]> Git Repo - J-linux.git/blob - drivers/net/ethernet/freescale/fec_ptp.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / net / ethernet / freescale / fec_ptp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4  *
5  * Copyright (C) 2012 Freescale Semiconductor, Inc.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/ptrace.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/spinlock.h>
24 #include <linux/workqueue.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/clk.h>
29 #include <linux/platform_device.h>
30 #include <linux/phy.h>
31 #include <linux/fec.h>
32 #include <linux/of.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_net.h>
35
36 #include "fec.h"
37
38 /* FEC 1588 register bits */
39 #define FEC_T_CTRL_SLAVE                0x00002000
40 #define FEC_T_CTRL_CAPTURE              0x00000800
41 #define FEC_T_CTRL_RESTART              0x00000200
42 #define FEC_T_CTRL_PERIOD_RST           0x00000030
43 #define FEC_T_CTRL_PERIOD_EN            0x00000010
44 #define FEC_T_CTRL_ENABLE               0x00000001
45
46 #define FEC_T_INC_MASK                  0x0000007f
47 #define FEC_T_INC_OFFSET                0
48 #define FEC_T_INC_CORR_MASK             0x00007f00
49 #define FEC_T_INC_CORR_OFFSET           8
50
51 #define FEC_T_CTRL_PINPER               0x00000080
52 #define FEC_T_TF0_MASK                  0x00000001
53 #define FEC_T_TF0_OFFSET                0
54 #define FEC_T_TF1_MASK                  0x00000002
55 #define FEC_T_TF1_OFFSET                1
56 #define FEC_T_TF2_MASK                  0x00000004
57 #define FEC_T_TF2_OFFSET                2
58 #define FEC_T_TF3_MASK                  0x00000008
59 #define FEC_T_TF3_OFFSET                3
60 #define FEC_T_TDRE_MASK                 0x00000001
61 #define FEC_T_TDRE_OFFSET               0
62 #define FEC_T_TMODE_MASK                0x0000003C
63 #define FEC_T_TMODE_OFFSET              2
64 #define FEC_T_TIE_MASK                  0x00000040
65 #define FEC_T_TIE_OFFSET                6
66 #define FEC_T_TF_MASK                   0x00000080
67 #define FEC_T_TF_OFFSET                 7
68
69 #define FEC_ATIME_CTRL          0x400
70 #define FEC_ATIME               0x404
71 #define FEC_ATIME_EVT_OFFSET    0x408
72 #define FEC_ATIME_EVT_PERIOD    0x40c
73 #define FEC_ATIME_CORR          0x410
74 #define FEC_ATIME_INC           0x414
75 #define FEC_TS_TIMESTAMP        0x418
76
77 #define FEC_TGSR                0x604
78 #define FEC_TCSR(n)             (0x608 + n * 0x08)
79 #define FEC_TCCR(n)             (0x60C + n * 0x08)
80 #define MAX_TIMER_CHANNEL       3
81 #define FEC_TMODE_TOGGLE        0x05
82 #define FEC_HIGH_PULSE          0x0F
83
84 #define FEC_CC_MULT     (1 << 31)
85 #define FEC_COUNTER_PERIOD      (1 << 31)
86 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
87 #define DEFAULT_PPS_CHANNEL     0
88
89 #define FEC_PTP_MAX_NSEC_PERIOD         4000000000ULL
90 #define FEC_PTP_MAX_NSEC_COUNTER        0x80000000ULL
91
92 /**
93  * fec_ptp_read - read raw cycle counter (to be used by time counter)
94  * @cc: the cyclecounter structure
95  *
96  * this function reads the cyclecounter registers and is called by the
97  * cyclecounter structure used to construct a ns counter from the
98  * arbitrary fixed point registers
99  */
100 static u64 fec_ptp_read(const struct cyclecounter *cc)
101 {
102         struct fec_enet_private *fep =
103                 container_of(cc, struct fec_enet_private, cc);
104         u32 tempval;
105
106         tempval = readl(fep->hwp + FEC_ATIME_CTRL);
107         tempval |= FEC_T_CTRL_CAPTURE;
108         writel(tempval, fep->hwp + FEC_ATIME_CTRL);
109
110         if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
111                 udelay(1);
112
113         return readl(fep->hwp + FEC_ATIME);
114 }
115
116 /**
117  * fec_ptp_enable_pps
118  * @fep: the fec_enet_private structure handle
119  * @enable: enable the channel pps output
120  *
121  * This function enble the PPS ouput on the timer channel.
122  */
123 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
124 {
125         unsigned long flags;
126         u32 val, tempval;
127         struct timespec64 ts;
128         u64 ns;
129
130         spin_lock_irqsave(&fep->tmreg_lock, flags);
131
132         if (fep->pps_enable == enable) {
133                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
134                 return 0;
135         }
136
137         if (enable) {
138                 /* clear capture or output compare interrupt status if have.
139                  */
140                 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
141
142                 /* It is recommended to double check the TMODE field in the
143                  * TCSR register to be cleared before the first compare counter
144                  * is written into TCCR register. Just add a double check.
145                  */
146                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
147                 do {
148                         val &= ~(FEC_T_TMODE_MASK);
149                         writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
150                         val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
151                 } while (val & FEC_T_TMODE_MASK);
152
153                 /* Dummy read counter to update the counter */
154                 timecounter_read(&fep->tc);
155                 /* We want to find the first compare event in the next
156                  * second point. So we need to know what the ptp time
157                  * is now and how many nanoseconds is ahead to get next second.
158                  * The remaining nanosecond ahead before the next second would be
159                  * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
160                  * to current timer would be next second.
161                  */
162                 tempval = fec_ptp_read(&fep->cc);
163                 /* Convert the ptp local counter to 1588 timestamp */
164                 ns = timecounter_cyc2time(&fep->tc, tempval);
165                 ts = ns_to_timespec64(ns);
166
167                 /* The tempval is  less than 3 seconds, and  so val is less than
168                  * 4 seconds. No overflow for 32bit calculation.
169                  */
170                 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
171
172                 /* Need to consider the situation that the current time is
173                  * very close to the second point, which means NSEC_PER_SEC
174                  * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
175                  * is still running when we calculate the first compare event, it is
176                  * possible that the remaining nanoseonds run out before the compare
177                  * counter is calculated and written into TCCR register. To avoid
178                  * this possibility, we will set the compare event to be the next
179                  * of next second. The current setting is 31-bit timer and wrap
180                  * around over 2 seconds. So it is okay to set the next of next
181                  * seond for the timer.
182                  */
183                 val += NSEC_PER_SEC;
184
185                 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
186                  * ptp counter, which maybe cause 32-bit wrap. Since the
187                  * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
188                  * We can ensure the wrap will not cause issue. If the offset
189                  * is bigger than fep->cc.mask would be a error.
190                  */
191                 val &= fep->cc.mask;
192                 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
193
194                 /* Calculate the second the compare event timestamp */
195                 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
196
197                 /* * Enable compare event when overflow */
198                 val = readl(fep->hwp + FEC_ATIME_CTRL);
199                 val |= FEC_T_CTRL_PINPER;
200                 writel(val, fep->hwp + FEC_ATIME_CTRL);
201
202                 /* Compare channel setting. */
203                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
204                 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
205                 val &= ~(1 << FEC_T_TDRE_OFFSET);
206                 val &= ~(FEC_T_TMODE_MASK);
207                 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
208                 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
209
210                 /* Write the second compare event timestamp and calculate
211                  * the third timestamp. Refer the TCCR register detail in the spec.
212                  */
213                 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
214                 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
215         } else {
216                 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
217         }
218
219         fep->pps_enable = enable;
220         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
221
222         return 0;
223 }
224
225 static int fec_ptp_pps_perout(struct fec_enet_private *fep)
226 {
227         u32 compare_val, ptp_hc, temp_val;
228         u64 curr_time;
229         unsigned long flags;
230
231         spin_lock_irqsave(&fep->tmreg_lock, flags);
232
233         /* Update time counter */
234         timecounter_read(&fep->tc);
235
236         /* Get the current ptp hardware time counter */
237         ptp_hc = fec_ptp_read(&fep->cc);
238
239         /* Convert the ptp local counter to 1588 timestamp */
240         curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);
241
242         /* If the pps start time less than current time add 100ms, just return.
243          * Because the software might not able to set the comparison time into
244          * the FEC_TCCR register in time and missed the start time.
245          */
246         if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
247                 dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
248                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
249                 return -1;
250         }
251
252         compare_val = fep->perout_stime - curr_time + ptp_hc;
253         compare_val &= fep->cc.mask;
254
255         writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
256         fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;
257
258         /* Enable compare event when overflow */
259         temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
260         temp_val |= FEC_T_CTRL_PINPER;
261         writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
262
263         /* Compare channel setting. */
264         temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
265         temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
266         temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
267         temp_val &= ~(FEC_T_TMODE_MASK);
268         temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
269         writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));
270
271         /* Write the second compare event timestamp and calculate
272          * the third timestamp. Refer the TCCR register detail in the spec.
273          */
274         writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
275         fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
276         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
277
278         return 0;
279 }
280
281 static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
282 {
283         struct fec_enet_private *fep = container_of(timer,
284                                         struct fec_enet_private, perout_timer);
285
286         fec_ptp_pps_perout(fep);
287
288         return HRTIMER_NORESTART;
289 }
290
291 /**
292  * fec_ptp_start_cyclecounter - create the cycle counter from hw
293  * @ndev: network device
294  *
295  * this function initializes the timecounter and cyclecounter
296  * structures for use in generated a ns counter from the arbitrary
297  * fixed point cycles registers in the hardware.
298  */
299 void fec_ptp_start_cyclecounter(struct net_device *ndev)
300 {
301         struct fec_enet_private *fep = netdev_priv(ndev);
302         unsigned long flags;
303         int inc;
304
305         inc = 1000000000 / fep->cycle_speed;
306
307         /* grab the ptp lock */
308         spin_lock_irqsave(&fep->tmreg_lock, flags);
309
310         /* 1ns counter */
311         writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
312
313         /* use 31-bit timer counter */
314         writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
315
316         writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
317                 fep->hwp + FEC_ATIME_CTRL);
318
319         memset(&fep->cc, 0, sizeof(fep->cc));
320         fep->cc.read = fec_ptp_read;
321         fep->cc.mask = CLOCKSOURCE_MASK(31);
322         fep->cc.shift = 31;
323         fep->cc.mult = FEC_CC_MULT;
324
325         /* reset the ns time counter */
326         timecounter_init(&fep->tc, &fep->cc, 0);
327
328         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
329 }
330
331 /**
332  * fec_ptp_adjfine - adjust ptp cycle frequency
333  * @ptp: the ptp clock structure
334  * @scaled_ppm: scaled parts per million adjustment from base
335  *
336  * Adjust the frequency of the ptp cycle counter by the
337  * indicated amount from the base frequency.
338  *
339  * Scaled parts per million is ppm with a 16-bit binary fractional field.
340  *
341  * Because ENET hardware frequency adjust is complex,
342  * using software method to do that.
343  */
344 static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
345 {
346         s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
347         unsigned long flags;
348         int neg_adj = 0;
349         u32 i, tmp;
350         u32 corr_inc, corr_period;
351         u32 corr_ns;
352         u64 lhs, rhs;
353
354         struct fec_enet_private *fep =
355             container_of(ptp, struct fec_enet_private, ptp_caps);
356
357         if (ppb == 0)
358                 return 0;
359
360         if (ppb < 0) {
361                 ppb = -ppb;
362                 neg_adj = 1;
363         }
364
365         /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
366          * Try to find the corr_inc  between 1 to fep->ptp_inc to
367          * meet adjustment requirement.
368          */
369         lhs = NSEC_PER_SEC;
370         rhs = (u64)ppb * (u64)fep->ptp_inc;
371         for (i = 1; i <= fep->ptp_inc; i++) {
372                 if (lhs >= rhs) {
373                         corr_inc = i;
374                         corr_period = div_u64(lhs, rhs);
375                         break;
376                 }
377                 lhs += NSEC_PER_SEC;
378         }
379         /* Not found? Set it to high value - double speed
380          * correct in every clock step.
381          */
382         if (i > fep->ptp_inc) {
383                 corr_inc = fep->ptp_inc;
384                 corr_period = 1;
385         }
386
387         if (neg_adj)
388                 corr_ns = fep->ptp_inc - corr_inc;
389         else
390                 corr_ns = fep->ptp_inc + corr_inc;
391
392         spin_lock_irqsave(&fep->tmreg_lock, flags);
393
394         tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
395         tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
396         writel(tmp, fep->hwp + FEC_ATIME_INC);
397         corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
398         writel(corr_period, fep->hwp + FEC_ATIME_CORR);
399         /* dummy read to update the timer. */
400         timecounter_read(&fep->tc);
401
402         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
403
404         return 0;
405 }
406
407 /**
408  * fec_ptp_adjtime
409  * @ptp: the ptp clock structure
410  * @delta: offset to adjust the cycle counter by
411  *
412  * adjust the timer by resetting the timecounter structure.
413  */
414 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
415 {
416         struct fec_enet_private *fep =
417             container_of(ptp, struct fec_enet_private, ptp_caps);
418         unsigned long flags;
419
420         spin_lock_irqsave(&fep->tmreg_lock, flags);
421         timecounter_adjtime(&fep->tc, delta);
422         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
423
424         return 0;
425 }
426
427 /**
428  * fec_ptp_gettime
429  * @ptp: the ptp clock structure
430  * @ts: timespec structure to hold the current time value
431  *
432  * read the timecounter and return the correct value on ns,
433  * after converting it into a struct timespec.
434  */
435 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
436 {
437         struct fec_enet_private *fep =
438             container_of(ptp, struct fec_enet_private, ptp_caps);
439         u64 ns;
440         unsigned long flags;
441
442         mutex_lock(&fep->ptp_clk_mutex);
443         /* Check the ptp clock */
444         if (!fep->ptp_clk_on) {
445                 mutex_unlock(&fep->ptp_clk_mutex);
446                 return -EINVAL;
447         }
448         spin_lock_irqsave(&fep->tmreg_lock, flags);
449         ns = timecounter_read(&fep->tc);
450         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
451         mutex_unlock(&fep->ptp_clk_mutex);
452
453         *ts = ns_to_timespec64(ns);
454
455         return 0;
456 }
457
458 /**
459  * fec_ptp_settime
460  * @ptp: the ptp clock structure
461  * @ts: the timespec containing the new time for the cycle counter
462  *
463  * reset the timecounter to use a new base value instead of the kernel
464  * wall timer value.
465  */
466 static int fec_ptp_settime(struct ptp_clock_info *ptp,
467                            const struct timespec64 *ts)
468 {
469         struct fec_enet_private *fep =
470             container_of(ptp, struct fec_enet_private, ptp_caps);
471
472         u64 ns;
473         unsigned long flags;
474         u32 counter;
475
476         mutex_lock(&fep->ptp_clk_mutex);
477         /* Check the ptp clock */
478         if (!fep->ptp_clk_on) {
479                 mutex_unlock(&fep->ptp_clk_mutex);
480                 return -EINVAL;
481         }
482
483         ns = timespec64_to_ns(ts);
484         /* Get the timer value based on timestamp.
485          * Update the counter with the masked value.
486          */
487         counter = ns & fep->cc.mask;
488
489         spin_lock_irqsave(&fep->tmreg_lock, flags);
490         writel(counter, fep->hwp + FEC_ATIME);
491         timecounter_init(&fep->tc, &fep->cc, ns);
492         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
493         mutex_unlock(&fep->ptp_clk_mutex);
494         return 0;
495 }
496
497 static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
498 {
499         unsigned long flags;
500
501         spin_lock_irqsave(&fep->tmreg_lock, flags);
502         writel(0, fep->hwp + FEC_TCSR(channel));
503         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
504
505         return 0;
506 }
507
508 /**
509  * fec_ptp_enable
510  * @ptp: the ptp clock structure
511  * @rq: the requested feature to change
512  * @on: whether to enable or disable the feature
513  *
514  */
515 static int fec_ptp_enable(struct ptp_clock_info *ptp,
516                           struct ptp_clock_request *rq, int on)
517 {
518         struct fec_enet_private *fep =
519             container_of(ptp, struct fec_enet_private, ptp_caps);
520         ktime_t timeout;
521         struct timespec64 start_time, period;
522         u64 curr_time, delta, period_ns;
523         unsigned long flags;
524         int ret = 0;
525
526         if (rq->type == PTP_CLK_REQ_PPS) {
527                 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
528
529                 ret = fec_ptp_enable_pps(fep, on);
530
531                 return ret;
532         } else if (rq->type == PTP_CLK_REQ_PEROUT) {
533                 /* Reject requests with unsupported flags */
534                 if (rq->perout.flags)
535                         return -EOPNOTSUPP;
536
537                 if (rq->perout.index != fep->pps_channel)
538                         return -EOPNOTSUPP;
539
540                 period.tv_sec = rq->perout.period.sec;
541                 period.tv_nsec = rq->perout.period.nsec;
542                 period_ns = timespec64_to_ns(&period);
543
544                 /* FEC PTP timer only has 31 bits, so if the period exceed
545                  * 4s is not supported.
546                  */
547                 if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
548                         dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
549                         return -EOPNOTSUPP;
550                 }
551
552                 fep->reload_period = div_u64(period_ns, 2);
553                 if (on && fep->reload_period) {
554                         /* Convert 1588 timestamp to ns*/
555                         start_time.tv_sec = rq->perout.start.sec;
556                         start_time.tv_nsec = rq->perout.start.nsec;
557                         fep->perout_stime = timespec64_to_ns(&start_time);
558
559                         mutex_lock(&fep->ptp_clk_mutex);
560                         if (!fep->ptp_clk_on) {
561                                 dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
562                                 mutex_unlock(&fep->ptp_clk_mutex);
563                                 return -EOPNOTSUPP;
564                         }
565                         spin_lock_irqsave(&fep->tmreg_lock, flags);
566                         /* Read current timestamp */
567                         curr_time = timecounter_read(&fep->tc);
568                         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
569                         mutex_unlock(&fep->ptp_clk_mutex);
570
571                         /* Calculate time difference */
572                         delta = fep->perout_stime - curr_time;
573
574                         if (fep->perout_stime <= curr_time) {
575                                 dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
576                                 return -EINVAL;
577                         }
578
579                         /* Because the timer counter of FEC only has 31-bits, correspondingly,
580                          * the time comparison register FEC_TCCR also only low 31 bits can be
581                          * set. If the start time of pps signal exceeds current time more than
582                          * 0x80000000 ns, a software timer is used and the timer expires about
583                          * 1 second before the start time to be able to set FEC_TCCR.
584                          */
585                         if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
586                                 timeout = ns_to_ktime(delta - NSEC_PER_SEC);
587                                 hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
588                         } else {
589                                 return fec_ptp_pps_perout(fep);
590                         }
591                 } else {
592                         fec_ptp_pps_disable(fep, fep->pps_channel);
593                 }
594
595                 return 0;
596         } else {
597                 return -EOPNOTSUPP;
598         }
599 }
600
601 int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
602                 struct netlink_ext_ack *extack)
603 {
604         struct fec_enet_private *fep = netdev_priv(ndev);
605
606         switch (config->tx_type) {
607         case HWTSTAMP_TX_OFF:
608                 fep->hwts_tx_en = 0;
609                 break;
610         case HWTSTAMP_TX_ON:
611                 fep->hwts_tx_en = 1;
612                 break;
613         default:
614                 return -ERANGE;
615         }
616
617         switch (config->rx_filter) {
618         case HWTSTAMP_FILTER_NONE:
619                 fep->hwts_rx_en = 0;
620                 break;
621
622         default:
623                 fep->hwts_rx_en = 1;
624                 config->rx_filter = HWTSTAMP_FILTER_ALL;
625                 break;
626         }
627
628         return 0;
629 }
630
631 void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
632 {
633         struct fec_enet_private *fep = netdev_priv(ndev);
634
635         config->flags = 0;
636         config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
637         config->rx_filter = (fep->hwts_rx_en ?
638                              HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
639 }
640
641 /*
642  * fec_time_keep - call timecounter_read every second to avoid timer overrun
643  *                 because ENET just support 32bit counter, will timeout in 4s
644  */
645 static void fec_time_keep(struct work_struct *work)
646 {
647         struct delayed_work *dwork = to_delayed_work(work);
648         struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
649         unsigned long flags;
650
651         mutex_lock(&fep->ptp_clk_mutex);
652         if (fep->ptp_clk_on) {
653                 spin_lock_irqsave(&fep->tmreg_lock, flags);
654                 timecounter_read(&fep->tc);
655                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
656         }
657         mutex_unlock(&fep->ptp_clk_mutex);
658
659         schedule_delayed_work(&fep->time_keep, HZ);
660 }
661
662 /* This function checks the pps event and reloads the timer compare counter. */
663 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
664 {
665         struct net_device *ndev = dev_id;
666         struct fec_enet_private *fep = netdev_priv(ndev);
667         u32 val;
668         u8 channel = fep->pps_channel;
669         struct ptp_clock_event event;
670
671         val = readl(fep->hwp + FEC_TCSR(channel));
672         if (val & FEC_T_TF_MASK) {
673                 /* Write the next next compare(not the next according the spec)
674                  * value to the register
675                  */
676                 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
677                 do {
678                         writel(val, fep->hwp + FEC_TCSR(channel));
679                 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
680
681                 /* Update the counter; */
682                 fep->next_counter = (fep->next_counter + fep->reload_period) &
683                                 fep->cc.mask;
684
685                 event.type = PTP_CLOCK_PPS;
686                 ptp_clock_event(fep->ptp_clock, &event);
687                 return IRQ_HANDLED;
688         }
689
690         return IRQ_NONE;
691 }
692
693 /**
694  * fec_ptp_init
695  * @pdev: The FEC network adapter
696  * @irq_idx: the interrupt index
697  *
698  * This function performs the required steps for enabling ptp
699  * support. If ptp support has already been loaded it simply calls the
700  * cyclecounter init routine and exits.
701  */
702
703 void fec_ptp_init(struct platform_device *pdev, int irq_idx)
704 {
705         struct net_device *ndev = platform_get_drvdata(pdev);
706         struct fec_enet_private *fep = netdev_priv(ndev);
707         struct device_node *np = fep->pdev->dev.of_node;
708         int irq;
709         int ret;
710
711         fep->ptp_caps.owner = THIS_MODULE;
712         strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
713
714         fep->pps_channel = DEFAULT_PPS_CHANNEL;
715         of_property_read_u32(np, "fsl,pps-channel", &fep->pps_channel);
716
717         fep->ptp_caps.max_adj = 250000000;
718         fep->ptp_caps.n_alarm = 0;
719         fep->ptp_caps.n_ext_ts = 0;
720         fep->ptp_caps.n_per_out = 1;
721         fep->ptp_caps.n_pins = 0;
722         fep->ptp_caps.pps = 1;
723         fep->ptp_caps.adjfine = fec_ptp_adjfine;
724         fep->ptp_caps.adjtime = fec_ptp_adjtime;
725         fep->ptp_caps.gettime64 = fec_ptp_gettime;
726         fep->ptp_caps.settime64 = fec_ptp_settime;
727         fep->ptp_caps.enable = fec_ptp_enable;
728
729         fep->cycle_speed = clk_get_rate(fep->clk_ptp);
730         if (!fep->cycle_speed) {
731                 fep->cycle_speed = NSEC_PER_SEC;
732                 dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
733         }
734         fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
735
736         spin_lock_init(&fep->tmreg_lock);
737
738         fec_ptp_start_cyclecounter(ndev);
739
740         INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
741
742         hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
743         fep->perout_timer.function = fec_ptp_pps_perout_handler;
744
745         irq = platform_get_irq_byname_optional(pdev, "pps");
746         if (irq < 0)
747                 irq = platform_get_irq_optional(pdev, irq_idx);
748         /* Failure to get an irq is not fatal,
749          * only the PTP_CLOCK_PPS clock events should stop
750          */
751         if (irq >= 0) {
752                 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
753                                        0, pdev->name, ndev);
754                 if (ret < 0)
755                         dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
756                                  ret);
757         }
758
759         fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
760         if (IS_ERR(fep->ptp_clock)) {
761                 fep->ptp_clock = NULL;
762                 dev_err(&pdev->dev, "ptp_clock_register failed\n");
763         }
764
765         schedule_delayed_work(&fep->time_keep, HZ);
766 }
767
768 void fec_ptp_save_state(struct fec_enet_private *fep)
769 {
770         unsigned long flags;
771         u32 atime_inc_corr;
772
773         spin_lock_irqsave(&fep->tmreg_lock, flags);
774
775         fep->ptp_saved_state.pps_enable = fep->pps_enable;
776
777         fep->ptp_saved_state.ns_phc = timecounter_read(&fep->tc);
778         fep->ptp_saved_state.ns_sys = ktime_get_ns();
779
780         fep->ptp_saved_state.at_corr = readl(fep->hwp + FEC_ATIME_CORR);
781         atime_inc_corr = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_CORR_MASK;
782         fep->ptp_saved_state.at_inc_corr = (u8)(atime_inc_corr >> FEC_T_INC_CORR_OFFSET);
783
784         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
785 }
786
787 /* Restore PTP functionality after a reset */
788 void fec_ptp_restore_state(struct fec_enet_private *fep)
789 {
790         u32 atime_inc = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
791         unsigned long flags;
792         u32 counter;
793         u64 ns;
794
795         spin_lock_irqsave(&fep->tmreg_lock, flags);
796
797         /* Reset turned it off, so adjust our status flag */
798         fep->pps_enable = 0;
799
800         writel(fep->ptp_saved_state.at_corr, fep->hwp + FEC_ATIME_CORR);
801         atime_inc |= ((u32)fep->ptp_saved_state.at_inc_corr) << FEC_T_INC_CORR_OFFSET;
802         writel(atime_inc, fep->hwp + FEC_ATIME_INC);
803
804         ns = ktime_get_ns() - fep->ptp_saved_state.ns_sys + fep->ptp_saved_state.ns_phc;
805         counter = ns & fep->cc.mask;
806         writel(counter, fep->hwp + FEC_ATIME);
807         timecounter_init(&fep->tc, &fep->cc, ns);
808
809         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
810
811         /* Restart PPS if needed */
812         if (fep->ptp_saved_state.pps_enable) {
813                 /* Re-enable PPS */
814                 fec_ptp_enable_pps(fep, 1);
815         }
816 }
817
818 void fec_ptp_stop(struct platform_device *pdev)
819 {
820         struct net_device *ndev = platform_get_drvdata(pdev);
821         struct fec_enet_private *fep = netdev_priv(ndev);
822
823         if (fep->pps_enable)
824                 fec_ptp_enable_pps(fep, 0);
825
826         cancel_delayed_work_sync(&fep->time_keep);
827         hrtimer_cancel(&fep->perout_timer);
828         if (fep->ptp_clock)
829                 ptp_clock_unregister(fep->ptp_clock);
830 }
This page took 0.071727 seconds and 4 git commands to generate.