]> Git Repo - J-linux.git/blob - drivers/mtd/nand/raw/cadence-nand-controller.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / mtd / nand / raw / cadence-nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cadence NAND flash controller driver
4  *
5  * Copyright (C) 2019 Cadence
6  *
7  * Author: Piotr Sroka <[email protected]>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/iopoll.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/property.h>
22 #include <linux/slab.h>
23
24 /*
25  * HPNFC can work in 3 modes:
26  * -  PIO - can work in master or slave DMA
27  * -  CDMA - needs Master DMA for accessing command descriptors.
28  * -  Generic mode - can use only slave DMA.
29  * CDMA and PIO modes can be used to execute only base commands.
30  * Generic mode can be used to execute any command
31  * on NAND flash memory. Driver uses CDMA mode for
32  * block erasing, page reading, page programing.
33  * Generic mode is used for executing rest of commands.
34  */
35
36 #define MAX_ADDRESS_CYC         6
37 #define MAX_ERASE_ADDRESS_CYC   3
38 #define MAX_DATA_SIZE           0xFFFC
39 #define DMA_DATA_SIZE_ALIGN     8
40
41 /* Register definition. */
42 /*
43  * Command register 0.
44  * Writing data to this register will initiate a new transaction
45  * of the NF controller.
46  */
47 #define CMD_REG0                        0x0000
48 /* Command type field mask. */
49 #define         CMD_REG0_CT             GENMASK(31, 30)
50 /* Command type CDMA. */
51 #define         CMD_REG0_CT_CDMA        0uL
52 /* Command type generic. */
53 #define         CMD_REG0_CT_GEN         3uL
54 /* Command thread number field mask. */
55 #define         CMD_REG0_TN             GENMASK(27, 24)
56
57 /* Command register 2. */
58 #define CMD_REG2                        0x0008
59 /* Command register 3. */
60 #define CMD_REG3                        0x000C
61 /* Pointer register to select which thread status will be selected. */
62 #define CMD_STATUS_PTR                  0x0010
63 /* Command status register for selected thread. */
64 #define CMD_STATUS                      0x0014
65
66 /* Interrupt status register. */
67 #define INTR_STATUS                     0x0110
68 #define         INTR_STATUS_SDMA_ERR    BIT(22)
69 #define         INTR_STATUS_SDMA_TRIGG  BIT(21)
70 #define         INTR_STATUS_UNSUPP_CMD  BIT(19)
71 #define         INTR_STATUS_DDMA_TERR   BIT(18)
72 #define         INTR_STATUS_CDMA_TERR   BIT(17)
73 #define         INTR_STATUS_CDMA_IDL    BIT(16)
74
75 /* Interrupt enable register. */
76 #define INTR_ENABLE                             0x0114
77 #define         INTR_ENABLE_INTR_EN             BIT(31)
78 #define         INTR_ENABLE_SDMA_ERR_EN         BIT(22)
79 #define         INTR_ENABLE_SDMA_TRIGG_EN       BIT(21)
80 #define         INTR_ENABLE_UNSUPP_CMD_EN       BIT(19)
81 #define         INTR_ENABLE_DDMA_TERR_EN        BIT(18)
82 #define         INTR_ENABLE_CDMA_TERR_EN        BIT(17)
83 #define         INTR_ENABLE_CDMA_IDLE_EN        BIT(16)
84
85 /* Controller internal state. */
86 #define CTRL_STATUS                             0x0118
87 #define         CTRL_STATUS_INIT_COMP           BIT(9)
88 #define         CTRL_STATUS_CTRL_BUSY           BIT(8)
89
90 /* Command Engine threads state. */
91 #define TRD_STATUS                              0x0120
92
93 /* Command Engine interrupt thread error status. */
94 #define TRD_ERR_INT_STATUS                      0x0128
95 /* Command Engine interrupt thread error enable. */
96 #define TRD_ERR_INT_STATUS_EN                   0x0130
97 /* Command Engine interrupt thread complete status. */
98 #define TRD_COMP_INT_STATUS                     0x0138
99
100 /*
101  * Transfer config 0 register.
102  * Configures data transfer parameters.
103  */
104 #define TRAN_CFG_0                              0x0400
105 /* Offset value from the beginning of the page. */
106 #define         TRAN_CFG_0_OFFSET               GENMASK(31, 16)
107 /* Numbers of sectors to transfer within singlNF device's page. */
108 #define         TRAN_CFG_0_SEC_CNT              GENMASK(7, 0)
109
110 /*
111  * Transfer config 1 register.
112  * Configures data transfer parameters.
113  */
114 #define TRAN_CFG_1                              0x0404
115 /* Size of last data sector. */
116 #define         TRAN_CFG_1_LAST_SEC_SIZE        GENMASK(31, 16)
117 /* Size of not-last data sector. */
118 #define         TRAN_CFG_1_SECTOR_SIZE          GENMASK(15, 0)
119
120 /* ECC engine configuration register 0. */
121 #define ECC_CONFIG_0                            0x0428
122 /* Correction strength. */
123 #define         ECC_CONFIG_0_CORR_STR           GENMASK(10, 8)
124 /* Enable erased pages detection mechanism. */
125 #define         ECC_CONFIG_0_ERASE_DET_EN       BIT(1)
126 /* Enable controller ECC check bits generation and correction. */
127 #define         ECC_CONFIG_0_ECC_EN             BIT(0)
128
129 /* ECC engine configuration register 1. */
130 #define ECC_CONFIG_1                            0x042C
131
132 /* Multiplane settings register. */
133 #define MULTIPLANE_CFG                          0x0434
134 /* Cache operation settings. */
135 #define CACHE_CFG                               0x0438
136
137 /* DMA settings register. */
138 #define DMA_SETINGS                             0x043C
139 /* Enable SDMA error report on access unprepared slave DMA interface. */
140 #define         DMA_SETINGS_SDMA_ERR_RSP        BIT(17)
141
142 /* Transferred data block size for the slave DMA module. */
143 #define SDMA_SIZE                               0x0440
144
145 /* Thread number associated with transferred data block
146  * for the slave DMA module.
147  */
148 #define SDMA_TRD_NUM                            0x0444
149 /* Thread number mask. */
150 #define         SDMA_TRD_NUM_SDMA_TRD           GENMASK(2, 0)
151
152 #define CONTROL_DATA_CTRL                       0x0494
153 /* Thread number mask. */
154 #define         CONTROL_DATA_CTRL_SIZE          GENMASK(15, 0)
155
156 #define CTRL_VERSION                            0x800
157 #define         CTRL_VERSION_REV                GENMASK(7, 0)
158
159 /* Available hardware features of the controller. */
160 #define CTRL_FEATURES                           0x804
161 /* Support for NV-DDR2/3 work mode. */
162 #define         CTRL_FEATURES_NVDDR_2_3         BIT(28)
163 /* Support for NV-DDR work mode. */
164 #define         CTRL_FEATURES_NVDDR             BIT(27)
165 /* Support for asynchronous work mode. */
166 #define         CTRL_FEATURES_ASYNC             BIT(26)
167 /* Support for asynchronous work mode. */
168 #define         CTRL_FEATURES_N_BANKS           GENMASK(25, 24)
169 /* Slave and Master DMA data width. */
170 #define         CTRL_FEATURES_DMA_DWITH64       BIT(21)
171 /* Availability of Control Data feature.*/
172 #define         CTRL_FEATURES_CONTROL_DATA      BIT(10)
173
174 /* BCH Engine identification register 0 - correction strengths. */
175 #define BCH_CFG_0                               0x838
176 #define         BCH_CFG_0_CORR_CAP_0            GENMASK(7, 0)
177 #define         BCH_CFG_0_CORR_CAP_1            GENMASK(15, 8)
178 #define         BCH_CFG_0_CORR_CAP_2            GENMASK(23, 16)
179 #define         BCH_CFG_0_CORR_CAP_3            GENMASK(31, 24)
180
181 /* BCH Engine identification register 1 - correction strengths. */
182 #define BCH_CFG_1                               0x83C
183 #define         BCH_CFG_1_CORR_CAP_4            GENMASK(7, 0)
184 #define         BCH_CFG_1_CORR_CAP_5            GENMASK(15, 8)
185 #define         BCH_CFG_1_CORR_CAP_6            GENMASK(23, 16)
186 #define         BCH_CFG_1_CORR_CAP_7            GENMASK(31, 24)
187
188 /* BCH Engine identification register 2 - sector sizes. */
189 #define BCH_CFG_2                               0x840
190 #define         BCH_CFG_2_SECT_0                GENMASK(15, 0)
191 #define         BCH_CFG_2_SECT_1                GENMASK(31, 16)
192
193 /* BCH Engine identification register 3. */
194 #define BCH_CFG_3                               0x844
195 #define         BCH_CFG_3_METADATA_SIZE         GENMASK(23, 16)
196
197 /* Ready/Busy# line status. */
198 #define RBN_SETINGS                             0x1004
199
200 /* Common settings. */
201 #define COMMON_SET                              0x1008
202 /* 16 bit device connected to the NAND Flash interface. */
203 #define         COMMON_SET_DEVICE_16BIT         BIT(8)
204
205 /* Skip_bytes registers. */
206 #define SKIP_BYTES_CONF                         0x100C
207 #define         SKIP_BYTES_MARKER_VALUE         GENMASK(31, 16)
208 #define         SKIP_BYTES_NUM_OF_BYTES         GENMASK(7, 0)
209
210 #define SKIP_BYTES_OFFSET                       0x1010
211 #define          SKIP_BYTES_OFFSET_VALUE        GENMASK(23, 0)
212
213 /* Timings configuration. */
214 #define ASYNC_TOGGLE_TIMINGS                    0x101c
215 #define         ASYNC_TOGGLE_TIMINGS_TRH        GENMASK(28, 24)
216 #define         ASYNC_TOGGLE_TIMINGS_TRP        GENMASK(20, 16)
217 #define         ASYNC_TOGGLE_TIMINGS_TWH        GENMASK(12, 8)
218 #define         ASYNC_TOGGLE_TIMINGS_TWP        GENMASK(4, 0)
219
220 #define TIMINGS0                                0x1024
221 #define         TIMINGS0_TADL                   GENMASK(31, 24)
222 #define         TIMINGS0_TCCS                   GENMASK(23, 16)
223 #define         TIMINGS0_TWHR                   GENMASK(15, 8)
224 #define         TIMINGS0_TRHW                   GENMASK(7, 0)
225
226 #define TIMINGS1                                0x1028
227 #define         TIMINGS1_TRHZ                   GENMASK(31, 24)
228 #define         TIMINGS1_TWB                    GENMASK(23, 16)
229 #define         TIMINGS1_TVDLY                  GENMASK(7, 0)
230
231 #define TIMINGS2                                0x102c
232 #define         TIMINGS2_TFEAT                  GENMASK(25, 16)
233 #define         TIMINGS2_CS_HOLD_TIME           GENMASK(13, 8)
234 #define         TIMINGS2_CS_SETUP_TIME          GENMASK(5, 0)
235
236 /* Configuration of the resynchronization of slave DLL of PHY. */
237 #define DLL_PHY_CTRL                            0x1034
238 #define         DLL_PHY_CTRL_DLL_RST_N          BIT(24)
239 #define         DLL_PHY_CTRL_EXTENDED_WR_MODE   BIT(17)
240 #define         DLL_PHY_CTRL_EXTENDED_RD_MODE   BIT(16)
241 #define         DLL_PHY_CTRL_RS_HIGH_WAIT_CNT   GENMASK(11, 8)
242 #define         DLL_PHY_CTRL_RS_IDLE_CNT        GENMASK(7, 0)
243
244 /* Register controlling DQ related timing. */
245 #define PHY_DQ_TIMING                           0x2000
246 /* Register controlling DSQ related timing.  */
247 #define PHY_DQS_TIMING                          0x2004
248 #define         PHY_DQS_TIMING_DQS_SEL_OE_END   GENMASK(3, 0)
249 #define         PHY_DQS_TIMING_PHONY_DQS_SEL    BIT(16)
250 #define         PHY_DQS_TIMING_USE_PHONY_DQS    BIT(20)
251
252 /* Register controlling the gate and loopback control related timing. */
253 #define PHY_GATE_LPBK_CTRL                      0x2008
254 #define         PHY_GATE_LPBK_CTRL_RDS          GENMASK(24, 19)
255
256 /* Register holds the control for the master DLL logic. */
257 #define PHY_DLL_MASTER_CTRL                     0x200C
258 #define         PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
259
260 /* Register holds the control for the slave DLL logic. */
261 #define PHY_DLL_SLAVE_CTRL                      0x2010
262
263 /* This register handles the global control settings for the PHY. */
264 #define PHY_CTRL                                0x2080
265 #define         PHY_CTRL_SDR_DQS                BIT(14)
266 #define         PHY_CTRL_PHONY_DQS              GENMASK(9, 4)
267
268 /*
269  * This register handles the global control settings
270  * for the termination selects for reads.
271  */
272 #define PHY_TSEL                                0x2084
273
274 /* Generic command layout. */
275 #define GCMD_LAY_CS                     GENMASK_ULL(11, 8)
276 /*
277  * This bit informs the minicotroller if it has to wait for tWB
278  * after sending the last CMD/ADDR/DATA in the sequence.
279  */
280 #define GCMD_LAY_TWB                    BIT_ULL(6)
281 /* Type of generic instruction. */
282 #define GCMD_LAY_INSTR                  GENMASK_ULL(5, 0)
283
284 /* Generic CMD sequence type. */
285 #define         GCMD_LAY_INSTR_CMD      0
286 /* Generic ADDR sequence type. */
287 #define         GCMD_LAY_INSTR_ADDR     1
288 /* Generic data transfer sequence type. */
289 #define         GCMD_LAY_INSTR_DATA     2
290
291 /* Input part of generic command type of input is command. */
292 #define GCMD_LAY_INPUT_CMD              GENMASK_ULL(23, 16)
293
294 /* Generic command address sequence - address fields. */
295 #define GCMD_LAY_INPUT_ADDR             GENMASK_ULL(63, 16)
296 /* Generic command address sequence - address size. */
297 #define GCMD_LAY_INPUT_ADDR_SIZE        GENMASK_ULL(13, 11)
298
299 /* Transfer direction field of generic command data sequence. */
300 #define GCMD_DIR                        BIT_ULL(11)
301 /* Read transfer direction of generic command data sequence. */
302 #define         GCMD_DIR_READ           0
303 /* Write transfer direction of generic command data sequence. */
304 #define         GCMD_DIR_WRITE          1
305
306 /* ECC enabled flag of generic command data sequence - ECC enabled. */
307 #define GCMD_ECC_EN                     BIT_ULL(12)
308 /* Generic command data sequence - sector size. */
309 #define GCMD_SECT_SIZE                  GENMASK_ULL(31, 16)
310 /* Generic command data sequence - sector count. */
311 #define GCMD_SECT_CNT                   GENMASK_ULL(39, 32)
312 /* Generic command data sequence - last sector size. */
313 #define GCMD_LAST_SIZE                  GENMASK_ULL(55, 40)
314
315 /* CDMA descriptor fields. */
316 /* Erase command type of CDMA descriptor. */
317 #define CDMA_CT_ERASE           0x1000
318 /* Program page command type of CDMA descriptor. */
319 #define CDMA_CT_WR              0x2100
320 /* Read page command type of CDMA descriptor. */
321 #define CDMA_CT_RD              0x2200
322
323 /* Flash pointer memory shift. */
324 #define CDMA_CFPTR_MEM_SHIFT    24
325 /* Flash pointer memory mask. */
326 #define CDMA_CFPTR_MEM          GENMASK(26, 24)
327
328 /*
329  * Command DMA descriptor flags. If set causes issue interrupt after
330  * the completion of descriptor processing.
331  */
332 #define CDMA_CF_INT             BIT(8)
333 /*
334  * Command DMA descriptor flags - the next descriptor
335  * address field is valid and descriptor processing should continue.
336  */
337 #define CDMA_CF_CONT            BIT(9)
338 /* DMA master flag of command DMA descriptor. */
339 #define CDMA_CF_DMA_MASTER      BIT(10)
340
341 /* Operation complete status of command descriptor. */
342 #define CDMA_CS_COMP            BIT(15)
343 /* Operation complete status of command descriptor. */
344 /* Command descriptor status - operation fail. */
345 #define CDMA_CS_FAIL            BIT(14)
346 /* Command descriptor status - page erased. */
347 #define CDMA_CS_ERP             BIT(11)
348 /* Command descriptor status - timeout occurred. */
349 #define CDMA_CS_TOUT            BIT(10)
350 /*
351  * Maximum amount of correction applied to one ECC sector.
352  * It is part of command descriptor status.
353  */
354 #define CDMA_CS_MAXERR          GENMASK(9, 2)
355 /* Command descriptor status - uncorrectable ECC error. */
356 #define CDMA_CS_UNCE            BIT(1)
357 /* Command descriptor status - descriptor error. */
358 #define CDMA_CS_ERR             BIT(0)
359
360 /* Status of operation - OK. */
361 #define STAT_OK                 0
362 /* Status of operation - FAIL. */
363 #define STAT_FAIL               2
364 /* Status of operation - uncorrectable ECC error. */
365 #define STAT_ECC_UNCORR         3
366 /* Status of operation - page erased. */
367 #define STAT_ERASED             5
368 /* Status of operation - correctable ECC error. */
369 #define STAT_ECC_CORR           6
370 /* Status of operation - unsuspected state. */
371 #define STAT_UNKNOWN            7
372 /* Status of operation - operation is not completed yet. */
373 #define STAT_BUSY               0xFF
374
375 #define BCH_MAX_NUM_CORR_CAPS           8
376 #define BCH_MAX_NUM_SECTOR_SIZES        2
377
378 struct cadence_nand_timings {
379         u32 async_toggle_timings;
380         u32 timings0;
381         u32 timings1;
382         u32 timings2;
383         u32 dll_phy_ctrl;
384         u32 phy_ctrl;
385         u32 phy_dqs_timing;
386         u32 phy_gate_lpbk_ctrl;
387 };
388
389 /* Command DMA descriptor. */
390 struct cadence_nand_cdma_desc {
391         /* Next descriptor address. */
392         u64 next_pointer;
393
394         /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
395         u32 flash_pointer;
396         /*field appears in HPNFC version 13*/
397         u16 bank;
398         u16 rsvd0;
399
400         /* Operation the controller needs to perform. */
401         u16 command_type;
402         u16 rsvd1;
403         /* Flags for operation of this command. */
404         u16 command_flags;
405         u16 rsvd2;
406
407         /* System/host memory address required for data DMA commands. */
408         u64 memory_pointer;
409
410         /* Status of operation. */
411         u32 status;
412         u32 rsvd3;
413
414         /* Address pointer to sync buffer location. */
415         u64 sync_flag_pointer;
416
417         /* Controls the buffer sync mechanism. */
418         u32 sync_arguments;
419         u32 rsvd4;
420
421         /* Control data pointer. */
422         u64 ctrl_data_ptr;
423 };
424
425 /* Interrupt status. */
426 struct cadence_nand_irq_status {
427         /* Thread operation complete status. */
428         u32 trd_status;
429         /* Thread operation error. */
430         u32 trd_error;
431         /* Controller status. */
432         u32 status;
433 };
434
435 /* Cadence NAND flash controller capabilities get from driver data. */
436 struct cadence_nand_dt_devdata {
437         /* Skew value of the output signals of the NAND Flash interface. */
438         u32 if_skew;
439         /* It informs if slave DMA interface is connected to DMA engine. */
440         unsigned int has_dma:1;
441 };
442
443 /* Cadence NAND flash controller capabilities read from registers. */
444 struct cdns_nand_caps {
445         /* Maximum number of banks supported by hardware. */
446         u8 max_banks;
447         /* Slave and Master DMA data width in bytes (4 or 8). */
448         u8 data_dma_width;
449         /* Control Data feature supported. */
450         bool data_control_supp;
451         /* Is PHY type DLL. */
452         bool is_phy_type_dll;
453 };
454
455 struct cdns_nand_ctrl {
456         struct device *dev;
457         struct nand_controller controller;
458         struct cadence_nand_cdma_desc *cdma_desc;
459         /* IP capability. */
460         const struct cadence_nand_dt_devdata *caps1;
461         struct cdns_nand_caps caps2;
462         u8 ctrl_rev;
463         dma_addr_t dma_cdma_desc;
464         u8 *buf;
465         u32 buf_size;
466         u8 curr_corr_str_idx;
467
468         /* Register interface. */
469         void __iomem *reg;
470
471         struct {
472                 void __iomem *virt;
473                 dma_addr_t dma;
474         } io;
475
476         int irq;
477         /* Interrupts that have happened. */
478         struct cadence_nand_irq_status irq_status;
479         /* Interrupts we are waiting for. */
480         struct cadence_nand_irq_status irq_mask;
481         struct completion complete;
482         /* Protect irq_mask and irq_status. */
483         spinlock_t irq_lock;
484
485         int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
486         struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
487         struct nand_ecc_caps ecc_caps;
488
489         int curr_trans_type;
490
491         struct dma_chan *dmac;
492
493         u32 nf_clk_rate;
494         /*
495          * Estimated Board delay. The value includes the total
496          * round trip delay for the signals and is used for deciding on values
497          * associated with data read capture.
498          */
499         u32 board_delay;
500
501         struct nand_chip *selected_chip;
502
503         unsigned long assigned_cs;
504         struct list_head chips;
505         u8 bch_metadata_size;
506 };
507
508 struct cdns_nand_chip {
509         struct cadence_nand_timings timings;
510         struct nand_chip chip;
511         u8 nsels;
512         struct list_head node;
513
514         /*
515          * part of oob area of NAND flash memory page.
516          * This part is available for user to read or write.
517          */
518         u32 avail_oob_size;
519
520         /* Sector size. There are few sectors per mtd->writesize */
521         u32 sector_size;
522         u32 sector_count;
523
524         /* Offset of BBM. */
525         u8 bbm_offs;
526         /* Number of bytes reserved for BBM. */
527         u8 bbm_len;
528         /* ECC strength index. */
529         u8 corr_str_idx;
530
531         u8 cs[] __counted_by(nsels);
532 };
533
534 static inline struct
535 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
536 {
537         return container_of(chip, struct cdns_nand_chip, chip);
538 }
539
540 static inline struct
541 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
542 {
543         return container_of(controller, struct cdns_nand_ctrl, controller);
544 }
545
546 static bool
547 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
548                         u32 buf_len)
549 {
550         u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
551
552         return buf && virt_addr_valid(buf) &&
553                 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
554                 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
555 }
556
557 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
558                                        u32 reg_offset, u32 timeout_us,
559                                        u32 mask, bool is_clear)
560 {
561         u32 val;
562         int ret;
563
564         ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
565                                          val, !(val & mask) == is_clear,
566                                          10, timeout_us);
567
568         if (ret < 0) {
569                 dev_err(cdns_ctrl->dev,
570                         "Timeout while waiting for reg %x with mask %x is clear %d\n",
571                         reg_offset, mask, is_clear);
572         }
573
574         return ret;
575 }
576
577 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
578                                        bool enable)
579 {
580         u32 reg;
581
582         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
583                                         1000000,
584                                         CTRL_STATUS_CTRL_BUSY, true))
585                 return -ETIMEDOUT;
586
587         reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
588
589         if (enable)
590                 reg |= ECC_CONFIG_0_ECC_EN;
591         else
592                 reg &= ~ECC_CONFIG_0_ECC_EN;
593
594         writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
595
596         return 0;
597 }
598
599 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
600                                           u8 corr_str_idx)
601 {
602         u32 reg;
603
604         if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
605                 return;
606
607         reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
608         reg &= ~ECC_CONFIG_0_CORR_STR;
609         reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
610         writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
611
612         cdns_ctrl->curr_corr_str_idx = corr_str_idx;
613 }
614
615 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
616                                              u8 strength)
617 {
618         int i, corr_str_idx = -1;
619
620         for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
621                 if (cdns_ctrl->ecc_strengths[i] == strength) {
622                         corr_str_idx = i;
623                         break;
624                 }
625         }
626
627         return corr_str_idx;
628 }
629
630 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
631                                             u16 marker_value)
632 {
633         u32 reg;
634
635         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
636                                         1000000,
637                                         CTRL_STATUS_CTRL_BUSY, true))
638                 return -ETIMEDOUT;
639
640         reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
641         reg &= ~SKIP_BYTES_MARKER_VALUE;
642         reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
643                           marker_value);
644
645         writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
646
647         return 0;
648 }
649
650 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
651                                             u8 num_of_bytes,
652                                             u32 offset_value,
653                                             int enable)
654 {
655         u32 reg, skip_bytes_offset;
656
657         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
658                                         1000000,
659                                         CTRL_STATUS_CTRL_BUSY, true))
660                 return -ETIMEDOUT;
661
662         if (!enable) {
663                 num_of_bytes = 0;
664                 offset_value = 0;
665         }
666
667         reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
668         reg &= ~SKIP_BYTES_NUM_OF_BYTES;
669         reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
670                           num_of_bytes);
671         skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
672                                        offset_value);
673
674         writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
675         writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
676
677         return 0;
678 }
679
680 /* Functions enables/disables hardware detection of erased data */
681 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
682                                              bool enable,
683                                              u8 bitflips_threshold)
684 {
685         u32 reg;
686
687         reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
688
689         if (enable)
690                 reg |= ECC_CONFIG_0_ERASE_DET_EN;
691         else
692                 reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
693
694         writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
695         writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
696 }
697
698 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
699                                            bool bit_bus16)
700 {
701         u32 reg;
702
703         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
704                                         1000000,
705                                         CTRL_STATUS_CTRL_BUSY, true))
706                 return -ETIMEDOUT;
707
708         reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
709
710         if (!bit_bus16)
711                 reg &= ~COMMON_SET_DEVICE_16BIT;
712         else
713                 reg |= COMMON_SET_DEVICE_16BIT;
714         writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
715
716         return 0;
717 }
718
719 static void
720 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
721                              struct cadence_nand_irq_status *irq_status)
722 {
723         writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
724         writel_relaxed(irq_status->trd_status,
725                        cdns_ctrl->reg + TRD_COMP_INT_STATUS);
726         writel_relaxed(irq_status->trd_error,
727                        cdns_ctrl->reg + TRD_ERR_INT_STATUS);
728 }
729
730 static void
731 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
732                              struct cadence_nand_irq_status *irq_status)
733 {
734         irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
735         irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
736                                                + TRD_COMP_INT_STATUS);
737         irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
738                                               + TRD_ERR_INT_STATUS);
739 }
740
741 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
742                         struct cadence_nand_irq_status *irq_status)
743 {
744         cadence_nand_read_int_status(cdns_ctrl, irq_status);
745
746         return irq_status->status || irq_status->trd_status ||
747                 irq_status->trd_error;
748 }
749
750 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
751 {
752         unsigned long flags;
753
754         spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
755         memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
756         memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
757         spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
758 }
759
760 /*
761  * This is the interrupt service routine. It handles all interrupts
762  * sent to this device.
763  */
764 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
765 {
766         struct cdns_nand_ctrl *cdns_ctrl = dev_id;
767         struct cadence_nand_irq_status irq_status;
768         irqreturn_t result = IRQ_NONE;
769
770         spin_lock(&cdns_ctrl->irq_lock);
771
772         if (irq_detected(cdns_ctrl, &irq_status)) {
773                 /* Handle interrupt. */
774                 /* First acknowledge it. */
775                 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
776                 /* Status in the device context for someone to read. */
777                 cdns_ctrl->irq_status.status |= irq_status.status;
778                 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
779                 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
780                 /* Notify anyone who cares that it happened. */
781                 complete(&cdns_ctrl->complete);
782                 /* Tell the OS that we've handled this. */
783                 result = IRQ_HANDLED;
784         }
785         spin_unlock(&cdns_ctrl->irq_lock);
786
787         return result;
788 }
789
790 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
791                                       struct cadence_nand_irq_status *irq_mask)
792 {
793         writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
794                        cdns_ctrl->reg + INTR_ENABLE);
795
796         writel_relaxed(irq_mask->trd_error,
797                        cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
798 }
799
800 static void
801 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
802                           struct cadence_nand_irq_status *irq_mask,
803                           struct cadence_nand_irq_status *irq_status)
804 {
805         unsigned long timeout = msecs_to_jiffies(10000);
806         unsigned long time_left;
807
808         time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
809                                                 timeout);
810
811         *irq_status = cdns_ctrl->irq_status;
812         if (time_left == 0) {
813                 /* Timeout error. */
814                 dev_err(cdns_ctrl->dev, "timeout occurred:\n");
815                 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
816                         irq_status->status, irq_mask->status);
817                 dev_err(cdns_ctrl->dev,
818                         "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
819                         irq_status->trd_status, irq_mask->trd_status);
820                 dev_err(cdns_ctrl->dev,
821                         "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
822                         irq_status->trd_error, irq_mask->trd_error);
823         }
824 }
825
826 /* Execute generic command on NAND controller. */
827 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
828                                          u8 chip_nr,
829                                          u64 mini_ctrl_cmd)
830 {
831         u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
832
833         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
834         mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
835         mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
836
837         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
838                                         1000000,
839                                         CTRL_STATUS_CTRL_BUSY, true))
840                 return -ETIMEDOUT;
841
842         cadence_nand_reset_irq(cdns_ctrl);
843
844         writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
845         writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
846
847         /* Select generic command. */
848         reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
849         /* Thread number. */
850         reg |= FIELD_PREP(CMD_REG0_TN, 0);
851
852         /* Issue command. */
853         writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
854
855         return 0;
856 }
857
858 /* Wait for data on slave DMA interface. */
859 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
860                                      u8 *out_sdma_trd,
861                                      u32 *out_sdma_size)
862 {
863         struct cadence_nand_irq_status irq_mask, irq_status;
864
865         irq_mask.trd_status = 0;
866         irq_mask.trd_error = 0;
867         irq_mask.status = INTR_STATUS_SDMA_TRIGG
868                 | INTR_STATUS_SDMA_ERR
869                 | INTR_STATUS_UNSUPP_CMD;
870
871         cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
872         cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
873         if (irq_status.status == 0) {
874                 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
875                 return -ETIMEDOUT;
876         }
877
878         if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
879                 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
880                 *out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
881                 *out_sdma_trd =
882                         FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
883         } else {
884                 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
885                         irq_status.status);
886                 return -EIO;
887         }
888
889         return 0;
890 }
891
892 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
893 {
894         u32  reg;
895
896         reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
897
898         cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
899
900         if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
901                 cdns_ctrl->caps2.data_dma_width = 8;
902         else
903                 cdns_ctrl->caps2.data_dma_width = 4;
904
905         if (reg & CTRL_FEATURES_CONTROL_DATA)
906                 cdns_ctrl->caps2.data_control_supp = true;
907
908         if (reg & (CTRL_FEATURES_NVDDR_2_3
909                    | CTRL_FEATURES_NVDDR))
910                 cdns_ctrl->caps2.is_phy_type_dll = true;
911 }
912
913 /* Prepare CDMA descriptor. */
914 static void
915 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
916                                char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
917                                    dma_addr_t ctrl_data_ptr, u16 ctype)
918 {
919         struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
920
921         memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
922
923         /* Set fields for one descriptor. */
924         cdma_desc->flash_pointer = flash_ptr;
925         if (cdns_ctrl->ctrl_rev >= 13)
926                 cdma_desc->bank = nf_mem;
927         else
928                 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
929
930         cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
931         cdma_desc->command_flags  |= CDMA_CF_INT;
932
933         cdma_desc->memory_pointer = mem_ptr;
934         cdma_desc->status = 0;
935         cdma_desc->sync_flag_pointer = 0;
936         cdma_desc->sync_arguments = 0;
937
938         cdma_desc->command_type = ctype;
939         cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
940 }
941
942 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
943                                         u32 desc_status)
944 {
945         if (desc_status & CDMA_CS_ERP)
946                 return STAT_ERASED;
947
948         if (desc_status & CDMA_CS_UNCE)
949                 return STAT_ECC_UNCORR;
950
951         if (desc_status & CDMA_CS_ERR) {
952                 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
953                 return STAT_FAIL;
954         }
955
956         if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
957                 return STAT_ECC_CORR;
958
959         return STAT_FAIL;
960 }
961
962 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
963 {
964         struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
965         u8 status = STAT_BUSY;
966
967         if (desc_ptr->status & CDMA_CS_FAIL) {
968                 status = cadence_nand_check_desc_error(cdns_ctrl,
969                                                        desc_ptr->status);
970                 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
971         } else if (desc_ptr->status & CDMA_CS_COMP) {
972                 /* Descriptor finished with no errors. */
973                 if (desc_ptr->command_flags & CDMA_CF_CONT) {
974                         dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
975                         status = STAT_UNKNOWN;
976                 } else {
977                         /* Last descriptor.  */
978                         status = STAT_OK;
979                 }
980         }
981
982         return status;
983 }
984
985 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
986                                   u8 thread)
987 {
988         u32 reg;
989         int status;
990
991         /* Wait for thread ready. */
992         status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
993                                              1000000,
994                                              BIT(thread), true);
995         if (status)
996                 return status;
997
998         cadence_nand_reset_irq(cdns_ctrl);
999         reinit_completion(&cdns_ctrl->complete);
1000
1001         writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1002                        cdns_ctrl->reg + CMD_REG2);
1003         writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1004
1005         /* Select CDMA mode. */
1006         reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1007         /* Thread number. */
1008         reg |= FIELD_PREP(CMD_REG0_TN, thread);
1009         /* Issue command. */
1010         writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1011
1012         return 0;
1013 }
1014
1015 /* Send SDMA command and wait for finish. */
1016 static u32
1017 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1018                                 u8 thread)
1019 {
1020         struct cadence_nand_irq_status irq_mask, irq_status = {0};
1021         int status;
1022
1023         irq_mask.trd_status = BIT(thread);
1024         irq_mask.trd_error = BIT(thread);
1025         irq_mask.status = INTR_STATUS_CDMA_TERR;
1026
1027         cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1028
1029         status = cadence_nand_cdma_send(cdns_ctrl, thread);
1030         if (status)
1031                 return status;
1032
1033         cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1034
1035         if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1036             irq_status.trd_error == 0) {
1037                 dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1038                 return -ETIMEDOUT;
1039         }
1040         if (irq_status.status & irq_mask.status) {
1041                 dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1042                 return -EIO;
1043         }
1044
1045         return 0;
1046 }
1047
1048 /*
1049  * ECC size depends on configured ECC strength and on maximum supported
1050  * ECC step size.
1051  */
1052 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1053 {
1054         int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1055
1056         return ALIGN(nbytes, 2);
1057 }
1058
1059 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1060         static int \
1061         cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1062                                                     int strength)\
1063         {\
1064                 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1065         }
1066
1067 CADENCE_NAND_CALC_ECC_BYTES(256)
1068 CADENCE_NAND_CALC_ECC_BYTES(512)
1069 CADENCE_NAND_CALC_ECC_BYTES(1024)
1070 CADENCE_NAND_CALC_ECC_BYTES(2048)
1071 CADENCE_NAND_CALC_ECC_BYTES(4096)
1072
1073 /* Function reads BCH capabilities. */
1074 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1075 {
1076         struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1077         int max_step_size = 0, nstrengths, i;
1078         u32 reg;
1079
1080         reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1081         cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1082         if (cdns_ctrl->bch_metadata_size < 4) {
1083                 dev_err(cdns_ctrl->dev,
1084                         "Driver needs at least 4 bytes of BCH meta data\n");
1085                 return -EIO;
1086         }
1087
1088         reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1089         cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1090         cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1091         cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1092         cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1093
1094         reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1095         cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1096         cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1097         cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1098         cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1099
1100         reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1101         cdns_ctrl->ecc_stepinfos[0].stepsize =
1102                 FIELD_GET(BCH_CFG_2_SECT_0, reg);
1103
1104         cdns_ctrl->ecc_stepinfos[1].stepsize =
1105                 FIELD_GET(BCH_CFG_2_SECT_1, reg);
1106
1107         nstrengths = 0;
1108         for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1109                 if (cdns_ctrl->ecc_strengths[i] != 0)
1110                         nstrengths++;
1111         }
1112
1113         ecc_caps->nstepinfos = 0;
1114         for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1115                 /* ECC strengths are common for all step infos. */
1116                 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1117                 cdns_ctrl->ecc_stepinfos[i].strengths =
1118                         cdns_ctrl->ecc_strengths;
1119
1120                 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1121                         ecc_caps->nstepinfos++;
1122
1123                 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1124                         max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1125         }
1126         ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1127
1128         switch (max_step_size) {
1129         case 256:
1130                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1131                 break;
1132         case 512:
1133                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1134                 break;
1135         case 1024:
1136                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1137                 break;
1138         case 2048:
1139                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1140                 break;
1141         case 4096:
1142                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1143                 break;
1144         default:
1145                 dev_err(cdns_ctrl->dev,
1146                         "Unsupported sector size(ecc step size) %d\n",
1147                         max_step_size);
1148                 return -EIO;
1149         }
1150
1151         return 0;
1152 }
1153
1154 /* Hardware initialization. */
1155 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1156 {
1157         int status;
1158         u32 reg;
1159
1160         status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1161                                              1000000,
1162                                              CTRL_STATUS_INIT_COMP, false);
1163         if (status)
1164                 return status;
1165
1166         reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1167         cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1168
1169         dev_info(cdns_ctrl->dev,
1170                  "%s: cadence nand controller version reg %x\n",
1171                  __func__, reg);
1172
1173         /* Disable cache and multiplane. */
1174         writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1175         writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1176
1177         /* Clear all interrupts. */
1178         writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1179
1180         cadence_nand_get_caps(cdns_ctrl);
1181         if (cadence_nand_read_bch_caps(cdns_ctrl))
1182                 return -EIO;
1183
1184 #ifndef CONFIG_64BIT
1185         if (cdns_ctrl->caps2.data_dma_width == 8) {
1186                 dev_err(cdns_ctrl->dev,
1187                         "cannot access 64-bit dma on !64-bit architectures");
1188                 return -EIO;
1189         }
1190 #endif
1191
1192         /*
1193          * Set IO width access to 8.
1194          * It is because during SW device discovering width access
1195          * is expected to be 8.
1196          */
1197         status = cadence_nand_set_access_width16(cdns_ctrl, false);
1198
1199         return status;
1200 }
1201
1202 #define TT_MAIN_OOB_AREAS       2
1203 #define TT_RAW_PAGE             3
1204 #define TT_BBM                  4
1205 #define TT_MAIN_OOB_AREA_EXT    5
1206
1207 /* Prepare size of data to transfer. */
1208 static void
1209 cadence_nand_prepare_data_size(struct nand_chip *chip,
1210                                int transfer_type)
1211 {
1212         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1213         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1214         struct mtd_info *mtd = nand_to_mtd(chip);
1215         u32 sec_size = 0, offset = 0, sec_cnt = 1;
1216         u32 last_sec_size = cdns_chip->sector_size;
1217         u32 data_ctrl_size = 0;
1218         u32 reg = 0;
1219
1220         if (cdns_ctrl->curr_trans_type == transfer_type)
1221                 return;
1222
1223         switch (transfer_type) {
1224         case TT_MAIN_OOB_AREA_EXT:
1225                 sec_cnt = cdns_chip->sector_count;
1226                 sec_size = cdns_chip->sector_size;
1227                 data_ctrl_size = cdns_chip->avail_oob_size;
1228                 break;
1229         case TT_MAIN_OOB_AREAS:
1230                 sec_cnt = cdns_chip->sector_count;
1231                 last_sec_size = cdns_chip->sector_size
1232                         + cdns_chip->avail_oob_size;
1233                 sec_size = cdns_chip->sector_size;
1234                 break;
1235         case TT_RAW_PAGE:
1236                 last_sec_size = mtd->writesize + mtd->oobsize;
1237                 break;
1238         case TT_BBM:
1239                 offset = mtd->writesize + cdns_chip->bbm_offs;
1240                 last_sec_size = 8;
1241                 break;
1242         }
1243
1244         reg = 0;
1245         reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1246         reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1247         writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1248
1249         reg = 0;
1250         reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1251         reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1252         writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1253
1254         if (cdns_ctrl->caps2.data_control_supp) {
1255                 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1256                 reg &= ~CONTROL_DATA_CTRL_SIZE;
1257                 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1258                 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1259         }
1260
1261         cdns_ctrl->curr_trans_type = transfer_type;
1262 }
1263
1264 static int
1265 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1266                            int page, void *buf, void *ctrl_dat, u32 buf_size,
1267                            u32 ctrl_dat_size, enum dma_data_direction dir,
1268                            bool with_ecc)
1269 {
1270         dma_addr_t dma_buf, dma_ctrl_dat = 0;
1271         u8 thread_nr = chip_nr;
1272         int status;
1273         u16 ctype;
1274
1275         if (dir == DMA_FROM_DEVICE)
1276                 ctype = CDMA_CT_RD;
1277         else
1278                 ctype = CDMA_CT_WR;
1279
1280         cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1281
1282         dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1283         if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1284                 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1285                 return -EIO;
1286         }
1287
1288         if (ctrl_dat && ctrl_dat_size) {
1289                 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1290                                               ctrl_dat_size, dir);
1291                 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1292                         dma_unmap_single(cdns_ctrl->dev, dma_buf,
1293                                          buf_size, dir);
1294                         dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1295                         return -EIO;
1296                 }
1297         }
1298
1299         cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1300                                        dma_buf, dma_ctrl_dat, ctype);
1301
1302         status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1303
1304         dma_unmap_single(cdns_ctrl->dev, dma_buf,
1305                          buf_size, dir);
1306
1307         if (ctrl_dat && ctrl_dat_size)
1308                 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1309                                  ctrl_dat_size, dir);
1310         if (status)
1311                 return status;
1312
1313         return cadence_nand_cdma_finish(cdns_ctrl);
1314 }
1315
1316 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1317                                      struct cadence_nand_timings *t)
1318 {
1319         writel_relaxed(t->async_toggle_timings,
1320                        cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1321         writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1322         writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1323         writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1324
1325         if (cdns_ctrl->caps2.is_phy_type_dll)
1326                 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1327
1328         writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1329
1330         if (cdns_ctrl->caps2.is_phy_type_dll) {
1331                 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1332                 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1333                 writel_relaxed(t->phy_dqs_timing,
1334                                cdns_ctrl->reg + PHY_DQS_TIMING);
1335                 writel_relaxed(t->phy_gate_lpbk_ctrl,
1336                                cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1337                 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1338                                cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1339                 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1340         }
1341 }
1342
1343 static int cadence_nand_select_target(struct nand_chip *chip)
1344 {
1345         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1346         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1347
1348         if (chip == cdns_ctrl->selected_chip)
1349                 return 0;
1350
1351         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1352                                         1000000,
1353                                         CTRL_STATUS_CTRL_BUSY, true))
1354                 return -ETIMEDOUT;
1355
1356         cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1357
1358         cadence_nand_set_ecc_strength(cdns_ctrl,
1359                                       cdns_chip->corr_str_idx);
1360
1361         cadence_nand_set_erase_detection(cdns_ctrl, true,
1362                                          chip->ecc.strength);
1363
1364         cdns_ctrl->curr_trans_type = -1;
1365         cdns_ctrl->selected_chip = chip;
1366
1367         return 0;
1368 }
1369
1370 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1371 {
1372         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1373         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1374         int status;
1375         u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1376
1377         cadence_nand_cdma_desc_prepare(cdns_ctrl,
1378                                        cdns_chip->cs[chip->cur_cs],
1379                                        page, 0, 0,
1380                                        CDMA_CT_ERASE);
1381         status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1382         if (status) {
1383                 dev_err(cdns_ctrl->dev, "erase operation failed\n");
1384                 return -EIO;
1385         }
1386
1387         status = cadence_nand_cdma_finish(cdns_ctrl);
1388         if (status)
1389                 return status;
1390
1391         return 0;
1392 }
1393
1394 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1395 {
1396         int status;
1397         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1398         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1399         struct mtd_info *mtd = nand_to_mtd(chip);
1400
1401         cadence_nand_prepare_data_size(chip, TT_BBM);
1402
1403         cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1404
1405         /*
1406          * Read only bad block marker from offset
1407          * defined by a memory manufacturer.
1408          */
1409         status = cadence_nand_cdma_transfer(cdns_ctrl,
1410                                             cdns_chip->cs[chip->cur_cs],
1411                                             page, cdns_ctrl->buf, NULL,
1412                                             mtd->oobsize,
1413                                             0, DMA_FROM_DEVICE, false);
1414         if (status) {
1415                 dev_err(cdns_ctrl->dev, "read BBM failed\n");
1416                 return -EIO;
1417         }
1418
1419         memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1420
1421         return 0;
1422 }
1423
1424 static int cadence_nand_write_page(struct nand_chip *chip,
1425                                    const u8 *buf, int oob_required,
1426                                    int page)
1427 {
1428         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1429         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1430         struct mtd_info *mtd = nand_to_mtd(chip);
1431         int status;
1432         u16 marker_val = 0xFFFF;
1433
1434         status = cadence_nand_select_target(chip);
1435         if (status)
1436                 return status;
1437
1438         cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1439                                          mtd->writesize
1440                                          + cdns_chip->bbm_offs,
1441                                          1);
1442
1443         if (oob_required) {
1444                 marker_val = *(u16 *)(chip->oob_poi
1445                                       + cdns_chip->bbm_offs);
1446         } else {
1447                 /* Set oob data to 0xFF. */
1448                 memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1449                        cdns_chip->avail_oob_size);
1450         }
1451
1452         cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1453
1454         cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1455
1456         if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1457             cdns_ctrl->caps2.data_control_supp) {
1458                 u8 *oob;
1459
1460                 if (oob_required)
1461                         oob = chip->oob_poi;
1462                 else
1463                         oob = cdns_ctrl->buf + mtd->writesize;
1464
1465                 status = cadence_nand_cdma_transfer(cdns_ctrl,
1466                                                     cdns_chip->cs[chip->cur_cs],
1467                                                     page, (void *)buf, oob,
1468                                                     mtd->writesize,
1469                                                     cdns_chip->avail_oob_size,
1470                                                     DMA_TO_DEVICE, true);
1471                 if (status) {
1472                         dev_err(cdns_ctrl->dev, "write page failed\n");
1473                         return -EIO;
1474                 }
1475
1476                 return 0;
1477         }
1478
1479         if (oob_required) {
1480                 /* Transfer the data to the oob area. */
1481                 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1482                        cdns_chip->avail_oob_size);
1483         }
1484
1485         memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1486
1487         cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1488
1489         return cadence_nand_cdma_transfer(cdns_ctrl,
1490                                           cdns_chip->cs[chip->cur_cs],
1491                                           page, cdns_ctrl->buf, NULL,
1492                                           mtd->writesize
1493                                           + cdns_chip->avail_oob_size,
1494                                           0, DMA_TO_DEVICE, true);
1495 }
1496
1497 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1498 {
1499         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1500         struct mtd_info *mtd = nand_to_mtd(chip);
1501
1502         memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1503
1504         return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1505 }
1506
1507 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1508                                        const u8 *buf, int oob_required,
1509                                        int page)
1510 {
1511         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1512         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1513         struct mtd_info *mtd = nand_to_mtd(chip);
1514         int writesize = mtd->writesize;
1515         int oobsize = mtd->oobsize;
1516         int ecc_steps = chip->ecc.steps;
1517         int ecc_size = chip->ecc.size;
1518         int ecc_bytes = chip->ecc.bytes;
1519         void *tmp_buf = cdns_ctrl->buf;
1520         int oob_skip = cdns_chip->bbm_len;
1521         size_t size = writesize + oobsize;
1522         int i, pos, len;
1523         int status = 0;
1524
1525         status = cadence_nand_select_target(chip);
1526         if (status)
1527                 return status;
1528
1529         /*
1530          * Fill the buffer with 0xff first except the full page transfer.
1531          * This simplifies the logic.
1532          */
1533         if (!buf || !oob_required)
1534                 memset(tmp_buf, 0xff, size);
1535
1536         cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1537
1538         /* Arrange the buffer for syndrome payload/ecc layout. */
1539         if (buf) {
1540                 for (i = 0; i < ecc_steps; i++) {
1541                         pos = i * (ecc_size + ecc_bytes);
1542                         len = ecc_size;
1543
1544                         if (pos >= writesize)
1545                                 pos += oob_skip;
1546                         else if (pos + len > writesize)
1547                                 len = writesize - pos;
1548
1549                         memcpy(tmp_buf + pos, buf, len);
1550                         buf += len;
1551                         if (len < ecc_size) {
1552                                 len = ecc_size - len;
1553                                 memcpy(tmp_buf + writesize + oob_skip, buf,
1554                                        len);
1555                                 buf += len;
1556                         }
1557                 }
1558         }
1559
1560         if (oob_required) {
1561                 const u8 *oob = chip->oob_poi;
1562                 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1563                         (cdns_chip->sector_size + chip->ecc.bytes)
1564                         + cdns_chip->sector_size + oob_skip;
1565
1566                 /* BBM at the beginning of the OOB area. */
1567                 memcpy(tmp_buf + writesize, oob, oob_skip);
1568
1569                 /* OOB free. */
1570                 memcpy(tmp_buf + oob_data_offset, oob,
1571                        cdns_chip->avail_oob_size);
1572                 oob += cdns_chip->avail_oob_size;
1573
1574                 /* OOB ECC. */
1575                 for (i = 0; i < ecc_steps; i++) {
1576                         pos = ecc_size + i * (ecc_size + ecc_bytes);
1577                         if (i == (ecc_steps - 1))
1578                                 pos += cdns_chip->avail_oob_size;
1579
1580                         len = ecc_bytes;
1581
1582                         if (pos >= writesize)
1583                                 pos += oob_skip;
1584                         else if (pos + len > writesize)
1585                                 len = writesize - pos;
1586
1587                         memcpy(tmp_buf + pos, oob, len);
1588                         oob += len;
1589                         if (len < ecc_bytes) {
1590                                 len = ecc_bytes - len;
1591                                 memcpy(tmp_buf + writesize + oob_skip, oob,
1592                                        len);
1593                                 oob += len;
1594                         }
1595                 }
1596         }
1597
1598         cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1599
1600         return cadence_nand_cdma_transfer(cdns_ctrl,
1601                                           cdns_chip->cs[chip->cur_cs],
1602                                           page, cdns_ctrl->buf, NULL,
1603                                           mtd->writesize +
1604                                           mtd->oobsize,
1605                                           0, DMA_TO_DEVICE, false);
1606 }
1607
1608 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1609                                       int page)
1610 {
1611         return cadence_nand_write_page_raw(chip, NULL, true, page);
1612 }
1613
1614 static int cadence_nand_read_page(struct nand_chip *chip,
1615                                   u8 *buf, int oob_required, int page)
1616 {
1617         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1618         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1619         struct mtd_info *mtd = nand_to_mtd(chip);
1620         int status = 0;
1621         int ecc_err_count = 0;
1622
1623         status = cadence_nand_select_target(chip);
1624         if (status)
1625                 return status;
1626
1627         cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1628                                          mtd->writesize
1629                                          + cdns_chip->bbm_offs, 1);
1630
1631         /*
1632          * If data buffer can be accessed by DMA and data_control feature
1633          * is supported then transfer data and oob directly.
1634          */
1635         if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1636             cdns_ctrl->caps2.data_control_supp) {
1637                 u8 *oob;
1638
1639                 if (oob_required)
1640                         oob = chip->oob_poi;
1641                 else
1642                         oob = cdns_ctrl->buf + mtd->writesize;
1643
1644                 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1645                 status = cadence_nand_cdma_transfer(cdns_ctrl,
1646                                                     cdns_chip->cs[chip->cur_cs],
1647                                                     page, buf, oob,
1648                                                     mtd->writesize,
1649                                                     cdns_chip->avail_oob_size,
1650                                                     DMA_FROM_DEVICE, true);
1651         /* Otherwise use bounce buffer. */
1652         } else {
1653                 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1654                 status = cadence_nand_cdma_transfer(cdns_ctrl,
1655                                                     cdns_chip->cs[chip->cur_cs],
1656                                                     page, cdns_ctrl->buf,
1657                                                     NULL, mtd->writesize
1658                                                     + cdns_chip->avail_oob_size,
1659                                                     0, DMA_FROM_DEVICE, true);
1660
1661                 memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1662                 if (oob_required)
1663                         memcpy(chip->oob_poi,
1664                                cdns_ctrl->buf + mtd->writesize,
1665                                mtd->oobsize);
1666         }
1667
1668         switch (status) {
1669         case STAT_ECC_UNCORR:
1670                 mtd->ecc_stats.failed++;
1671                 ecc_err_count++;
1672                 break;
1673         case STAT_ECC_CORR:
1674                 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1675                                           cdns_ctrl->cdma_desc->status);
1676                 mtd->ecc_stats.corrected += ecc_err_count;
1677                 break;
1678         case STAT_ERASED:
1679         case STAT_OK:
1680                 break;
1681         default:
1682                 dev_err(cdns_ctrl->dev, "read page failed\n");
1683                 return -EIO;
1684         }
1685
1686         if (oob_required)
1687                 if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1688                         return -EIO;
1689
1690         return ecc_err_count;
1691 }
1692
1693 /* Reads OOB data from the device. */
1694 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1695 {
1696         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1697
1698         return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1699 }
1700
1701 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1702                                       u8 *buf, int oob_required, int page)
1703 {
1704         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1705         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1706         struct mtd_info *mtd = nand_to_mtd(chip);
1707         int oob_skip = cdns_chip->bbm_len;
1708         int writesize = mtd->writesize;
1709         int ecc_steps = chip->ecc.steps;
1710         int ecc_size = chip->ecc.size;
1711         int ecc_bytes = chip->ecc.bytes;
1712         void *tmp_buf = cdns_ctrl->buf;
1713         int i, pos, len;
1714         int status = 0;
1715
1716         status = cadence_nand_select_target(chip);
1717         if (status)
1718                 return status;
1719
1720         cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1721
1722         cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1723         status = cadence_nand_cdma_transfer(cdns_ctrl,
1724                                             cdns_chip->cs[chip->cur_cs],
1725                                             page, cdns_ctrl->buf, NULL,
1726                                             mtd->writesize
1727                                             + mtd->oobsize,
1728                                             0, DMA_FROM_DEVICE, false);
1729
1730         switch (status) {
1731         case STAT_ERASED:
1732         case STAT_OK:
1733                 break;
1734         default:
1735                 dev_err(cdns_ctrl->dev, "read raw page failed\n");
1736                 return -EIO;
1737         }
1738
1739         /* Arrange the buffer for syndrome payload/ecc layout. */
1740         if (buf) {
1741                 for (i = 0; i < ecc_steps; i++) {
1742                         pos = i * (ecc_size + ecc_bytes);
1743                         len = ecc_size;
1744
1745                         if (pos >= writesize)
1746                                 pos += oob_skip;
1747                         else if (pos + len > writesize)
1748                                 len = writesize - pos;
1749
1750                         memcpy(buf, tmp_buf + pos, len);
1751                         buf += len;
1752                         if (len < ecc_size) {
1753                                 len = ecc_size - len;
1754                                 memcpy(buf, tmp_buf + writesize + oob_skip,
1755                                        len);
1756                                 buf += len;
1757                         }
1758                 }
1759         }
1760
1761         if (oob_required) {
1762                 u8 *oob = chip->oob_poi;
1763                 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1764                         (cdns_chip->sector_size + chip->ecc.bytes)
1765                         + cdns_chip->sector_size + oob_skip;
1766
1767                 /* OOB free. */
1768                 memcpy(oob, tmp_buf + oob_data_offset,
1769                        cdns_chip->avail_oob_size);
1770
1771                 /* BBM at the beginning of the OOB area. */
1772                 memcpy(oob, tmp_buf + writesize, oob_skip);
1773
1774                 oob += cdns_chip->avail_oob_size;
1775
1776                 /* OOB ECC */
1777                 for (i = 0; i < ecc_steps; i++) {
1778                         pos = ecc_size + i * (ecc_size + ecc_bytes);
1779                         len = ecc_bytes;
1780
1781                         if (i == (ecc_steps - 1))
1782                                 pos += cdns_chip->avail_oob_size;
1783
1784                         if (pos >= writesize)
1785                                 pos += oob_skip;
1786                         else if (pos + len > writesize)
1787                                 len = writesize - pos;
1788
1789                         memcpy(oob, tmp_buf + pos, len);
1790                         oob += len;
1791                         if (len < ecc_bytes) {
1792                                 len = ecc_bytes - len;
1793                                 memcpy(oob, tmp_buf + writesize + oob_skip,
1794                                        len);
1795                                 oob += len;
1796                         }
1797                 }
1798         }
1799
1800         return 0;
1801 }
1802
1803 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1804                                      int page)
1805 {
1806         return cadence_nand_read_page_raw(chip, NULL, true, page);
1807 }
1808
1809 static void cadence_nand_slave_dma_transfer_finished(void *data)
1810 {
1811         struct completion *finished = data;
1812
1813         complete(finished);
1814 }
1815
1816 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1817                                            void *buf,
1818                                            dma_addr_t dev_dma, size_t len,
1819                                            enum dma_data_direction dir)
1820 {
1821         DECLARE_COMPLETION_ONSTACK(finished);
1822         struct dma_chan *chan;
1823         struct dma_device *dma_dev;
1824         dma_addr_t src_dma, dst_dma, buf_dma;
1825         struct dma_async_tx_descriptor *tx;
1826         dma_cookie_t cookie;
1827
1828         chan = cdns_ctrl->dmac;
1829         dma_dev = chan->device;
1830
1831         buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1832         if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1833                 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1834                 goto err;
1835         }
1836
1837         if (dir == DMA_FROM_DEVICE) {
1838                 src_dma = cdns_ctrl->io.dma;
1839                 dst_dma = buf_dma;
1840         } else {
1841                 src_dma = buf_dma;
1842                 dst_dma = cdns_ctrl->io.dma;
1843         }
1844
1845         tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1846                                        DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1847         if (!tx) {
1848                 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1849                 goto err_unmap;
1850         }
1851
1852         tx->callback = cadence_nand_slave_dma_transfer_finished;
1853         tx->callback_param = &finished;
1854
1855         cookie = dmaengine_submit(tx);
1856         if (dma_submit_error(cookie)) {
1857                 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1858                 goto err_unmap;
1859         }
1860
1861         dma_async_issue_pending(cdns_ctrl->dmac);
1862         wait_for_completion(&finished);
1863
1864         dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1865
1866         return 0;
1867
1868 err_unmap:
1869         dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1870
1871 err:
1872         dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1873
1874         return -EIO;
1875 }
1876
1877 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1878                                  u8 *buf, int len)
1879 {
1880         u8 thread_nr = 0;
1881         u32 sdma_size;
1882         int status;
1883
1884         /* Wait until slave DMA interface is ready to data transfer. */
1885         status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1886         if (status)
1887                 return status;
1888
1889         if (!cdns_ctrl->caps1->has_dma) {
1890                 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1891
1892                 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1893
1894                 /* read alignment data */
1895                 if (data_dma_width == 4)
1896                         ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1897 #ifdef CONFIG_64BIT
1898                 else
1899                         readsq(cdns_ctrl->io.virt, buf, len_in_words);
1900 #endif
1901
1902                 if (sdma_size > len) {
1903                         int read_bytes = (data_dma_width == 4) ?
1904                                 len_in_words << 2 : len_in_words << 3;
1905
1906                         /* read rest data from slave DMA interface if any */
1907                         if (data_dma_width == 4)
1908                                 ioread32_rep(cdns_ctrl->io.virt,
1909                                              cdns_ctrl->buf,
1910                                              sdma_size / 4 - len_in_words);
1911 #ifdef CONFIG_64BIT
1912                         else
1913                                 readsq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1914                                        sdma_size / 8 - len_in_words);
1915 #endif
1916
1917                         /* copy rest of data */
1918                         memcpy(buf + read_bytes, cdns_ctrl->buf,
1919                                len - read_bytes);
1920                 }
1921                 return 0;
1922         }
1923
1924         if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1925                 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1926                                                          cdns_ctrl->io.dma,
1927                                                          len, DMA_FROM_DEVICE);
1928                 if (status == 0)
1929                         return 0;
1930
1931                 dev_warn(cdns_ctrl->dev,
1932                          "Slave DMA transfer failed. Try again using bounce buffer.");
1933         }
1934
1935         /* If DMA transfer is not possible or failed then use bounce buffer. */
1936         status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1937                                                  cdns_ctrl->io.dma,
1938                                                  sdma_size, DMA_FROM_DEVICE);
1939
1940         if (status) {
1941                 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1942                 return status;
1943         }
1944
1945         memcpy(buf, cdns_ctrl->buf, len);
1946
1947         return 0;
1948 }
1949
1950 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1951                                   const u8 *buf, int len)
1952 {
1953         u8 thread_nr = 0;
1954         u32 sdma_size;
1955         int status;
1956
1957         /* Wait until slave DMA interface is ready to data transfer. */
1958         status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1959         if (status)
1960                 return status;
1961
1962         if (!cdns_ctrl->caps1->has_dma) {
1963                 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1964
1965                 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1966
1967                 if (data_dma_width == 4)
1968                         iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1969 #ifdef CONFIG_64BIT
1970                 else
1971                         writesq(cdns_ctrl->io.virt, buf, len_in_words);
1972 #endif
1973
1974                 if (sdma_size > len) {
1975                         int written_bytes = (data_dma_width == 4) ?
1976                                 len_in_words << 2 : len_in_words << 3;
1977
1978                         /* copy rest of data */
1979                         memcpy(cdns_ctrl->buf, buf + written_bytes,
1980                                len - written_bytes);
1981
1982                         /* write all expected by nand controller data */
1983                         if (data_dma_width == 4)
1984                                 iowrite32_rep(cdns_ctrl->io.virt,
1985                                               cdns_ctrl->buf,
1986                                               sdma_size / 4 - len_in_words);
1987 #ifdef CONFIG_64BIT
1988                         else
1989                                 writesq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1990                                         sdma_size / 8 - len_in_words);
1991 #endif
1992                 }
1993
1994                 return 0;
1995         }
1996
1997         if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1998                 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
1999                                                          cdns_ctrl->io.dma,
2000                                                          len, DMA_TO_DEVICE);
2001                 if (status == 0)
2002                         return 0;
2003
2004                 dev_warn(cdns_ctrl->dev,
2005                          "Slave DMA transfer failed. Try again using bounce buffer.");
2006         }
2007
2008         /* If DMA transfer is not possible or failed then use bounce buffer. */
2009         memcpy(cdns_ctrl->buf, buf, len);
2010
2011         status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
2012                                                  cdns_ctrl->io.dma,
2013                                                  sdma_size, DMA_TO_DEVICE);
2014
2015         if (status)
2016                 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
2017
2018         return status;
2019 }
2020
2021 static int cadence_nand_force_byte_access(struct nand_chip *chip,
2022                                           bool force_8bit)
2023 {
2024         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2025
2026         /*
2027          * Callers of this function do not verify if the NAND is using a 16-bit
2028          * an 8-bit bus for normal operations, so we need to take care of that
2029          * here by leaving the configuration unchanged if the NAND does not have
2030          * the NAND_BUSWIDTH_16 flag set.
2031          */
2032         if (!(chip->options & NAND_BUSWIDTH_16))
2033                 return 0;
2034
2035         return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
2036 }
2037
2038 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
2039                                    const struct nand_subop *subop)
2040 {
2041         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2042         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2043         const struct nand_op_instr *instr;
2044         unsigned int op_id = 0;
2045         u64 mini_ctrl_cmd = 0;
2046         int ret;
2047
2048         instr = &subop->instrs[op_id];
2049
2050         if (instr->delay_ns > 0)
2051                 mini_ctrl_cmd |= GCMD_LAY_TWB;
2052
2053         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2054                                     GCMD_LAY_INSTR_CMD);
2055         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2056                                     instr->ctx.cmd.opcode);
2057
2058         ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2059                                             cdns_chip->cs[chip->cur_cs],
2060                                             mini_ctrl_cmd);
2061         if (ret)
2062                 dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2063                         instr->ctx.cmd.opcode);
2064
2065         return ret;
2066 }
2067
2068 static int cadence_nand_cmd_address(struct nand_chip *chip,
2069                                     const struct nand_subop *subop)
2070 {
2071         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2072         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2073         const struct nand_op_instr *instr;
2074         unsigned int op_id = 0;
2075         u64 mini_ctrl_cmd = 0;
2076         unsigned int offset, naddrs;
2077         u64 address = 0;
2078         const u8 *addrs;
2079         int ret;
2080         int i;
2081
2082         instr = &subop->instrs[op_id];
2083
2084         if (instr->delay_ns > 0)
2085                 mini_ctrl_cmd |= GCMD_LAY_TWB;
2086
2087         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2088                                     GCMD_LAY_INSTR_ADDR);
2089
2090         offset = nand_subop_get_addr_start_off(subop, op_id);
2091         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2092         addrs = &instr->ctx.addr.addrs[offset];
2093
2094         for (i = 0; i < naddrs; i++)
2095                 address |= (u64)addrs[i] << (8 * i);
2096
2097         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2098                                     address);
2099         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2100                                     naddrs - 1);
2101
2102         ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2103                                             cdns_chip->cs[chip->cur_cs],
2104                                             mini_ctrl_cmd);
2105         if (ret)
2106                 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2107
2108         return ret;
2109 }
2110
2111 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2112                                   const struct nand_subop *subop)
2113 {
2114         unsigned int op_id;
2115
2116         if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2117                 int i;
2118                 const struct nand_op_instr *instr = NULL;
2119                 unsigned int offset, naddrs;
2120                 const u8 *addrs;
2121                 u32 page = 0;
2122
2123                 instr = &subop->instrs[1];
2124                 offset = nand_subop_get_addr_start_off(subop, 1);
2125                 naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2126                 addrs = &instr->ctx.addr.addrs[offset];
2127
2128                 for (i = 0; i < naddrs; i++)
2129                         page |= (u32)addrs[i] << (8 * i);
2130
2131                 return cadence_nand_erase(chip, page);
2132         }
2133
2134         /*
2135          * If it is not an erase operation then handle operation
2136          * by calling exec_op function.
2137          */
2138         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2139                 int ret;
2140                 const struct nand_operation nand_op = {
2141                         .cs = chip->cur_cs,
2142                         .instrs =  &subop->instrs[op_id],
2143                         .ninstrs = 1};
2144                 ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2145                 if (ret)
2146                         return ret;
2147         }
2148
2149         return 0;
2150 }
2151
2152 static int cadence_nand_cmd_data(struct nand_chip *chip,
2153                                  const struct nand_subop *subop)
2154 {
2155         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2156         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2157         const struct nand_op_instr *instr;
2158         unsigned int offset, op_id = 0;
2159         u64 mini_ctrl_cmd = 0;
2160         int len = 0;
2161         int ret;
2162
2163         instr = &subop->instrs[op_id];
2164
2165         if (instr->delay_ns > 0)
2166                 mini_ctrl_cmd |= GCMD_LAY_TWB;
2167
2168         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2169                                     GCMD_LAY_INSTR_DATA);
2170
2171         if (instr->type == NAND_OP_DATA_OUT_INSTR)
2172                 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2173                                             GCMD_DIR_WRITE);
2174
2175         len = nand_subop_get_data_len(subop, op_id);
2176         offset = nand_subop_get_data_start_off(subop, op_id);
2177         mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2178         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2179         if (instr->ctx.data.force_8bit) {
2180                 ret = cadence_nand_force_byte_access(chip, true);
2181                 if (ret) {
2182                         dev_err(cdns_ctrl->dev,
2183                                 "cannot change byte access generic data cmd failed\n");
2184                         return ret;
2185                 }
2186         }
2187
2188         ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2189                                             cdns_chip->cs[chip->cur_cs],
2190                                             mini_ctrl_cmd);
2191         if (ret) {
2192                 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2193                 return ret;
2194         }
2195
2196         if (instr->type == NAND_OP_DATA_IN_INSTR) {
2197                 void *buf = instr->ctx.data.buf.in + offset;
2198
2199                 ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2200         } else {
2201                 const void *buf = instr->ctx.data.buf.out + offset;
2202
2203                 ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2204         }
2205
2206         if (ret) {
2207                 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2208                 return ret;
2209         }
2210
2211         if (instr->ctx.data.force_8bit) {
2212                 ret = cadence_nand_force_byte_access(chip, false);
2213                 if (ret) {
2214                         dev_err(cdns_ctrl->dev,
2215                                 "cannot change byte access generic data cmd failed\n");
2216                 }
2217         }
2218
2219         return ret;
2220 }
2221
2222 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2223                                     const struct nand_subop *subop)
2224 {
2225         int status;
2226         unsigned int op_id = 0;
2227         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2228         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2229         const struct nand_op_instr *instr = &subop->instrs[op_id];
2230         u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2231
2232         status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2233                                              timeout_us,
2234                                              BIT(cdns_chip->cs[chip->cur_cs]),
2235                                              false);
2236         return status;
2237 }
2238
2239 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2240         NAND_OP_PARSER_PATTERN(
2241                 cadence_nand_cmd_erase,
2242                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2243                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2244                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2245                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2246         NAND_OP_PARSER_PATTERN(
2247                 cadence_nand_cmd_opcode,
2248                 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2249         NAND_OP_PARSER_PATTERN(
2250                 cadence_nand_cmd_address,
2251                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2252         NAND_OP_PARSER_PATTERN(
2253                 cadence_nand_cmd_data,
2254                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2255         NAND_OP_PARSER_PATTERN(
2256                 cadence_nand_cmd_data,
2257                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2258         NAND_OP_PARSER_PATTERN(
2259                 cadence_nand_cmd_waitrdy,
2260                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2261         );
2262
2263 static int cadence_nand_exec_op(struct nand_chip *chip,
2264                                 const struct nand_operation *op,
2265                                 bool check_only)
2266 {
2267         if (!check_only) {
2268                 int status = cadence_nand_select_target(chip);
2269
2270                 if (status)
2271                         return status;
2272         }
2273
2274         return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2275                                       check_only);
2276 }
2277
2278 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2279                                        struct mtd_oob_region *oobregion)
2280 {
2281         struct nand_chip *chip = mtd_to_nand(mtd);
2282         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2283
2284         if (section)
2285                 return -ERANGE;
2286
2287         oobregion->offset = cdns_chip->bbm_len;
2288         oobregion->length = cdns_chip->avail_oob_size
2289                 - cdns_chip->bbm_len;
2290
2291         return 0;
2292 }
2293
2294 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2295                                       struct mtd_oob_region *oobregion)
2296 {
2297         struct nand_chip *chip = mtd_to_nand(mtd);
2298         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2299
2300         if (section)
2301                 return -ERANGE;
2302
2303         oobregion->offset = cdns_chip->avail_oob_size;
2304         oobregion->length = chip->ecc.total;
2305
2306         return 0;
2307 }
2308
2309 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2310         .free = cadence_nand_ooblayout_free,
2311         .ecc = cadence_nand_ooblayout_ecc,
2312 };
2313
2314 static int calc_cycl(u32 timing, u32 clock)
2315 {
2316         if (timing == 0 || clock == 0)
2317                 return 0;
2318
2319         if ((timing % clock) > 0)
2320                 return timing / clock;
2321         else
2322                 return timing / clock - 1;
2323 }
2324
2325 /* Calculate max data valid window. */
2326 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2327                                 u32 board_delay_skew_min, u32 ext_mode)
2328 {
2329         if (ext_mode == 0)
2330                 clk_period /= 2;
2331
2332         return (trp_cnt + 1) * clk_period + trhoh_min +
2333                 board_delay_skew_min;
2334 }
2335
2336 /* Calculate data valid window. */
2337 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2338                             u32 trea_max, u32 ext_mode)
2339 {
2340         if (ext_mode == 0)
2341                 clk_period /= 2;
2342
2343         return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2344 }
2345
2346 static int
2347 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2348                              const struct nand_interface_config *conf)
2349 {
2350         const struct nand_sdr_timings *sdr;
2351         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2352         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2353         struct cadence_nand_timings *t = &cdns_chip->timings;
2354         u32 reg;
2355         u32 board_delay = cdns_ctrl->board_delay;
2356         u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2357                                             cdns_ctrl->nf_clk_rate);
2358         u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2359         u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2360         u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2361         u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2362         u32 if_skew = cdns_ctrl->caps1->if_skew;
2363         u32 board_delay_skew_min = board_delay - if_skew;
2364         u32 board_delay_skew_max = board_delay + if_skew;
2365         u32 dqs_sampl_res, phony_dqs_mod;
2366         u32 tdvw, tdvw_min, tdvw_max;
2367         u32 ext_rd_mode, ext_wr_mode;
2368         u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2369         u32 sampling_point;
2370
2371         sdr = nand_get_sdr_timings(conf);
2372         if (IS_ERR(sdr))
2373                 return PTR_ERR(sdr);
2374
2375         memset(t, 0, sizeof(*t));
2376         /* Sampling point calculation. */
2377
2378         if (cdns_ctrl->caps2.is_phy_type_dll)
2379                 phony_dqs_mod = 2;
2380         else
2381                 phony_dqs_mod = 1;
2382
2383         dqs_sampl_res = clk_period / phony_dqs_mod;
2384
2385         tdvw_min = sdr->tREA_max + board_delay_skew_max;
2386         /*
2387          * The idea of those calculation is to get the optimum value
2388          * for tRP and tRH timings. If it is NOT possible to sample data
2389          * with optimal tRP/tRH settings, the parameters will be extended.
2390          * If clk_period is 50ns (the lowest value) this condition is met
2391          * for SDR timing modes 1, 2, 3, 4 and 5.
2392          * If clk_period is 20ns the condition is met only for SDR timing
2393          * mode 5.
2394          */
2395         if (sdr->tRC_min <= clk_period &&
2396             sdr->tRP_min <= (clk_period / 2) &&
2397             sdr->tREH_min <= (clk_period / 2)) {
2398                 /* Performance mode. */
2399                 ext_rd_mode = 0;
2400                 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2401                                  sdr->tREA_max, ext_rd_mode);
2402                 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2403                                          board_delay_skew_min,
2404                                          ext_rd_mode);
2405                 /*
2406                  * Check if data valid window and sampling point can be found
2407                  * and is not on the edge (ie. we have hold margin).
2408                  * If not extend the tRP timings.
2409                  */
2410                 if (tdvw > 0) {
2411                         if (tdvw_max <= tdvw_min ||
2412                             (tdvw_max % dqs_sampl_res) == 0) {
2413                                 /*
2414                                  * No valid sampling point so the RE pulse need
2415                                  * to be widen widening by half clock cycle.
2416                                  */
2417                                 ext_rd_mode = 1;
2418                         }
2419                 } else {
2420                         /*
2421                          * There is no valid window
2422                          * to be able to sample data the tRP need to be widen.
2423                          * Very safe calculations are performed here.
2424                          */
2425                         trp_cnt = (sdr->tREA_max + board_delay_skew_max
2426                                    + dqs_sampl_res) / clk_period;
2427                         ext_rd_mode = 1;
2428                 }
2429
2430         } else {
2431                 /* Extended read mode. */
2432                 u32 trh;
2433
2434                 ext_rd_mode = 1;
2435                 trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2436                 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2437                 if (sdr->tREH_min >= trh)
2438                         trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2439                 else
2440                         trh_cnt = calc_cycl(trh, clk_period);
2441
2442                 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2443                                  sdr->tREA_max, ext_rd_mode);
2444                 /*
2445                  * Check if data valid window and sampling point can be found
2446                  * or if it is at the edge check if previous is valid
2447                  * - if not extend the tRP timings.
2448                  */
2449                 if (tdvw > 0) {
2450                         tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2451                                                  sdr->tRHOH_min,
2452                                                  board_delay_skew_min,
2453                                                  ext_rd_mode);
2454
2455                         if ((((tdvw_max / dqs_sampl_res)
2456                               * dqs_sampl_res) <= tdvw_min) ||
2457                             (((tdvw_max % dqs_sampl_res) == 0) &&
2458                              (((tdvw_max / dqs_sampl_res - 1)
2459                                * dqs_sampl_res) <= tdvw_min))) {
2460                                 /*
2461                                  * Data valid window width is lower than
2462                                  * sampling resolution and do not hit any
2463                                  * sampling point to be sure the sampling point
2464                                  * will be found the RE low pulse width will be
2465                                  *  extended by one clock cycle.
2466                                  */
2467                                 trp_cnt = trp_cnt + 1;
2468                         }
2469                 } else {
2470                         /*
2471                          * There is no valid window to be able to sample data.
2472                          * The tRP need to be widen.
2473                          * Very safe calculations are performed here.
2474                          */
2475                         trp_cnt = (sdr->tREA_max + board_delay_skew_max
2476                                    + dqs_sampl_res) / clk_period;
2477                 }
2478         }
2479
2480         tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2481                                  sdr->tRHOH_min,
2482                                  board_delay_skew_min, ext_rd_mode);
2483
2484         if (sdr->tWC_min <= clk_period &&
2485             (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2486             (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2487                 ext_wr_mode = 0;
2488         } else {
2489                 u32 twh;
2490
2491                 ext_wr_mode = 1;
2492                 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2493                 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2494                         twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2495                                             clk_period);
2496
2497                 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2498                 if (sdr->tWH_min >= twh)
2499                         twh = sdr->tWH_min;
2500
2501                 twh_cnt = calc_cycl(twh + if_skew, clk_period);
2502         }
2503
2504         reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2505         reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2506         reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2507         reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2508         t->async_toggle_timings = reg;
2509         dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2510
2511         tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2512         tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2513         twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2514         trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2515         reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2516
2517         /*
2518          * If timing exceeds delay field in timing register
2519          * then use maximum value.
2520          */
2521         if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2522                 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2523         else
2524                 reg |= TIMINGS0_TCCS;
2525
2526         reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2527         reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2528         t->timings0 = reg;
2529         dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2530
2531         /* The following is related to single signal so skew is not needed. */
2532         trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2533         trhz_cnt = trhz_cnt + 1;
2534         twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2535         /*
2536          * Because of the two stage syncflop the value must be increased by 3
2537          * first value is related with sync, second value is related
2538          * with output if delay.
2539          */
2540         twb_cnt = twb_cnt + 3 + 5;
2541         /*
2542          * The following is related to the we edge of the random data input
2543          * sequence so skew is not needed.
2544          */
2545         tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2546         reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2547         reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2548         reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2549         t->timings1 = reg;
2550         dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2551
2552         tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2553         if (tfeat_cnt < twb_cnt)
2554                 tfeat_cnt = twb_cnt;
2555
2556         tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2557         tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2558
2559         reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2560         reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2561         reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2562         t->timings2 = reg;
2563         dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2564
2565         if (cdns_ctrl->caps2.is_phy_type_dll) {
2566                 reg = DLL_PHY_CTRL_DLL_RST_N;
2567                 if (ext_wr_mode)
2568                         reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2569                 if (ext_rd_mode)
2570                         reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2571
2572                 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2573                 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2574                 t->dll_phy_ctrl = reg;
2575                 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2576         }
2577
2578         /* Sampling point calculation. */
2579         if ((tdvw_max % dqs_sampl_res) > 0)
2580                 sampling_point = tdvw_max / dqs_sampl_res;
2581         else
2582                 sampling_point = (tdvw_max / dqs_sampl_res - 1);
2583
2584         if (sampling_point * dqs_sampl_res > tdvw_min) {
2585                 dll_phy_dqs_timing =
2586                         FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2587                 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2588                 phony_dqs_timing = sampling_point / phony_dqs_mod;
2589
2590                 if ((sampling_point % 2) > 0) {
2591                         dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2592                         if ((tdvw_max % dqs_sampl_res) == 0)
2593                                 /*
2594                                  * Calculation for sampling point at the edge
2595                                  * of data and being odd number.
2596                                  */
2597                                 phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2598                                         / phony_dqs_mod - 1;
2599
2600                         if (!cdns_ctrl->caps2.is_phy_type_dll)
2601                                 phony_dqs_timing--;
2602
2603                 } else {
2604                         phony_dqs_timing--;
2605                 }
2606                 rd_del_sel = phony_dqs_timing + 3;
2607         } else {
2608                 dev_warn(cdns_ctrl->dev,
2609                          "ERROR : cannot find valid sampling point\n");
2610         }
2611
2612         reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2613         if (cdns_ctrl->caps2.is_phy_type_dll)
2614                 reg  |= PHY_CTRL_SDR_DQS;
2615         t->phy_ctrl = reg;
2616         dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2617
2618         if (cdns_ctrl->caps2.is_phy_type_dll) {
2619                 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2620                 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2621                 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2622                         dll_phy_dqs_timing);
2623                 t->phy_dqs_timing = dll_phy_dqs_timing;
2624
2625                 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2626                 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2627                         reg);
2628                 t->phy_gate_lpbk_ctrl = reg;
2629
2630                 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2631                         PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2632                 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2633         }
2634
2635         return 0;
2636 }
2637
2638 static int cadence_nand_attach_chip(struct nand_chip *chip)
2639 {
2640         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2641         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2642         u32 ecc_size;
2643         struct mtd_info *mtd = nand_to_mtd(chip);
2644         int ret;
2645
2646         if (chip->options & NAND_BUSWIDTH_16) {
2647                 ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2648                 if (ret)
2649                         return ret;
2650         }
2651
2652         chip->bbt_options |= NAND_BBT_USE_FLASH;
2653         chip->bbt_options |= NAND_BBT_NO_OOB;
2654         chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2655
2656         chip->options |= NAND_NO_SUBPAGE_WRITE;
2657
2658         cdns_chip->bbm_offs = chip->badblockpos;
2659         cdns_chip->bbm_offs &= ~0x01;
2660         /* this value should be even number */
2661         cdns_chip->bbm_len = 2;
2662
2663         ret = nand_ecc_choose_conf(chip,
2664                                    &cdns_ctrl->ecc_caps,
2665                                    mtd->oobsize - cdns_chip->bbm_len);
2666         if (ret) {
2667                 dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2668                 return ret;
2669         }
2670
2671         dev_dbg(cdns_ctrl->dev,
2672                 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2673                 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2674
2675         /* Error correction configuration. */
2676         cdns_chip->sector_size = chip->ecc.size;
2677         cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2678         ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2679
2680         cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2681
2682         if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2683                 cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2684
2685         if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2686             > mtd->oobsize)
2687                 cdns_chip->avail_oob_size -= 4;
2688
2689         ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2690         if (ret < 0)
2691                 return -EINVAL;
2692
2693         cdns_chip->corr_str_idx = (u8)ret;
2694
2695         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2696                                         1000000,
2697                                         CTRL_STATUS_CTRL_BUSY, true))
2698                 return -ETIMEDOUT;
2699
2700         cadence_nand_set_ecc_strength(cdns_ctrl,
2701                                       cdns_chip->corr_str_idx);
2702
2703         cadence_nand_set_erase_detection(cdns_ctrl, true,
2704                                          chip->ecc.strength);
2705
2706         /* Override the default read operations. */
2707         chip->ecc.read_page = cadence_nand_read_page;
2708         chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2709         chip->ecc.write_page = cadence_nand_write_page;
2710         chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2711         chip->ecc.read_oob = cadence_nand_read_oob;
2712         chip->ecc.write_oob = cadence_nand_write_oob;
2713         chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2714         chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2715
2716         if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2717                 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2718
2719         /* Is 32-bit DMA supported? */
2720         ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2721         if (ret) {
2722                 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2723                 return ret;
2724         }
2725
2726         mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2727
2728         return 0;
2729 }
2730
2731 static const struct nand_controller_ops cadence_nand_controller_ops = {
2732         .attach_chip = cadence_nand_attach_chip,
2733         .exec_op = cadence_nand_exec_op,
2734         .setup_interface = cadence_nand_setup_interface,
2735 };
2736
2737 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2738                                   struct device_node *np)
2739 {
2740         struct cdns_nand_chip *cdns_chip;
2741         struct mtd_info *mtd;
2742         struct nand_chip *chip;
2743         int nsels, ret, i;
2744         u32 cs;
2745
2746         nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2747         if (nsels <= 0) {
2748                 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2749                 return -EINVAL;
2750         }
2751
2752         /* Allocate the nand chip structure. */
2753         cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2754                                  (nsels * sizeof(u8)),
2755                                  GFP_KERNEL);
2756         if (!cdns_chip) {
2757                 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2758                 return -ENOMEM;
2759         }
2760
2761         cdns_chip->nsels = nsels;
2762
2763         for (i = 0; i < nsels; i++) {
2764                 /* Retrieve CS id. */
2765                 ret = of_property_read_u32_index(np, "reg", i, &cs);
2766                 if (ret) {
2767                         dev_err(cdns_ctrl->dev,
2768                                 "could not retrieve reg property: %d\n",
2769                                 ret);
2770                         return ret;
2771                 }
2772
2773                 if (cs >= cdns_ctrl->caps2.max_banks) {
2774                         dev_err(cdns_ctrl->dev,
2775                                 "invalid reg value: %u (max CS = %d)\n",
2776                                 cs, cdns_ctrl->caps2.max_banks);
2777                         return -EINVAL;
2778                 }
2779
2780                 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2781                         dev_err(cdns_ctrl->dev,
2782                                 "CS %d already assigned\n", cs);
2783                         return -EINVAL;
2784                 }
2785
2786                 cdns_chip->cs[i] = cs;
2787         }
2788
2789         chip = &cdns_chip->chip;
2790         chip->controller = &cdns_ctrl->controller;
2791         nand_set_flash_node(chip, np);
2792
2793         mtd = nand_to_mtd(chip);
2794         mtd->dev.parent = cdns_ctrl->dev;
2795
2796         /*
2797          * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2798          * in the DT node, this entry will be overwritten in nand_scan_ident().
2799          */
2800         chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2801
2802         ret = nand_scan(chip, cdns_chip->nsels);
2803         if (ret) {
2804                 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2805                 return ret;
2806         }
2807
2808         ret = mtd_device_register(mtd, NULL, 0);
2809         if (ret) {
2810                 dev_err(cdns_ctrl->dev,
2811                         "failed to register mtd device: %d\n", ret);
2812                 nand_cleanup(chip);
2813                 return ret;
2814         }
2815
2816         list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2817
2818         return 0;
2819 }
2820
2821 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2822 {
2823         struct cdns_nand_chip *entry, *temp;
2824         struct nand_chip *chip;
2825         int ret;
2826
2827         list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2828                 chip = &entry->chip;
2829                 ret = mtd_device_unregister(nand_to_mtd(chip));
2830                 WARN_ON(ret);
2831                 nand_cleanup(chip);
2832                 list_del(&entry->node);
2833         }
2834 }
2835
2836 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2837 {
2838         struct device_node *np = cdns_ctrl->dev->of_node;
2839         int max_cs = cdns_ctrl->caps2.max_banks;
2840         int nchips, ret;
2841
2842         nchips = of_get_child_count(np);
2843
2844         if (nchips > max_cs) {
2845                 dev_err(cdns_ctrl->dev,
2846                         "too many NAND chips: %d (max = %d CS)\n",
2847                         nchips, max_cs);
2848                 return -EINVAL;
2849         }
2850
2851         for_each_child_of_node_scoped(np, nand_np) {
2852                 ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2853                 if (ret) {
2854                         cadence_nand_chips_cleanup(cdns_ctrl);
2855                         return ret;
2856                 }
2857         }
2858
2859         return 0;
2860 }
2861
2862 static void
2863 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2864 {
2865         /* Disable interrupts. */
2866         writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2867 }
2868
2869 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2870 {
2871         dma_cap_mask_t mask;
2872         int ret;
2873
2874         cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2875                                                   sizeof(*cdns_ctrl->cdma_desc),
2876                                                   &cdns_ctrl->dma_cdma_desc,
2877                                                   GFP_KERNEL);
2878         if (!cdns_ctrl->dma_cdma_desc)
2879                 return -ENOMEM;
2880
2881         cdns_ctrl->buf_size = SZ_16K;
2882         cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2883         if (!cdns_ctrl->buf) {
2884                 ret = -ENOMEM;
2885                 goto free_buf_desc;
2886         }
2887
2888         if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2889                              IRQF_SHARED, "cadence-nand-controller",
2890                              cdns_ctrl)) {
2891                 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2892                 ret = -ENODEV;
2893                 goto free_buf;
2894         }
2895
2896         spin_lock_init(&cdns_ctrl->irq_lock);
2897         init_completion(&cdns_ctrl->complete);
2898
2899         ret = cadence_nand_hw_init(cdns_ctrl);
2900         if (ret)
2901                 goto disable_irq;
2902
2903         dma_cap_zero(mask);
2904         dma_cap_set(DMA_MEMCPY, mask);
2905
2906         if (cdns_ctrl->caps1->has_dma) {
2907                 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2908                 if (!cdns_ctrl->dmac) {
2909                         dev_err(cdns_ctrl->dev,
2910                                 "Unable to get a DMA channel\n");
2911                         ret = -EBUSY;
2912                         goto disable_irq;
2913                 }
2914         }
2915
2916         nand_controller_init(&cdns_ctrl->controller);
2917         INIT_LIST_HEAD(&cdns_ctrl->chips);
2918
2919         cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2920         cdns_ctrl->curr_corr_str_idx = 0xFF;
2921
2922         ret = cadence_nand_chips_init(cdns_ctrl);
2923         if (ret) {
2924                 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2925                         ret);
2926                 goto dma_release_chnl;
2927         }
2928
2929         kfree(cdns_ctrl->buf);
2930         cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2931         if (!cdns_ctrl->buf) {
2932                 ret = -ENOMEM;
2933                 goto dma_release_chnl;
2934         }
2935
2936         return 0;
2937
2938 dma_release_chnl:
2939         if (cdns_ctrl->dmac)
2940                 dma_release_channel(cdns_ctrl->dmac);
2941
2942 disable_irq:
2943         cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2944
2945 free_buf:
2946         kfree(cdns_ctrl->buf);
2947
2948 free_buf_desc:
2949         dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2950                           cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2951
2952         return ret;
2953 }
2954
2955 /* Driver exit point. */
2956 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2957 {
2958         cadence_nand_chips_cleanup(cdns_ctrl);
2959         cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2960         kfree(cdns_ctrl->buf);
2961         dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2962                           cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2963
2964         if (cdns_ctrl->dmac)
2965                 dma_release_channel(cdns_ctrl->dmac);
2966 }
2967
2968 struct cadence_nand_dt {
2969         struct cdns_nand_ctrl cdns_ctrl;
2970         struct clk *clk;
2971 };
2972
2973 static const struct cadence_nand_dt_devdata cadence_nand_default = {
2974         .if_skew = 0,
2975         .has_dma = 1,
2976 };
2977
2978 static const struct of_device_id cadence_nand_dt_ids[] = {
2979         {
2980                 .compatible = "cdns,hp-nfc",
2981                 .data = &cadence_nand_default
2982         }, {}
2983 };
2984
2985 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2986
2987 static int cadence_nand_dt_probe(struct platform_device *ofdev)
2988 {
2989         struct resource *res;
2990         struct cadence_nand_dt *dt;
2991         struct cdns_nand_ctrl *cdns_ctrl;
2992         int ret;
2993         const struct cadence_nand_dt_devdata *devdata;
2994         u32 val;
2995
2996         devdata = device_get_match_data(&ofdev->dev);
2997         if (!devdata) {
2998                 pr_err("Failed to find the right device id.\n");
2999                 return -ENOMEM;
3000         }
3001
3002         dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
3003         if (!dt)
3004                 return -ENOMEM;
3005
3006         cdns_ctrl = &dt->cdns_ctrl;
3007         cdns_ctrl->caps1 = devdata;
3008
3009         cdns_ctrl->dev = &ofdev->dev;
3010         cdns_ctrl->irq = platform_get_irq(ofdev, 0);
3011         if (cdns_ctrl->irq < 0)
3012                 return cdns_ctrl->irq;
3013
3014         dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
3015
3016         cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
3017         if (IS_ERR(cdns_ctrl->reg))
3018                 return PTR_ERR(cdns_ctrl->reg);
3019
3020         cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
3021         if (IS_ERR(cdns_ctrl->io.virt))
3022                 return PTR_ERR(cdns_ctrl->io.virt);
3023         cdns_ctrl->io.dma = res->start;
3024
3025         dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
3026         if (IS_ERR(dt->clk))
3027                 return PTR_ERR(dt->clk);
3028
3029         cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
3030
3031         ret = of_property_read_u32(ofdev->dev.of_node,
3032                                    "cdns,board-delay-ps", &val);
3033         if (ret) {
3034                 val = 4830;
3035                 dev_info(cdns_ctrl->dev,
3036                          "missing cdns,board-delay-ps property, %d was set\n",
3037                          val);
3038         }
3039         cdns_ctrl->board_delay = val;
3040
3041         ret = cadence_nand_init(cdns_ctrl);
3042         if (ret)
3043                 return ret;
3044
3045         platform_set_drvdata(ofdev, dt);
3046         return 0;
3047 }
3048
3049 static void cadence_nand_dt_remove(struct platform_device *ofdev)
3050 {
3051         struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3052
3053         cadence_nand_remove(&dt->cdns_ctrl);
3054 }
3055
3056 static struct platform_driver cadence_nand_dt_driver = {
3057         .probe          = cadence_nand_dt_probe,
3058         .remove         = cadence_nand_dt_remove,
3059         .driver         = {
3060                 .name   = "cadence-nand-controller",
3061                 .of_match_table = cadence_nand_dt_ids,
3062         },
3063 };
3064
3065 module_platform_driver(cadence_nand_dt_driver);
3066
3067 MODULE_AUTHOR("Piotr Sroka <[email protected]>");
3068 MODULE_LICENSE("GPL v2");
3069 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3070
This page took 0.255094 seconds and 4 git commands to generate.