]> Git Repo - J-linux.git/blob - drivers/mtd/nand/raw/lpc32xx_slc.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / mtd / nand / raw / lpc32xx_slc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NXP LPC32XX NAND SLC driver
4  *
5  * Authors:
6  *    Kevin Wells <[email protected]>
7  *    Roland Stigge <[email protected]>
8  *
9  * Copyright © 2011 NXP Semiconductors
10  * Copyright © 2012 Roland Stigge
11  */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/delay.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/of.h>
28 #include <linux/mtd/lpc32xx_slc.h>
29
30 #define LPC32XX_MODNAME         "lpc32xx-nand"
31
32 /**********************************************************************
33 * SLC NAND controller register offsets
34 **********************************************************************/
35
36 #define SLC_DATA(x)             (x + 0x000)
37 #define SLC_ADDR(x)             (x + 0x004)
38 #define SLC_CMD(x)              (x + 0x008)
39 #define SLC_STOP(x)             (x + 0x00C)
40 #define SLC_CTRL(x)             (x + 0x010)
41 #define SLC_CFG(x)              (x + 0x014)
42 #define SLC_STAT(x)             (x + 0x018)
43 #define SLC_INT_STAT(x)         (x + 0x01C)
44 #define SLC_IEN(x)              (x + 0x020)
45 #define SLC_ISR(x)              (x + 0x024)
46 #define SLC_ICR(x)              (x + 0x028)
47 #define SLC_TAC(x)              (x + 0x02C)
48 #define SLC_TC(x)               (x + 0x030)
49 #define SLC_ECC(x)              (x + 0x034)
50 #define SLC_DMA_DATA(x)         (x + 0x038)
51
52 /**********************************************************************
53 * slc_ctrl register definitions
54 **********************************************************************/
55 #define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
56 #define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
57 #define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
58
59 /**********************************************************************
60 * slc_cfg register definitions
61 **********************************************************************/
62 #define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
63 #define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
64 #define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
65 #define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
66 #define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
67 #define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
68
69 /**********************************************************************
70 * slc_stat register definitions
71 **********************************************************************/
72 #define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
73 #define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
74 #define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
75
76 /**********************************************************************
77 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
78 **********************************************************************/
79 #define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
80 #define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
81
82 /**********************************************************************
83 * slc_tac register definitions
84 **********************************************************************/
85 /* Computation of clock cycles on basis of controller and device clock rates */
86 #define SLCTAC_CLOCKS(c, n, s)  (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
87
88 /* Clock setting for RDY write sample wait time in 2*n clocks */
89 #define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
90 /* Write pulse width in clock cycles, 1 to 16 clocks */
91 #define SLCTAC_WWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 24))
92 /* Write hold time of control and data signals, 1 to 16 clocks */
93 #define SLCTAC_WHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 20))
94 /* Write setup time of control and data signals, 1 to 16 clocks */
95 #define SLCTAC_WSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 16))
96 /* Clock setting for RDY read sample wait time in 2*n clocks */
97 #define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
98 /* Read pulse width in clock cycles, 1 to 16 clocks */
99 #define SLCTAC_RWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 8))
100 /* Read hold time of control and data signals, 1 to 16 clocks */
101 #define SLCTAC_RHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 4))
102 /* Read setup time of control and data signals, 1 to 16 clocks */
103 #define SLCTAC_RSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 0))
104
105 /**********************************************************************
106 * slc_ecc register definitions
107 **********************************************************************/
108 /* ECC line party fetch macro */
109 #define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
110 #define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
111
112 /*
113  * DMA requires storage space for the DMA local buffer and the hardware ECC
114  * storage area. The DMA local buffer is only used if DMA mapping fails
115  * during runtime.
116  */
117 #define LPC32XX_DMA_DATA_SIZE           4096
118 #define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
119
120 /* Number of bytes used for ECC stored in NAND per 256 bytes */
121 #define LPC32XX_SLC_DEV_ECC_BYTES       3
122
123 /*
124  * If the NAND base clock frequency can't be fetched, this frequency will be
125  * used instead as the base. This rate is used to setup the timing registers
126  * used for NAND accesses.
127  */
128 #define LPC32XX_DEF_BUS_RATE            133250000
129
130 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
131 #define LPC32XX_DMA_TIMEOUT             100
132
133 /*
134  * NAND ECC Layout for small page NAND devices
135  * Note: For large and huge page devices, the default layouts are used
136  */
137 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
138                                  struct mtd_oob_region *oobregion)
139 {
140         if (section)
141                 return -ERANGE;
142
143         oobregion->length = 6;
144         oobregion->offset = 10;
145
146         return 0;
147 }
148
149 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
150                                   struct mtd_oob_region *oobregion)
151 {
152         if (section > 1)
153                 return -ERANGE;
154
155         if (!section) {
156                 oobregion->offset = 0;
157                 oobregion->length = 4;
158         } else {
159                 oobregion->offset = 6;
160                 oobregion->length = 4;
161         }
162
163         return 0;
164 }
165
166 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
167         .ecc = lpc32xx_ooblayout_ecc,
168         .free = lpc32xx_ooblayout_free,
169 };
170
171 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
172 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
173
174 /*
175  * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
176  * Note: Large page devices used the default layout
177  */
178 static struct nand_bbt_descr bbt_smallpage_main_descr = {
179         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
180                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
181         .offs = 0,
182         .len = 4,
183         .veroffs = 6,
184         .maxblocks = 4,
185         .pattern = bbt_pattern
186 };
187
188 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
189         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
190                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
191         .offs = 0,
192         .len = 4,
193         .veroffs = 6,
194         .maxblocks = 4,
195         .pattern = mirror_pattern
196 };
197
198 /*
199  * NAND platform configuration structure
200  */
201 struct lpc32xx_nand_cfg_slc {
202         uint32_t wdr_clks;
203         uint32_t wwidth;
204         uint32_t whold;
205         uint32_t wsetup;
206         uint32_t rdr_clks;
207         uint32_t rwidth;
208         uint32_t rhold;
209         uint32_t rsetup;
210         struct mtd_partition *parts;
211         unsigned num_parts;
212 };
213
214 struct lpc32xx_nand_host {
215         struct nand_chip        nand_chip;
216         struct lpc32xx_slc_platform_data *pdata;
217         struct clk              *clk;
218         struct gpio_desc        *wp_gpio;
219         void __iomem            *io_base;
220         struct lpc32xx_nand_cfg_slc *ncfg;
221
222         struct completion       comp;
223         struct dma_chan         *dma_chan;
224         uint32_t                dma_buf_len;
225         struct dma_slave_config dma_slave_config;
226         struct scatterlist      sgl;
227
228         /*
229          * DMA and CPU addresses of ECC work area and data buffer
230          */
231         uint32_t                *ecc_buf;
232         uint8_t                 *data_buf;
233         dma_addr_t              io_base_dma;
234 };
235
236 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
237 {
238         uint32_t clkrate, tmp;
239
240         /* Reset SLC controller */
241         writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
242         udelay(1000);
243
244         /* Basic setup */
245         writel(0, SLC_CFG(host->io_base));
246         writel(0, SLC_IEN(host->io_base));
247         writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
248                 SLC_ICR(host->io_base));
249
250         /* Get base clock for SLC block */
251         clkrate = clk_get_rate(host->clk);
252         if (clkrate == 0)
253                 clkrate = LPC32XX_DEF_BUS_RATE;
254
255         /* Compute clock setup values */
256         tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
257                 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
258                 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
259                 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
260                 SLCTAC_RDR(host->ncfg->rdr_clks) |
261                 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
262                 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
263                 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
264         writel(tmp, SLC_TAC(host->io_base));
265 }
266
267 /*
268  * Hardware specific access to control lines
269  */
270 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
271                                   unsigned int ctrl)
272 {
273         uint32_t tmp;
274         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
275
276         /* Does CE state need to be changed? */
277         tmp = readl(SLC_CFG(host->io_base));
278         if (ctrl & NAND_NCE)
279                 tmp |= SLCCFG_CE_LOW;
280         else
281                 tmp &= ~SLCCFG_CE_LOW;
282         writel(tmp, SLC_CFG(host->io_base));
283
284         if (cmd != NAND_CMD_NONE) {
285                 if (ctrl & NAND_CLE)
286                         writel(cmd, SLC_CMD(host->io_base));
287                 else
288                         writel(cmd, SLC_ADDR(host->io_base));
289         }
290 }
291
292 /*
293  * Read the Device Ready pin
294  */
295 static int lpc32xx_nand_device_ready(struct nand_chip *chip)
296 {
297         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
298         int rdy = 0;
299
300         if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
301                 rdy = 1;
302
303         return rdy;
304 }
305
306 /*
307  * Enable NAND write protect
308  */
309 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
310 {
311         if (host->wp_gpio)
312                 gpiod_set_value_cansleep(host->wp_gpio, 1);
313 }
314
315 /*
316  * Disable NAND write protect
317  */
318 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
319 {
320         if (host->wp_gpio)
321                 gpiod_set_value_cansleep(host->wp_gpio, 0);
322 }
323
324 /*
325  * Prepares SLC for transfers with H/W ECC enabled
326  */
327 static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
328 {
329         /* Hardware ECC is enabled automatically in hardware as needed */
330 }
331
332 /*
333  * Calculates the ECC for the data
334  */
335 static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
336                                       const unsigned char *buf,
337                                       unsigned char *code)
338 {
339         /*
340          * ECC is calculated automatically in hardware during syndrome read
341          * and write operations, so it doesn't need to be calculated here.
342          */
343         return 0;
344 }
345
346 /*
347  * Read a single byte from NAND device
348  */
349 static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
350 {
351         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
352
353         return (uint8_t)readl(SLC_DATA(host->io_base));
354 }
355
356 /*
357  * Simple device read without ECC
358  */
359 static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
360 {
361         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
362
363         /* Direct device read with no ECC */
364         while (len-- > 0)
365                 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
366 }
367
368 /*
369  * Simple device write without ECC
370  */
371 static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
372                                    int len)
373 {
374         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
375
376         /* Direct device write with no ECC */
377         while (len-- > 0)
378                 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
379 }
380
381 /*
382  * Read the OOB data from the device without ECC using FIFO method
383  */
384 static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
385 {
386         struct mtd_info *mtd = nand_to_mtd(chip);
387
388         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
389 }
390
391 /*
392  * Write the OOB data to the device without ECC using FIFO method
393  */
394 static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
395 {
396         struct mtd_info *mtd = nand_to_mtd(chip);
397
398         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
399                                  mtd->oobsize);
400 }
401
402 /*
403  * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
404  */
405 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
406 {
407         int i;
408
409         for (i = 0; i < (count * 3); i += 3) {
410                 uint32_t ce = ecc[i / 3];
411                 ce = ~(ce << 2) & 0xFFFFFF;
412                 spare[i + 2] = (uint8_t)(ce & 0xFF);
413                 ce >>= 8;
414                 spare[i + 1] = (uint8_t)(ce & 0xFF);
415                 ce >>= 8;
416                 spare[i] = (uint8_t)(ce & 0xFF);
417         }
418 }
419
420 static void lpc32xx_dma_complete_func(void *completion)
421 {
422         complete(completion);
423 }
424
425 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
426                             void *mem, int len, enum dma_transfer_direction dir)
427 {
428         struct nand_chip *chip = mtd_to_nand(mtd);
429         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
430         struct dma_async_tx_descriptor *desc;
431         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
432         int res;
433
434         host->dma_slave_config.direction = dir;
435         host->dma_slave_config.src_addr = dma;
436         host->dma_slave_config.dst_addr = dma;
437         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
438         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
439         host->dma_slave_config.src_maxburst = 4;
440         host->dma_slave_config.dst_maxburst = 4;
441         /* DMA controller does flow control: */
442         host->dma_slave_config.device_fc = false;
443         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
444                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
445                 return -ENXIO;
446         }
447
448         sg_init_one(&host->sgl, mem, len);
449
450         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
451                          DMA_BIDIRECTIONAL);
452         if (res != 1) {
453                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
454                 return -ENXIO;
455         }
456         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
457                                        flags);
458         if (!desc) {
459                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
460                 goto out1;
461         }
462
463         init_completion(&host->comp);
464         desc->callback = lpc32xx_dma_complete_func;
465         desc->callback_param = &host->comp;
466
467         dmaengine_submit(desc);
468         dma_async_issue_pending(host->dma_chan);
469
470         wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
471
472         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
473                      DMA_BIDIRECTIONAL);
474
475         return 0;
476 out1:
477         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
478                      DMA_BIDIRECTIONAL);
479         return -ENXIO;
480 }
481
482 /*
483  * DMA read/write transfers with ECC support
484  */
485 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
486                         int read)
487 {
488         struct nand_chip *chip = mtd_to_nand(mtd);
489         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
490         int i, status = 0;
491         unsigned long timeout;
492         int res;
493         enum dma_transfer_direction dir =
494                 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
495         uint8_t *dma_buf;
496         bool dma_mapped;
497
498         if ((void *)buf <= high_memory) {
499                 dma_buf = buf;
500                 dma_mapped = true;
501         } else {
502                 dma_buf = host->data_buf;
503                 dma_mapped = false;
504                 if (!read)
505                         memcpy(host->data_buf, buf, mtd->writesize);
506         }
507
508         if (read) {
509                 writel(readl(SLC_CFG(host->io_base)) |
510                        SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
511                        SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
512         } else {
513                 writel((readl(SLC_CFG(host->io_base)) |
514                         SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
515                        ~SLCCFG_DMA_DIR,
516                         SLC_CFG(host->io_base));
517         }
518
519         /* Clear initial ECC */
520         writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
521
522         /* Transfer size is data area only */
523         writel(mtd->writesize, SLC_TC(host->io_base));
524
525         /* Start transfer in the NAND controller */
526         writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
527                SLC_CTRL(host->io_base));
528
529         for (i = 0; i < chip->ecc.steps; i++) {
530                 /* Data */
531                 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
532                                        dma_buf + i * chip->ecc.size,
533                                        mtd->writesize / chip->ecc.steps, dir);
534                 if (res)
535                         return res;
536
537                 /* Always _read_ ECC */
538                 if (i == chip->ecc.steps - 1)
539                         break;
540                 if (!read) /* ECC availability delayed on write */
541                         udelay(10);
542                 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
543                                        &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
544                 if (res)
545                         return res;
546         }
547
548         /*
549          * According to NXP, the DMA can be finished here, but the NAND
550          * controller may still have buffered data. After porting to using the
551          * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
552          * appears to be always true, according to tests. Keeping the check for
553          * safety reasons for now.
554          */
555         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
556                 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
557                 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
558                 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
559                        time_before(jiffies, timeout))
560                         cpu_relax();
561                 if (!time_before(jiffies, timeout)) {
562                         dev_err(mtd->dev.parent, "FIFO held data too long\n");
563                         status = -EIO;
564                 }
565         }
566
567         /* Read last calculated ECC value */
568         if (!read)
569                 udelay(10);
570         host->ecc_buf[chip->ecc.steps - 1] =
571                 readl(SLC_ECC(host->io_base));
572
573         /* Flush DMA */
574         dmaengine_terminate_all(host->dma_chan);
575
576         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
577             readl(SLC_TC(host->io_base))) {
578                 /* Something is left in the FIFO, something is wrong */
579                 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
580                 status = -EIO;
581         }
582
583         /* Stop DMA & HW ECC */
584         writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
585                SLC_CTRL(host->io_base));
586         writel(readl(SLC_CFG(host->io_base)) &
587                ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
588                  SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
589
590         if (!dma_mapped && read)
591                 memcpy(buf, host->data_buf, mtd->writesize);
592
593         return status;
594 }
595
596 /*
597  * Read the data and OOB data from the device, use ECC correction with the
598  * data, disable ECC for the OOB data
599  */
600 static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
601                                            int oob_required, int page)
602 {
603         struct mtd_info *mtd = nand_to_mtd(chip);
604         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
605         struct mtd_oob_region oobregion = { };
606         int stat, i, status, error;
607         uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
608
609         /* Issue read command */
610         nand_read_page_op(chip, page, 0, NULL, 0);
611
612         /* Read data and oob, calculate ECC */
613         status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
614
615         /* Get OOB data */
616         chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
617
618         /* Convert to stored ECC format */
619         lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
620
621         /* Pointer to ECC data retrieved from NAND spare area */
622         error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
623         if (error)
624                 return error;
625
626         oobecc = chip->oob_poi + oobregion.offset;
627
628         for (i = 0; i < chip->ecc.steps; i++) {
629                 stat = chip->ecc.correct(chip, buf, oobecc,
630                                          &tmpecc[i * chip->ecc.bytes]);
631                 if (stat < 0)
632                         mtd->ecc_stats.failed++;
633                 else
634                         mtd->ecc_stats.corrected += stat;
635
636                 buf += chip->ecc.size;
637                 oobecc += chip->ecc.bytes;
638         }
639
640         return status;
641 }
642
643 /*
644  * Read the data and OOB data from the device, no ECC correction with the
645  * data or OOB data
646  */
647 static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
648                                                uint8_t *buf, int oob_required,
649                                                int page)
650 {
651         struct mtd_info *mtd = nand_to_mtd(chip);
652
653         /* Issue read command */
654         nand_read_page_op(chip, page, 0, NULL, 0);
655
656         /* Raw reads can just use the FIFO interface */
657         chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
658         chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
659
660         return 0;
661 }
662
663 /*
664  * Write the data and OOB data to the device, use ECC with the data,
665  * disable ECC for the OOB data
666  */
667 static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
668                                             const uint8_t *buf,
669                                             int oob_required, int page)
670 {
671         struct mtd_info *mtd = nand_to_mtd(chip);
672         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
673         struct mtd_oob_region oobregion = { };
674         uint8_t *pb;
675         int error;
676
677         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
678
679         /* Write data, calculate ECC on outbound data */
680         error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
681         if (error)
682                 return error;
683
684         /*
685          * The calculated ECC needs some manual work done to it before
686          * committing it to NAND. Process the calculated ECC and place
687          * the resultant values directly into the OOB buffer. */
688         error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
689         if (error)
690                 return error;
691
692         pb = chip->oob_poi + oobregion.offset;
693         lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
694
695         /* Write ECC data to device */
696         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
697
698         return nand_prog_page_end_op(chip);
699 }
700
701 /*
702  * Write the data and OOB data to the device, no ECC correction with the
703  * data or OOB data
704  */
705 static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
706                                                 const uint8_t *buf,
707                                                 int oob_required, int page)
708 {
709         struct mtd_info *mtd = nand_to_mtd(chip);
710
711         /* Raw writes can just use the FIFO interface */
712         nand_prog_page_begin_op(chip, page, 0, buf,
713                                 chip->ecc.size * chip->ecc.steps);
714         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
715
716         return nand_prog_page_end_op(chip);
717 }
718
719 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
720 {
721         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
722         dma_cap_mask_t mask;
723
724         host->dma_chan = dma_request_chan(mtd->dev.parent, "rx-tx");
725         if (IS_ERR(host->dma_chan)) {
726                 /* fallback to request using platform data */
727                 if (!host->pdata || !host->pdata->dma_filter) {
728                         dev_err(mtd->dev.parent, "no DMA platform data\n");
729                         return -ENOENT;
730                 }
731
732                 dma_cap_zero(mask);
733                 dma_cap_set(DMA_SLAVE, mask);
734                 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, "nand-slc");
735
736                 if (!host->dma_chan) {
737                         dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
738                         return -EBUSY;
739                 }
740         }
741
742         return 0;
743 }
744
745 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
746 {
747         struct lpc32xx_nand_cfg_slc *ncfg;
748         struct device_node *np = dev->of_node;
749
750         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
751         if (!ncfg)
752                 return NULL;
753
754         of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
755         of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
756         of_property_read_u32(np, "nxp,whold", &ncfg->whold);
757         of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
758         of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
759         of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
760         of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
761         of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
762
763         if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
764             !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
765             !ncfg->rhold || !ncfg->rsetup) {
766                 dev_err(dev, "chip parameters not specified correctly\n");
767                 return NULL;
768         }
769
770         return ncfg;
771 }
772
773 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
774 {
775         struct mtd_info *mtd = nand_to_mtd(chip);
776         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
777
778         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
779                 return 0;
780
781         /* OOB and ECC CPU and DMA work areas */
782         host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
783
784         /*
785          * Small page FLASH has a unique OOB layout, but large and huge
786          * page FLASH use the standard layout. Small page FLASH uses a
787          * custom BBT marker layout.
788          */
789         if (mtd->writesize <= 512)
790                 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
791
792         chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
793         /* These sizes remain the same regardless of page size */
794         chip->ecc.size = 256;
795         chip->ecc.strength = 1;
796         chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
797         chip->ecc.prepad = 0;
798         chip->ecc.postpad = 0;
799         chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
800         chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
801         chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
802         chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
803         chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
804         chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
805         chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
806         chip->ecc.correct = rawnand_sw_hamming_correct;
807         chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
808
809         /*
810          * Use a custom BBT marker setup for small page FLASH that
811          * won't interfere with the ECC layout. Large and huge page
812          * FLASH use the standard layout.
813          */
814         if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
815             mtd->writesize <= 512) {
816                 chip->bbt_td = &bbt_smallpage_main_descr;
817                 chip->bbt_md = &bbt_smallpage_mirror_descr;
818         }
819
820         return 0;
821 }
822
823 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
824         .attach_chip = lpc32xx_nand_attach_chip,
825 };
826
827 /*
828  * Probe for NAND controller
829  */
830 static int lpc32xx_nand_probe(struct platform_device *pdev)
831 {
832         struct lpc32xx_nand_host *host;
833         struct mtd_info *mtd;
834         struct nand_chip *chip;
835         struct resource *rc;
836         int res;
837
838         /* Allocate memory for the device structure (and zero it) */
839         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
840         if (!host)
841                 return -ENOMEM;
842
843         host->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &rc);
844         if (IS_ERR(host->io_base))
845                 return PTR_ERR(host->io_base);
846
847         host->io_base_dma = rc->start;
848         if (pdev->dev.of_node)
849                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
850         if (!host->ncfg) {
851                 dev_err(&pdev->dev,
852                         "Missing or bad NAND config from device tree\n");
853                 return -ENOENT;
854         }
855
856         /* Start with WP disabled, if available */
857         host->wp_gpio = gpiod_get_optional(&pdev->dev, NULL, GPIOD_OUT_LOW);
858         res = PTR_ERR_OR_ZERO(host->wp_gpio);
859         if (res) {
860                 if (res != -EPROBE_DEFER)
861                         dev_err(&pdev->dev, "WP GPIO is not available: %d\n",
862                                 res);
863                 return res;
864         }
865
866         gpiod_set_consumer_name(host->wp_gpio, "NAND WP");
867
868         host->pdata = dev_get_platdata(&pdev->dev);
869
870         chip = &host->nand_chip;
871         mtd = nand_to_mtd(chip);
872         nand_set_controller_data(chip, host);
873         nand_set_flash_node(chip, pdev->dev.of_node);
874         mtd->owner = THIS_MODULE;
875         mtd->dev.parent = &pdev->dev;
876
877         /* Get NAND clock */
878         host->clk = devm_clk_get_enabled(&pdev->dev, NULL);
879         if (IS_ERR(host->clk)) {
880                 dev_err(&pdev->dev, "Clock failure\n");
881                 res = -ENOENT;
882                 goto enable_wp;
883         }
884
885         /* Set NAND IO addresses and command/ready functions */
886         chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
887         chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
888         chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
889         chip->legacy.dev_ready = lpc32xx_nand_device_ready;
890         chip->legacy.chip_delay = 20; /* 20us command delay time */
891
892         /* Init NAND controller */
893         lpc32xx_nand_setup(host);
894
895         platform_set_drvdata(pdev, host);
896
897         /* NAND callbacks for LPC32xx SLC hardware */
898         chip->legacy.read_byte = lpc32xx_nand_read_byte;
899         chip->legacy.read_buf = lpc32xx_nand_read_buf;
900         chip->legacy.write_buf = lpc32xx_nand_write_buf;
901
902         /*
903          * Allocate a large enough buffer for a single huge page plus
904          * extra space for the spare area and ECC storage area
905          */
906         host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
907         host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
908                                       GFP_KERNEL);
909         if (host->data_buf == NULL) {
910                 res = -ENOMEM;
911                 goto enable_wp;
912         }
913
914         res = lpc32xx_nand_dma_setup(host);
915         if (res) {
916                 res = -EIO;
917                 goto enable_wp;
918         }
919
920         /* Find NAND device */
921         chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
922         res = nand_scan(chip, 1);
923         if (res)
924                 goto release_dma;
925
926         mtd->name = "nxp_lpc3220_slc";
927         res = mtd_device_register(mtd, host->ncfg->parts,
928                                   host->ncfg->num_parts);
929         if (res)
930                 goto cleanup_nand;
931
932         return 0;
933
934 cleanup_nand:
935         nand_cleanup(chip);
936 release_dma:
937         dma_release_channel(host->dma_chan);
938 enable_wp:
939         lpc32xx_wp_enable(host);
940
941         return res;
942 }
943
944 /*
945  * Remove NAND device.
946  */
947 static void lpc32xx_nand_remove(struct platform_device *pdev)
948 {
949         uint32_t tmp;
950         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
951         struct nand_chip *chip = &host->nand_chip;
952         int ret;
953
954         ret = mtd_device_unregister(nand_to_mtd(chip));
955         WARN_ON(ret);
956         nand_cleanup(chip);
957         dma_release_channel(host->dma_chan);
958
959         /* Force CE high */
960         tmp = readl(SLC_CTRL(host->io_base));
961         tmp &= ~SLCCFG_CE_LOW;
962         writel(tmp, SLC_CTRL(host->io_base));
963
964         lpc32xx_wp_enable(host);
965 }
966
967 static int lpc32xx_nand_resume(struct platform_device *pdev)
968 {
969         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
970         int ret;
971
972         /* Re-enable NAND clock */
973         ret = clk_prepare_enable(host->clk);
974         if (ret)
975                 return ret;
976
977         /* Fresh init of NAND controller */
978         lpc32xx_nand_setup(host);
979
980         /* Disable write protect */
981         lpc32xx_wp_disable(host);
982
983         return 0;
984 }
985
986 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
987 {
988         uint32_t tmp;
989         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
990
991         /* Force CE high */
992         tmp = readl(SLC_CTRL(host->io_base));
993         tmp &= ~SLCCFG_CE_LOW;
994         writel(tmp, SLC_CTRL(host->io_base));
995
996         /* Enable write protect for safety */
997         lpc32xx_wp_enable(host);
998
999         /* Disable clock */
1000         clk_disable_unprepare(host->clk);
1001
1002         return 0;
1003 }
1004
1005 static const struct of_device_id lpc32xx_nand_match[] = {
1006         { .compatible = "nxp,lpc3220-slc" },
1007         { /* sentinel */ },
1008 };
1009 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1010
1011 static struct platform_driver lpc32xx_nand_driver = {
1012         .probe          = lpc32xx_nand_probe,
1013         .remove         = lpc32xx_nand_remove,
1014         .resume         = pm_ptr(lpc32xx_nand_resume),
1015         .suspend        = pm_ptr(lpc32xx_nand_suspend),
1016         .driver         = {
1017                 .name   = LPC32XX_MODNAME,
1018                 .of_match_table = lpc32xx_nand_match,
1019         },
1020 };
1021
1022 module_platform_driver(lpc32xx_nand_driver);
1023
1024 MODULE_LICENSE("GPL");
1025 MODULE_AUTHOR("Kevin Wells <[email protected]>");
1026 MODULE_AUTHOR("Roland Stigge <[email protected]>");
1027 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
This page took 0.085313 seconds and 4 git commands to generate.