]> Git Repo - J-linux.git/blob - drivers/mmc/host/sh_mmcif.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / mmc / host / sh_mmcif.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <[email protected]>
7  */
8
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/slot-gpio.h>
47 #include <linux/mod_devicetable.h>
48 #include <linux/mutex.h>
49 #include <linux/pagemap.h>
50 #include <linux/platform_data/sh_mmcif.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/sh_dma.h>
55 #include <linux/spinlock.h>
56 #include <linux/module.h>
57
58 #define DRIVER_NAME     "sh_mmcif"
59
60 /* CE_CMD_SET */
61 #define CMD_MASK                0x3f000000
62 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
63 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
65 #define CMD_SET_RBSY            (1 << 21) /* R1b */
66 #define CMD_SET_CCSEN           (1 << 20)
67 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
68 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
69 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
70 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
71 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
72 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
73 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
74 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
75 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
76 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
78 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
79 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
80 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
81 #define CMD_SET_CCSH            (1 << 5)
82 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
83 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
84 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
85 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
86
87 /* CE_CMD_CTRL */
88 #define CMD_CTRL_BREAK          (1 << 0)
89
90 /* CE_BLOCK_SET */
91 #define BLOCK_SIZE_MASK         0x0000ffff
92
93 /* CE_INT */
94 #define INT_CCSDE               (1 << 29)
95 #define INT_CMD12DRE            (1 << 26)
96 #define INT_CMD12RBE            (1 << 25)
97 #define INT_CMD12CRE            (1 << 24)
98 #define INT_DTRANE              (1 << 23)
99 #define INT_BUFRE               (1 << 22)
100 #define INT_BUFWEN              (1 << 21)
101 #define INT_BUFREN              (1 << 20)
102 #define INT_CCSRCV              (1 << 19)
103 #define INT_RBSYE               (1 << 17)
104 #define INT_CRSPE               (1 << 16)
105 #define INT_CMDVIO              (1 << 15)
106 #define INT_BUFVIO              (1 << 14)
107 #define INT_WDATERR             (1 << 11)
108 #define INT_RDATERR             (1 << 10)
109 #define INT_RIDXERR             (1 << 9)
110 #define INT_RSPERR              (1 << 8)
111 #define INT_CCSTO               (1 << 5)
112 #define INT_CRCSTO              (1 << 4)
113 #define INT_WDATTO              (1 << 3)
114 #define INT_RDATTO              (1 << 2)
115 #define INT_RBSYTO              (1 << 1)
116 #define INT_RSPTO               (1 << 0)
117 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
118                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
120                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
121
122 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
123                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
125
126 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
127
128 /* CE_INT_MASK */
129 #define MASK_ALL                0x00000000
130 #define MASK_MCCSDE             (1 << 29)
131 #define MASK_MCMD12DRE          (1 << 26)
132 #define MASK_MCMD12RBE          (1 << 25)
133 #define MASK_MCMD12CRE          (1 << 24)
134 #define MASK_MDTRANE            (1 << 23)
135 #define MASK_MBUFRE             (1 << 22)
136 #define MASK_MBUFWEN            (1 << 21)
137 #define MASK_MBUFREN            (1 << 20)
138 #define MASK_MCCSRCV            (1 << 19)
139 #define MASK_MRBSYE             (1 << 17)
140 #define MASK_MCRSPE             (1 << 16)
141 #define MASK_MCMDVIO            (1 << 15)
142 #define MASK_MBUFVIO            (1 << 14)
143 #define MASK_MWDATERR           (1 << 11)
144 #define MASK_MRDATERR           (1 << 10)
145 #define MASK_MRIDXERR           (1 << 9)
146 #define MASK_MRSPERR            (1 << 8)
147 #define MASK_MCCSTO             (1 << 5)
148 #define MASK_MCRCSTO            (1 << 4)
149 #define MASK_MWDATTO            (1 << 3)
150 #define MASK_MRDATTO            (1 << 2)
151 #define MASK_MRBSYTO            (1 << 1)
152 #define MASK_MRSPTO             (1 << 0)
153
154 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156                                  MASK_MCRCSTO | MASK_MWDATTO | \
157                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
160                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
161                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
162                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
163
164 /* CE_HOST_STS1 */
165 #define STS1_CMDSEQ             (1 << 31)
166
167 /* CE_HOST_STS2 */
168 #define STS2_CRCSTE             (1 << 31)
169 #define STS2_CRC16E             (1 << 30)
170 #define STS2_AC12CRCE           (1 << 29)
171 #define STS2_RSPCRC7E           (1 << 28)
172 #define STS2_CRCSTEBE           (1 << 27)
173 #define STS2_RDATEBE            (1 << 26)
174 #define STS2_AC12REBE           (1 << 25)
175 #define STS2_RSPEBE             (1 << 24)
176 #define STS2_AC12IDXE           (1 << 23)
177 #define STS2_RSPIDXE            (1 << 22)
178 #define STS2_CCSTO              (1 << 15)
179 #define STS2_RDATTO             (1 << 14)
180 #define STS2_DATBSYTO           (1 << 13)
181 #define STS2_CRCSTTO            (1 << 12)
182 #define STS2_AC12BSYTO          (1 << 11)
183 #define STS2_RSPBSYTO           (1 << 10)
184 #define STS2_AC12RSPTO          (1 << 9)
185 #define STS2_RSPTO              (1 << 8)
186 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
187                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
189                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
190                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
191                                  STS2_AC12RSPTO | STS2_RSPTO)
192
193 #define CLKDEV_EMMC_DATA        52000000 /* 52 MHz */
194 #define CLKDEV_MMC_DATA         20000000 /* 20 MHz */
195 #define CLKDEV_INIT             400000   /* 400 kHz */
196
197 enum sh_mmcif_state {
198         STATE_IDLE,
199         STATE_REQUEST,
200         STATE_IOS,
201         STATE_TIMEOUT,
202 };
203
204 enum sh_mmcif_wait_for {
205         MMCIF_WAIT_FOR_REQUEST,
206         MMCIF_WAIT_FOR_CMD,
207         MMCIF_WAIT_FOR_MREAD,
208         MMCIF_WAIT_FOR_MWRITE,
209         MMCIF_WAIT_FOR_READ,
210         MMCIF_WAIT_FOR_WRITE,
211         MMCIF_WAIT_FOR_READ_END,
212         MMCIF_WAIT_FOR_WRITE_END,
213         MMCIF_WAIT_FOR_STOP,
214 };
215
216 /*
217  * difference for each SoC
218  */
219 struct sh_mmcif_host {
220         struct mmc_host *mmc;
221         struct mmc_request *mrq;
222         struct platform_device *pd;
223         struct clk *clk;
224         int bus_width;
225         unsigned char timing;
226         bool sd_error;
227         bool dying;
228         long timeout;
229         void __iomem *addr;
230         spinlock_t lock;                /* protect sh_mmcif_host::state */
231         enum sh_mmcif_state state;
232         enum sh_mmcif_wait_for wait_for;
233         struct delayed_work timeout_work;
234         size_t blocksize;
235         struct sg_mapping_iter sg_miter;
236         bool power;
237         bool ccs_enable;                /* Command Completion Signal support */
238         bool clk_ctrl2_enable;
239         struct mutex thread_lock;
240         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
241
242         /* DMA support */
243         struct dma_chan         *chan_rx;
244         struct dma_chan         *chan_tx;
245         struct completion       dma_complete;
246         bool                    dma_active;
247 };
248
249 static const struct of_device_id sh_mmcif_of_match[] = {
250         { .compatible = "renesas,sh-mmcif" },
251         { }
252 };
253 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
254
255 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
256
257 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
258                                         unsigned int reg, u32 val)
259 {
260         writel(val | readl(host->addr + reg), host->addr + reg);
261 }
262
263 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
264                                         unsigned int reg, u32 val)
265 {
266         writel(~val & readl(host->addr + reg), host->addr + reg);
267 }
268
269 static void sh_mmcif_dma_complete(void *arg)
270 {
271         struct sh_mmcif_host *host = arg;
272         struct mmc_request *mrq = host->mrq;
273         struct device *dev = sh_mmcif_host_to_dev(host);
274
275         dev_dbg(dev, "Command completed\n");
276
277         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
278                  dev_name(dev)))
279                 return;
280
281         complete(&host->dma_complete);
282 }
283
284 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
285 {
286         struct mmc_data *data = host->mrq->data;
287         struct scatterlist *sg = data->sg;
288         struct dma_async_tx_descriptor *desc = NULL;
289         struct dma_chan *chan = host->chan_rx;
290         struct device *dev = sh_mmcif_host_to_dev(host);
291         dma_cookie_t cookie = -EINVAL;
292         int ret;
293
294         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
295                          DMA_FROM_DEVICE);
296         if (ret > 0) {
297                 host->dma_active = true;
298                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
299                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
300         }
301
302         if (desc) {
303                 desc->callback = sh_mmcif_dma_complete;
304                 desc->callback_param = host;
305                 cookie = dmaengine_submit(desc);
306                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
307                 dma_async_issue_pending(chan);
308         }
309         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
310                 __func__, data->sg_len, ret, cookie);
311
312         if (!desc) {
313                 /* DMA failed, fall back to PIO */
314                 if (ret >= 0)
315                         ret = -EIO;
316                 host->chan_rx = NULL;
317                 host->dma_active = false;
318                 dma_release_channel(chan);
319                 /* Free the Tx channel too */
320                 chan = host->chan_tx;
321                 if (chan) {
322                         host->chan_tx = NULL;
323                         dma_release_channel(chan);
324                 }
325                 dev_warn(dev,
326                          "DMA failed: %d, falling back to PIO\n", ret);
327                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
328         }
329
330         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
331                 desc, cookie, data->sg_len);
332 }
333
334 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
335 {
336         struct mmc_data *data = host->mrq->data;
337         struct scatterlist *sg = data->sg;
338         struct dma_async_tx_descriptor *desc = NULL;
339         struct dma_chan *chan = host->chan_tx;
340         struct device *dev = sh_mmcif_host_to_dev(host);
341         dma_cookie_t cookie = -EINVAL;
342         int ret;
343
344         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345                          DMA_TO_DEVICE);
346         if (ret > 0) {
347                 host->dma_active = true;
348                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
349                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350         }
351
352         if (desc) {
353                 desc->callback = sh_mmcif_dma_complete;
354                 desc->callback_param = host;
355                 cookie = dmaengine_submit(desc);
356                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357                 dma_async_issue_pending(chan);
358         }
359         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
360                 __func__, data->sg_len, ret, cookie);
361
362         if (!desc) {
363                 /* DMA failed, fall back to PIO */
364                 if (ret >= 0)
365                         ret = -EIO;
366                 host->chan_tx = NULL;
367                 host->dma_active = false;
368                 dma_release_channel(chan);
369                 /* Free the Rx channel too */
370                 chan = host->chan_rx;
371                 if (chan) {
372                         host->chan_rx = NULL;
373                         dma_release_channel(chan);
374                 }
375                 dev_warn(dev,
376                          "DMA failed: %d, falling back to PIO\n", ret);
377                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378         }
379
380         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
381                 desc, cookie);
382 }
383
384 static struct dma_chan *
385 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
386 {
387         dma_cap_mask_t mask;
388
389         dma_cap_zero(mask);
390         dma_cap_set(DMA_SLAVE, mask);
391         if (slave_id <= 0)
392                 return NULL;
393
394         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
395 }
396
397 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
398                                      struct dma_chan *chan,
399                                      enum dma_transfer_direction direction)
400 {
401         struct resource *res;
402         struct dma_slave_config cfg = { 0, };
403
404         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
405         if (!res)
406                 return -EINVAL;
407
408         cfg.direction = direction;
409
410         if (direction == DMA_DEV_TO_MEM) {
411                 cfg.src_addr = res->start + MMCIF_CE_DATA;
412                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413         } else {
414                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
415                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416         }
417
418         return dmaengine_slave_config(chan, &cfg);
419 }
420
421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422 {
423         struct device *dev = sh_mmcif_host_to_dev(host);
424         host->dma_active = false;
425
426         /* We can only either use DMA for both Tx and Rx or not use it at all */
427         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
429
430                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
431                                                         pdata->slave_id_tx);
432                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
433                                                         pdata->slave_id_rx);
434         } else {
435                 host->chan_tx = dma_request_chan(dev, "tx");
436                 if (IS_ERR(host->chan_tx))
437                         host->chan_tx = NULL;
438                 host->chan_rx = dma_request_chan(dev, "rx");
439                 if (IS_ERR(host->chan_rx))
440                         host->chan_rx = NULL;
441         }
442
443         if (!host->chan_tx || !host->chan_rx ||
444             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
445             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
446                 goto error;
447
448         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
449                 host->chan_rx);
450
451         return;
452
453 error:
454         if (host->chan_tx)
455                 dma_release_channel(host->chan_tx);
456         if (host->chan_rx)
457                 dma_release_channel(host->chan_rx);
458         host->chan_tx = host->chan_rx = NULL;
459 }
460
461 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
462 {
463         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
464         /* Descriptors are freed automatically */
465         if (host->chan_tx) {
466                 struct dma_chan *chan = host->chan_tx;
467                 host->chan_tx = NULL;
468                 dma_release_channel(chan);
469         }
470         if (host->chan_rx) {
471                 struct dma_chan *chan = host->chan_rx;
472                 host->chan_rx = NULL;
473                 dma_release_channel(chan);
474         }
475
476         host->dma_active = false;
477 }
478
479 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
480 {
481         struct device *dev = sh_mmcif_host_to_dev(host);
482         struct sh_mmcif_plat_data *p = dev->platform_data;
483         bool sup_pclk = p ? p->sup_pclk : false;
484         unsigned int current_clk = clk_get_rate(host->clk);
485         unsigned int clkdiv;
486
487         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
488         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
489
490         if (!clk)
491                 return;
492
493         if (host->clkdiv_map) {
494                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
495                 int i;
496
497                 clkdiv = 0;
498                 diff_min = ~0;
499                 best_freq = 0;
500                 for (i = 31; i >= 0; i--) {
501                         if (!((1 << i) & host->clkdiv_map))
502                                 continue;
503
504                         /*
505                          * clk = parent_freq / div
506                          * -> parent_freq = clk x div
507                          */
508
509                         div = 1 << (i + 1);
510                         freq = clk_round_rate(host->clk, clk * div);
511                         myclk = freq / div;
512                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
513
514                         if (diff <= diff_min) {
515                                 best_freq = freq;
516                                 clkdiv = i;
517                                 diff_min = diff;
518                         }
519                 }
520
521                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
522                         (best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
523
524                 clk_set_rate(host->clk, best_freq);
525                 clkdiv = clkdiv << 16;
526         } else if (sup_pclk && clk == current_clk) {
527                 clkdiv = CLK_SUP_PCLK;
528         } else {
529                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
530         }
531
532         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
533         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
534 }
535
536 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
537 {
538         u32 tmp;
539
540         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
541
542         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
543         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
544         if (host->ccs_enable)
545                 tmp |= SCCSTO_29;
546         if (host->clk_ctrl2_enable)
547                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
548         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
549                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
550         /* byte swap on */
551         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
552 }
553
554 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
555 {
556         struct device *dev = sh_mmcif_host_to_dev(host);
557         u32 state1, state2;
558         int ret, timeout;
559
560         host->sd_error = false;
561
562         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
563         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
564         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
565         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
566
567         if (state1 & STS1_CMDSEQ) {
568                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
569                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
570                 for (timeout = 10000; timeout; timeout--) {
571                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
572                               & STS1_CMDSEQ))
573                                 break;
574                         mdelay(1);
575                 }
576                 if (!timeout) {
577                         dev_err(dev,
578                                 "Forced end of command sequence timeout err\n");
579                         return -EIO;
580                 }
581                 sh_mmcif_sync_reset(host);
582                 dev_dbg(dev, "Forced end of command sequence\n");
583                 return -EIO;
584         }
585
586         if (state2 & STS2_CRC_ERR) {
587                 dev_err(dev, " CRC error: state %u, wait %u\n",
588                         host->state, host->wait_for);
589                 ret = -EIO;
590         } else if (state2 & STS2_TIMEOUT_ERR) {
591                 dev_err(dev, " Timeout: state %u, wait %u\n",
592                         host->state, host->wait_for);
593                 ret = -ETIMEDOUT;
594         } else {
595                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
596                         host->state, host->wait_for);
597                 ret = -EIO;
598         }
599         return ret;
600 }
601
602 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
603                                  struct mmc_request *mrq)
604 {
605         struct mmc_data *data = mrq->data;
606
607         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
608                            BLOCK_SIZE_MASK) + 3;
609
610         sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
611                        SG_MITER_TO_SG);
612
613         host->wait_for = MMCIF_WAIT_FOR_READ;
614
615         /* buf read enable */
616         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
617 }
618
619 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
620 {
621         struct sg_mapping_iter *sgm = &host->sg_miter;
622         struct device *dev = sh_mmcif_host_to_dev(host);
623         struct mmc_data *data = host->mrq->data;
624         u32 *p;
625         int i;
626
627         if (host->sd_error) {
628                 sg_miter_stop(sgm);
629                 data->error = sh_mmcif_error_manage(host);
630                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
631                 return false;
632         }
633
634         if (!sg_miter_next(sgm)) {
635                 /* This should not happen on single blocks */
636                 sg_miter_stop(sgm);
637                 return false;
638         }
639
640         p = sgm->addr;
641
642         for (i = 0; i < host->blocksize / 4; i++)
643                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
644
645         sg_miter_stop(&host->sg_miter);
646
647         /* buffer read end */
648         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
649         host->wait_for = MMCIF_WAIT_FOR_READ_END;
650
651         return true;
652 }
653
654 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
655                                 struct mmc_request *mrq)
656 {
657         struct sg_mapping_iter *sgm = &host->sg_miter;
658         struct mmc_data *data = mrq->data;
659
660         if (!data->sg_len || !data->sg->length)
661                 return;
662
663         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
664                 BLOCK_SIZE_MASK;
665
666         sg_miter_start(sgm, data->sg, data->sg_len,
667                        SG_MITER_TO_SG);
668
669         /* Advance to the first sglist entry */
670         if (!sg_miter_next(sgm)) {
671                 sg_miter_stop(sgm);
672                 return;
673         }
674
675         host->wait_for = MMCIF_WAIT_FOR_MREAD;
676
677         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
678 }
679
680 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
681 {
682         struct sg_mapping_iter *sgm = &host->sg_miter;
683         struct device *dev = sh_mmcif_host_to_dev(host);
684         struct mmc_data *data = host->mrq->data;
685         u32 *p;
686         int i;
687
688         if (host->sd_error) {
689                 sg_miter_stop(sgm);
690                 data->error = sh_mmcif_error_manage(host);
691                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
692                 return false;
693         }
694
695         p = sgm->addr;
696
697         for (i = 0; i < host->blocksize / 4; i++)
698                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
699
700         sgm->consumed = host->blocksize;
701
702         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
703
704         if (!sg_miter_next(sgm)) {
705                 sg_miter_stop(sgm);
706                 return false;
707         }
708
709         return true;
710 }
711
712 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
713                                         struct mmc_request *mrq)
714 {
715         struct mmc_data *data = mrq->data;
716
717         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
718                            BLOCK_SIZE_MASK) + 3;
719
720         sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
721                        SG_MITER_FROM_SG);
722
723         host->wait_for = MMCIF_WAIT_FOR_WRITE;
724
725         /* buf write enable */
726         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
727 }
728
729 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
730 {
731         struct sg_mapping_iter *sgm = &host->sg_miter;
732         struct device *dev = sh_mmcif_host_to_dev(host);
733         struct mmc_data *data = host->mrq->data;
734         u32 *p;
735         int i;
736
737         if (host->sd_error) {
738                 sg_miter_stop(sgm);
739                 data->error = sh_mmcif_error_manage(host);
740                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
741                 return false;
742         }
743
744         if (!sg_miter_next(sgm)) {
745                 /* This should not happen on single blocks */
746                 sg_miter_stop(sgm);
747                 return false;
748         }
749
750         p = sgm->addr;
751
752         for (i = 0; i < host->blocksize / 4; i++)
753                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
754
755         sg_miter_stop(&host->sg_miter);
756
757         /* buffer write end */
758         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
759         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
760
761         return true;
762 }
763
764 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
765                                 struct mmc_request *mrq)
766 {
767         struct sg_mapping_iter *sgm = &host->sg_miter;
768         struct mmc_data *data = mrq->data;
769
770         if (!data->sg_len || !data->sg->length)
771                 return;
772
773         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
774                 BLOCK_SIZE_MASK;
775
776         sg_miter_start(sgm, data->sg, data->sg_len,
777                        SG_MITER_FROM_SG);
778
779         /* Advance to the first sglist entry */
780         if (!sg_miter_next(sgm)) {
781                 sg_miter_stop(sgm);
782                 return;
783         }
784
785         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
786
787         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
788 }
789
790 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
791 {
792         struct sg_mapping_iter *sgm = &host->sg_miter;
793         struct device *dev = sh_mmcif_host_to_dev(host);
794         struct mmc_data *data = host->mrq->data;
795         u32 *p;
796         int i;
797
798         if (host->sd_error) {
799                 sg_miter_stop(sgm);
800                 data->error = sh_mmcif_error_manage(host);
801                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
802                 return false;
803         }
804
805         p = sgm->addr;
806
807         for (i = 0; i < host->blocksize / 4; i++)
808                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
809
810         sgm->consumed = host->blocksize;
811
812         if (!sg_miter_next(sgm)) {
813                 sg_miter_stop(sgm);
814                 return false;
815         }
816
817         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
818
819         return true;
820 }
821
822 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
823                                                 struct mmc_command *cmd)
824 {
825         if (cmd->flags & MMC_RSP_136) {
826                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
827                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
828                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
829                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
830         } else
831                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
832 }
833
834 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
835                                                 struct mmc_command *cmd)
836 {
837         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
838 }
839
840 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
841                             struct mmc_request *mrq)
842 {
843         struct device *dev = sh_mmcif_host_to_dev(host);
844         struct mmc_data *data = mrq->data;
845         struct mmc_command *cmd = mrq->cmd;
846         u32 opc = cmd->opcode;
847         u32 tmp = 0;
848
849         /* Response Type check */
850         switch (mmc_resp_type(cmd)) {
851         case MMC_RSP_NONE:
852                 tmp |= CMD_SET_RTYP_NO;
853                 break;
854         case MMC_RSP_R1:
855         case MMC_RSP_R3:
856                 tmp |= CMD_SET_RTYP_6B;
857                 break;
858         case MMC_RSP_R1B:
859                 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
860                 break;
861         case MMC_RSP_R2:
862                 tmp |= CMD_SET_RTYP_17B;
863                 break;
864         default:
865                 dev_err(dev, "Unsupported response type.\n");
866                 break;
867         }
868
869         /* WDAT / DATW */
870         if (data) {
871                 tmp |= CMD_SET_WDAT;
872                 switch (host->bus_width) {
873                 case MMC_BUS_WIDTH_1:
874                         tmp |= CMD_SET_DATW_1;
875                         break;
876                 case MMC_BUS_WIDTH_4:
877                         tmp |= CMD_SET_DATW_4;
878                         break;
879                 case MMC_BUS_WIDTH_8:
880                         tmp |= CMD_SET_DATW_8;
881                         break;
882                 default:
883                         dev_err(dev, "Unsupported bus width.\n");
884                         break;
885                 }
886                 switch (host->timing) {
887                 case MMC_TIMING_MMC_DDR52:
888                         /*
889                          * MMC core will only set this timing, if the host
890                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
891                          * capability. MMCIF implementations with this
892                          * capability, e.g. sh73a0, will have to set it
893                          * in their platform data.
894                          */
895                         tmp |= CMD_SET_DARS;
896                         break;
897                 }
898         }
899         /* DWEN */
900         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
901                 tmp |= CMD_SET_DWEN;
902         /* CMLTE/CMD12EN */
903         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
904                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
905                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
906                                 data->blocks << 16);
907         }
908         /* RIDXC[1:0] check bits */
909         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
910             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
911                 tmp |= CMD_SET_RIDXC_BITS;
912         /* RCRC7C[1:0] check bits */
913         if (opc == MMC_SEND_OP_COND)
914                 tmp |= CMD_SET_CRC7C_BITS;
915         /* RCRC7C[1:0] internal CRC7 */
916         if (opc == MMC_ALL_SEND_CID ||
917                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
918                 tmp |= CMD_SET_CRC7C_INTERNAL;
919
920         return (opc << 24) | tmp;
921 }
922
923 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
924                                struct mmc_request *mrq, u32 opc)
925 {
926         struct device *dev = sh_mmcif_host_to_dev(host);
927
928         switch (opc) {
929         case MMC_READ_MULTIPLE_BLOCK:
930                 sh_mmcif_multi_read(host, mrq);
931                 return 0;
932         case MMC_WRITE_MULTIPLE_BLOCK:
933                 sh_mmcif_multi_write(host, mrq);
934                 return 0;
935         case MMC_WRITE_BLOCK:
936                 sh_mmcif_single_write(host, mrq);
937                 return 0;
938         case MMC_READ_SINGLE_BLOCK:
939         case MMC_SEND_EXT_CSD:
940                 sh_mmcif_single_read(host, mrq);
941                 return 0;
942         default:
943                 dev_err(dev, "Unsupported CMD%d\n", opc);
944                 return -EINVAL;
945         }
946 }
947
948 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
949                                struct mmc_request *mrq)
950 {
951         struct mmc_command *cmd = mrq->cmd;
952         u32 opc;
953         u32 mask = 0;
954         unsigned long flags;
955
956         if (cmd->flags & MMC_RSP_BUSY)
957                 mask = MASK_START_CMD | MASK_MRBSYE;
958         else
959                 mask = MASK_START_CMD | MASK_MCRSPE;
960
961         if (host->ccs_enable)
962                 mask |= MASK_MCCSTO;
963
964         if (mrq->data) {
965                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
966                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
967                                 mrq->data->blksz);
968         }
969         opc = sh_mmcif_set_cmd(host, mrq);
970
971         if (host->ccs_enable)
972                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
973         else
974                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
975         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
976         /* set arg */
977         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
978         /* set cmd */
979         spin_lock_irqsave(&host->lock, flags);
980         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
981
982         host->wait_for = MMCIF_WAIT_FOR_CMD;
983         schedule_delayed_work(&host->timeout_work, host->timeout);
984         spin_unlock_irqrestore(&host->lock, flags);
985 }
986
987 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
988                               struct mmc_request *mrq)
989 {
990         struct device *dev = sh_mmcif_host_to_dev(host);
991
992         switch (mrq->cmd->opcode) {
993         case MMC_READ_MULTIPLE_BLOCK:
994                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
995                 break;
996         case MMC_WRITE_MULTIPLE_BLOCK:
997                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
998                 break;
999         default:
1000                 dev_err(dev, "unsupported stop cmd\n");
1001                 mrq->stop->error = sh_mmcif_error_manage(host);
1002                 return;
1003         }
1004
1005         host->wait_for = MMCIF_WAIT_FOR_STOP;
1006 }
1007
1008 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
1009 {
1010         struct sh_mmcif_host *host = mmc_priv(mmc);
1011         struct device *dev = sh_mmcif_host_to_dev(host);
1012         unsigned long flags;
1013
1014         spin_lock_irqsave(&host->lock, flags);
1015         if (host->state != STATE_IDLE) {
1016                 dev_dbg(dev, "%s() rejected, state %u\n",
1017                         __func__, host->state);
1018                 spin_unlock_irqrestore(&host->lock, flags);
1019                 mrq->cmd->error = -EAGAIN;
1020                 mmc_request_done(mmc, mrq);
1021                 return;
1022         }
1023
1024         host->state = STATE_REQUEST;
1025         spin_unlock_irqrestore(&host->lock, flags);
1026
1027         host->mrq = mrq;
1028
1029         sh_mmcif_start_cmd(host, mrq);
1030 }
1031
1032 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1033 {
1034         struct device *dev = sh_mmcif_host_to_dev(host);
1035
1036         if (host->mmc->f_max) {
1037                 unsigned int f_max, f_min = 0, f_min_old;
1038
1039                 f_max = host->mmc->f_max;
1040                 for (f_min_old = f_max; f_min_old > 2;) {
1041                         f_min = clk_round_rate(host->clk, f_min_old / 2);
1042                         if (f_min == f_min_old)
1043                                 break;
1044                         f_min_old = f_min;
1045                 }
1046
1047                 /*
1048                  * This driver assumes this SoC is R-Car Gen2 or later
1049                  */
1050                 host->clkdiv_map = 0x3ff;
1051
1052                 host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1053                 host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1054         } else {
1055                 unsigned int clk = clk_get_rate(host->clk);
1056
1057                 host->mmc->f_max = clk / 2;
1058                 host->mmc->f_min = clk / 512;
1059         }
1060
1061         dev_dbg(dev, "clk max/min = %d/%d\n",
1062                 host->mmc->f_max, host->mmc->f_min);
1063 }
1064
1065 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1066 {
1067         struct sh_mmcif_host *host = mmc_priv(mmc);
1068         struct device *dev = sh_mmcif_host_to_dev(host);
1069         unsigned long flags;
1070
1071         spin_lock_irqsave(&host->lock, flags);
1072         if (host->state != STATE_IDLE) {
1073                 dev_dbg(dev, "%s() rejected, state %u\n",
1074                         __func__, host->state);
1075                 spin_unlock_irqrestore(&host->lock, flags);
1076                 return;
1077         }
1078
1079         host->state = STATE_IOS;
1080         spin_unlock_irqrestore(&host->lock, flags);
1081
1082         switch (ios->power_mode) {
1083         case MMC_POWER_UP:
1084                 if (!IS_ERR(mmc->supply.vmmc))
1085                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1086                 if (!host->power) {
1087                         clk_prepare_enable(host->clk);
1088                         pm_runtime_get_sync(dev);
1089                         sh_mmcif_sync_reset(host);
1090                         sh_mmcif_request_dma(host);
1091                         host->power = true;
1092                 }
1093                 break;
1094         case MMC_POWER_OFF:
1095                 if (!IS_ERR(mmc->supply.vmmc))
1096                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1097                 if (host->power) {
1098                         sh_mmcif_clock_control(host, 0);
1099                         sh_mmcif_release_dma(host);
1100                         pm_runtime_put(dev);
1101                         clk_disable_unprepare(host->clk);
1102                         host->power = false;
1103                 }
1104                 break;
1105         case MMC_POWER_ON:
1106                 sh_mmcif_clock_control(host, ios->clock);
1107                 break;
1108         }
1109
1110         host->timing = ios->timing;
1111         host->bus_width = ios->bus_width;
1112         host->state = STATE_IDLE;
1113 }
1114
1115 static const struct mmc_host_ops sh_mmcif_ops = {
1116         .request        = sh_mmcif_request,
1117         .set_ios        = sh_mmcif_set_ios,
1118         .get_cd         = mmc_gpio_get_cd,
1119 };
1120
1121 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1122 {
1123         struct mmc_command *cmd = host->mrq->cmd;
1124         struct mmc_data *data = host->mrq->data;
1125         struct device *dev = sh_mmcif_host_to_dev(host);
1126         long time;
1127
1128         if (host->sd_error) {
1129                 switch (cmd->opcode) {
1130                 case MMC_ALL_SEND_CID:
1131                 case MMC_SELECT_CARD:
1132                 case MMC_APP_CMD:
1133                         cmd->error = -ETIMEDOUT;
1134                         break;
1135                 default:
1136                         cmd->error = sh_mmcif_error_manage(host);
1137                         break;
1138                 }
1139                 dev_dbg(dev, "CMD%d error %d\n",
1140                         cmd->opcode, cmd->error);
1141                 host->sd_error = false;
1142                 return false;
1143         }
1144         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1145                 cmd->error = 0;
1146                 return false;
1147         }
1148
1149         sh_mmcif_get_response(host, cmd);
1150
1151         if (!data)
1152                 return false;
1153
1154         /*
1155          * Completion can be signalled from DMA callback and error, so, have to
1156          * reset here, before setting .dma_active
1157          */
1158         init_completion(&host->dma_complete);
1159
1160         if (data->flags & MMC_DATA_READ) {
1161                 if (host->chan_rx)
1162                         sh_mmcif_start_dma_rx(host);
1163         } else {
1164                 if (host->chan_tx)
1165                         sh_mmcif_start_dma_tx(host);
1166         }
1167
1168         if (!host->dma_active) {
1169                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1170                 return !data->error;
1171         }
1172
1173         /* Running in the IRQ thread, can sleep */
1174         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1175                                                          host->timeout);
1176
1177         if (data->flags & MMC_DATA_READ)
1178                 dma_unmap_sg(host->chan_rx->device->dev,
1179                              data->sg, data->sg_len,
1180                              DMA_FROM_DEVICE);
1181         else
1182                 dma_unmap_sg(host->chan_tx->device->dev,
1183                              data->sg, data->sg_len,
1184                              DMA_TO_DEVICE);
1185
1186         if (host->sd_error) {
1187                 dev_err(host->mmc->parent,
1188                         "Error IRQ while waiting for DMA completion!\n");
1189                 /* Woken up by an error IRQ: abort DMA */
1190                 data->error = sh_mmcif_error_manage(host);
1191         } else if (!time) {
1192                 dev_err(host->mmc->parent, "DMA timeout!\n");
1193                 data->error = -ETIMEDOUT;
1194         } else if (time < 0) {
1195                 dev_err(host->mmc->parent,
1196                         "wait_for_completion_...() error %ld!\n", time);
1197                 data->error = time;
1198         }
1199         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1200                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1201         host->dma_active = false;
1202
1203         if (data->error) {
1204                 data->bytes_xfered = 0;
1205                 /* Abort DMA */
1206                 if (data->flags & MMC_DATA_READ)
1207                         dmaengine_terminate_sync(host->chan_rx);
1208                 else
1209                         dmaengine_terminate_sync(host->chan_tx);
1210         }
1211
1212         return false;
1213 }
1214
1215 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1216 {
1217         struct sh_mmcif_host *host = dev_id;
1218         struct mmc_request *mrq;
1219         struct device *dev = sh_mmcif_host_to_dev(host);
1220         bool wait = false;
1221         unsigned long flags;
1222         int wait_work;
1223
1224         spin_lock_irqsave(&host->lock, flags);
1225         wait_work = host->wait_for;
1226         spin_unlock_irqrestore(&host->lock, flags);
1227
1228         cancel_delayed_work_sync(&host->timeout_work);
1229
1230         mutex_lock(&host->thread_lock);
1231
1232         mrq = host->mrq;
1233         if (!mrq) {
1234                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1235                         host->state, host->wait_for);
1236                 mutex_unlock(&host->thread_lock);
1237                 return IRQ_HANDLED;
1238         }
1239
1240         /*
1241          * All handlers return true, if processing continues, and false, if the
1242          * request has to be completed - successfully or not
1243          */
1244         switch (wait_work) {
1245         case MMCIF_WAIT_FOR_REQUEST:
1246                 /* We're too late, the timeout has already kicked in */
1247                 mutex_unlock(&host->thread_lock);
1248                 return IRQ_HANDLED;
1249         case MMCIF_WAIT_FOR_CMD:
1250                 /* Wait for data? */
1251                 wait = sh_mmcif_end_cmd(host);
1252                 break;
1253         case MMCIF_WAIT_FOR_MREAD:
1254                 /* Wait for more data? */
1255                 wait = sh_mmcif_mread_block(host);
1256                 break;
1257         case MMCIF_WAIT_FOR_READ:
1258                 /* Wait for data end? */
1259                 wait = sh_mmcif_read_block(host);
1260                 break;
1261         case MMCIF_WAIT_FOR_MWRITE:
1262                 /* Wait data to write? */
1263                 wait = sh_mmcif_mwrite_block(host);
1264                 break;
1265         case MMCIF_WAIT_FOR_WRITE:
1266                 /* Wait for data end? */
1267                 wait = sh_mmcif_write_block(host);
1268                 break;
1269         case MMCIF_WAIT_FOR_STOP:
1270                 if (host->sd_error) {
1271                         mrq->stop->error = sh_mmcif_error_manage(host);
1272                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1273                         break;
1274                 }
1275                 sh_mmcif_get_cmd12response(host, mrq->stop);
1276                 mrq->stop->error = 0;
1277                 break;
1278         case MMCIF_WAIT_FOR_READ_END:
1279         case MMCIF_WAIT_FOR_WRITE_END:
1280                 if (host->sd_error) {
1281                         mrq->data->error = sh_mmcif_error_manage(host);
1282                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1283                 }
1284                 break;
1285         default:
1286                 BUG();
1287         }
1288
1289         if (wait) {
1290                 schedule_delayed_work(&host->timeout_work, host->timeout);
1291                 /* Wait for more data */
1292                 mutex_unlock(&host->thread_lock);
1293                 return IRQ_HANDLED;
1294         }
1295
1296         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1297                 struct mmc_data *data = mrq->data;
1298                 if (!mrq->cmd->error && data && !data->error)
1299                         data->bytes_xfered =
1300                                 data->blocks * data->blksz;
1301
1302                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1303                         sh_mmcif_stop_cmd(host, mrq);
1304                         if (!mrq->stop->error) {
1305                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1306                                 mutex_unlock(&host->thread_lock);
1307                                 return IRQ_HANDLED;
1308                         }
1309                 }
1310         }
1311
1312         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1313         host->state = STATE_IDLE;
1314         host->mrq = NULL;
1315         mmc_request_done(host->mmc, mrq);
1316
1317         mutex_unlock(&host->thread_lock);
1318
1319         return IRQ_HANDLED;
1320 }
1321
1322 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1323 {
1324         struct sh_mmcif_host *host = dev_id;
1325         struct device *dev = sh_mmcif_host_to_dev(host);
1326         u32 state, mask;
1327
1328         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1329         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1330         if (host->ccs_enable)
1331                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1332         else
1333                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1334         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1335
1336         if (state & ~MASK_CLEAN)
1337                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1338                         state);
1339
1340         if (state & INT_ERR_STS || state & ~INT_ALL) {
1341                 host->sd_error = true;
1342                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1343         }
1344         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1345                 if (!host->mrq)
1346                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1347                 if (!host->dma_active)
1348                         return IRQ_WAKE_THREAD;
1349                 else if (host->sd_error)
1350                         sh_mmcif_dma_complete(host);
1351         } else {
1352                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1353         }
1354
1355         return IRQ_HANDLED;
1356 }
1357
1358 static void sh_mmcif_timeout_work(struct work_struct *work)
1359 {
1360         struct delayed_work *d = to_delayed_work(work);
1361         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1362         struct mmc_request *mrq = host->mrq;
1363         struct device *dev = sh_mmcif_host_to_dev(host);
1364         unsigned long flags;
1365
1366         if (host->dying)
1367                 /* Don't run after mmc_remove_host() */
1368                 return;
1369
1370         spin_lock_irqsave(&host->lock, flags);
1371         if (host->state == STATE_IDLE) {
1372                 spin_unlock_irqrestore(&host->lock, flags);
1373                 return;
1374         }
1375
1376         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1377                 host->wait_for, mrq->cmd->opcode);
1378
1379         host->state = STATE_TIMEOUT;
1380         spin_unlock_irqrestore(&host->lock, flags);
1381
1382         /*
1383          * Handle races with cancel_delayed_work(), unless
1384          * cancel_delayed_work_sync() is used
1385          */
1386         switch (host->wait_for) {
1387         case MMCIF_WAIT_FOR_CMD:
1388                 mrq->cmd->error = sh_mmcif_error_manage(host);
1389                 break;
1390         case MMCIF_WAIT_FOR_STOP:
1391                 mrq->stop->error = sh_mmcif_error_manage(host);
1392                 break;
1393         case MMCIF_WAIT_FOR_MREAD:
1394         case MMCIF_WAIT_FOR_MWRITE:
1395         case MMCIF_WAIT_FOR_READ:
1396         case MMCIF_WAIT_FOR_WRITE:
1397         case MMCIF_WAIT_FOR_READ_END:
1398         case MMCIF_WAIT_FOR_WRITE_END:
1399                 mrq->data->error = sh_mmcif_error_manage(host);
1400                 break;
1401         default:
1402                 BUG();
1403         }
1404
1405         host->state = STATE_IDLE;
1406         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1407         host->mrq = NULL;
1408         mmc_request_done(host->mmc, mrq);
1409 }
1410
1411 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1412 {
1413         struct device *dev = sh_mmcif_host_to_dev(host);
1414         struct sh_mmcif_plat_data *pd = dev->platform_data;
1415         struct mmc_host *mmc = host->mmc;
1416
1417         mmc_regulator_get_supply(mmc);
1418
1419         if (!pd)
1420                 return;
1421
1422         if (!mmc->ocr_avail)
1423                 mmc->ocr_avail = pd->ocr;
1424         else if (pd->ocr)
1425                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1426 }
1427
1428 static int sh_mmcif_probe(struct platform_device *pdev)
1429 {
1430         int ret = 0, irq[2];
1431         struct mmc_host *mmc;
1432         struct sh_mmcif_host *host;
1433         struct device *dev = &pdev->dev;
1434         struct sh_mmcif_plat_data *pd = dev->platform_data;
1435         void __iomem *reg;
1436         const char *name;
1437
1438         irq[0] = platform_get_irq(pdev, 0);
1439         irq[1] = platform_get_irq_optional(pdev, 1);
1440         if (irq[0] < 0)
1441                 return irq[0];
1442
1443         reg = devm_platform_ioremap_resource(pdev, 0);
1444         if (IS_ERR(reg))
1445                 return PTR_ERR(reg);
1446
1447         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1448         if (!mmc)
1449                 return -ENOMEM;
1450
1451         ret = mmc_of_parse(mmc);
1452         if (ret < 0)
1453                 goto err_host;
1454
1455         host            = mmc_priv(mmc);
1456         host->mmc       = mmc;
1457         host->addr      = reg;
1458         host->timeout   = msecs_to_jiffies(10000);
1459         host->ccs_enable = true;
1460         host->clk_ctrl2_enable = false;
1461
1462         host->pd = pdev;
1463
1464         spin_lock_init(&host->lock);
1465
1466         mmc->ops = &sh_mmcif_ops;
1467         sh_mmcif_init_ocr(host);
1468
1469         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1470         mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1471         mmc->max_busy_timeout = 10000;
1472
1473         if (pd && pd->caps)
1474                 mmc->caps |= pd->caps;
1475         mmc->max_segs = 32;
1476         mmc->max_blk_size = 512;
1477         mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1478         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1479         mmc->max_seg_size = mmc->max_req_size;
1480
1481         platform_set_drvdata(pdev, host);
1482
1483         host->clk = devm_clk_get(dev, NULL);
1484         if (IS_ERR(host->clk)) {
1485                 ret = PTR_ERR(host->clk);
1486                 dev_err(dev, "cannot get clock: %d\n", ret);
1487                 goto err_host;
1488         }
1489
1490         ret = clk_prepare_enable(host->clk);
1491         if (ret < 0)
1492                 goto err_host;
1493
1494         sh_mmcif_clk_setup(host);
1495
1496         pm_runtime_enable(dev);
1497         host->power = false;
1498
1499         ret = pm_runtime_get_sync(dev);
1500         if (ret < 0)
1501                 goto err_clk;
1502
1503         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1504
1505         sh_mmcif_sync_reset(host);
1506         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1507
1508         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1509         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1510                                         sh_mmcif_irqt, 0, name, host);
1511         if (ret) {
1512                 dev_err(dev, "request_irq error (%s)\n", name);
1513                 goto err_clk;
1514         }
1515         if (irq[1] >= 0) {
1516                 ret = devm_request_threaded_irq(dev, irq[1],
1517                                                 sh_mmcif_intr, sh_mmcif_irqt,
1518                                                 0, "sh_mmc:int", host);
1519                 if (ret) {
1520                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1521                         goto err_clk;
1522                 }
1523         }
1524
1525         mutex_init(&host->thread_lock);
1526
1527         ret = mmc_add_host(mmc);
1528         if (ret < 0)
1529                 goto err_clk;
1530
1531         dev_pm_qos_expose_latency_limit(dev, 100);
1532
1533         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1534                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1535                  clk_get_rate(host->clk) / 1000000UL);
1536
1537         pm_runtime_put(dev);
1538         clk_disable_unprepare(host->clk);
1539         return ret;
1540
1541 err_clk:
1542         clk_disable_unprepare(host->clk);
1543         pm_runtime_put_sync(dev);
1544         pm_runtime_disable(dev);
1545 err_host:
1546         mmc_free_host(mmc);
1547         return ret;
1548 }
1549
1550 static void sh_mmcif_remove(struct platform_device *pdev)
1551 {
1552         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1553
1554         host->dying = true;
1555         clk_prepare_enable(host->clk);
1556         pm_runtime_get_sync(&pdev->dev);
1557
1558         dev_pm_qos_hide_latency_limit(&pdev->dev);
1559
1560         mmc_remove_host(host->mmc);
1561         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1562
1563         /*
1564          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1565          * mmc_remove_host() call above. But swapping order doesn't help either
1566          * (a query on the linux-mmc mailing list didn't bring any replies).
1567          */
1568         cancel_delayed_work_sync(&host->timeout_work);
1569
1570         clk_disable_unprepare(host->clk);
1571         mmc_free_host(host->mmc);
1572         pm_runtime_put_sync(&pdev->dev);
1573         pm_runtime_disable(&pdev->dev);
1574 }
1575
1576 #ifdef CONFIG_PM_SLEEP
1577 static int sh_mmcif_suspend(struct device *dev)
1578 {
1579         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1580
1581         pm_runtime_get_sync(dev);
1582         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1583         pm_runtime_put(dev);
1584
1585         return 0;
1586 }
1587
1588 static int sh_mmcif_resume(struct device *dev)
1589 {
1590         return 0;
1591 }
1592 #endif
1593
1594 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1595         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1596 };
1597
1598 static struct platform_driver sh_mmcif_driver = {
1599         .probe          = sh_mmcif_probe,
1600         .remove         = sh_mmcif_remove,
1601         .driver         = {
1602                 .name   = DRIVER_NAME,
1603                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1604                 .pm     = &sh_mmcif_dev_pm_ops,
1605                 .of_match_table = sh_mmcif_of_match,
1606         },
1607 };
1608
1609 module_platform_driver(sh_mmcif_driver);
1610
1611 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1612 MODULE_LICENSE("GPL v2");
1613 MODULE_ALIAS("platform:" DRIVER_NAME);
1614 MODULE_AUTHOR("Yusuke Goda <[email protected]>");
This page took 0.12311 seconds and 4 git commands to generate.