;
160 }
161
162 /**
163  * iavf_pdev_to_adapter - go from pci_dev to adapter
164  * @pdev: pci_dev pointer
165  */
166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167 {
168         return netdev_priv(pci_get_drvdata(pdev));
169 }
170
171 /**
172  * iavf_is_reset_in_progress - Check if a reset is in progress
173  * @adapter: board private structure
174  */
175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176 {
177         if (adapter->state == __IAVF_RESETTING ||
178             adapter->flags & (IAVF_FLAG_RESET_PENDING |
179                               IAVF_FLAG_RESET_NEEDED))
180                 return true;
181
182         return false;
183 }
184
185 /**
186  * iavf_wait_for_reset - Wait for reset to finish.
187  * @adapter: board private structure
188  *
189  * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190  */
191 int iavf_wait_for_reset(struct iavf_adapter *adapter)
192 {
193         int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194                                         !iavf_is_reset_in_progress(adapter),
195                                         msecs_to_jiffies(5000));
196
197         /* If ret < 0 then it means wait was interrupted.
198          * If ret == 0 then it means we got a timeout while waiting
199          * for reset to finish.
200          * If ret > 0 it means reset has finished.
201          */
202         if (ret > 0)
203                 return 0;
204         else if (ret < 0)
205                 return -EINTR;
206         else
207                 return -EBUSY;
208 }
209
210 /**
211  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212  * @hw:   pointer to the HW structure
213  * @mem:  ptr to mem struct to fill out
214  * @size: size of memory requested
215  * @alignment: what to align the allocation to
216  **/
217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218                                          struct iavf_dma_mem *mem,
219                                          u64 size, u32 alignment)
220 {
221         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222
223         if (!mem)
224                 return IAVF_ERR_PARAM;
225
226         mem->size = ALIGN(size, alignment);
227         mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228                                      (dma_addr_t *)&mem->pa, GFP_KERNEL);
229         if (mem->va)
230                 return 0;
231         else
232                 return IAVF_ERR_NO_MEMORY;
233 }
234
235 /**
236  * iavf_free_dma_mem - wrapper for DMA memory freeing
237  * @hw:   pointer to the HW structure
238  * @mem:  ptr to mem struct to free
239  **/
240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241 {
242         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243
244         if (!mem || !mem->va)
245                 return IAVF_ERR_PARAM;
246         dma_free_coherent(&adapter->pdev->dev, mem->size,
247                           mem->va, (dma_addr_t)mem->pa);
248         return 0;
249 }
250
251 /**
252  * iavf_allocate_virt_mem - virt memory alloc wrapper
253  * @hw:   pointer to the HW structure
254  * @mem:  ptr to mem struct to fill out
255  * @size: size of memory requested
256  **/
257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258                                         struct iavf_virt_mem *mem, u32 size)
259 {
260         if (!mem)
261                 return IAVF_ERR_PARAM;
262
263         mem->size = size;
264         mem->va = kzalloc(size, GFP_KERNEL);
265
266         if (mem->va)
267                 return 0;
268         else
269                 return IAVF_ERR_NO_MEMORY;
270 }
271
272 /**
273  * iavf_free_virt_mem - virt memory free wrapper
274  * @hw:   pointer to the HW structure
275  * @mem:  ptr to mem struct to free
276  **/
277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278 {
279         kfree(mem->va);
280 }
281
282 /**
283  * iavf_schedule_reset - Set the flags and schedule a reset event
284  * @adapter: board private structure
285  * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286  **/
287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288 {
289         if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290             !(adapter->flags &
291             (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292                 adapter->flags |= flags;
293                 queue_work(adapter->wq, &adapter->reset_task);
294         }
295 }
296
297 /**
298  * iavf_schedule_aq_request - Set the flags and schedule aq request
299  * @adapter: board private structure
300  * @flags: requested aq flags
301  **/
302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303 {
304         adapter->aq_required |= flags;
305         mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306 }
307
308 /**
309  * iavf_tx_timeout - Respond to a Tx Hang
310  * @netdev: network interface device structure
311  * @txqueue: queue number that is timing out
312  **/
313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314 {
315         struct iavf_adapter *adapter = netdev_priv(netdev);
316
317         adapter->tx_timeout_count++;
318         iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319 }
320
321 /**
322  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323  * @adapter: board private structure
324  **/
325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326 {
327         struct iavf_hw *hw = &adapter->hw;
328
329         if (!adapter->msix_entries)
330                 return;
331
332         wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333
334         iavf_flush(hw);
335
336         synchronize_irq(adapter->msix_entries[0].vector);
337 }
338
339 /**
340  * iavf_misc_irq_enable - Enable default interrupt generation settings
341  * @adapter: board private structure
342  **/
343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344 {
345         struct iavf_hw *hw = &adapter->hw;
346
347         wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348                                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349         wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350
351         iavf_flush(hw);
352 }
353
354 /**
355  * iavf_irq_disable - Mask off interrupt generation on the NIC
356  * @adapter: board private structure
357  **/
358 static void iavf_irq_disable(struct iavf_adapter *adapter)
359 {
360         int i;
361         struct iavf_hw *hw = &adapter->hw;
362
363         if (!adapter->msix_entries)
364                 return;
365
366         for (i = 1; i < adapter->num_msix_vectors; i++) {
367                 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368                 synchronize_irq(adapter->msix_entries[i].vector);
369         }
370         iavf_flush(hw);
371 }
372
373 /**
374  * iavf_irq_enable_queues - Enable interrupt for all queues
375  * @adapter: board private structure
376  **/
377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378 {
379         struct iavf_hw *hw = &adapter->hw;
380         int i;
381
382         for (i = 1; i < adapter->num_msix_vectors; i++) {
383                 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384                      IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385                      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386         }
387 }
388
389 /**
390  * iavf_irq_enable - Enable default interrupt generation settings
391  * @adapter: board private structure
392  * @flush: boolean value whether to run rd32()
393  **/
394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395 {
396         struct iavf_hw *hw = &adapter->hw;
397
398         iavf_misc_irq_enable(adapter);
399         iavf_irq_enable_queues(adapter);
400
401         if (flush)
402                 iavf_flush(hw);
403 }
404
405 /**
406  * iavf_msix_aq - Interrupt handler for vector 0
407  * @irq: interrupt number
408  * @data: pointer to netdev
409  **/
410 static irqreturn_t iavf_msix_aq(int irq, void *data)
411 {
412         struct net_device *netdev = data;
413         struct iavf_adapter *adapter = netdev_priv(netdev);
414         struct iavf_hw *hw = &adapter->hw;
415
416         /* handle non-queue interrupts, these reads clear the registers */
417         rd32(hw, IAVF_VFINT_ICR01);
418         rd32(hw, IAVF_VFINT_ICR0_ENA1);
419
420         if (adapter->state != __IAVF_REMOVE)
421                 /* schedule work on the private workqueue */
422                 queue_work(adapter->wq, &adapter->adminq_task);
423
424         return IRQ_HANDLED;
425 }
426
427 /**
428  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429  * @irq: interrupt number
430  * @data: pointer to a q_vector
431  **/
432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433 {
434         struct iavf_q_vector *q_vector = data;
435
436         if (!q_vector->tx.ring && !q_vector->rx.ring)
437                 return IRQ_HANDLED;
438
439         napi_schedule_irqoff(&q_vector->napi);
440
441         return IRQ_HANDLED;
442 }
443
444 /**
445  * iavf_map_vector_to_rxq - associate irqs with rx queues
446  * @adapter: board private structure
447  * @v_idx: interrupt number
448  * @r_idx: queue number
449  **/
450 static void
451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452 {
453         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454         struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455         struct iavf_hw *hw = &adapter->hw;
456
457         rx_ring->q_vector = q_vector;
458         rx_ring->next = q_vector->rx.ring;
459         rx_ring->vsi = &adapter->vsi;
460         q_vector->rx.ring = rx_ring;
461         q_vector->rx.count++;
462         q_vector->rx.next_update = jiffies + 1;
463         q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464         q_vector->ring_mask |= BIT(r_idx);
465         wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466              q_vector->rx.current_itr >> 1);
467         q_vector->rx.current_itr = q_vector->rx.target_itr;
468 }
469
470 /**
471  * iavf_map_vector_to_txq - associate irqs with tx queues
472  * @adapter: board private structure
473  * @v_idx: interrupt number
474  * @t_idx: queue number
475  **/
476 static void
477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478 {
479         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480         struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481         struct iavf_hw *hw = &adapter->hw;
482
483         tx_ring->q_vector = q_vector;
484         tx_ring->next = q_vector->tx.ring;
485         tx_ring->vsi = &adapter->vsi;
486         q_vector->tx.ring = tx_ring;
487         q_vector->tx.count++;
488         q_vector->tx.next_update = jiffies + 1;
489         q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490         q_vector->num_ringpairs++;
491         wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492              q_vector->tx.target_itr >> 1);
493         q_vector->tx.current_itr = q_vector->tx.target_itr;
494 }
495
496 /**
497  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498  * @adapter: board private structure to initialize
499  *
500  * This function maps descriptor rings to the queue-specific vectors
501  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
502  * one vector per ring/queue, but on a constrained vector budget, we
503  * group the rings as "efficiently" as possible.  You would add new
504  * mapping configurations in here.
505  **/
506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507 {
508         int rings_remaining = adapter->num_active_queues;
509         int ridx = 0, vidx = 0;
510         int q_vectors;
511
512         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513
514         for (; ridx < rings_remaining; ridx++) {
515                 iavf_map_vector_to_rxq(adapter, vidx, ridx);
516                 iavf_map_vector_to_txq(adapter, vidx, ridx);
517
518                 /* In the case where we have more queues than vectors, continue
519                  * round-robin on vectors until all queues are mapped.
520                  */
521                 if (++vidx >= q_vectors)
522                         vidx = 0;
523         }
524
525         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526 }
527
528 /**
529  * iavf_irq_affinity_notify - Callback for affinity changes
530  * @notify: context as to what irq was changed
531  * @mask: the new affinity mask
532  *
533  * This is a callback function used by the irq_set_affinity_notifier function
534  * so that we may register to receive changes to the irq affinity masks.
535  **/
536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537                                      const cpumask_t *mask)
538 {
539         struct iavf_q_vector *q_vector =
540                 container_of(notify, struct iavf_q_vector, affinity_notify);
541
542         cpumask_copy(&q_vector->affinity_mask, mask);
543 }
544
545 /**
546  * iavf_irq_affinity_release - Callback for affinity notifier release
547  * @ref: internal core kernel usage
548  *
549  * This is a callback function used by the irq_set_affinity_notifier function
550  * to inform the current notification subscriber that they will no longer
551  * receive notifications.
552  **/
553 static void iavf_irq_affinity_release(struct kref *ref) {}
554
555 /**
556  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557  * @adapter: board private structure
558  * @basename: device basename
559  *
560  * Allocates MSI-X vectors for tx and rx handling, and requests
561  * interrupts from the kernel.
562  **/
563 static int
564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565 {
566         unsigned int vector, q_vectors;
567         unsigned int rx_int_idx = 0, tx_int_idx = 0;
568         int irq_num, err;
569         int cpu;
570
571         iavf_irq_disable(adapter);
572         /* Decrement for Other and TCP Timer vectors */
573         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574
575         for (vector = 0; vector < q_vectors; vector++) {
576                 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577
578                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579
580                 if (q_vector->tx.ring && q_vector->rx.ring) {
581                         snprintf(q_vector->name, sizeof(q_vector->name),
582                                  "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583                         tx_int_idx++;
584                 } else if (q_vector->rx.ring) {
585                         snprintf(q_vector->name, sizeof(q_vector->name),
586                                  "iavf-%s-rx-%u", basename, rx_int_idx++);
587                 } else if (q_vector->tx.ring) {
588                         snprintf(q_vector->name, sizeof(q_vector->name),
589                                  "iavf-%s-tx-%u", basename, tx_int_idx++);
590                 } else {
591                         /* skip this unused q_vector */
592                         continue;
593                 }
594                 err = request_irq(irq_num,
595                                   iavf_msix_clean_rings,
596                                   0,
597                                   q_vector->name,
598                                   q_vector);
599                 if (err) {
600                         dev_info(&adapter->pdev->dev,
601                                  "Request_irq failed, error: %d\n", err);
602                         goto free_queue_irqs;
603                 }
604                 /* register for affinity change notifications */
605                 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606                 q_vector->affinity_notify.release =
607                                                    iavf_irq_affinity_release;
608                 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609                 /* Spread the IRQ affinity hints across online CPUs. Note that
610                  * get_cpu_mask returns a mask with a permanent lifetime so
611                  * it's safe to use as a hint for irq_update_affinity_hint.
612                  */
613                 cpu = cpumask_local_spread(q_vector->v_idx, -1);
614                 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615         }
616
617         return 0;
618
619 free_queue_irqs:
620         while (vector) {
621                 vector--;
622                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623                 irq_set_affinity_notifier(irq_num, NULL);
624                 irq_update_affinity_hint(irq_num, NULL);
625                 free_irq(irq_num, &adapter->q_vectors[vector]);
626         }
627         return err;
628 }
629
630 /**
631  * iavf_request_misc_irq - Initialize MSI-X interrupts
632  * @adapter: board private structure
633  *
634  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635  * vector is only for the admin queue, and stays active even when the netdev
636  * is closed.
637  **/
638 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639 {
640         struct net_device *netdev = adapter->netdev;
641         int err;
642
643         snprintf(adapter->misc_vector_name,
644                  sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645                  dev_name(&adapter->pdev->dev));
646         err = request_irq(adapter->msix_entries[0].vector,
647                           &iavf_msix_aq, 0,
648                           adapter->misc_vector_name, netdev);
649         if (err) {
650                 dev_err(&adapter->pdev->dev,
651                         "request_irq for %s failed: %d\n",
652                         adapter->misc_vector_name, err);
653                 free_irq(adapter->msix_entries[0].vector, netdev);
654         }
655         return err;
656 }
657
658 /**
659  * iavf_free_traffic_irqs - Free MSI-X interrupts
660  * @adapter: board private structure
661  *
662  * Frees all MSI-X vectors other than 0.
663  **/
664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665 {
666         int vector, irq_num, q_vectors;
667
668         if (!adapter->msix_entries)
669                 return;
670
671         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672
673         for (vector = 0; vector < q_vectors; vector++) {
674                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675                 irq_set_affinity_notifier(irq_num, NULL);
676                 irq_update_affinity_hint(irq_num, NULL);
677                 free_irq(irq_num, &adapter->q_vectors[vector]);
678         }
679 }
680
681 /**
682  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683  * @adapter: board private structure
684  *
685  * Frees MSI-X vector 0.
686  **/
687 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688 {
689         struct net_device *netdev = adapter->netdev;
690
691         if (!adapter->msix_entries)
692                 return;
693
694         free_irq(adapter->msix_entries[0].vector, netdev);
695 }
696
697 /**
698  * iavf_configure_tx - Configure Transmit Unit after Reset
699  * @adapter: board private structure
700  *
701  * Configure the Tx unit of the MAC after a reset.
702  **/
703 static void iavf_configure_tx(struct iavf_adapter *adapter)
704 {
705         struct iavf_hw *hw = &adapter->hw;
706         int i;
707
708         for (i = 0; i < adapter->num_active_queues; i++)
709                 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710 }
711
712 /**
713  * iavf_configure_rx - Configure Receive Unit after Reset
714  * @adapter: board private structure
715  *
716  * Configure the Rx unit of the MAC after a reset.
717  **/
718 static void iavf_configure_rx(struct iavf_adapter *adapter)
719 {
720         struct iavf_hw *hw = &adapter->hw;
721
722         for (u32 i = 0; i < adapter->num_active_queues; i++)
723                 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724 }
725
726 /**
727  * iavf_find_vlan - Search filter list for specific vlan filter
728  * @adapter: board private structure
729  * @vlan: vlan tag
730  *
731  * Returns ptr to the filter object or NULL. Must be called while holding the
732  * mac_vlan_list_lock.
733  **/
734 static struct
735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736                                  struct iavf_vlan vlan)
737 {
738         struct iavf_vlan_filter *f;
739
740         list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741                 if (f->vlan.vid == vlan.vid &&
742                     f->vlan.tpid == vlan.tpid)
743                         return f;
744         }
745
746         return NULL;
747 }
748
749 /**
750  * iavf_add_vlan - Add a vlan filter to the list
751  * @adapter: board private structure
752  * @vlan: VLAN tag
753  *
754  * Returns ptr to the filter object or NULL when no memory available.
755  **/
756 static struct
757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758                                 struct iavf_vlan vlan)
759 {
760         struct iavf_vlan_filter *f = NULL;
761
762         spin_lock_bh(&adapter->mac_vlan_list_lock);
763
764         f = iavf_find_vlan(adapter, vlan);
765         if (!f) {
766                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
767                 if (!f)
768                         goto clearout;
769
770                 f->vlan = vlan;
771
772                 list_add_tail(&f->list, &adapter->vlan_filter_list);
773                 f->state = IAVF_VLAN_ADD;
774                 adapter->num_vlan_filters++;
775                 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776         }
777
778 clearout:
779         spin_unlock_bh(&adapter->mac_vlan_list_lock);
780         return f;
781 }
782
783 /**
784  * iavf_del_vlan - Remove a vlan filter from the list
785  * @adapter: board private structure
786  * @vlan: VLAN tag
787  **/
788 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
789 {
790         struct iavf_vlan_filter *f;
791
792         spin_lock_bh(&adapter->mac_vlan_list_lock);
793
794         f = iavf_find_vlan(adapter, vlan);
795         if (f) {
796                 f->state = IAVF_VLAN_REMOVE;
797                 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
798         }
799
800         spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 }
802
803 /**
804  * iavf_restore_filters
805  * @adapter: board private structure
806  *
807  * Restore existing non MAC filters when VF netdev comes back up
808  **/
809 static void iavf_restore_filters(struct iavf_adapter *adapter)
810 {
811         struct iavf_vlan_filter *f;
812
813         /* re-add all VLAN filters */
814         spin_lock_bh(&adapter->mac_vlan_list_lock);
815
816         list_for_each_entry(f, &adapter->vlan_filter_list, list) {
817                 if (f->state == IAVF_VLAN_INACTIVE)
818                         f->state = IAVF_VLAN_ADD;
819         }
820
821         spin_unlock_bh(&adapter->mac_vlan_list_lock);
822         adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
823 }
824
825 /**
826  * iavf_get_num_vlans_added - get number of VLANs added
827  * @adapter: board private structure
828  */
829 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
830 {
831         return adapter->num_vlan_filters;
832 }
833
834 /**
835  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
836  * @adapter: board private structure
837  *
838  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
839  * do not impose a limit as that maintains current behavior and for
840  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
841  **/
842 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
843 {
844         /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
845          * never been a limit on the VF driver side
846          */
847         if (VLAN_ALLOWED(adapter))
848                 return VLAN_N_VID;
849         else if (VLAN_V2_ALLOWED(adapter))
850                 return adapter->vlan_v2_caps.filtering.max_filters;
851
852         return 0;
853 }
854
855 /**
856  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
857  * @adapter: board private structure
858  **/
859 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
860 {
861         if (iavf_get_num_vlans_added(adapter) <
862             iavf_get_max_vlans_allowed(adapter))
863                 return false;
864
865         return true;
866 }
867
868 /**
869  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
870  * @netdev: network device struct
871  * @proto: unused protocol data
872  * @vid: VLAN tag
873  **/
874 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
875                                 __always_unused __be16 proto, u16 vid)
876 {
877         struct iavf_adapter *adapter = netdev_priv(netdev);
878
879         /* Do not track VLAN 0 filter, always added by the PF on VF init */
880         if (!vid)
881                 return 0;
882
883         if (!VLAN_FILTERING_ALLOWED(adapter))
884                 return -EIO;
885
886         if (iavf_max_vlans_added(adapter)) {
887                 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
888                            iavf_get_max_vlans_allowed(adapter));
889                 return -EIO;
890         }
891
892         if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
893                 return -ENOMEM;
894
895         return 0;
896 }
897
898 /**
899  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
900  * @netdev: network device struct
901  * @proto: unused protocol data
902  * @vid: VLAN tag
903  **/
904 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
905                                  __always_unused __be16 proto, u16 vid)
906 {
907         struct iavf_adapter *adapter = netdev_priv(netdev);
908
909         /* We do not track VLAN 0 filter */
910         if (!vid)
911                 return 0;
912
913         iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
914         return 0;
915 }
916
917 /**
918  * iavf_find_filter - Search filter list for specific mac filter
919  * @adapter: board private structure
920  * @macaddr: the MAC address
921  *
922  * Returns ptr to the filter object or NULL. Must be called while holding the
923  * mac_vlan_list_lock.
924  **/
925 static struct
926 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
927                                   const u8 *macaddr)
928 {
929         struct iavf_mac_filter *f;
930
931         if (!macaddr)
932                 return NULL;
933
934         list_for_each_entry(f, &adapter->mac_filter_list, list) {
935                 if (ether_addr_equal(macaddr, f->macaddr))
936                         return f;
937         }
938         return NULL;
939 }
940
941 /**
942  * iavf_add_filter - Add a mac filter to the filter list
943  * @adapter: board private structure
944  * @macaddr: the MAC address
945  *
946  * Returns ptr to the filter object or NULL when no memory available.
947  **/
948 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
949                                         const u8 *macaddr)
950 {
951         struct iavf_mac_filter *f;
952
953         if (!macaddr)
954                 return NULL;
955
956         f = iavf_find_filter(adapter, macaddr);
957         if (!f) {
958                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
959                 if (!f)
960                         return f;
961
962                 ether_addr_copy(f->macaddr, macaddr);
963
964                 list_add_tail(&f->list, &adapter->mac_filter_list);
965                 f->add = true;
966                 f->add_handled = false;
967                 f->is_new_mac = true;
968                 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
969                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
970         } else {
971                 f->remove = false;
972         }
973
974         return f;
975 }
976
977 /**
978  * iavf_replace_primary_mac - Replace current primary address
979  * @adapter: board private structure
980  * @new_mac: new MAC address to be applied
981  *
982  * Replace current dev_addr and send request to PF for removal of previous
983  * primary MAC address filter and addition of new primary MAC filter.
984  * Return 0 for success, -ENOMEM for failure.
985  *
986  * Do not call this with mac_vlan_list_lock!
987  **/
988 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
989                                     const u8 *new_mac)
990 {
991         struct iavf_hw *hw = &adapter->hw;
992         struct iavf_mac_filter *new_f;
993         struct iavf_mac_filter *old_f;
994
995         spin_lock_bh(&adapter->mac_vlan_list_lock);
996
997         new_f = iavf_add_filter(adapter, new_mac);
998         if (!new_f) {
999                 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1000                 return -ENOMEM;
1001         }
1002
1003         old_f = iavf_find_filter(adapter, hw->mac.addr);
1004         if (old_f) {
1005                 old_f->is_primary = false;
1006                 old_f->remove = true;
1007                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1008         }
1009         /* Always send the request to add if changing primary MAC,
1010          * even if filter is already present on the list
1011          */
1012         new_f->is_primary = true;
1013         new_f->add = true;
1014         ether_addr_copy(hw->mac.addr, new_mac);
1015
1016         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1017
1018         /* schedule the watchdog task to immediately process the request */
1019         iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1020         return 0;
1021 }
1022
1023 /**
1024  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1025  * @netdev: network interface device structure
1026  * @macaddr: MAC address to set
1027  *
1028  * Returns true on success, false on failure
1029  */
1030 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1031                                     const u8 *macaddr)
1032 {
1033         struct iavf_adapter *adapter = netdev_priv(netdev);
1034         struct iavf_mac_filter *f;
1035         bool ret = false;
1036
1037         spin_lock_bh(&adapter->mac_vlan_list_lock);
1038
1039         f = iavf_find_filter(adapter, macaddr);
1040
1041         if (!f || (!f->add && f->add_handled))
1042                 ret = true;
1043
1044         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1045
1046         return ret;
1047 }
1048
1049 /**
1050  * iavf_set_mac - NDO callback to set port MAC address
1051  * @netdev: network interface device structure
1052  * @p: pointer to an address structure
1053  *
1054  * Returns 0 on success, negative on failure
1055  */
1056 static int iavf_set_mac(struct net_device *netdev, void *p)
1057 {
1058         struct iavf_adapter *adapter = netdev_priv(netdev);
1059         struct sockaddr *addr = p;
1060         int ret;
1061
1062         if (!is_valid_ether_addr(addr->sa_data))
1063                 return -EADDRNOTAVAIL;
1064
1065         ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1066
1067         if (ret)
1068                 return ret;
1069
1070         ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1071                                                iavf_is_mac_set_handled(netdev, addr->sa_data),
1072                                                msecs_to_jiffies(2500));
1073
1074         /* If ret < 0 then it means wait was interrupted.
1075          * If ret == 0 then it means we got a timeout.
1076          * else it means we got response for set MAC from PF,
1077          * check if netdev MAC was updated to requested MAC,
1078          * if yes then set MAC succeeded otherwise it failed return -EACCES
1079          */
1080         if (ret < 0)
1081                 return ret;
1082
1083         if (!ret)
1084                 return -EAGAIN;
1085
1086         if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1087                 return -EACCES;
1088
1089         return 0;
1090 }
1091
1092 /**
1093  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1094  * @netdev: the netdevice
1095  * @addr: address to add
1096  *
1097  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1098  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1099  */
1100 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1101 {
1102         struct iavf_adapter *adapter = netdev_priv(netdev);
1103
1104         if (iavf_add_filter(adapter, addr))
1105                 return 0;
1106         else
1107                 return -ENOMEM;
1108 }
1109
1110 /**
1111  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1112  * @netdev: the netdevice
1113  * @addr: address to add
1114  *
1115  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1116  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1117  */
1118 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1119 {
1120         struct iavf_adapter *adapter = netdev_priv(netdev);
1121         struct iavf_mac_filter *f;
1122
1123         /* Under some circumstances, we might receive a request to delete
1124          * our own device address from our uc list. Because we store the
1125          * device address in the VSI's MAC/VLAN filter list, we need to ignore
1126          * such requests and not delete our device address from this list.
1127          */
1128         if (ether_addr_equal(addr, netdev->dev_addr))
1129                 return 0;
1130
1131         f = iavf_find_filter(adapter, addr);
1132         if (f) {
1133                 f->remove = true;
1134                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1135         }
1136         return 0;
1137 }
1138
1139 /**
1140  * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1141  * @adapter: device specific adapter
1142  */
1143 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1144 {
1145         return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1146                 (IFF_PROMISC | IFF_ALLMULTI);
1147 }
1148
1149 /**
1150  * iavf_set_rx_mode - NDO callback to set the netdev filters
1151  * @netdev: network interface device structure
1152  **/
1153 static void iavf_set_rx_mode(struct net_device *netdev)
1154 {
1155         struct iavf_adapter *adapter = netdev_priv(netdev);
1156
1157         spin_lock_bh(&adapter->mac_vlan_list_lock);
1158         __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1159         __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1160         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1161
1162         spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1163         if (iavf_promiscuous_mode_changed(adapter))
1164                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1165         spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1166 }
1167
1168 /**
1169  * iavf_napi_enable_all - enable NAPI on all queue vectors
1170  * @adapter: board private structure
1171  **/
1172 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1173 {
1174         int q_idx;
1175         struct iavf_q_vector *q_vector;
1176         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1177
1178         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1179                 struct napi_struct *napi;
1180
1181                 q_vector = &adapter->q_vectors[q_idx];
1182                 napi = &q_vector->napi;
1183                 napi_enable(napi);
1184         }
1185 }
1186
1187 /**
1188  * iavf_napi_disable_all - disable NAPI on all queue vectors
1189  * @adapter: board private structure
1190  **/
1191 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1192 {
1193         int q_idx;
1194         struct iavf_q_vector *q_vector;
1195         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1196
1197         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1198                 q_vector = &adapter->q_vectors[q_idx];
1199                 napi_disable(&q_vector->napi);
1200         }
1201 }
1202
1203 /**
1204  * iavf_configure - set up transmit and receive data structures
1205  * @adapter: board private structure
1206  **/
1207 static void iavf_configure(struct iavf_adapter *adapter)
1208 {
1209         struct net_device *netdev = adapter->netdev;
1210         int i;
1211
1212         iavf_set_rx_mode(netdev);
1213
1214         iavf_configure_tx(adapter);
1215         iavf_configure_rx(adapter);
1216         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1217
1218         for (i = 0; i < adapter->num_active_queues; i++) {
1219                 struct iavf_ring *ring = &adapter->rx_rings[i];
1220
1221                 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1222         }
1223 }
1224
1225 /**
1226  * iavf_up_complete - Finish the last steps of bringing up a connection
1227  * @adapter: board private structure
1228  *
1229  * Expects to be called while holding crit_lock.
1230  **/
1231 static void iavf_up_complete(struct iavf_adapter *adapter)
1232 {
1233         iavf_change_state(adapter, __IAVF_RUNNING);
1234         clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1235
1236         iavf_napi_enable_all(adapter);
1237
1238         iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1239 }
1240
1241 /**
1242  * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1243  * yet and mark other to be removed.
1244  * @adapter: board private structure
1245  **/
1246 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1247 {
1248         struct iavf_vlan_filter *vlf, *vlftmp;
1249         struct iavf_mac_filter *f, *ftmp;
1250
1251         spin_lock_bh(&adapter->mac_vlan_list_lock);
1252         /* clear the sync flag on all filters */
1253         __dev_uc_unsync(adapter->netdev, NULL);
1254         __dev_mc_unsync(adapter->netdev, NULL);
1255
1256         /* remove all MAC filters */
1257         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1258                                  list) {
1259                 if (f->add) {
1260                         list_del(&f->list);
1261                         kfree(f);
1262                 } else {
1263                         f->remove = true;
1264                 }
1265         }
1266
1267         /* disable all VLAN filters */
1268         list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1269                                  list)
1270                 vlf->state = IAVF_VLAN_DISABLE;
1271
1272         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1273 }
1274
1275 /**
1276  * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1277  * mark other to be removed.
1278  * @adapter: board private structure
1279  **/
1280 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1281 {
1282         struct iavf_cloud_filter *cf, *cftmp;
1283
1284         /* remove all cloud filters */
1285         spin_lock_bh(&adapter->cloud_filter_list_lock);
1286         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1287                                  list) {
1288                 if (cf->add) {
1289                         list_del(&cf->list);
1290                         kfree(cf);
1291                         adapter->num_cloud_filters--;
1292                 } else {
1293                         cf->del = true;
1294                 }
1295         }
1296         spin_unlock_bh(&adapter->cloud_filter_list_lock);
1297 }
1298
1299 /**
1300  * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1301  * other to be removed.
1302  * @adapter: board private structure
1303  **/
1304 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1305 {
1306         struct iavf_fdir_fltr *fdir;
1307
1308         /* remove all Flow Director filters */
1309         spin_lock_bh(&adapter->fdir_fltr_lock);
1310         list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1311                 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1312                         /* Cancel a request, keep filter as inactive */
1313                         fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1314                 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1315                          fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1316                         /* Disable filters which are active or have a pending
1317                          * request to PF to be added
1318                          */
1319                         fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1320                 }
1321         }
1322         spin_unlock_bh(&adapter->fdir_fltr_lock);
1323 }
1324
1325 /**
1326  * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1327  * other to be removed.
1328  * @adapter: board private structure
1329  **/
1330 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1331 {
1332         struct iavf_adv_rss *rss, *rsstmp;
1333
1334         /* remove all advance RSS configuration */
1335         spin_lock_bh(&adapter->adv_rss_lock);
1336         list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1337                                  list) {
1338                 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1339                         list_del(&rss->list);
1340                         kfree(rss);
1341                 } else {
1342                         rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1343                 }
1344         }
1345         spin_unlock_bh(&adapter->adv_rss_lock);
1346 }
1347
1348 /**
1349  * iavf_down - Shutdown the connection processing
1350  * @adapter: board private structure
1351  *
1352  * Expects to be called while holding crit_lock.
1353  **/
1354 void iavf_down(struct iavf_adapter *adapter)
1355 {
1356         struct net_device *netdev = adapter->netdev;
1357
1358         if (adapter->state <= __IAVF_DOWN_PENDING)
1359                 return;
1360
1361         netif_carrier_off(netdev);
1362         netif_tx_disable(netdev);
1363         adapter->link_up = false;
1364         iavf_napi_disable_all(adapter);
1365         iavf_irq_disable(adapter);
1366
1367         iavf_clear_mac_vlan_filters(adapter);
1368         iavf_clear_cloud_filters(adapter);
1369         iavf_clear_fdir_filters(adapter);
1370         iavf_clear_adv_rss_conf(adapter);
1371
1372         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1373                 return;
1374
1375         if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1376                 /* cancel any current operation */
1377                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1378                 /* Schedule operations to close down the HW. Don't wait
1379                  * here for this to complete. The watchdog is still running
1380                  * and it will take care of this.
1381                  */
1382                 if (!list_empty(&adapter->mac_filter_list))
1383                         adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1384                 if (!list_empty(&adapter->vlan_filter_list))
1385                         adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1386                 if (!list_empty(&adapter->cloud_filter_list))
1387                         adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1388                 if (!list_empty(&adapter->fdir_list_head))
1389                         adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1390                 if (!list_empty(&adapter->adv_rss_list_head))
1391                         adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1392         }
1393
1394         iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1395 }
1396
1397 /**
1398  * iavf_acquire_msix_vectors - Setup the MSIX capability
1399  * @adapter: board private structure
1400  * @vectors: number of vectors to request
1401  *
1402  * Work with the OS to set up the MSIX vectors needed.
1403  *
1404  * Returns 0 on success, negative on failure
1405  **/
1406 static int
1407 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1408 {
1409         int err, vector_threshold;
1410
1411         /* We'll want at least 3 (vector_threshold):
1412          * 0) Other (Admin Queue and link, mostly)
1413          * 1) TxQ[0] Cleanup
1414          * 2) RxQ[0] Cleanup
1415          */
1416         vector_threshold = MIN_MSIX_COUNT;
1417
1418         /* The more we get, the more we will assign to Tx/Rx Cleanup
1419          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1420          * Right now, we simply care about how many we'll get; we'll
1421          * set them up later while requesting irq's.
1422          */
1423         err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1424                                     vector_threshold, vectors);
1425         if (err < 0) {
1426                 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1427                 kfree(adapter->msix_entries);
1428                 adapter->msix_entries = NULL;
1429                 return err;
1430         }
1431
1432         /* Adjust for only the vectors we'll use, which is minimum
1433          * of max_msix_q_vectors + NONQ_VECS, or the number of
1434          * vectors we were allocated.
1435          */
1436         adapter->num_msix_vectors = err;
1437         return 0;
1438 }
1439
1440 /**
1441  * iavf_free_queues - Free memory for all rings
1442  * @adapter: board private structure to initialize
1443  *
1444  * Free all of the memory associated with queue pairs.
1445  **/
1446 static void iavf_free_queues(struct iavf_adapter *adapter)
1447 {
1448         if (!adapter->vsi_res)
1449                 return;
1450         adapter->num_active_queues = 0;
1451         kfree(adapter->tx_rings);
1452         adapter->tx_rings = NULL;
1453         kfree(adapter->rx_rings);
1454         adapter->rx_rings = NULL;
1455 }
1456
1457 /**
1458  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1459  * @adapter: board private structure
1460  *
1461  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1462  * stripped in certain descriptor fields. Instead of checking the offload
1463  * capability bits in the hot path, cache the location the ring specific
1464  * flags.
1465  */
1466 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1467 {
1468         int i;
1469
1470         for (i = 0; i < adapter->num_active_queues; i++) {
1471                 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1472                 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1473
1474                 /* prevent multiple L2TAG bits being set after VFR */
1475                 tx_ring->flags &=
1476                         ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1477                           IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1478                 rx_ring->flags &=
1479                         ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1480                           IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1481
1482                 if (VLAN_ALLOWED(adapter)) {
1483                         tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1484                         rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1485                 } else if (VLAN_V2_ALLOWED(adapter)) {
1486                         struct virtchnl_vlan_supported_caps *stripping_support;
1487                         struct virtchnl_vlan_supported_caps *insertion_support;
1488
1489                         stripping_support =
1490                                 &adapter->vlan_v2_caps.offloads.stripping_support;
1491                         insertion_support =
1492                                 &adapter->vlan_v2_caps.offloads.insertion_support;
1493
1494                         if (stripping_support->outer) {
1495                                 if (stripping_support->outer &
1496                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1497                                         rx_ring->flags |=
1498                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499                                 else if (stripping_support->outer &
1500                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1501                                         rx_ring->flags |=
1502                                                 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1503                         } else if (stripping_support->inner) {
1504                                 if (stripping_support->inner &
1505                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1506                                         rx_ring->flags |=
1507                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1508                                 else if (stripping_support->inner &
1509                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1510                                         rx_ring->flags |=
1511                                                 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1512                         }
1513
1514                         if (insertion_support->outer) {
1515                                 if (insertion_support->outer &
1516                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1517                                         tx_ring->flags |=
1518                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1519                                 else if (insertion_support->outer &
1520                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1521                                         tx_ring->flags |=
1522                                                 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1523                         } else if (insertion_support->inner) {
1524                                 if (insertion_support->inner &
1525                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1526                                         tx_ring->flags |=
1527                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1528                                 else if (insertion_support->inner &
1529                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1530                                         tx_ring->flags |=
1531                                                 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1532                         }
1533                 }
1534         }
1535 }
1536
1537 /**
1538  * iavf_alloc_queues - Allocate memory for all rings
1539  * @adapter: board private structure to initialize
1540  *
1541  * We allocate one ring per queue at run-time since we don't know the
1542  * number of queues at compile-time.  The polling_netdev array is
1543  * intended for Multiqueue, but should work fine with a single queue.
1544  **/
1545 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1546 {
1547         int i, num_active_queues;
1548
1549         /* If we're in reset reallocating queues we don't actually know yet for
1550          * certain the PF gave us the number of queues we asked for but we'll
1551          * assume it did.  Once basic reset is finished we'll confirm once we
1552          * start negotiating config with PF.
1553          */
1554         if (adapter->num_req_queues)
1555                 num_active_queues = adapter->num_req_queues;
1556         else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1557                  adapter->num_tc)
1558                 num_active_queues = adapter->ch_config.total_qps;
1559         else
1560                 num_active_queues = min_t(int,
1561                                           adapter->vsi_res->num_queue_pairs,
1562                                           (int)(num_online_cpus()));
1563
1564
1565         adapter->tx_rings = kcalloc(num_active_queues,
1566                                     sizeof(struct iavf_ring), GFP_KERNEL);
1567         if (!adapter->tx_rings)
1568                 goto err_out;
1569         adapter->rx_rings = kcalloc(num_active_queues,
1570                                     sizeof(struct iavf_ring), GFP_KERNEL);
1571         if (!adapter->rx_rings)
1572                 goto err_out;
1573
1574         for (i = 0; i < num_active_queues; i++) {
1575                 struct iavf_ring *tx_ring;
1576                 struct iavf_ring *rx_ring;
1577
1578                 tx_ring = &adapter->tx_rings[i];
1579
1580                 tx_ring->queue_index = i;
1581                 tx_ring->netdev = adapter->netdev;
1582                 tx_ring->dev = &adapter->pdev->dev;
1583                 tx_ring->count = adapter->tx_desc_count;
1584                 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1585                 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1586                         tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1587
1588                 rx_ring = &adapter->rx_rings[i];
1589                 rx_ring->queue_index = i;
1590                 rx_ring->netdev = adapter->netdev;
1591                 rx_ring->count = adapter->rx_desc_count;
1592                 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1593         }
1594
1595         adapter->num_active_queues = num_active_queues;
1596
1597         iavf_set_queue_vlan_tag_loc(adapter);
1598
1599         return 0;
1600
1601 err_out:
1602         iavf_free_queues(adapter);
1603         return -ENOMEM;
1604 }
1605
1606 /**
1607  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1608  * @adapter: board private structure to initialize
1609  *
1610  * Attempt to configure the interrupts using the best available
1611  * capabilities of the hardware and the kernel.
1612  **/
1613 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1614 {
1615         int vector, v_budget;
1616         int pairs = 0;
1617         int err = 0;
1618
1619         if (!adapter->vsi_res) {
1620                 err = -EIO;
1621                 goto out;
1622         }
1623         pairs = adapter->num_active_queues;
1624
1625         /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1626          * us much good if we have more vectors than CPUs. However, we already
1627          * limit the total number of queues by the number of CPUs so we do not
1628          * need any further limiting here.
1629          */
1630         v_budget = min_t(int, pairs + NONQ_VECS,
1631                          (int)adapter->vf_res->max_vectors);
1632
1633         adapter->msix_entries = kcalloc(v_budget,
1634                                         sizeof(struct msix_entry), GFP_KERNEL);
1635         if (!adapter->msix_entries) {
1636                 err = -ENOMEM;
1637                 goto out;
1638         }
1639
1640         for (vector = 0; vector < v_budget; vector++)
1641                 adapter->msix_entries[vector].entry = vector;
1642
1643         err = iavf_acquire_msix_vectors(adapter, v_budget);
1644         if (!err)
1645                 iavf_schedule_finish_config(adapter);
1646
1647 out:
1648         return err;
1649 }
1650
1651 /**
1652  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1653  * @adapter: board private structure
1654  *
1655  * Return 0 on success, negative on failure
1656  **/
1657 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1658 {
1659         struct iavf_aqc_get_set_rss_key_data *rss_key =
1660                 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1661         struct iavf_hw *hw = &adapter->hw;
1662         enum iavf_status status;
1663
1664         if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1665                 /* bail because we already have a command pending */
1666                 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1667                         adapter->current_op);
1668                 return -EBUSY;
1669         }
1670
1671         status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1672         if (status) {
1673                 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1674                         iavf_stat_str(hw, status),
1675                         iavf_aq_str(hw, hw->aq.asq_last_status));
1676                 return iavf_status_to_errno(status);
1677
1678         }
1679
1680         status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1681                                      adapter->rss_lut, adapter->rss_lut_size);
1682         if (status) {
1683                 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1684                         iavf_stat_str(hw, status),
1685                         iavf_aq_str(hw, hw->aq.asq_last_status));
1686                 return iavf_status_to_errno(status);
1687         }
1688
1689         return 0;
1690
1691 }
1692
1693 /**
1694  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1695  * @adapter: board private structure
1696  *
1697  * Returns 0 on success, negative on failure
1698  **/
1699 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1700 {
1701         struct iavf_hw *hw = &adapter->hw;
1702         u32 *dw;
1703         u16 i;
1704
1705         dw = (u32 *)adapter->rss_key;
1706         for (i = 0; i <= adapter->rss_key_size / 4; i++)
1707                 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1708
1709         dw = (u32 *)adapter->rss_lut;
1710         for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1711                 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1712
1713         iavf_flush(hw);
1714
1715         return 0;
1716 }
1717
1718 /**
1719  * iavf_config_rss - Configure RSS keys and lut
1720  * @adapter: board private structure
1721  *
1722  * Returns 0 on success, negative on failure
1723  **/
1724 int iavf_config_rss(struct iavf_adapter *adapter)
1725 {
1726
1727         if (RSS_PF(adapter)) {
1728                 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1729                                         IAVF_FLAG_AQ_SET_RSS_KEY;
1730                 return 0;
1731         } else if (RSS_AQ(adapter)) {
1732                 return iavf_config_rss_aq(adapter);
1733         } else {
1734                 return iavf_config_rss_reg(adapter);
1735         }
1736 }
1737
1738 /**
1739  * iavf_fill_rss_lut - Fill the lut with default values
1740  * @adapter: board private structure
1741  **/
1742 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1743 {
1744         u16 i;
1745
1746         for (i = 0; i < adapter->rss_lut_size; i++)
1747                 adapter->rss_lut[i] = i % adapter->num_active_queues;
1748 }
1749
1750 /**
1751  * iavf_init_rss - Prepare for RSS
1752  * @adapter: board private structure
1753  *
1754  * Return 0 on success, negative on failure
1755  **/
1756 static int iavf_init_rss(struct iavf_adapter *adapter)
1757 {
1758         struct iavf_hw *hw = &adapter->hw;
1759
1760         if (!RSS_PF(adapter)) {
1761                 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1762                 if (adapter->vf_res->vf_cap_flags &
1763                     VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1764                         adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1765                 else
1766                         adapter->hena = IAVF_DEFAULT_RSS_HENA;
1767
1768                 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1769                 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1770         }
1771
1772         iavf_fill_rss_lut(adapter);
1773         netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1774
1775         return iavf_config_rss(adapter);
1776 }
1777
1778 /**
1779  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1780  * @adapter: board private structure to initialize
1781  *
1782  * We allocate one q_vector per queue interrupt.  If allocation fails we
1783  * return -ENOMEM.
1784  **/
1785 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1786 {
1787         int q_idx = 0, num_q_vectors;
1788         struct iavf_q_vector *q_vector;
1789
1790         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1791         adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1792                                      GFP_KERNEL);
1793         if (!adapter->q_vectors)
1794                 return -ENOMEM;
1795
1796         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1797                 q_vector = &adapter->q_vectors[q_idx];
1798                 q_vector->adapter = adapter;
1799                 q_vector->vsi = &adapter->vsi;
1800                 q_vector->v_idx = q_idx;
1801                 q_vector->reg_idx = q_idx;
1802                 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1803                 netif_napi_add(adapter->netdev, &q_vector->napi,
1804                                iavf_napi_poll);
1805         }
1806
1807         return 0;
1808 }
1809
1810 /**
1811  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1812  * @adapter: board private structure to initialize
1813  *
1814  * This function frees the memory allocated to the q_vectors.  In addition if
1815  * NAPI is enabled it will delete any references to the NAPI struct prior
1816  * to freeing the q_vector.
1817  **/
1818 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1819 {
1820         int q_idx, num_q_vectors;
1821
1822         if (!adapter->q_vectors)
1823                 return;
1824
1825         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1826
1827         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1828                 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1829
1830                 netif_napi_del(&q_vector->napi);
1831         }
1832         kfree(adapter->q_vectors);
1833         adapter->q_vectors = NULL;
1834 }
1835
1836 /**
1837  * iavf_reset_interrupt_capability - Reset MSIX setup
1838  * @adapter: board private structure
1839  *
1840  **/
1841 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1842 {
1843         if (!adapter->msix_entries)
1844                 return;
1845
1846         pci_disable_msix(adapter->pdev);
1847         kfree(adapter->msix_entries);
1848         adapter->msix_entries = NULL;
1849 }
1850
1851 /**
1852  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1853  * @adapter: board private structure to initialize
1854  *
1855  **/
1856 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1857 {
1858         int err;
1859
1860         err = iavf_alloc_queues(adapter);
1861         if (err) {
1862                 dev_err(&adapter->pdev->dev,
1863                         "Unable to allocate memory for queues\n");
1864                 goto err_alloc_queues;
1865         }
1866
1867         err = iavf_set_interrupt_capability(adapter);
1868         if (err) {
1869                 dev_err(&adapter->pdev->dev,
1870                         "Unable to setup interrupt capabilities\n");
1871                 goto err_set_interrupt;
1872         }
1873
1874         err = iavf_alloc_q_vectors(adapter);
1875         if (err) {
1876                 dev_err(&adapter->pdev->dev,
1877                         "Unable to allocate memory for queue vectors\n");
1878                 goto err_alloc_q_vectors;
1879         }
1880
1881         /* If we've made it so far while ADq flag being ON, then we haven't
1882          * bailed out anywhere in middle. And ADq isn't just enabled but actual
1883          * resources have been allocated in the reset path.
1884          * Now we can truly claim that ADq is enabled.
1885          */
1886         if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1887             adapter->num_tc)
1888                 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1889                          adapter->num_tc);
1890
1891         dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1892                  (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1893                  adapter->num_active_queues);
1894
1895         return 0;
1896 err_alloc_q_vectors:
1897         iavf_reset_interrupt_capability(adapter);
1898 err_set_interrupt:
1899         iavf_free_queues(adapter);
1900 err_alloc_queues:
1901         return err;
1902 }
1903
1904 /**
1905  * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1906  * @adapter: board private structure
1907  **/
1908 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1909 {
1910         iavf_free_q_vectors(adapter);
1911         iavf_reset_interrupt_capability(adapter);
1912         iavf_free_queues(adapter);
1913 }
1914
1915 /**
1916  * iavf_free_rss - Free memory used by RSS structs
1917  * @adapter: board private structure
1918  **/
1919 static void iavf_free_rss(struct iavf_adapter *adapter)
1920 {
1921         kfree(adapter->rss_key);
1922         adapter->rss_key = NULL;
1923
1924         kfree(adapter->rss_lut);
1925         adapter->rss_lut = NULL;
1926 }
1927
1928 /**
1929  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1930  * @adapter: board private structure
1931  * @running: true if adapter->state == __IAVF_RUNNING
1932  *
1933  * Returns 0 on success, negative on failure
1934  **/
1935 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1936 {
1937         struct net_device *netdev = adapter->netdev;
1938         int err;
1939
1940         if (running)
1941                 iavf_free_traffic_irqs(adapter);
1942         iavf_free_misc_irq(adapter);
1943         iavf_free_interrupt_scheme(adapter);
1944
1945         err = iavf_init_interrupt_scheme(adapter);
1946         if (err)
1947                 goto err;
1948
1949         netif_tx_stop_all_queues(netdev);
1950
1951         err = iavf_request_misc_irq(adapter);
1952         if (err)
1953                 goto err;
1954
1955         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1956
1957         iavf_map_rings_to_vectors(adapter);
1958 err:
1959         return err;
1960 }
1961
1962 /**
1963  * iavf_finish_config - do all netdev work that needs RTNL
1964  * @work: our work_struct
1965  *
1966  * Do work that needs both RTNL and crit_lock.
1967  **/
1968 static void iavf_finish_config(struct work_struct *work)
1969 {
1970         struct iavf_adapter *adapter;
1971         int pairs, err;
1972
1973         adapter = container_of(work, struct iavf_adapter, finish_config);
1974
1975         /* Always take RTNL first to prevent circular lock dependency;
1976          * The dev->lock is needed to update the queue number
1977          */
1978         rtnl_lock();
1979         mutex_lock(&adapter->netdev->lock);
1980         mutex_lock(&adapter->crit_lock);
1981
1982         if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1983             adapter->netdev->reg_state == NETREG_REGISTERED &&
1984             !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1985                 netdev_update_features(adapter->netdev);
1986                 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
1987         }
1988
1989         switch (adapter->state) {
1990         case __IAVF_DOWN:
1991                 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
1992                         err = register_netdevice(adapter->netdev);
1993                         if (err) {
1994                                 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
1995                                         err);
1996
1997                                 /* go back and try again.*/
1998                                 iavf_free_rss(adapter);
1999                                 iavf_free_misc_irq(adapter);
2000                                 iavf_reset_interrupt_capability(adapter);
2001                                 iavf_change_state(adapter,
2002                                                   __IAVF_INIT_CONFIG_ADAPTER);
2003                                 goto out;
2004                         }
2005                 }
2006
2007                 /* Set the real number of queues when reset occurs while
2008                  * state == __IAVF_DOWN
2009                  */
2010                 fallthrough;
2011         case __IAVF_RUNNING:
2012                 pairs = adapter->num_active_queues;
2013                 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2014                 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2015                 break;
2016
2017         default:
2018                 break;
2019         }
2020
2021 out:
2022         mutex_unlock(&adapter->crit_lock);
2023         mutex_unlock(&adapter->netdev->lock);
2024         rtnl_unlock();
2025 }
2026
2027 /**
2028  * iavf_schedule_finish_config - Set the flags and schedule a reset event
2029  * @adapter: board private structure
2030  **/
2031 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2032 {
2033         if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2034                 queue_work(adapter->wq, &adapter->finish_config);
2035 }
2036
2037 /**
2038  * iavf_process_aq_command - process aq_required flags
2039  * and sends aq command
2040  * @adapter: pointer to iavf adapter structure
2041  *
2042  * Returns 0 on success
2043  * Returns error code if no command was sent
2044  * or error code if the command failed.
2045  **/
2046 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2047 {
2048         if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2049                 return iavf_send_vf_config_msg(adapter);
2050         if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2051                 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2052         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2053                 iavf_disable_queues(adapter);
2054                 return 0;
2055         }
2056
2057         if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2058                 iavf_map_queues(adapter);
2059                 return 0;
2060         }
2061
2062         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2063                 iavf_add_ether_addrs(adapter);
2064                 return 0;
2065         }
2066
2067         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2068                 iavf_add_vlans(adapter);
2069                 return 0;
2070         }
2071
2072         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2073                 iavf_del_ether_addrs(adapter);
2074                 return 0;
2075         }
2076
2077         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2078                 iavf_del_vlans(adapter);
2079                 return 0;
2080         }
2081
2082         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2083                 iavf_enable_vlan_stripping(adapter);
2084                 return 0;
2085         }
2086
2087         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2088                 iavf_disable_vlan_stripping(adapter);
2089                 return 0;
2090         }
2091
2092         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) {
2093                 iavf_cfg_queues_bw(adapter);
2094                 return 0;
2095         }
2096
2097         if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) {
2098                 iavf_get_qos_caps(adapter);
2099                 return 0;
2100         }
2101
2102         if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) {
2103                 iavf_cfg_queues_quanta_size(adapter);
2104                 return 0;
2105         }
2106
2107         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2108                 iavf_configure_queues(adapter);
2109                 return 0;
2110         }
2111
2112         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2113                 iavf_enable_queues(adapter);
2114                 return 0;
2115         }
2116
2117         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2118                 /* This message goes straight to the firmware, not the
2119                  * PF, so we don't have to set current_op as we will
2120                  * not get a response through the ARQ.
2121                  */
2122                 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2123                 return 0;
2124         }
2125         if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2126                 iavf_get_hena(adapter);
2127                 return 0;
2128         }
2129         if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2130                 iavf_set_hena(adapter);
2131                 return 0;
2132         }
2133         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2134                 iavf_set_rss_key(adapter);
2135                 return 0;
2136         }
2137         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2138                 iavf_set_rss_lut(adapter);
2139                 return 0;
2140         }
2141         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2142                 iavf_set_rss_hfunc(adapter);
2143                 return 0;
2144         }
2145
2146         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2147                 iavf_set_promiscuous(adapter);
2148                 return 0;
2149         }
2150
2151         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2152                 iavf_enable_channels(adapter);
2153                 return 0;
2154         }
2155
2156         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2157                 iavf_disable_channels(adapter);
2158                 return 0;
2159         }
2160         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2161                 iavf_add_cloud_filter(adapter);
2162                 return 0;
2163         }
2164         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2165                 iavf_del_cloud_filter(adapter);
2166                 return 0;
2167         }
2168         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2169                 iavf_add_fdir_filter(adapter);
2170                 return IAVF_SUCCESS;
2171         }
2172         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2173                 iavf_del_fdir_filter(adapter);
2174                 return IAVF_SUCCESS;
2175         }
2176         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2177                 iavf_add_adv_rss_cfg(adapter);
2178                 return 0;
2179         }
2180         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2181                 iavf_del_adv_rss_cfg(adapter);
2182                 return 0;
2183         }
2184         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2185                 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2186                 return 0;
2187         }
2188         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2189                 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2190                 return 0;
2191         }
2192         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2193                 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2194                 return 0;
2195         }
2196         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2197                 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2198                 return 0;
2199         }
2200         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2201                 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2202                 return 0;
2203         }
2204         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2205                 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2206                 return 0;
2207         }
2208         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2209                 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2210                 return 0;
2211         }
2212         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2213                 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2214                 return 0;
2215         }
2216
2217         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2218                 iavf_request_stats(adapter);
2219                 return 0;
2220         }
2221
2222         return -EAGAIN;
2223 }
2224
2225 /**
2226  * iavf_set_vlan_offload_features - set VLAN offload configuration
2227  * @adapter: board private structure
2228  * @prev_features: previous features used for comparison
2229  * @features: updated features used for configuration
2230  *
2231  * Set the aq_required bit(s) based on the requested features passed in to
2232  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2233  * the watchdog if any changes are requested to expedite the request via
2234  * virtchnl.
2235  **/
2236 static void
2237 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2238                                netdev_features_t prev_features,
2239                                netdev_features_t features)
2240 {
2241         bool enable_stripping = true, enable_insertion = true;
2242         u16 vlan_ethertype = 0;
2243         u64 aq_required = 0;
2244
2245         /* keep cases separate because one ethertype for offloads can be
2246          * disabled at the same time as another is disabled, so check for an
2247          * enabled ethertype first, then check for disabled. Default to
2248          * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2249          * stripping.
2250          */
2251         if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2252                 vlan_ethertype = ETH_P_8021AD;
2253         else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2254                 vlan_ethertype = ETH_P_8021Q;
2255         else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2256                 vlan_ethertype = ETH_P_8021AD;
2257         else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2258                 vlan_ethertype = ETH_P_8021Q;
2259         else
2260                 vlan_ethertype = ETH_P_8021Q;
2261
2262         if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2263                 enable_stripping = false;
2264         if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2265                 enable_insertion = false;
2266
2267         if (VLAN_ALLOWED(adapter)) {
2268                 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2269                  * stripping via virtchnl. VLAN insertion can be toggled on the
2270                  * netdev, but it doesn't require a virtchnl message
2271                  */
2272                 if (enable_stripping)
2273                         aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2274                 else
2275                         aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2276
2277         } else if (VLAN_V2_ALLOWED(adapter)) {
2278                 switch (vlan_ethertype) {
2279                 case ETH_P_8021Q:
2280                         if (enable_stripping)
2281                                 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2282                         else
2283                                 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2284
2285                         if (enable_insertion)
2286                                 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2287                         else
2288                                 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2289                         break;
2290                 case ETH_P_8021AD:
2291                         if (enable_stripping)
2292                                 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2293                         else
2294                                 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2295
2296                         if (enable_insertion)
2297                                 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2298                         else
2299                                 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2300                         break;
2301                 }
2302         }
2303
2304         if (aq_required)
2305                 iavf_schedule_aq_request(adapter, aq_required);
2306 }
2307
2308 /**
2309  * iavf_startup - first step of driver startup
2310  * @adapter: board private structure
2311  *
2312  * Function process __IAVF_STARTUP driver state.
2313  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2314  * when fails the state is changed to __IAVF_INIT_FAILED
2315  **/
2316 static void iavf_startup(struct iavf_adapter *adapter)
2317 {
2318         struct pci_dev *pdev = adapter->pdev;
2319         struct iavf_hw *hw = &adapter->hw;
2320         enum iavf_status status;
2321         int ret;
2322
2323         WARN_ON(adapter->state != __IAVF_STARTUP);
2324
2325         /* driver loaded, probe complete */
2326         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2327         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2328
2329         ret = iavf_check_reset_complete(hw);
2330         if (ret) {
2331                 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2332                          ret);
2333                 goto err;
2334         }
2335         hw->aq.num_arq_entries = IAVF_AQ_LEN;
2336         hw->aq.num_asq_entries = IAVF_AQ_LEN;
2337         hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2338         hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2339
2340         status = iavf_init_adminq(hw);
2341         if (status) {
2342                 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2343                         status);
2344                 goto err;
2345         }
2346         ret = iavf_send_api_ver(adapter);
2347         if (ret) {
2348                 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2349                 iavf_shutdown_adminq(hw);
2350                 goto err;
2351         }
2352         iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2353         return;
2354 err:
2355         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2356 }
2357
2358 /**
2359  * iavf_init_version_check - second step of driver startup
2360  * @adapter: board private structure
2361  *
2362  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2363  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2364  * when fails the state is changed to __IAVF_INIT_FAILED
2365  **/
2366 static void iavf_init_version_check(struct iavf_adapter *adapter)
2367 {
2368         struct pci_dev *pdev = adapter->pdev;
2369         struct iavf_hw *hw = &adapter->hw;
2370         int err = -EAGAIN;
2371
2372         WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2373
2374         if (!iavf_asq_done(hw)) {
2375                 dev_err(&pdev->dev, "Admin queue command never completed\n");
2376                 iavf_shutdown_adminq(hw);
2377                 iavf_change_state(adapter, __IAVF_STARTUP);
2378                 goto err;
2379         }
2380
2381         /* aq msg sent, awaiting reply */
2382         err = iavf_verify_api_ver(adapter);
2383         if (err) {
2384                 if (err == -EALREADY)
2385                         err = iavf_send_api_ver(adapter);
2386                 else
2387                         dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2388                                 adapter->pf_version.major,
2389                                 adapter->pf_version.minor,
2390                                 VIRTCHNL_VERSION_MAJOR,
2391                                 VIRTCHNL_VERSION_MINOR);
2392                 goto err;
2393         }
2394         err = iavf_send_vf_config_msg(adapter);
2395         if (err) {
2396                 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2397                         err);
2398                 goto err;
2399         }
2400         iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2401         return;
2402 err:
2403         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2404 }
2405
2406 /**
2407  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2408  * @adapter: board private structure
2409  */
2410 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2411 {
2412         int i, num_req_queues = adapter->num_req_queues;
2413         struct iavf_vsi *vsi = &adapter->vsi;
2414
2415         for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2416                 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2417                         adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2418         }
2419         if (!adapter->vsi_res) {
2420                 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2421                 return -ENODEV;
2422         }
2423
2424         if (num_req_queues &&
2425             num_req_queues > adapter->vsi_res->num_queue_pairs) {
2426                 /* Problem.  The PF gave us fewer queues than what we had
2427                  * negotiated in our request.  Need a reset to see if we can't
2428                  * get back to a working state.
2429                  */
2430                 dev_err(&adapter->pdev->dev,
2431                         "Requested %d queues, but PF only gave us %d.\n",
2432                         num_req_queues,
2433                         adapter->vsi_res->num_queue_pairs);
2434                 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2435                 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2436                 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2437
2438                 return -EAGAIN;
2439         }
2440         adapter->num_req_queues = 0;
2441         adapter->vsi.id = adapter->vsi_res->vsi_id;
2442
2443         adapter->vsi.back = adapter;
2444         adapter->vsi.base_vector = 1;
2445         vsi->netdev = adapter->netdev;
2446         vsi->qs_handle = adapter->vsi_res->qset_handle;
2447         if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2448                 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2449                 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2450         } else {
2451                 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2452                 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2453         }
2454
2455         return 0;
2456 }
2457
2458 /**
2459  * iavf_init_get_resources - third step of driver startup
2460  * @adapter: board private structure
2461  *
2462  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2463  * finishes driver initialization procedure.
2464  * When success the state is changed to __IAVF_DOWN
2465  * when fails the state is changed to __IAVF_INIT_FAILED
2466  **/
2467 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2468 {
2469         struct pci_dev *pdev = adapter->pdev;
2470         struct iavf_hw *hw = &adapter->hw;
2471         int err;
2472
2473         WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2474         /* aq msg sent, awaiting reply */
2475         if (!adapter->vf_res) {
2476                 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2477                                           GFP_KERNEL);
2478                 if (!adapter->vf_res) {
2479                         err = -ENOMEM;
2480                         goto err;
2481                 }
2482         }
2483         err = iavf_get_vf_config(adapter);
2484         if (err == -EALREADY) {
2485                 err = iavf_send_vf_config_msg(adapter);
2486                 goto err;
2487         } else if (err == -EINVAL) {
2488                 /* We only get -EINVAL if the device is in a very bad
2489                  * state or if we've been disabled for previous bad
2490                  * behavior. Either way, we're done now.
2491                  */
2492                 iavf_shutdown_adminq(hw);
2493                 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2494                 return;
2495         }
2496         if (err) {
2497                 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2498                 goto err_alloc;
2499         }
2500
2501         err = iavf_parse_vf_resource_msg(adapter);
2502         if (err) {
2503                 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2504                         err);
2505                 goto err_alloc;
2506         }
2507         /* Some features require additional messages to negotiate extended
2508          * capabilities. These are processed in sequence by the
2509          * __IAVF_INIT_EXTENDED_CAPS driver state.
2510          */
2511         adapter->extended_caps = IAVF_EXTENDED_CAPS;
2512
2513         iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2514         return;
2515
2516 err_alloc:
2517         kfree(adapter->vf_res);
2518         adapter->vf_res = NULL;
2519 err:
2520         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2521 }
2522
2523 /**
2524  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2525  * @adapter: board private structure
2526  *
2527  * Function processes send of the extended VLAN V2 capability message to the
2528  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2529  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2530  */
2531 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2532 {
2533         int ret;
2534
2535         WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2536
2537         ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2538         if (ret && ret == -EOPNOTSUPP) {
2539                 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2540                  * we did not send the capability exchange message and do not
2541                  * expect a response.
2542                  */
2543                 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2544         }
2545
2546         /* We sent the message, so move on to the next step */
2547         adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2548 }
2549
2550 /**
2551  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2552  * @adapter: board private structure
2553  *
2554  * Function processes receipt of the extended VLAN V2 capability message from
2555  * the PF.
2556  **/
2557 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2558 {
2559         int ret;
2560
2561         WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2562
2563         memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2564
2565         ret = iavf_get_vf_vlan_v2_caps(adapter);
2566         if (ret)
2567                 goto err;
2568
2569         /* We've processed receipt of the VLAN V2 caps message */
2570         adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2571         return;
2572 err:
2573         /* We didn't receive a reply. Make sure we try sending again when
2574          * __IAVF_INIT_FAILED attempts to recover.
2575          */
2576         adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2577         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2578 }
2579
2580 /**
2581  * iavf_init_process_extended_caps - Part of driver startup
2582  * @adapter: board private structure
2583  *
2584  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2585  * handles negotiating capabilities for features which require an additional
2586  * message.
2587  *
2588  * Once all extended capabilities exchanges are finished, the driver will
2589  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2590  */
2591 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2592 {
2593         WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2594
2595         /* Process capability exchange for VLAN V2 */
2596         if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2597                 iavf_init_send_offload_vlan_v2_caps(adapter);
2598                 return;
2599         } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2600                 iavf_init_recv_offload_vlan_v2_caps(adapter);
2601                 return;
2602         }
2603
2604         /* When we reach here, no further extended capabilities exchanges are
2605          * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2606          */
2607         iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2608 }
2609
2610 /**
2611  * iavf_init_config_adapter - last part of driver startup
2612  * @adapter: board private structure
2613  *
2614  * After all the supported capabilities are negotiated, then the
2615  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2616  */
2617 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2618 {
2619         struct net_device *netdev = adapter->netdev;
2620         struct pci_dev *pdev = adapter->pdev;
2621         int err;
2622
2623         WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2624
2625         if (iavf_process_config(adapter))
2626                 goto err;
2627
2628         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2629
2630         adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2631
2632         netdev->netdev_ops = &iavf_netdev_ops;
2633         iavf_set_ethtool_ops(netdev);
2634         netdev->watchdog_timeo = 5 * HZ;
2635
2636         netdev->min_mtu = ETH_MIN_MTU;
2637         netdev->max_mtu = LIBIE_MAX_MTU;
2638
2639         if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2640                 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2641                          adapter->hw.mac.addr);
2642                 eth_hw_addr_random(netdev);
2643                 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2644         } else {
2645                 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2646                 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2647         }
2648
2649         adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2650         adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2651         err = iavf_init_interrupt_scheme(adapter);
2652         if (err)
2653                 goto err_sw_init;
2654         iavf_map_rings_to_vectors(adapter);
2655         if (adapter->vf_res->vf_cap_flags &
2656                 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2657                 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2658
2659         err = iavf_request_misc_irq(adapter);
2660         if (err)
2661                 goto err_sw_init;
2662
2663         netif_carrier_off(netdev);
2664         adapter->link_up = false;
2665         netif_tx_stop_all_queues(netdev);
2666
2667         dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2668         if (netdev->features & NETIF_F_GRO)
2669                 dev_info(&pdev->dev, "GRO is enabled\n");
2670
2671         iavf_change_state(adapter, __IAVF_DOWN);
2672         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2673
2674         iavf_misc_irq_enable(adapter);
2675         wake_up(&adapter->down_waitqueue);
2676
2677         adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2678         adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2679         if (!adapter->rss_key || !adapter->rss_lut) {
2680                 err = -ENOMEM;
2681                 goto err_mem;
2682         }
2683         if (RSS_AQ(adapter))
2684                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2685         else
2686                 iavf_init_rss(adapter);
2687
2688         if (VLAN_V2_ALLOWED(adapter))
2689                 /* request initial VLAN offload settings */
2690                 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2691
2692         if (QOS_ALLOWED(adapter))
2693                 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS;
2694
2695         iavf_schedule_finish_config(adapter);
2696         return;
2697
2698 err_mem:
2699         iavf_free_rss(adapter);
2700         iavf_free_misc_irq(adapter);
2701 err_sw_init:
2702         iavf_reset_interrupt_capability(adapter);
2703 err:
2704         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2705 }
2706
2707 /**
2708  * iavf_watchdog_task - Periodic call-back task
2709  * @work: pointer to work_struct
2710  **/
2711 static void iavf_watchdog_task(struct work_struct *work)
2712 {
2713         struct iavf_adapter *adapter = container_of(work,
2714                                                     struct iavf_adapter,
2715                                                     watchdog_task.work);
2716         struct iavf_hw *hw = &adapter->hw;
2717         u32 reg_val;
2718
2719         if (!mutex_trylock(&adapter->crit_lock)) {
2720                 if (adapter->state == __IAVF_REMOVE)
2721                         return;
2722
2723                 goto restart_watchdog;
2724         }
2725
2726         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2727                 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2728
2729         switch (adapter->state) {
2730         case __IAVF_STARTUP:
2731                 iavf_startup(adapter);
2732                 mutex_unlock(&adapter->crit_lock);
2733                 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2734                                    msecs_to_jiffies(30));
2735                 return;
2736         case __IAVF_INIT_VERSION_CHECK:
2737                 iavf_init_version_check(adapter);
2738                 mutex_unlock(&adapter->crit_lock);
2739                 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2740                                    msecs_to_jiffies(30));
2741                 return;
2742         case __IAVF_INIT_GET_RESOURCES:
2743                 iavf_init_get_resources(adapter);
2744                 mutex_unlock(&adapter->crit_lock);
2745                 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2746                                    msecs_to_jiffies(1));
2747                 return;
2748         case __IAVF_INIT_EXTENDED_CAPS:
2749                 iavf_init_process_extended_caps(adapter);
2750                 mutex_unlock(&adapter->crit_lock);
2751                 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2752                                    msecs_to_jiffies(1));
2753                 return;
2754         case __IAVF_INIT_CONFIG_ADAPTER:
2755                 iavf_init_config_adapter(adapter);
2756                 mutex_unlock(&adapter->crit_lock);
2757                 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2758                                    msecs_to_jiffies(1));
2759                 return;
2760         case __IAVF_INIT_FAILED:
2761                 if (test_bit(__IAVF_IN_REMOVE_TASK,
2762                              &adapter->crit_section)) {
2763                         /* Do not update the state and do not reschedule
2764                          * watchdog task, iavf_remove should handle this state
2765                          * as it can loop forever
2766                          */
2767                         mutex_unlock(&adapter->crit_lock);
2768                         return;
2769                 }
2770                 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2771                         dev_err(&adapter->pdev->dev,
2772                                 "Failed to communicate with PF; waiting before retry\n");
2773                         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2774                         iavf_shutdown_adminq(hw);
2775                         mutex_unlock(&adapter->crit_lock);
2776                         queue_delayed_work(adapter->wq,
2777                                            &adapter->watchdog_task, (5 * HZ));
2778                         return;
2779                 }
2780                 /* Try again from failed step*/
2781                 iavf_change_state(adapter, adapter->last_state);
2782                 mutex_unlock(&adapter->crit_lock);
2783                 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2784                 return;
2785         case __IAVF_COMM_FAILED:
2786                 if (test_bit(__IAVF_IN_REMOVE_TASK,
2787                              &adapter->crit_section)) {
2788                         /* Set state to __IAVF_INIT_FAILED and perform remove
2789                          * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2790                          * doesn't bring the state back to __IAVF_COMM_FAILED.
2791                          */
2792                         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2793                         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2794                         mutex_unlock(&adapter->crit_lock);
2795                         return;
2796                 }
2797                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2798                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2799                 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2800                     reg_val == VIRTCHNL_VFR_COMPLETED) {
2801                         /* A chance for redemption! */
2802                         dev_err(&adapter->pdev->dev,
2803                                 "Hardware came out of reset. Attempting reinit.\n");
2804                         /* When init task contacts the PF and
2805                          * gets everything set up again, it'll restart the
2806                          * watchdog for us. Down, boy. Sit. Stay. Woof.
2807                          */
2808                         iavf_change_state(adapter, __IAVF_STARTUP);
2809                         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2810                 }
2811                 adapter->aq_required = 0;
2812                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2813                 mutex_unlock(&adapter->crit_lock);
2814                 queue_delayed_work(adapter->wq,
2815                                    &adapter->watchdog_task,
2816                                    msecs_to_jiffies(10));
2817                 return;
2818         case __IAVF_RESETTING:
2819                 mutex_unlock(&adapter->crit_lock);
2820                 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2821                                    HZ * 2);
2822                 return;
2823         case __IAVF_DOWN:
2824         case __IAVF_DOWN_PENDING:
2825         case __IAVF_TESTING:
2826         case __IAVF_RUNNING:
2827                 if (adapter->current_op) {
2828                         if (!iavf_asq_done(hw)) {
2829                                 dev_dbg(&adapter->pdev->dev,
2830                                         "Admin queue timeout\n");
2831                                 iavf_send_api_ver(adapter);
2832                         }
2833                 } else {
2834                         int ret = iavf_process_aq_command(adapter);
2835
2836                         /* An error will be returned if no commands were
2837                          * processed; use this opportunity to update stats
2838                          * if the error isn't -ENOTSUPP
2839                          */
2840                         if (ret && ret != -EOPNOTSUPP &&
2841                             adapter->state == __IAVF_RUNNING)
2842                                 iavf_request_stats(adapter);
2843                 }
2844                 if (adapter->state == __IAVF_RUNNING)
2845                         iavf_detect_recover_hung(&adapter->vsi);
2846                 break;
2847         case __IAVF_REMOVE:
2848         default:
2849                 mutex_unlock(&adapter->crit_lock);
2850                 return;
2851         }
2852
2853         /* check for hw reset */
2854         reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2855         if (!reg_val) {
2856                 adapter->aq_required = 0;
2857                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2858                 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2859                 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2860                 mutex_unlock(&adapter->crit_lock);
2861                 queue_delayed_work(adapter->wq,
2862                                    &adapter->watchdog_task, HZ * 2);
2863                 return;
2864         }
2865
2866         mutex_unlock(&adapter->crit_lock);
2867 restart_watchdog:
2868         if (adapter->state >= __IAVF_DOWN)
2869                 queue_work(adapter->wq, &adapter->adminq_task);
2870         if (adapter->aq_required)
2871                 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2872                                    msecs_to_jiffies(20));
2873         else
2874                 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2875                                    HZ * 2);
2876 }
2877
2878 /**
2879  * iavf_disable_vf - disable VF
2880  * @adapter: board private structure
2881  *
2882  * Set communication failed flag and free all resources.
2883  * NOTE: This function is expected to be called with crit_lock being held.
2884  **/
2885 static void iavf_disable_vf(struct iavf_adapter *adapter)
2886 {
2887         struct iavf_mac_filter *f, *ftmp;
2888         struct iavf_vlan_filter *fv, *fvtmp;
2889         struct iavf_cloud_filter *cf, *cftmp;
2890
2891         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2892
2893         /* We don't use netif_running() because it may be true prior to
2894          * ndo_open() returning, so we can't assume it means all our open
2895          * tasks have finished, since we're not holding the rtnl_lock here.
2896          */
2897         if (adapter->state == __IAVF_RUNNING) {
2898                 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2899                 netif_carrier_off(adapter->netdev);
2900                 netif_tx_disable(adapter->netdev);
2901                 adapter->link_up = false;
2902                 iavf_napi_disable_all(adapter);
2903                 iavf_irq_disable(adapter);
2904                 iavf_free_traffic_irqs(adapter);
2905                 iavf_free_all_tx_resources(adapter);
2906                 iavf_free_all_rx_resources(adapter);
2907         }
2908
2909         spin_lock_bh(&adapter->mac_vlan_list_lock);
2910
2911         /* Delete all of the filters */
2912         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2913                 list_del(&f->list);
2914                 kfree(f);
2915         }
2916
2917         list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2918                 list_del(&fv->list);
2919                 kfree(fv);
2920         }
2921         adapter->num_vlan_filters = 0;
2922
2923         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2924
2925         spin_lock_bh(&adapter->cloud_filter_list_lock);
2926         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2927                 list_del(&cf->list);
2928                 kfree(cf);
2929                 adapter->num_cloud_filters--;
2930         }
2931         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2932
2933         iavf_free_misc_irq(adapter);
2934         iavf_free_interrupt_scheme(adapter);
2935         memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2936         iavf_shutdown_adminq(&adapter->hw);
2937         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2938         iavf_change_state(adapter, __IAVF_DOWN);
2939         wake_up(&adapter->down_waitqueue);
2940         dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2941 }
2942
2943 /**
2944  * iavf_reconfig_qs_bw - Call-back task to handle hardware reset
2945  * @adapter: board private structure
2946  *
2947  * After a reset, the shaper parameters of queues need to be replayed again.
2948  * Since the net_shaper object inside TX rings persists across reset,
2949  * set the update flag for all queues so that the virtchnl message is triggered
2950  * for all queues.
2951  **/
2952 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter)
2953 {
2954         int i, num = 0;
2955
2956         for (i = 0; i < adapter->num_active_queues; i++)
2957                 if (adapter->tx_rings[i].q_shaper.bw_min ||
2958                     adapter->tx_rings[i].q_shaper.bw_max) {
2959                         adapter->tx_rings[i].q_shaper_update = true;
2960                         num++;
2961                 }
2962
2963         if (num)
2964                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
2965 }
2966
2967 /**
2968  * iavf_reset_task - Call-back task to handle hardware reset
2969  * @work: pointer to work_struct
2970  *
2971  * During reset we need to shut down and reinitialize the admin queue
2972  * before we can use it to communicate with the PF again. We also clear
2973  * and reinit the rings because that context is lost as well.
2974  **/
2975 static void iavf_reset_task(struct work_struct *work)
2976 {
2977         struct iavf_adapter *adapter = container_of(work,
2978                                                       struct iavf_adapter,
2979                                                       reset_task);
2980         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2981         struct net_device *netdev = adapter->netdev;
2982         struct iavf_hw *hw = &adapter->hw;
2983         struct iavf_mac_filter *f, *ftmp;
2984         struct iavf_cloud_filter *cf;
2985         enum iavf_status status;
2986         u32 reg_val;
2987         int i = 0, err;
2988         bool running;
2989
2990         /* When device is being removed it doesn't make sense to run the reset
2991          * task, just return in such a case.
2992          */
2993         mutex_lock(&netdev->lock);
2994         if (!mutex_trylock(&adapter->crit_lock)) {
2995                 if (adapter->state != __IAVF_REMOVE)
2996                         queue_work(adapter->wq, &adapter->reset_task);
2997
2998                 mutex_unlock(&netdev->lock);
2999                 return;
3000         }
3001
3002         iavf_misc_irq_disable(adapter);
3003         if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3004                 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3005                 /* Restart the AQ here. If we have been reset but didn't
3006                  * detect it, or if the PF had to reinit, our AQ will be hosed.
3007                  */
3008                 iavf_shutdown_adminq(hw);
3009                 iavf_init_adminq(hw);
3010                 iavf_request_reset(adapter);
3011         }
3012         adapter->flags |= IAVF_FLAG_RESET_PENDING;
3013
3014         /* poll until we see the reset actually happen */
3015         for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3016                 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3017                           IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3018                 if (!reg_val)
3019                         break;
3020                 usleep_range(5000, 10000);
3021         }
3022         if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3023                 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3024                 goto continue_reset; /* act like the reset happened */
3025         }
3026
3027         /* wait until the reset is complete and the PF is responding to us */
3028         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3029                 /* sleep first to make sure a minimum wait time is met */
3030                 msleep(IAVF_RESET_WAIT_MS);
3031
3032                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3033                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3034                 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3035                         break;
3036         }
3037
3038         pci_set_master(adapter->pdev);
3039         pci_restore_msi_state(adapter->pdev);
3040
3041         if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3042                 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3043                         reg_val);
3044                 iavf_disable_vf(adapter);
3045                 mutex_unlock(&adapter->crit_lock);
3046                 mutex_unlock(&netdev->lock);
3047                 return; /* Do not attempt to reinit. It's dead, Jim. */
3048         }
3049
3050 continue_reset:
3051         /* We don't use netif_running() because it may be true prior to
3052          * ndo_open() returning, so we can't assume it means all our open
3053          * tasks have finished, since we're not holding the rtnl_lock here.
3054          */
3055         running = adapter->state == __IAVF_RUNNING;
3056
3057         if (running) {
3058                 netif_carrier_off(netdev);
3059                 netif_tx_stop_all_queues(netdev);
3060                 adapter->link_up = false;
3061                 iavf_napi_disable_all(adapter);
3062         }
3063         iavf_irq_disable(adapter);
3064
3065         iavf_change_state(adapter, __IAVF_RESETTING);
3066         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3067
3068         /* free the Tx/Rx rings and descriptors, might be better to just
3069          * re-use them sometime in the future
3070          */
3071         iavf_free_all_rx_resources(adapter);
3072         iavf_free_all_tx_resources(adapter);
3073
3074         adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3075         /* kill and reinit the admin queue */
3076         iavf_shutdown_adminq(hw);
3077         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3078         status = iavf_init_adminq(hw);
3079         if (status) {
3080                 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3081                          status);
3082                 goto reset_err;
3083         }
3084         adapter->aq_required = 0;
3085
3086         if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3087             (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3088                 err = iavf_reinit_interrupt_scheme(adapter, running);
3089                 if (err)
3090                         goto reset_err;
3091         }
3092
3093         if (RSS_AQ(adapter)) {
3094                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3095         } else {
3096                 err = iavf_init_rss(adapter);
3097                 if (err)
3098                         goto reset_err;
3099         }
3100
3101         adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3102         /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3103          * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3104          * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3105          * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3106          * been successfully sent and negotiated
3107          */
3108         adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3109         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3110
3111         spin_lock_bh(&adapter->mac_vlan_list_lock);
3112
3113         /* Delete filter for the current MAC address, it could have
3114          * been changed by the PF via administratively set MAC.
3115          * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3116          */
3117         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3118                 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3119                         list_del(&f->list);
3120                         kfree(f);
3121                 }
3122         }
3123         /* re-add all MAC filters */
3124         list_for_each_entry(f, &adapter->mac_filter_list, list) {
3125                 f->add = true;
3126         }
3127         spin_unlock_bh(&adapter->mac_vlan_list_lock);
3128
3129         /* check if TCs are running and re-add all cloud filters */
3130         spin_lock_bh(&adapter->cloud_filter_list_lock);
3131         if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3132             adapter->num_tc) {
3133                 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3134                         cf->add = true;
3135                 }
3136         }
3137         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3138
3139         adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3140         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3141         iavf_misc_irq_enable(adapter);
3142
3143         mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3144
3145         /* We were running when the reset started, so we need to restore some
3146          * state here.
3147          */
3148         if (running) {
3149                 /* allocate transmit descriptors */
3150                 err = iavf_setup_all_tx_resources(adapter);
3151                 if (err)
3152                         goto reset_err;
3153
3154                 /* allocate receive descriptors */
3155                 err = iavf_setup_all_rx_resources(adapter);
3156                 if (err)
3157                         goto reset_err;
3158
3159                 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3160                     (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3161                         err = iavf_request_traffic_irqs(adapter, netdev->name);
3162                         if (err)
3163                                 goto reset_err;
3164
3165                         adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3166                 }
3167
3168                 iavf_configure(adapter);
3169
3170                 /* iavf_up_complete() will switch device back
3171                  * to __IAVF_RUNNING
3172                  */
3173                 iavf_up_complete(adapter);
3174
3175                 iavf_irq_enable(adapter, true);
3176
3177                 iavf_reconfig_qs_bw(adapter);
3178         } else {
3179                 iavf_change_state(adapter, __IAVF_DOWN);
3180                 wake_up(&adapter->down_waitqueue);
3181         }
3182
3183         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3184
3185         wake_up(&adapter->reset_waitqueue);
3186         mutex_unlock(&adapter->crit_lock);
3187         mutex_unlock(&netdev->lock);
3188
3189         return;
3190 reset_err:
3191         if (running) {
3192                 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3193                 iavf_free_traffic_irqs(adapter);
3194         }
3195         iavf_disable_vf(adapter);
3196
3197         mutex_unlock(&adapter->crit_lock);
3198         mutex_unlock(&netdev->lock);
3199         dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3200 }
3201
3202 /**
3203  * iavf_adminq_task - worker thread to clean the admin queue
3204  * @work: pointer to work_struct containing our data
3205  **/
3206 static void iavf_adminq_task(struct work_struct *work)
3207 {
3208         struct iavf_adapter *adapter =
3209                 container_of(work, struct iavf_adapter, adminq_task);
3210         struct iavf_hw *hw = &adapter->hw;
3211         struct iavf_arq_event_info event;
3212         enum virtchnl_ops v_op;
3213         enum iavf_status ret, v_ret;
3214         u32 val, oldval;
3215         u16 pending;
3216
3217         if (!mutex_trylock(&adapter->crit_lock)) {
3218                 if (adapter->state == __IAVF_REMOVE)
3219                         return;
3220
3221                 queue_work(adapter->wq, &adapter->adminq_task);
3222                 goto out;
3223         }
3224
3225         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3226                 goto unlock;
3227
3228         event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3229         event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3230         if (!event.msg_buf)
3231                 goto unlock;
3232
3233         do {
3234                 ret = iavf_clean_arq_element(hw, &event, &pending);
3235                 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3236                 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3237
3238                 if (ret || !v_op)
3239                         break; /* No event to process or error cleaning ARQ */
3240
3241                 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3242                                          event.msg_len);
3243                 if (pending != 0)
3244                         memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3245         } while (pending);
3246
3247         if (iavf_is_reset_in_progress(adapter))
3248                 goto freedom;
3249
3250         /* check for error indications */
3251         val = rd32(hw, IAVF_VF_ARQLEN1);
3252         if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3253                 goto freedom;
3254         oldval = val;
3255         if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3256                 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3257                 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3258         }
3259         if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3260                 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3261                 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3262         }
3263         if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3264                 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3265                 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3266         }
3267         if (oldval != val)
3268                 wr32(hw, IAVF_VF_ARQLEN1, val);
3269
3270         val = rd32(hw, IAVF_VF_ATQLEN1);
3271         oldval = val;
3272         if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3273                 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3274                 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3275         }
3276         if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3277                 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3278                 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3279         }
3280         if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3281                 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3282                 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3283         }
3284         if (oldval != val)
3285                 wr32(hw, IAVF_VF_ATQLEN1, val);
3286
3287 freedom:
3288         kfree(event.msg_buf);
3289 unlock:
3290         mutex_unlock(&adapter->crit_lock);
3291 out:
3292         /* re-enable Admin queue interrupt cause */
3293         iavf_misc_irq_enable(adapter);
3294 }
3295
3296 /**
3297  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3298  * @adapter: board private structure
3299  *
3300  * Free all transmit software resources
3301  **/
3302 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3303 {
3304         int i;
3305
3306         if (!adapter->tx_rings)
3307                 return;
3308
3309         for (i = 0; i < adapter->num_active_queues; i++)
3310                 if (adapter->tx_rings[i].desc)
3311                         iavf_free_tx_resources(&adapter->tx_rings[i]);
3312 }
3313
3314 /**
3315  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3316  * @adapter: board private structure
3317  *
3318  * If this function returns with an error, then it's possible one or
3319  * more of the rings is populated (while the rest are not).  It is the
3320  * callers duty to clean those orphaned rings.
3321  *
3322  * Return 0 on success, negative on failure
3323  **/
3324 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3325 {
3326         int i, err = 0;
3327
3328         for (i = 0; i < adapter->num_active_queues; i++) {
3329                 adapter->tx_rings[i].count = adapter->tx_desc_count;
3330                 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3331                 if (!err)
3332                         continue;
3333                 dev_err(&adapter->pdev->dev,
3334                         "Allocation for Tx Queue %u failed\n", i);
3335                 break;
3336         }
3337
3338         return err;
3339 }
3340
3341 /**
3342  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3343  * @adapter: board private structure
3344  *
3345  * If this function returns with an error, then it's possible one or
3346  * more of the rings is populated (while the rest are not).  It is the
3347  * callers duty to clean those orphaned rings.
3348  *
3349  * Return 0 on success, negative on failure
3350  **/
3351 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3352 {
3353         int i, err = 0;
3354
3355         for (i = 0; i < adapter->num_active_queues; i++) {
3356                 adapter->rx_rings[i].count = adapter->rx_desc_count;
3357                 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3358                 if (!err)
3359                         continue;
3360                 dev_err(&adapter->pdev->dev,
3361                         "Allocation for Rx Queue %u failed\n", i);
3362                 break;
3363         }
3364         return err;
3365 }
3366
3367 /**
3368  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3369  * @adapter: board private structure
3370  *
3371  * Free all receive software resources
3372  **/
3373 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3374 {
3375         int i;
3376
3377         if (!adapter->rx_rings)
3378                 return;
3379
3380         for (i = 0; i < adapter->num_active_queues; i++)
3381                 if (adapter->rx_rings[i].desc)
3382                         iavf_free_rx_resources(&adapter->rx_rings[i]);
3383 }
3384
3385 /**
3386  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3387  * @adapter: board private structure
3388  * @max_tx_rate: max Tx bw for a tc
3389  **/
3390 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3391                                       u64 max_tx_rate)
3392 {
3393         int speed = 0, ret = 0;
3394
3395         if (ADV_LINK_SUPPORT(adapter)) {
3396                 if (adapter->link_speed_mbps < U32_MAX) {
3397                         speed = adapter->link_speed_mbps;
3398                         goto validate_bw;
3399                 } else {
3400                         dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3401                         return -EINVAL;
3402                 }
3403         }
3404
3405         switch (adapter->link_speed) {
3406         case VIRTCHNL_LINK_SPEED_40GB:
3407                 speed = SPEED_40000;
3408                 break;
3409         case VIRTCHNL_LINK_SPEED_25GB:
3410                 speed = SPEED_25000;
3411                 break;
3412         case VIRTCHNL_LINK_SPEED_20GB:
3413                 speed = SPEED_20000;
3414                 break;
3415         case VIRTCHNL_LINK_SPEED_10GB:
3416                 speed = SPEED_10000;
3417                 break;
3418         case VIRTCHNL_LINK_SPEED_5GB:
3419                 speed = SPEED_5000;
3420                 break;
3421         case VIRTCHNL_LINK_SPEED_2_5GB:
3422                 speed = SPEED_2500;
3423                 break;
3424         case VIRTCHNL_LINK_SPEED_1GB:
3425                 speed = SPEED_1000;
3426                 break;
3427         case VIRTCHNL_LINK_SPEED_100MB:
3428                 speed = SPEED_100;
3429                 break;
3430         default:
3431                 break;
3432         }
3433
3434 validate_bw:
3435         if (max_tx_rate > speed) {
3436                 dev_err(&adapter->pdev->dev,
3437                         "Invalid tx rate specified\n");
3438                 ret = -EINVAL;
3439         }
3440
3441         return ret;
3442 }
3443
3444 /**
3445  * iavf_validate_ch_config - validate queue mapping info
3446  * @adapter: board private structure
3447  * @mqprio_qopt: queue parameters
3448  *
3449  * This function validates if the config provided by the user to
3450  * configure queue channels is valid or not. Returns 0 on a valid
3451  * config.
3452  **/
3453 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3454                                    struct tc_mqprio_qopt_offload *mqprio_qopt)
3455 {
3456         u64 total_max_rate = 0;
3457         u32 tx_rate_rem = 0;
3458         int i, num_qps = 0;
3459         u64 tx_rate = 0;
3460         int ret = 0;
3461
3462         if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3463             mqprio_qopt->qopt.num_tc < 1)
3464                 return -EINVAL;
3465
3466         for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3467                 if (!mqprio_qopt->qopt.count[i] ||
3468                     mqprio_qopt->qopt.offset[i] != num_qps)
3469                         return -EINVAL;
3470                 if (mqprio_qopt->min_rate[i]) {
3471                         dev_err(&adapter->pdev->dev,
3472                                 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3473                                 i);
3474                         return -EINVAL;
3475                 }
3476
3477                 /* convert to Mbps */
3478                 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3479                                   IAVF_MBPS_DIVISOR);
3480
3481                 if (mqprio_qopt->max_rate[i] &&
3482                     tx_rate < IAVF_MBPS_QUANTA) {
3483                         dev_err(&adapter->pdev->dev,
3484                                 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3485                                 i, IAVF_MBPS_QUANTA);
3486                         return -EINVAL;
3487                 }
3488
3489                 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3490
3491                 if (tx_rate_rem != 0) {
3492                         dev_err(&adapter->pdev->dev,
3493                                 "Invalid max tx rate for TC%d, not divisible by %d\n",
3494                                 i, IAVF_MBPS_QUANTA);
3495                         return -EINVAL;
3496                 }
3497
3498                 total_max_rate += tx_rate;
3499                 num_qps += mqprio_qopt->qopt.count[i];
3500         }
3501         if (num_qps > adapter->num_active_queues) {
3502                 dev_err(&adapter->pdev->dev,
3503                         "Cannot support requested number of queues\n");
3504                 return -EINVAL;
3505         }
3506
3507         ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3508         return ret;
3509 }
3510
3511 /**
3512  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3513  * @adapter: board private structure
3514  **/
3515 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3516 {
3517         struct iavf_cloud_filter *cf, *cftmp;
3518
3519         spin_lock_bh(&adapter->cloud_filter_list_lock);
3520         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3521                                  list) {
3522                 list_del(&cf->list);
3523                 kfree(cf);
3524                 adapter->num_cloud_filters--;
3525         }
3526         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3527 }
3528
3529 /**
3530  * iavf_is_tc_config_same - Compare the mqprio TC config with the
3531  * TC config already configured on this adapter.
3532  * @adapter: board private structure
3533  * @mqprio_qopt: TC config received from kernel.
3534  *
3535  * This function compares the TC config received from the kernel
3536  * with the config already configured on the adapter.
3537  *
3538  * Return: True if configuration is same, false otherwise.
3539  **/
3540 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3541                                    struct tc_mqprio_qopt *mqprio_qopt)
3542 {
3543         struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3544         int i;
3545
3546         if (adapter->num_tc != mqprio_qopt->num_tc)
3547                 return false;
3548
3549         for (i = 0; i < adapter->num_tc; i++) {
3550                 if (ch[i].count != mqprio_qopt->count[i] ||
3551                     ch[i].offset != mqprio_qopt->offset[i])
3552                         return false;
3553         }
3554         return true;
3555 }
3556
3557 /**
3558  * __iavf_setup_tc - configure multiple traffic classes
3559  * @netdev: network interface device structure
3560  * @type_data: tc offload data
3561  *
3562  * This function processes the config information provided by the
3563  * user to configure traffic classes/queue channels and packages the
3564  * information to request the PF to setup traffic classes.
3565  *
3566  * Returns 0 on success.
3567  **/
3568 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3569 {
3570         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3571         struct iavf_adapter *adapter = netdev_priv(netdev);
3572         struct virtchnl_vf_resource *vfres = adapter->vf_res;
3573         u8 num_tc = 0, total_qps = 0;
3574         int ret = 0, netdev_tc = 0;
3575         u64 max_tx_rate;
3576         u16 mode;
3577         int i;
3578
3579         num_tc = mqprio_qopt->qopt.num_tc;
3580         mode = mqprio_qopt->mode;
3581
3582         /* delete queue_channel */
3583         if (!mqprio_qopt->qopt.hw) {
3584                 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3585                         /* reset the tc configuration */
3586                         netdev_reset_tc(netdev);
3587                         adapter->num_tc = 0;
3588                         netif_tx_stop_all_queues(netdev);
3589                         netif_tx_disable(netdev);
3590                         iavf_del_all_cloud_filters(adapter);
3591                         adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3592                         total_qps = adapter->orig_num_active_queues;
3593                         goto exit;
3594                 } else {
3595                         return -EINVAL;
3596                 }
3597         }
3598
3599         /* add queue channel */
3600         if (mode == TC_MQPRIO_MODE_CHANNEL) {
3601                 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3602                         dev_err(&adapter->pdev->dev, "ADq not supported\n");
3603                         return -EOPNOTSUPP;
3604                 }
3605                 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3606                         dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3607                         return -EINVAL;
3608                 }
3609
3610                 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3611                 if (ret)
3612                         return ret;
3613                 /* Return if same TC config is requested */
3614                 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3615                         return 0;
3616                 adapter->num_tc = num_tc;
3617
3618                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3619                         if (i < num_tc) {
3620                                 adapter->ch_config.ch_info[i].count =
3621                                         mqprio_qopt->qopt.count[i];
3622                                 adapter->ch_config.ch_info[i].offset =
3623                                         mqprio_qopt->qopt.offset[i];
3624                                 total_qps += mqprio_qopt->qopt.count[i];
3625                                 max_tx_rate = mqprio_qopt->max_rate[i];
3626                                 /* convert to Mbps */
3627                                 max_tx_rate = div_u64(max_tx_rate,
3628                                                       IAVF_MBPS_DIVISOR);
3629                                 adapter->ch_config.ch_info[i].max_tx_rate =
3630                                         max_tx_rate;
3631                         } else {
3632                                 adapter->ch_config.ch_info[i].count = 1;
3633                                 adapter->ch_config.ch_info[i].offset = 0;
3634                         }
3635                 }
3636
3637                 /* Take snapshot of original config such as "num_active_queues"
3638                  * It is used later when delete ADQ flow is exercised, so that
3639                  * once delete ADQ flow completes, VF shall go back to its
3640                  * original queue configuration
3641                  */
3642
3643                 adapter->orig_num_active_queues = adapter->num_active_queues;
3644
3645                 /* Store queue info based on TC so that VF gets configured
3646                  * with correct number of queues when VF completes ADQ config
3647                  * flow
3648                  */
3649                 adapter->ch_config.total_qps = total_qps;
3650
3651                 netif_tx_stop_all_queues(netdev);
3652                 netif_tx_disable(netdev);
3653                 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3654                 netdev_reset_tc(netdev);
3655                 /* Report the tc mapping up the stack */
3656                 netdev_set_num_tc(adapter->netdev, num_tc);
3657                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3658                         u16 qcount = mqprio_qopt->qopt.count[i];
3659                         u16 qoffset = mqprio_qopt->qopt.offset[i];
3660
3661                         if (i < num_tc)
3662                                 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3663                                                     qoffset);
3664                 }
3665         }
3666 exit:
3667         if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3668                 return 0;
3669
3670         mutex_lock(&netdev->lock);
3671         netif_set_real_num_rx_queues(netdev, total_qps);
3672         netif_set_real_num_tx_queues(netdev, total_qps);
3673         mutex_unlock(&netdev->lock);
3674
3675         return ret;
3676 }
3677
3678 /**
3679  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3680  * @adapter: board private structure
3681  * @f: pointer to struct flow_cls_offload
3682  * @filter: pointer to cloud filter structure
3683  */
3684 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3685                                  struct flow_cls_offload *f,
3686                                  struct iavf_cloud_filter *filter)
3687 {
3688         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3689         struct flow_dissector *dissector = rule->match.dissector;
3690         u16 n_proto_mask = 0;
3691         u16 n_proto_key = 0;
3692         u8 field_flags = 0;
3693         u16 addr_type = 0;
3694         u16 n_proto = 0;
3695         int i = 0;
3696         struct virtchnl_filter *vf = &filter->f;
3697
3698         if (dissector->used_keys &
3699             ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3700               BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3701               BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3702               BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3703               BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3704               BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3705               BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3706               BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3707                 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3708                         dissector->used_keys);
3709                 return -EOPNOTSUPP;
3710         }
3711
3712         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3713                 struct flow_match_enc_keyid match;
3714
3715                 flow_rule_match_enc_keyid(rule, &match);
3716                 if (match.mask->keyid != 0)
3717                         field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3718         }
3719
3720         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3721                 struct flow_match_basic match;
3722
3723                 flow_rule_match_basic(rule, &match);
3724                 n_proto_key = ntohs(match.key->n_proto);
3725                 n_proto_mask = ntohs(match.mask->n_proto);
3726
3727                 if (n_proto_key == ETH_P_ALL) {
3728                         n_proto_key = 0;
3729                         n_proto_mask = 0;
3730                 }
3731                 n_proto = n_proto_key & n_proto_mask;
3732                 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3733                         return -EINVAL;
3734                 if (n_proto == ETH_P_IPV6) {
3735                         /* specify flow type as TCP IPv6 */
3736                         vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3737                 }
3738
3739                 if (match.key->ip_proto != IPPROTO_TCP) {
3740                         dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3741                         return -EINVAL;
3742                 }
3743         }
3744
3745         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3746                 struct flow_match_eth_addrs match;
3747
3748                 flow_rule_match_eth_addrs(rule, &match);
3749
3750                 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3751                 if (!is_zero_ether_addr(match.mask->dst)) {
3752                         if (is_broadcast_ether_addr(match.mask->dst)) {
3753                                 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3754                         } else {
3755                                 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3756                                         match.mask->dst);
3757                                 return -EINVAL;
3758                         }
3759                 }
3760
3761                 if (!is_zero_ether_addr(match.mask->src)) {
3762                         if (is_broadcast_ether_addr(match.mask->src)) {
3763                                 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3764                         } else {
3765                                 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3766                                         match.mask->src);
3767                                 return -EINVAL;
3768                         }
3769                 }
3770
3771                 if (!is_zero_ether_addr(match.key->dst))
3772                         if (is_valid_ether_addr(match.key->dst) ||
3773                             is_multicast_ether_addr(match.key->dst)) {
3774                                 /* set the mask if a valid dst_mac address */
3775                                 for (i = 0; i < ETH_ALEN; i++)
3776                                         vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3777                                 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3778                                                 match.key->dst);
3779                         }
3780
3781                 if (!is_zero_ether_addr(match.key->src))
3782                         if (is_valid_ether_addr(match.key->src) ||
3783                             is_multicast_ether_addr(match.key->src)) {
3784                                 /* set the mask if a valid dst_mac address */
3785                                 for (i = 0; i < ETH_ALEN; i++)
3786                                         vf->mask.tcp_spec.src_mac[i] |= 0xff;
3787                                 ether_addr_copy(vf->data.tcp_spec.src_mac,
3788                                                 match.key->src);
3789                 }
3790         }
3791
3792         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3793                 struct flow_match_vlan match;
3794
3795                 flow_rule_match_vlan(rule, &match);
3796                 if (match.mask->vlan_id) {
3797                         if (match.mask->vlan_id == VLAN_VID_MASK) {
3798                                 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3799                         } else {
3800                                 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3801                                         match.mask->vlan_id);
3802                                 return -EINVAL;
3803                         }
3804                 }
3805                 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3806                 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3807         }
3808
3809         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3810                 struct flow_match_control match;
3811
3812                 flow_rule_match_control(rule, &match);
3813                 addr_type = match.key->addr_type;
3814
3815                 if (flow_rule_has_control_flags(match.mask->flags,
3816                                                 f->common.extack))
3817                         return -EOPNOTSUPP;
3818         }
3819
3820         if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3821                 struct flow_match_ipv4_addrs match;
3822
3823                 flow_rule_match_ipv4_addrs(rule, &match);
3824                 if (match.mask->dst) {
3825                         if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3826                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3827                         } else {
3828                                 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3829                                         be32_to_cpu(match.mask->dst));
3830                                 return -EINVAL;
3831                         }
3832                 }
3833
3834                 if (match.mask->src) {
3835                         if (match.mask->src == cpu_to_be32(0xffffffff)) {
3836                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3837                         } else {
3838                                 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3839                                         be32_to_cpu(match.mask->src));
3840                                 return -EINVAL;
3841                         }
3842                 }
3843
3844                 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3845                         dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3846                         return -EINVAL;
3847                 }
3848                 if (match.key->dst) {
3849                         vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3850                         vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3851                 }
3852                 if (match.key->src) {
3853                         vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3854                         vf->data.tcp_spec.src_ip[0] = match.key->src;
3855                 }
3856         }
3857
3858         if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3859                 struct flow_match_ipv6_addrs match;
3860
3861                 flow_rule_match_ipv6_addrs(rule, &match);
3862
3863                 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3864                 if (ipv6_addr_any(&match.mask->dst)) {
3865                         dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3866                                 IPV6_ADDR_ANY);
3867                         return -EINVAL;
3868                 }
3869
3870                 /* src and dest IPv6 address should not be LOOPBACK
3871                  * (0:0:0:0:0:0:0:1) which can be represented as ::1
3872                  */
3873                 if (ipv6_addr_loopback(&match.key->dst) ||
3874                     ipv6_addr_loopback(&match.key->src)) {
3875                         dev_err(&adapter->pdev->dev,
3876                                 "ipv6 addr should not be loopback\n");
3877                         return -EINVAL;
3878                 }
3879                 if (!ipv6_addr_any(&match.mask->dst) ||
3880                     !ipv6_addr_any(&match.mask->src))
3881                         field_flags |= IAVF_CLOUD_FIELD_IIP;
3882
3883                 for (i = 0; i < 4; i++)
3884                         vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3885                 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3886                        sizeof(vf->data.tcp_spec.dst_ip));
3887                 for (i = 0; i < 4; i++)
3888                         vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3889                 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3890                        sizeof(vf->data.tcp_spec.src_ip));
3891         }
3892         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3893                 struct flow_match_ports match;
3894
3895                 flow_rule_match_ports(rule, &match);
3896                 if (match.mask->src) {
3897                         if (match.mask->src == cpu_to_be16(0xffff)) {
3898                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3899                         } else {
3900                                 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3901                                         be16_to_cpu(match.mask->src));
3902                                 return -EINVAL;
3903                         }
3904                 }
3905
3906                 if (match.mask->dst) {
3907                         if (match.mask->dst == cpu_to_be16(0xffff)) {
3908                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3909                         } else {
3910                                 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3911                                         be16_to_cpu(match.mask->dst));
3912                                 return -EINVAL;
3913                         }
3914                 }
3915                 if (match.key->dst) {
3916                         vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3917                         vf->data.tcp_spec.dst_port = match.key->dst;
3918                 }
3919
3920                 if (match.key->src) {
3921                         vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3922                         vf->data.tcp_spec.src_port = match.key->src;
3923                 }
3924         }
3925         vf->field_flags = field_flags;
3926
3927         return 0;
3928 }
3929
3930 /**
3931  * iavf_handle_tclass - Forward to a traffic class on the device
3932  * @adapter: board private structure
3933  * @tc: traffic class index on the device
3934  * @filter: pointer to cloud filter structure
3935  */
3936 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3937                               struct iavf_cloud_filter *filter)
3938 {
3939         if (tc == 0)
3940                 return 0;
3941         if (tc < adapter->num_tc) {
3942                 if (!filter->f.data.tcp_spec.dst_port) {
3943                         dev_err(&adapter->pdev->dev,
3944                                 "Specify destination port to redirect to traffic class other than TC0\n");
3945                         return -EINVAL;
3946                 }
3947         }
3948         /* redirect to a traffic class on the same device */
3949         filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3950         filter->f.action_meta = tc;
3951         return 0;
3952 }
3953
3954 /**
3955  * iavf_find_cf - Find the cloud filter in the list
3956  * @adapter: Board private structure
3957  * @cookie: filter specific cookie
3958  *
3959  * Returns ptr to the filter object or NULL. Must be called while holding the
3960  * cloud_filter_list_lock.
3961  */
3962 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3963                                               unsigned long *cookie)
3964 {
3965         struct iavf_cloud_filter *filter = NULL;
3966
3967         if (!cookie)
3968                 return NULL;
3969
3970         list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3971                 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3972                         return filter;
3973         }
3974         return NULL;
3975 }
3976
3977 /**
3978  * iavf_configure_clsflower - Add tc flower filters
3979  * @adapter: board private structure
3980  * @cls_flower: Pointer to struct flow_cls_offload
3981  */
3982 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3983                                     struct flow_cls_offload *cls_flower)
3984 {
3985         int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3986         struct iavf_cloud_filter *filter = NULL;
3987         int err = -EINVAL, count = 50;
3988
3989         if (tc < 0) {
3990                 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3991                 return -EINVAL;
3992         }
3993
3994         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3995         if (!filter)
3996                 return -ENOMEM;
3997
3998         while (!mutex_trylock(&adapter->crit_lock)) {
3999                 if (--count == 0) {
4000                         kfree(filter);
4001                         return err;
4002                 }
4003                 udelay(1);
4004         }
4005
4006         filter->cookie = cls_flower->cookie;
4007
4008         /* bail out here if filter already exists */
4009         spin_lock_bh(&adapter->cloud_filter_list_lock);
4010         if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4011                 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4012                 err = -EEXIST;
4013                 goto spin_unlock;
4014         }
4015         spin_unlock_bh(&adapter->cloud_filter_list_lock);
4016
4017         /* set the mask to all zeroes to begin with */
4018         memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4019         /* start out with flow type and eth type IPv4 to begin with */
4020         filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4021         err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4022         if (err)
4023                 goto err;
4024
4025         err = iavf_handle_tclass(adapter, tc, filter);
4026         if (err)
4027                 goto err;
4028
4029         /* add filter to the list */
4030         spin_lock_bh(&adapter->cloud_filter_list_lock);
4031         list_add_tail(&filter->list, &adapter->cloud_filter_list);
4032         adapter->num_cloud_filters++;
4033         filter->add = true;
4034         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4035 spin_unlock:
4036         spin_unlock_bh(&adapter->cloud_filter_list_lock);
4037 err:
4038         if (err)
4039                 kfree(filter);
4040
4041         mutex_unlock(&adapter->crit_lock);
4042         return err;
4043 }
4044
4045 /**
4046  * iavf_delete_clsflower - Remove tc flower filters
4047  * @adapter: board private structure
4048  * @cls_flower: Pointer to struct flow_cls_offload
4049  */
4050 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4051                                  struct flow_cls_offload *cls_flower)
4052 {
4053         struct iavf_cloud_filter *filter = NULL;
4054         int err = 0;
4055
4056         spin_lock_bh(&adapter->cloud_filter_list_lock);
4057         filter = iavf_find_cf(adapter, &cls_flower->cookie);
4058         if (filter) {
4059                 filter->del = true;
4060                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4061         } else {
4062                 err = -EINVAL;
4063         }
4064         spin_unlock_bh(&adapter->cloud_filter_list_lock);
4065
4066         return err;
4067 }
4068
4069 /**
4070  * iavf_setup_tc_cls_flower - flower classifier offloads
4071  * @adapter: pointer to iavf adapter structure
4072  * @cls_flower: pointer to flow_cls_offload struct with flow info
4073  */
4074 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4075                                     struct flow_cls_offload *cls_flower)
4076 {
4077         switch (cls_flower->command) {
4078         case FLOW_CLS_REPLACE:
4079                 return iavf_configure_clsflower(adapter, cls_flower);
4080         case FLOW_CLS_DESTROY:
4081                 return iavf_delete_clsflower(adapter, cls_flower);
4082         case FLOW_CLS_STATS:
4083                 return -EOPNOTSUPP;
4084         default:
4085                 return -EOPNOTSUPP;
4086         }
4087 }
4088
4089 /**
4090  * iavf_add_cls_u32 - Add U32 classifier offloads
4091  * @adapter: pointer to iavf adapter structure
4092  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4093  *
4094  * Return: 0 on success or negative errno on failure.
4095  */
4096 static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4097                             struct tc_cls_u32_offload *cls_u32)
4098 {
4099         struct netlink_ext_ack *extack = cls_u32->common.extack;
4100         struct virtchnl_fdir_rule *rule_cfg;
4101         struct virtchnl_filter_action *vact;
4102         struct virtchnl_proto_hdrs *hdrs;
4103         struct ethhdr *spec_h, *mask_h;
4104         const struct tc_action *act;
4105         struct iavf_fdir_fltr *fltr;
4106         struct tcf_exts *exts;
4107         unsigned int q_index;
4108         int i, status = 0;
4109         int off_base = 0;
4110
4111         if (cls_u32->knode.link_handle) {
4112                 NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4113                 return -EOPNOTSUPP;
4114         }
4115
4116         fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4117         if (!fltr)
4118                 return -ENOMEM;
4119
4120         rule_cfg = &fltr->vc_add_msg.rule_cfg;
4121         hdrs = &rule_cfg->proto_hdrs;
4122         hdrs->count = 0;
4123
4124         /* The parser lib at the PF expects the packet starting with MAC hdr */
4125         switch (ntohs(cls_u32->common.protocol)) {
4126         case ETH_P_802_3:
4127                 break;
4128         case ETH_P_IP:
4129                 spec_h = (struct ethhdr *)hdrs->raw.spec;
4130                 mask_h = (struct ethhdr *)hdrs->raw.mask;
4131                 spec_h->h_proto = htons(ETH_P_IP);
4132                 mask_h->h_proto = htons(0xFFFF);
4133                 off_base += ETH_HLEN;
4134                 break;
4135         default:
4136                 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4137                 status = -EOPNOTSUPP;
4138                 goto free_alloc;
4139         }
4140
4141         for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4142                 __be32 val, mask;
4143                 int off;
4144
4145                 off = off_base + cls_u32->knode.sel->keys[i].off;
4146                 val = cls_u32->knode.sel->keys[i].val;
4147                 mask = cls_u32->knode.sel->keys[i].mask;
4148
4149                 if (off >= sizeof(hdrs->raw.spec)) {
4150                         NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4151                         status = -EINVAL;
4152                         goto free_alloc;
4153                 }
4154
4155                 memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4156                 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4157                 hdrs->raw.pkt_len = off + sizeof(val);
4158         }
4159
4160         /* Only one action is allowed */
4161         rule_cfg->action_set.count = 1;
4162         vact = &rule_cfg->action_set.actions[0];
4163         exts = cls_u32->knode.exts;
4164
4165         tcf_exts_for_each_action(i, act, exts) {
4166                 /* FDIR queue */
4167                 if (is_tcf_skbedit_rx_queue_mapping(act)) {
4168                         q_index = tcf_skbedit_rx_queue_mapping(act);
4169                         if (q_index >= adapter->num_active_queues) {
4170                                 status = -EINVAL;
4171                                 goto free_alloc;
4172                         }
4173
4174                         vact->type = VIRTCHNL_ACTION_QUEUE;
4175                         vact->act_conf.queue.index = q_index;
4176                         break;
4177                 }
4178
4179                 /* Drop */
4180                 if (is_tcf_gact_shot(act)) {
4181                         vact->type = VIRTCHNL_ACTION_DROP;
4182                         break;
4183                 }
4184
4185                 /* Unsupported action */
4186                 NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4187                 status = -EOPNOTSUPP;
4188                 goto free_alloc;
4189         }
4190
4191         fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4192         fltr->cls_u32_handle = cls_u32->knode.handle;
4193         return iavf_fdir_add_fltr(adapter, fltr);
4194
4195 free_alloc:
4196         kfree(fltr);
4197         return status;
4198 }
4199
4200 /**
4201  * iavf_del_cls_u32 - Delete U32 classifier offloads
4202  * @adapter: pointer to iavf adapter structure
4203  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4204  *
4205  * Return: 0 on success or negative errno on failure.
4206  */
4207 static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4208                             struct tc_cls_u32_offload *cls_u32)
4209 {
4210         return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4211 }
4212
4213 /**
4214  * iavf_setup_tc_cls_u32 - U32 filter offloads
4215  * @adapter: pointer to iavf adapter structure
4216  * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4217  *
4218  * Return: 0 on success or negative errno on failure.
4219  */
4220 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4221                                  struct tc_cls_u32_offload *cls_u32)
4222 {
4223         if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4224                 return -EOPNOTSUPP;
4225
4226         switch (cls_u32->command) {
4227         case TC_CLSU32_NEW_KNODE:
4228         case TC_CLSU32_REPLACE_KNODE:
4229                 return iavf_add_cls_u32(adapter, cls_u32);
4230         case TC_CLSU32_DELETE_KNODE:
4231                 return iavf_del_cls_u32(adapter, cls_u32);
4232         default:
4233                 return -EOPNOTSUPP;
4234         }
4235 }
4236
4237 /**
4238  * iavf_setup_tc_block_cb - block callback for tc
4239  * @type: type of offload
4240  * @type_data: offload data
4241  * @cb_priv:
4242  *
4243  * This function is the block callback for traffic classes
4244  **/
4245 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4246                                   void *cb_priv)
4247 {
4248         struct iavf_adapter *adapter = cb_priv;
4249
4250         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4251                 return -EOPNOTSUPP;
4252
4253         switch (type) {
4254         case TC_SETUP_CLSFLOWER:
4255                 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4256         case TC_SETUP_CLSU32:
4257                 return iavf_setup_tc_cls_u32(cb_priv, type_data);
4258         default:
4259                 return -EOPNOTSUPP;
4260         }
4261 }
4262
4263 static LIST_HEAD(iavf_block_cb_list);
4264
4265 /**
4266  * iavf_setup_tc - configure multiple traffic classes
4267  * @netdev: network interface device structure
4268  * @type: type of offload
4269  * @type_data: tc offload data
4270  *
4271  * This function is the callback to ndo_setup_tc in the
4272  * netdev_ops.
4273  *
4274  * Returns 0 on success
4275  **/
4276 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4277                          void *type_data)
4278 {
4279         struct iavf_adapter *adapter = netdev_priv(netdev);
4280
4281         switch (type) {
4282         case TC_SETUP_QDISC_MQPRIO:
4283                 return __iavf_setup_tc(netdev, type_data);
4284         case TC_SETUP_BLOCK:
4285                 return flow_block_cb_setup_simple(type_data,
4286                                                   &iavf_block_cb_list,
4287                                                   iavf_setup_tc_block_cb,
4288                                                   adapter, adapter, true);
4289         default:
4290                 return -EOPNOTSUPP;
4291         }
4292 }
4293
4294 /**
4295  * iavf_restore_fdir_filters
4296  * @adapter: board private structure
4297  *
4298  * Restore existing FDIR filters when VF netdev comes back up.
4299  **/
4300 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4301 {
4302         struct iavf_fdir_fltr *f;
4303
4304         spin_lock_bh(&adapter->fdir_fltr_lock);
4305         list_for_each_entry(f, &adapter->fdir_list_head, list) {
4306                 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4307                         /* Cancel a request, keep filter as active */
4308                         f->state = IAVF_FDIR_FLTR_ACTIVE;
4309                 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4310                            f->state == IAVF_FDIR_FLTR_INACTIVE) {
4311                         /* Add filters which are inactive or have a pending
4312                          * request to PF to be deleted
4313                          */
4314                         f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4315                         adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4316                 }
4317         }
4318         spin_unlock_bh(&adapter->fdir_fltr_lock);
4319 }
4320
4321 /**
4322  * iavf_open - Called when a network interface is made active
4323  * @netdev: network interface device structure
4324  *
4325  * Returns 0 on success, negative value on failure
4326  *
4327  * The open entry point is called when a network interface is made
4328  * active by the system (IFF_UP).  At this point all resources needed
4329  * for transmit and receive operations are allocated, the interrupt
4330  * handler is registered with the OS, the watchdog is started,
4331  * and the stack is notified that the interface is ready.
4332  **/
4333 static int iavf_open(struct net_device *netdev)
4334 {
4335         struct iavf_adapter *adapter = netdev_priv(netdev);
4336         int err;
4337
4338         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4339                 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4340                 return -EIO;
4341         }
4342
4343         while (!mutex_trylock(&adapter->crit_lock)) {
4344                 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4345                  * is already taken and iavf_open is called from an upper
4346                  * device's notifier reacting on NETDEV_REGISTER event.
4347                  * We have to leave here to avoid dead lock.
4348                  */
4349                 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4350                         return -EBUSY;
4351
4352                 usleep_range(500, 1000);
4353         }
4354
4355         if (adapter->state != __IAVF_DOWN) {
4356                 err = -EBUSY;
4357                 goto err_unlock;
4358         }
4359
4360         if (adapter->state == __IAVF_RUNNING &&
4361             !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4362                 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4363                 err = 0;
4364                 goto err_unlock;
4365         }
4366
4367         /* allocate transmit descriptors */
4368         err = iavf_setup_all_tx_resources(adapter);
4369         if (err)
4370                 goto err_setup_tx;
4371
4372         /* allocate receive descriptors */
4373         err = iavf_setup_all_rx_resources(adapter);
4374         if (err)
4375                 goto err_setup_rx;
4376
4377         /* clear any pending interrupts, may auto mask */
4378         err = iavf_request_traffic_irqs(adapter, netdev->name);
4379         if (err)
4380                 goto err_req_irq;
4381
4382         spin_lock_bh(&adapter->mac_vlan_list_lock);
4383
4384         iavf_add_filter(adapter, adapter->hw.mac.addr);
4385
4386         spin_unlock_bh(&adapter->mac_vlan_list_lock);
4387
4388         /* Restore filters that were removed with IFF_DOWN */
4389         iavf_restore_filters(adapter);
4390         iavf_restore_fdir_filters(adapter);
4391
4392         iavf_configure(adapter);
4393
4394         iavf_up_complete(adapter);
4395
4396         iavf_irq_enable(adapter, true);
4397
4398         mutex_unlock(&adapter->crit_lock);
4399
4400         return 0;
4401
4402 err_req_irq:
4403         iavf_down(adapter);
4404         iavf_free_traffic_irqs(adapter);
4405 err_setup_rx:
4406         iavf_free_all_rx_resources(adapter);
4407 err_setup_tx:
4408         iavf_free_all_tx_resources(adapter);
4409 err_unlock:
4410         mutex_unlock(&adapter->crit_lock);
4411
4412         return err;
4413 }
4414
4415 /**
4416  * iavf_close - Disables a network interface
4417  * @netdev: network interface device structure
4418  *
4419  * Returns 0, this is not allowed to fail
4420  *
4421  * The close entry point is called when an interface is de-activated
4422  * by the OS.  The hardware is still under the drivers control, but
4423  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4424  * are freed, along with all transmit and receive resources.
4425  **/
4426 static int iavf_close(struct net_device *netdev)
4427 {
4428         struct iavf_adapter *adapter = netdev_priv(netdev);
4429         u64 aq_to_restore;
4430         int status;
4431
4432         mutex_lock(&adapter->crit_lock);
4433
4434         if (adapter->state <= __IAVF_DOWN_PENDING) {
4435                 mutex_unlock(&adapter->crit_lock);
4436                 return 0;
4437         }
4438
4439         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4440         /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4441          * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4442          * deadlock with adminq_task() until iavf_close timeouts. We must send
4443          * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4444          * disable queues possible for vf. Give only necessary flags to
4445          * iavf_down and save other to set them right before iavf_close()
4446          * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4447          * iavf will be in DOWN state.
4448          */
4449         aq_to_restore = adapter->aq_required;
4450         adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4451
4452         /* Remove flags which we do not want to send after close or we want to
4453          * send before disable queues.
4454          */
4455         aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG              |
4456                            IAVF_FLAG_AQ_ENABLE_QUEUES           |
4457                            IAVF_FLAG_AQ_CONFIGURE_QUEUES        |
4458                            IAVF_FLAG_AQ_ADD_VLAN_FILTER         |
4459                            IAVF_FLAG_AQ_ADD_MAC_FILTER          |
4460                            IAVF_FLAG_AQ_ADD_CLOUD_FILTER        |
4461                            IAVF_FLAG_AQ_ADD_FDIR_FILTER         |
4462                            IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4463
4464         iavf_down(adapter);
4465         iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4466         iavf_free_traffic_irqs(adapter);
4467
4468         mutex_unlock(&adapter->crit_lock);
4469
4470         /* We explicitly don't free resources here because the hardware is
4471          * still active and can DMA into memory. Resources are cleared in
4472          * iavf_virtchnl_completion() after we get confirmation from the PF
4473          * driver that the rings have been stopped.
4474          *
4475          * Also, we wait for state to transition to __IAVF_DOWN before
4476          * returning. State change occurs in iavf_virtchnl_completion() after
4477          * VF resources are released (which occurs after PF driver processes and
4478          * responds to admin queue commands).
4479          */
4480
4481         status = wait_event_timeout(adapter->down_waitqueue,
4482                                     adapter->state == __IAVF_DOWN,
4483                                     msecs_to_jiffies(500));
4484         if (!status)
4485                 netdev_warn(netdev, "Device resources not yet released\n");
4486
4487         mutex_lock(&adapter->crit_lock);
4488         adapter->aq_required |= aq_to_restore;
4489         mutex_unlock(&adapter->crit_lock);
4490         return 0;
4491 }
4492
4493 /**
4494  * iavf_change_mtu - Change the Maximum Transfer Unit
4495  * @netdev: network interface device structure
4496  * @new_mtu: new value for maximum frame size
4497  *
4498  * Returns 0 on success, negative on failure
4499  **/
4500 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4501 {
4502         struct iavf_adapter *adapter = netdev_priv(netdev);
4503         int ret = 0;
4504
4505         netdev_dbg(netdev, "changing MTU from %d to %d\n",
4506                    netdev->mtu, new_mtu);
4507         WRITE_ONCE(netdev->mtu, new_mtu);
4508
4509         if (netif_running(netdev)) {
4510                 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4511                 ret = iavf_wait_for_reset(adapter);
4512                 if (ret < 0)
4513                         netdev_warn(netdev, "MTU change interrupted waiting for reset");
4514                 else if (ret)
4515                         netdev_warn(netdev, "MTU change timed out waiting for reset");
4516         }
4517
4518         return ret;
4519 }
4520
4521 /**
4522  * iavf_disable_fdir - disable Flow Director and clear existing filters
4523  * @adapter: board private structure
4524  **/
4525 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4526 {
4527         struct iavf_fdir_fltr *fdir, *fdirtmp;
4528         bool del_filters = false;
4529
4530         adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4531
4532         /* remove all Flow Director filters */
4533         spin_lock_bh(&adapter->fdir_fltr_lock);
4534         list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4535                                  list) {
4536                 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4537                     fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4538                         /* Delete filters not registered in PF */
4539                         list_del(&fdir->list);
4540                         iavf_dec_fdir_active_fltr(adapter, fdir);
4541                         kfree(fdir);
4542                 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4543                            fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4544                            fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4545                         /* Filters registered in PF, schedule their deletion */
4546                         fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4547                         del_filters = true;
4548                 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4549                         /* Request to delete filter already sent to PF, change
4550                          * state to DEL_PENDING to delete filter after PF's
4551                          * response, not set as INACTIVE
4552                          */
4553                         fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4554                 }
4555         }
4556         spin_unlock_bh(&adapter->fdir_fltr_lock);
4557
4558         if (del_filters) {
4559                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4560                 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4561         }
4562 }
4563
4564 #define NETIF_VLAN_OFFLOAD_FEATURES     (NETIF_F_HW_VLAN_CTAG_RX | \
4565                                          NETIF_F_HW_VLAN_CTAG_TX | \
4566                                          NETIF_F_HW_VLAN_STAG_RX | \
4567                                          NETIF_F_HW_VLAN_STAG_TX)
4568
4569 /**
4570  * iavf_set_features - set the netdev feature flags
4571  * @netdev: ptr to the netdev being adjusted
4572  * @features: the feature set that the stack is suggesting
4573  * Note: expects to be called while under rtnl_lock()
4574  **/
4575 static int iavf_set_features(struct net_device *netdev,
4576                              netdev_features_t features)
4577 {
4578         struct iavf_adapter *adapter = netdev_priv(netdev);
4579
4580         /* trigger update on any VLAN feature change */
4581         if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4582             (features & NETIF_VLAN_OFFLOAD_FEATURES))
4583                 iavf_set_vlan_offload_features(adapter, netdev->features,
4584                                                features);
4585         if (CRC_OFFLOAD_ALLOWED(adapter) &&
4586             ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4587                 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4588
4589         if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4590                 if (features & NETIF_F_NTUPLE)
4591                         adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4592                 else
4593                         iavf_disable_fdir(adapter);
4594         }
4595
4596         return 0;
4597 }
4598
4599 /**
4600  * iavf_features_check - Validate encapsulated packet conforms to limits
4601  * @skb: skb buff
4602  * @dev: This physical port's netdev
4603  * @features: Offload features that the stack believes apply
4604  **/
4605 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4606                                              struct net_device *dev,
4607                                              netdev_features_t features)
4608 {
4609         size_t len;
4610
4611         /* No point in doing any of this if neither checksum nor GSO are
4612          * being requested for this frame.  We can rule out both by just
4613          * checking for CHECKSUM_PARTIAL
4614          */
4615         if (skb->ip_summed != CHECKSUM_PARTIAL)
4616                 return features;
4617
4618         /* We cannot support GSO if the MSS is going to be less than
4619          * 64 bytes.  If it is then we need to drop support for GSO.
4620          */
4621         if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4622                 features &= ~NETIF_F_GSO_MASK;
4623
4624         /* MACLEN can support at most 63 words */
4625         len = skb_network_offset(skb);
4626         if (len & ~(63 * 2))
4627                 goto out_err;
4628
4629         /* IPLEN and EIPLEN can support at most 127 dwords */
4630         len = skb_network_header_len(skb);
4631         if (len & ~(127 * 4))
4632                 goto out_err;
4633
4634         if (skb->encapsulation) {
4635                 /* L4TUNLEN can support 127 words */
4636                 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4637                 if (len & ~(127 * 2))
4638                         goto out_err;
4639
4640                 /* IPLEN can support at most 127 dwords */
4641                 len = skb_inner_transport_header(skb) -
4642                       skb_inner_network_header(skb);
4643                 if (len & ~(127 * 4))
4644                         goto out_err;
4645         }
4646
4647         /* No need to validate L4LEN as TCP is the only protocol with a
4648          * flexible value and we support all possible values supported
4649          * by TCP, which is at most 15 dwords
4650          */
4651
4652         return features;
4653 out_err:
4654         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4655 }
4656
4657 /**
4658  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4659  * @adapter: board private structure
4660  *
4661  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4662  * were negotiated determine the VLAN features that can be toggled on and off.
4663  **/
4664 static netdev_features_t
4665 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4666 {
4667         netdev_features_t hw_features = 0;
4668
4669         if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4670                 return hw_features;
4671
4672         /* Enable VLAN features if supported */
4673         if (VLAN_ALLOWED(adapter)) {
4674                 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4675                                 NETIF_F_HW_VLAN_CTAG_RX);
4676         } else if (VLAN_V2_ALLOWED(adapter)) {
4677                 struct virtchnl_vlan_caps *vlan_v2_caps =
4678                         &adapter->vlan_v2_caps;
4679                 struct virtchnl_vlan_supported_caps *stripping_support =
4680                         &vlan_v2_caps->offloads.stripping_support;
4681                 struct virtchnl_vlan_supported_caps *insertion_support =
4682                         &vlan_v2_caps->offloads.insertion_support;
4683
4684                 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4685                     stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4686                         if (stripping_support->outer &
4687                             VIRTCHNL_VLAN_ETHERTYPE_8100)
4688                                 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4689                         if (stripping_support->outer &
4690                             VIRTCHNL_VLAN_ETHERTYPE_88A8)
4691                                 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4692                 } else if (stripping_support->inner !=
4693                            VIRTCHNL_VLAN_UNSUPPORTED &&
4694                            stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4695                         if (stripping_support->inner &
4696                             VIRTCHNL_VLAN_ETHERTYPE_8100)
4697                                 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4698                 }
4699
4700                 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4701                     insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4702                         if (insertion_support->outer &
4703                             VIRTCHNL_VLAN_ETHERTYPE_8100)
4704                                 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4705                         if (insertion_support->outer &
4706                             VIRTCHNL_VLAN_ETHERTYPE_88A8)
4707                                 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4708                 } else if (insertion_support->inner &&
4709                            insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4710                         if (insertion_support->inner &
4711                             VIRTCHNL_VLAN_ETHERTYPE_8100)
4712                                 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4713                 }
4714         }
4715
4716         if (CRC_OFFLOAD_ALLOWED(adapter))
4717                 hw_features |= NETIF_F_RXFCS;
4718
4719         return hw_features;
4720 }
4721
4722 /**
4723  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4724  * @adapter: board private structure
4725  *
4726  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4727  * were negotiated determine the VLAN features that are enabled by default.
4728  **/
4729 static netdev_features_t
4730 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4731 {
4732         netdev_features_t features = 0;
4733
4734         if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4735                 return features;
4736
4737         if (VLAN_ALLOWED(adapter)) {
4738                 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4739                         NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4740         } else if (VLAN_V2_ALLOWED(adapter)) {
4741                 struct virtchnl_vlan_caps *vlan_v2_caps =
4742                         &adapter->vlan_v2_caps;
4743                 struct virtchnl_vlan_supported_caps *filtering_support =
4744                         &vlan_v2_caps->filtering.filtering_support;
4745                 struct virtchnl_vlan_supported_caps *stripping_support =
4746                         &vlan_v2_caps->offloads.stripping_support;
4747                 struct virtchnl_vlan_supported_caps *insertion_support =
4748                         &vlan_v2_caps->offloads.insertion_support;
4749                 u32 ethertype_init;
4750
4751                 /* give priority to outer stripping and don't support both outer
4752                  * and inner stripping
4753                  */
4754                 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4755                 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4756                         if (stripping_support->outer &
4757                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4758                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4759                                 features |= NETIF_F_HW_VLAN_CTAG_RX;
4760                         else if (stripping_support->outer &
4761                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4762                                  ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4763                                 features |= NETIF_F_HW_VLAN_STAG_RX;
4764                 } else if (stripping_support->inner !=
4765                            VIRTCHNL_VLAN_UNSUPPORTED) {
4766                         if (stripping_support->inner &
4767                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4768                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4769                                 features |= NETIF_F_HW_VLAN_CTAG_RX;
4770                 }
4771
4772                 /* give priority to outer insertion and don't support both outer
4773                  * and inner insertion
4774                  */
4775                 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4776                         if (insertion_support->outer &
4777                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4778                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4779                                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4780                         else if (insertion_support->outer &
4781                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4782                                  ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4783                                 features |= NETIF_F_HW_VLAN_STAG_TX;
4784                 } else if (insertion_support->inner !=
4785                            VIRTCHNL_VLAN_UNSUPPORTED) {
4786                         if (insertion_support->inner &
4787                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4788                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4789                                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4790                 }
4791
4792                 /* give priority to outer filtering and don't bother if both
4793                  * outer and inner filtering are enabled
4794                  */
4795                 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4796                 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4797                         if (filtering_support->outer &
4798                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4799                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4800                                 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4801                         if (filtering_support->outer &
4802                             VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4803                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4804                                 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4805                 } else if (filtering_support->inner !=
4806                            VIRTCHNL_VLAN_UNSUPPORTED) {
4807                         if (filtering_support->inner &
4808                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4809                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4810                                 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4811                         if (filtering_support->inner &
4812                             VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4813                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4814                                 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4815                 }
4816         }
4817
4818         return features;
4819 }
4820
4821 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4822         (!(((requested) & (feature_bit)) && \
4823            !((allowed) & (feature_bit))))
4824
4825 /**
4826  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4827  * @adapter: board private structure
4828  * @requested_features: stack requested NETDEV features
4829  **/
4830 static netdev_features_t
4831 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4832                               netdev_features_t requested_features)
4833 {
4834         netdev_features_t allowed_features;
4835
4836         allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4837                 iavf_get_netdev_vlan_features(adapter);
4838
4839         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4840                                               allowed_features,
4841                                               NETIF_F_HW_VLAN_CTAG_TX))
4842                 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4843
4844         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4845                                               allowed_features,
4846                                               NETIF_F_HW_VLAN_CTAG_RX))
4847                 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4848
4849         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4850                                               allowed_features,
4851                                               NETIF_F_HW_VLAN_STAG_TX))
4852                 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4853         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4854                                               allowed_features,
4855                                               NETIF_F_HW_VLAN_STAG_RX))
4856                 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4857
4858         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4859                                               allowed_features,
4860                                               NETIF_F_HW_VLAN_CTAG_FILTER))
4861                 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4862
4863         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4864                                               allowed_features,
4865                                               NETIF_F_HW_VLAN_STAG_FILTER))
4866                 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4867
4868         if ((requested_features &
4869              (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4870             (requested_features &
4871              (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4872             adapter->vlan_v2_caps.offloads.ethertype_match ==
4873             VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4874                 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4875                 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4876                                         NETIF_F_HW_VLAN_STAG_TX);
4877         }
4878
4879         return requested_features;
4880 }
4881
4882 /**
4883  * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4884  * @adapter: board private structure
4885  * @requested_features: stack requested NETDEV features
4886  *
4887  * Returns fixed-up features bits
4888  **/
4889 static netdev_features_t
4890 iavf_fix_strip_features(struct iavf_adapter *adapter,
4891                         netdev_features_t requested_features)
4892 {
4893         struct net_device *netdev = adapter->netdev;
4894         bool crc_offload_req, is_vlan_strip;
4895         netdev_features_t vlan_strip;
4896         int num_non_zero_vlan;
4897
4898         crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4899                           (requested_features & NETIF_F_RXFCS);
4900         num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4901         vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4902         is_vlan_strip = requested_features & vlan_strip;
4903
4904         if (!crc_offload_req)
4905                 return requested_features;
4906
4907         if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4908             !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4909                 requested_features &= ~vlan_strip;
4910                 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4911                 return requested_features;
4912         }
4913
4914         if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4915                 requested_features &= ~vlan_strip;
4916                 if (!(netdev->features & vlan_strip))
4917                         netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4918
4919                 return requested_features;
4920         }
4921
4922         if (num_non_zero_vlan && is_vlan_strip &&
4923             !(netdev->features & NETIF_F_RXFCS)) {
4924                 requested_features &= ~NETIF_F_RXFCS;
4925                 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4926         }
4927
4928         return requested_features;
4929 }
4930
4931 /**
4932  * iavf_fix_features - fix up the netdev feature bits
4933  * @netdev: our net device
4934  * @features: desired feature bits
4935  *
4936  * Returns fixed-up features bits
4937  **/
4938 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4939                                            netdev_features_t features)
4940 {
4941         struct iavf_adapter *adapter = netdev_priv(netdev);
4942
4943         features = iavf_fix_netdev_vlan_features(adapter, features);
4944
4945         if (!FDIR_FLTR_SUPPORT(adapter))
4946                 features &= ~NETIF_F_NTUPLE;
4947
4948         return iavf_fix_strip_features(adapter, features);
4949 }
4950
4951 static int
4952 iavf_verify_shaper(struct net_shaper_binding *binding,
4953                    const struct net_shaper *shaper,
4954                    struct netlink_ext_ack *extack)
4955 {
4956         struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4957         u64 vf_max;
4958
4959         if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) {
4960                 vf_max = adapter->qos_caps->cap[0].shaper.peak;
4961                 if (vf_max && shaper->bw_max > vf_max) {
4962                         NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)",
4963                                            shaper->bw_max, shaper->handle.id,
4964                                            vf_max);
4965                         return -EINVAL;
4966                 }
4967         }
4968         return 0;
4969 }
4970
4971 static int
4972 iavf_shaper_set(struct net_shaper_binding *binding,
4973                 const struct net_shaper *shaper,
4974                 struct netlink_ext_ack *extack)
4975 {
4976         struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4977         const struct net_shaper_handle *handle = &shaper->handle;
4978         struct iavf_ring *tx_ring;
4979         int ret = 0;
4980
4981         mutex_lock(&adapter->crit_lock);
4982         if (handle->id >= adapter->num_active_queues)
4983                 goto unlock;
4984
4985         ret = iavf_verify_shaper(binding, shaper, extack);
4986         if (ret)
4987                 goto unlock;
4988
4989         tx_ring = &adapter->tx_rings[handle->id];
4990
4991         tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000);
4992         tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000);
4993         tx_ring->q_shaper_update = true;
4994
4995         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
4996
4997 unlock:
4998         mutex_unlock(&adapter->crit_lock);
4999         return ret;
5000 }
5001
5002 static int iavf_shaper_del(struct net_shaper_binding *binding,
5003                            const struct net_shaper_handle *handle,
5004                            struct netlink_ext_ack *extack)
5005 {
5006         struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5007         struct iavf_ring *tx_ring;
5008
5009         mutex_lock(&adapter->crit_lock);
5010         if (handle->id >= adapter->num_active_queues)
5011                 goto unlock;
5012
5013         tx_ring = &adapter->tx_rings[handle->id];
5014         tx_ring->q_shaper.bw_min = 0;
5015         tx_ring->q_shaper.bw_max = 0;
5016         tx_ring->q_shaper_update = true;
5017
5018         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5019
5020 unlock:
5021         mutex_unlock(&adapter->crit_lock);
5022         return 0;
5023 }
5024
5025 static void iavf_shaper_cap(struct net_shaper_binding *binding,
5026                             enum net_shaper_scope scope,
5027                             unsigned long *flags)
5028 {
5029         if (scope != NET_SHAPER_SCOPE_QUEUE)
5030                 return;
5031
5032         *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) |
5033                  BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) |
5034                  BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS);
5035 }
5036
5037 static const struct net_shaper_ops iavf_shaper_ops = {
5038         .set = iavf_shaper_set,
5039         .delete = iavf_shaper_del,
5040         .capabilities = iavf_shaper_cap,
5041 };
5042
5043 static const struct net_device_ops iavf_netdev_ops = {
5044         .ndo_open               = iavf_open,
5045         .ndo_stop               = iavf_close,
5046         .ndo_start_xmit         = iavf_xmit_frame,
5047         .ndo_set_rx_mode        = iavf_set_rx_mode,
5048         .ndo_validate_addr      = eth_validate_addr,
5049         .ndo_set_mac_address    = iavf_set_mac,
5050         .ndo_change_mtu         = iavf_change_mtu,
5051         .ndo_tx_timeout         = iavf_tx_timeout,
5052         .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
5053         .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
5054         .ndo_features_check     = iavf_features_check,
5055         .ndo_fix_features       = iavf_fix_features,
5056         .ndo_set_features       = iavf_set_features,
5057         .ndo_setup_tc           = iavf_setup_tc,
5058         .net_shaper_ops         = &iavf_shaper_ops,
5059 };
5060
5061 /**
5062  * iavf_check_reset_complete - check that VF reset is complete
5063  * @hw: pointer to hw struct
5064  *
5065  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
5066  **/
5067 static int iavf_check_reset_complete(struct iavf_hw *hw)
5068 {
5069         u32 rstat;
5070         int i;
5071
5072         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
5073                 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
5074                              IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
5075                 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
5076                     (rstat == VIRTCHNL_VFR_COMPLETED))
5077                         return 0;
5078                 msleep(IAVF_RESET_WAIT_MS);
5079         }
5080         return -EBUSY;
5081 }
5082
5083 /**
5084  * iavf_process_config - Process the config information we got from the PF
5085  * @adapter: board private structure
5086  *
5087  * Verify that we have a valid config struct, and set up our netdev features
5088  * and our VSI struct.
5089  **/
5090 int iavf_process_config(struct iavf_adapter *adapter)
5091 {
5092         struct virtchnl_vf_resource *vfres = adapter->vf_res;
5093         netdev_features_t hw_vlan_features, vlan_features;
5094         struct net_device *netdev = adapter->netdev;
5095         netdev_features_t hw_enc_features;
5096         netdev_features_t hw_features;
5097
5098         hw_enc_features = NETIF_F_SG                    |
5099                           NETIF_F_IP_CSUM               |
5100                           NETIF_F_IPV6_CSUM             |
5101                           NETIF_F_HIGHDMA               |
5102                           NETIF_F_SOFT_FEATURES |
5103                           NETIF_F_TSO                   |
5104                           NETIF_F_TSO_ECN               |
5105                           NETIF_F_TSO6                  |
5106                           NETIF_F_SCTP_CRC              |
5107                           NETIF_F_RXHASH                |
5108                           NETIF_F_RXCSUM                |
5109                           0;
5110
5111         /* advertise to stack only if offloads for encapsulated packets is
5112          * supported
5113          */
5114         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
5115                 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL       |
5116                                    NETIF_F_GSO_GRE              |
5117                                    NETIF_F_GSO_GRE_CSUM         |
5118                                    NETIF_F_GSO_IPXIP4           |
5119                                    NETIF_F_GSO_IPXIP6           |
5120                                    NETIF_F_GSO_UDP_TUNNEL_CSUM  |
5121                                    NETIF_F_GSO_PARTIAL          |
5122                                    0;
5123
5124                 if (!(vfres->vf_cap_flags &
5125                       VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
5126                         netdev->gso_partial_features |=
5127                                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
5128
5129                 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
5130                 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
5131                 netdev->hw_enc_features |= hw_enc_features;
5132         }
5133         /* record features VLANs can make use of */
5134         netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5135
5136         /* Write features and hw_features separately to avoid polluting
5137          * with, or dropping, features that are set when we registered.
5138          */
5139         hw_features = hw_enc_features;
5140
5141         /* get HW VLAN features that can be toggled */
5142         hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5143
5144         /* Enable HW TC offload if ADQ or tc U32 is supported */
5145         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5146             TC_U32_SUPPORT(adapter))
5147                 hw_features |= NETIF_F_HW_TC;
5148
5149         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5150                 hw_features |= NETIF_F_GSO_UDP_L4;
5151
5152         netdev->hw_features |= hw_features | hw_vlan_features;
5153         vlan_features = iavf_get_netdev_vlan_features(adapter);
5154
5155         netdev->features |= hw_features | vlan_features;
5156
5157         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5158                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5159
5160         if (FDIR_FLTR_SUPPORT(adapter)) {
5161                 netdev->hw_features |= NETIF_F_NTUPLE;
5162                 netdev->features |= NETIF_F_NTUPLE;
5163                 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5164         }
5165
5166         netdev->priv_flags |= IFF_UNICAST_FLT;
5167
5168         /* Do not turn on offloads when they are requested to be turned off.
5169          * TSO needs minimum 576 bytes to work correctly.
5170          */
5171         if (netdev->wanted_features) {
5172                 if (!(netdev->wanted_features & NETIF_F_TSO) ||
5173                     netdev->mtu < 576)
5174                         netdev->features &= ~NETIF_F_TSO;
5175                 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5176                     netdev->mtu < 576)
5177                         netdev->features &= ~NETIF_F_TSO6;
5178                 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5179                         netdev->features &= ~NETIF_F_TSO_ECN;
5180                 if (!(netdev->wanted_features & NETIF_F_GRO))
5181                         netdev->features &= ~NETIF_F_GRO;
5182                 if (!(netdev->wanted_features & NETIF_F_GSO))
5183                         netdev->features &= ~NETIF_F_GSO;
5184         }
5185
5186         return 0;
5187 }
5188
5189 /**
5190  * iavf_probe - Device Initialization Routine
5191  * @pdev: PCI device information struct
5192  * @ent: entry in iavf_pci_tbl
5193  *
5194  * Returns 0 on success, negative on failure
5195  *
5196  * iavf_probe initializes an adapter identified by a pci_dev structure.
5197  * The OS initialization, configuring of the adapter private structure,
5198  * and a hardware reset occur.
5199  **/
5200 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5201 {
5202         struct net_device *netdev;
5203         struct iavf_adapter *adapter = NULL;
5204         struct iavf_hw *hw = NULL;
5205         int err, len;
5206
5207         err = pci_enable_device(pdev);
5208         if (err)
5209                 return err;
5210
5211         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5212         if (err) {
5213                 dev_err(&pdev->dev,
5214                         "DMA configuration failed: 0x%x\n", err);
5215                 goto err_dma;
5216         }
5217
5218         err = pci_request_regions(pdev, iavf_driver_name);
5219         if (err) {
5220                 dev_err(&pdev->dev,
5221                         "pci_request_regions failed 0x%x\n", err);
5222                 goto err_pci_reg;
5223         }
5224
5225         pci_set_master(pdev);
5226
5227         netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5228                                    IAVF_MAX_REQ_QUEUES);
5229         if (!netdev) {
5230                 err = -ENOMEM;
5231                 goto err_alloc_etherdev;
5232         }
5233
5234         SET_NETDEV_DEV(netdev, &pdev->dev);
5235
5236         pci_set_drvdata(pdev, netdev);
5237         adapter = netdev_priv(netdev);
5238
5239         adapter->netdev = netdev;
5240         adapter->pdev = pdev;
5241
5242         hw = &adapter->hw;
5243         hw->back = adapter;
5244
5245         adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5246                                               iavf_driver_name);
5247         if (!adapter->wq) {
5248                 err = -ENOMEM;
5249                 goto err_alloc_wq;
5250         }
5251
5252         adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5253         iavf_change_state(adapter, __IAVF_STARTUP);
5254
5255         /* Call save state here because it relies on the adapter struct. */
5256         pci_save_state(pdev);
5257
5258         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5259                               pci_resource_len(pdev, 0));
5260         if (!hw->hw_addr) {
5261                 err = -EIO;
5262                 goto err_ioremap;
5263         }
5264         hw->vendor_id = pdev->vendor;
5265         hw->device_id = pdev->device;
5266         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5267         hw->subsystem_vendor_id = pdev->subsystem_vendor;
5268         hw->subsystem_device_id = pdev->subsystem_device;
5269         hw->bus.device = PCI_SLOT(pdev->devfn);
5270         hw->bus.func = PCI_FUNC(pdev->devfn);
5271         hw->bus.bus_id = pdev->bus->number;
5272
5273         len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM);
5274         adapter->qos_caps = kzalloc(len, GFP_KERNEL);
5275         if (!adapter->qos_caps) {
5276                 err = -ENOMEM;
5277                 goto err_alloc_qos_cap;
5278         }
5279
5280         /* set up the locks for the AQ, do this only once in probe
5281          * and destroy them only once in remove
5282          */
5283         mutex_init(&adapter->crit_lock);
5284         mutex_init(&hw->aq.asq_mutex);
5285         mutex_init(&hw->aq.arq_mutex);
5286
5287         spin_lock_init(&adapter->mac_vlan_list_lock);
5288         spin_lock_init(&adapter->cloud_filter_list_lock);
5289         spin_lock_init(&adapter->fdir_fltr_lock);
5290         spin_lock_init(&adapter->adv_rss_lock);
5291         spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5292
5293         INIT_LIST_HEAD(&adapter->mac_filter_list);
5294         INIT_LIST_HEAD(&adapter->vlan_filter_list);
5295         INIT_LIST_HEAD(&adapter->cloud_filter_list);
5296         INIT_LIST_HEAD(&adapter->fdir_list_head);
5297         INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5298
5299         INIT_WORK(&adapter->reset_task, iavf_reset_task);
5300         INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5301         INIT_WORK(&adapter->finish_config, iavf_finish_config);
5302         INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5303
5304         /* Setup the wait queue for indicating transition to down status */
5305         init_waitqueue_head(&adapter->down_waitqueue);
5306
5307         /* Setup the wait queue for indicating transition to running state */
5308         init_waitqueue_head(&adapter->reset_waitqueue);
5309
5310         /* Setup the wait queue for indicating virtchannel events */
5311         init_waitqueue_head(&adapter->vc_waitqueue);
5312
5313         queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5314                            msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5315         /* Initialization goes on in the work. Do not add more of it below. */
5316         return 0;
5317
5318 err_alloc_qos_cap:
5319         iounmap(hw->hw_addr);
5320 err_ioremap:
5321         destroy_workqueue(adapter->wq);
5322 err_alloc_wq:
5323         free_netdev(netdev);
5324 err_alloc_etherdev:
5325         pci_release_regions(pdev);
5326 err_pci_reg:
5327 err_dma:
5328         pci_disable_device(pdev);
5329         return err;
5330 }
5331
5332 /**
5333  * iavf_suspend - Power management suspend routine
5334  * @dev_d: device info pointer
5335  *
5336  * Called when the system (VM) is entering sleep/suspend.
5337  **/
5338 static int iavf_suspend(struct device *dev_d)
5339 {
5340         struct net_device *netdev = dev_get_drvdata(dev_d);
5341         struct iavf_adapter *adapter = netdev_priv(netdev);
5342
5343         netif_device_detach(netdev);
5344
5345         mutex_lock(&adapter->crit_lock);
5346
5347         if (netif_running(netdev)) {
5348                 rtnl_lock();
5349                 iavf_down(adapter);
5350                 rtnl_unlock();
5351         }
5352         iavf_free_misc_irq(adapter);
5353         iavf_reset_interrupt_capability(adapter);
5354
5355         mutex_unlock(&adapter->crit_lock);
5356
5357         return 0;
5358 }
5359
5360 /**
5361  * iavf_resume - Power management resume routine
5362  * @dev_d: device info pointer
5363  *
5364  * Called when the system (VM) is resumed from sleep/suspend.
5365  **/
5366 static int iavf_resume(struct device *dev_d)
5367 {
5368         struct pci_dev *pdev = to_pci_dev(dev_d);
5369         struct iavf_adapter *adapter;
5370         u32 err;
5371
5372         adapter = iavf_pdev_to_adapter(pdev);
5373
5374         pci_set_master(pdev);
5375
5376         rtnl_lock();
5377         err = iavf_set_interrupt_capability(adapter);
5378         if (err) {
5379                 rtnl_unlock();
5380                 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5381                 return err;
5382         }
5383         err = iavf_request_misc_irq(adapter);
5384         rtnl_unlock();
5385         if (err) {
5386                 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5387                 return err;
5388         }
5389
5390         queue_work(adapter->wq, &adapter->reset_task);
5391
5392         netif_device_attach(adapter->netdev);
5393
5394         return err;
5395 }
5396
5397 /**
5398  * iavf_remove - Device Removal Routine
5399  * @pdev: PCI device information struct
5400  *
5401  * iavf_remove is called by the PCI subsystem to alert the driver
5402  * that it should release a PCI device.  The could be caused by a
5403  * Hot-Plug event, or because the driver is going to be removed from
5404  * memory.
5405  **/
5406 static void iavf_remove(struct pci_dev *pdev)
5407 {
5408         struct iavf_fdir_fltr *fdir, *fdirtmp;
5409         struct iavf_vlan_filter *vlf, *vlftmp;
5410         struct iavf_cloud_filter *cf, *cftmp;
5411         struct iavf_adv_rss *rss, *rsstmp;
5412         struct iavf_mac_filter *f, *ftmp;
5413         struct iavf_adapter *adapter;
5414         struct net_device *netdev;
5415         struct iavf_hw *hw;
5416
5417         /* Don't proceed with remove if netdev is already freed */
5418         netdev = pci_get_drvdata(pdev);
5419         if (!netdev)
5420                 return;
5421
5422         adapter = iavf_pdev_to_adapter(pdev);
5423         hw = &adapter->hw;
5424
5425         if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5426                 return;
5427
5428         /* Wait until port initialization is complete.
5429          * There are flows where register/unregister netdev may race.
5430          */
5431         while (1) {
5432                 mutex_lock(&adapter->crit_lock);
5433                 if (adapter->state == __IAVF_RUNNING ||
5434                     adapter->state == __IAVF_DOWN ||
5435                     adapter->state == __IAVF_INIT_FAILED) {
5436                         mutex_unlock(&adapter->crit_lock);
5437                         break;
5438                 }
5439                 /* Simply return if we already went through iavf_shutdown */
5440                 if (adapter->state == __IAVF_REMOVE) {
5441                         mutex_unlock(&adapter->crit_lock);
5442                         return;
5443                 }
5444
5445                 mutex_unlock(&adapter->crit_lock);
5446                 usleep_range(500, 1000);
5447         }
5448         cancel_delayed_work_sync(&adapter->watchdog_task);
5449         cancel_work_sync(&adapter->finish_config);
5450
5451         if (netdev->reg_state == NETREG_REGISTERED)
5452                 unregister_netdev(netdev);
5453
5454         mutex_lock(&adapter->crit_lock);
5455         dev_info(&adapter->pdev->dev, "Removing device\n");
5456         iavf_change_state(adapter, __IAVF_REMOVE);
5457
5458         iavf_request_reset(adapter);
5459         msleep(50);
5460         /* If the FW isn't responding, kick it once, but only once. */
5461         if (!iavf_asq_done(hw)) {
5462                 iavf_request_reset(adapter);
5463                 msleep(50);
5464         }
5465
5466         iavf_misc_irq_disable(adapter);
5467         /* Shut down all the garbage mashers on the detention level */
5468         cancel_work_sync(&adapter->reset_task);
5469         cancel_delayed_work_sync(&adapter->watchdog_task);
5470         cancel_work_sync(&adapter->adminq_task);
5471
5472         adapter->aq_required = 0;
5473         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5474
5475         iavf_free_all_tx_resources(adapter);
5476         iavf_free_all_rx_resources(adapter);
5477         iavf_free_misc_irq(adapter);
5478         iavf_free_interrupt_scheme(adapter);
5479
5480         iavf_free_rss(adapter);
5481
5482         if (hw->aq.asq.count)
5483                 iavf_shutdown_adminq(hw);
5484
5485         /* destroy the locks only once, here */
5486         mutex_destroy(&hw->aq.arq_mutex);
5487         mutex_destroy(&hw->aq.asq_mutex);
5488         mutex_unlock(&adapter->crit_lock);
5489         mutex_destroy(&adapter->crit_lock);
5490
5491         iounmap(hw->hw_addr);
5492         pci_release_regions(pdev);
5493         kfree(adapter->vf_res);
5494         spin_lock_bh(&adapter->mac_vlan_list_lock);
5495         /* If we got removed before an up/down sequence, we've got a filter
5496          * hanging out there that we need to get rid of.
5497          */
5498         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5499                 list_del(&f->list);
5500                 kfree(f);
5501         }
5502         list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5503                                  list) {
5504                 list_del(&vlf->list);
5505                 kfree(vlf);
5506         }
5507
5508         spin_unlock_bh(&adapter->mac_vlan_list_lock);
5509
5510         spin_lock_bh(&adapter->cloud_filter_list_lock);
5511         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5512                 list_del(&cf->list);
5513                 kfree(cf);
5514         }
5515         spin_unlock_bh(&adapter->cloud_filter_list_lock);
5516
5517         spin_lock_bh(&adapter->fdir_fltr_lock);
5518         list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5519                 list_del(&fdir->list);
5520                 kfree(fdir);
5521         }
5522         spin_unlock_bh(&adapter->fdir_fltr_lock);
5523
5524         spin_lock_bh(&adapter->adv_rss_lock);
5525         list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5526                                  list) {
5527                 list_del(&rss->list);
5528                 kfree(rss);
5529         }
5530         spin_unlock_bh(&adapter->adv_rss_lock);
5531
5532         destroy_workqueue(adapter->wq);
5533
5534         pci_set_drvdata(pdev, NULL);
5535
5536         free_netdev(netdev);
5537
5538         pci_disable_device(pdev);
5539 }
5540
5541 /**
5542  * iavf_shutdown - Shutdown the device in preparation for a reboot
5543  * @pdev: pci device structure
5544  **/
5545 static void iavf_shutdown(struct pci_dev *pdev)
5546 {
5547         iavf_remove(pdev);
5548
5549         if (system_state == SYSTEM_POWER_OFF)
5550                 pci_set_power_state(pdev, PCI_D3hot);
5551 }
5552
5553 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5554
5555 static struct pci_driver iavf_driver = {
5556         .name      = iavf_driver_name,
5557         .id_table  = iavf_pci_tbl,
5558         .probe     = iavf_probe,
5559         .remove    = iavf_remove,
5560         .driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5561         .shutdown  = iavf_shutdown,
5562 };
5563
5564 /**
5565  * iavf_init_module - Driver Registration Routine
5566  *
5567  * iavf_init_module is the first routine called when the driver is
5568  * loaded. All it does is register with the PCI subsystem.
5569  **/
5570 static int __init iavf_init_module(void)
5571 {
5572         pr_info("iavf: %s\n", iavf_driver_string);
5573
5574         pr_info("%s\n", iavf_copyright);
5575
5576         return pci_register_driver(&iavf_driver);
5577 }
5578
5579 module_init(iavf_init_module);
5580
5581 /**
5582  * iavf_exit_module - Driver Exit Cleanup Routine
5583  *
5584  * iavf_exit_module is called just before the driver is removed
5585  * from memory.
5586  **/
5587 static void __exit iavf_exit_module(void)
5588 {
5589         pci_unregister_driver(&iavf_driver);
5590 }
5591
5592 module_exit(iavf_exit_module);
5593
5594 /* iavf_main.c */
This page took 0.347058 seconds and 4 git commands to generate.