]> Git Repo - J-linux.git/blob - drivers/mmc/host/mmci_stm32_sdmmc.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / mmc / host / mmci_stm32_sdmmc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4  * Author: [email protected] for STMicroelectronics.
5  */
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/iopoll.h>
10 #include <linux/mmc/host.h>
11 #include <linux/mmc/card.h>
12 #include <linux/of_address.h>
13 #include <linux/reset.h>
14 #include <linux/scatterlist.h>
15 #include "mmci.h"
16
17 #define SDMMC_LLI_BUF_LEN       PAGE_SIZE
18
19 #define DLYB_CR                 0x0
20 #define DLYB_CR_DEN             BIT(0)
21 #define DLYB_CR_SEN             BIT(1)
22
23 #define DLYB_CFGR               0x4
24 #define DLYB_CFGR_SEL_MASK      GENMASK(3, 0)
25 #define DLYB_CFGR_UNIT_MASK     GENMASK(14, 8)
26 #define DLYB_CFGR_LNG_MASK      GENMASK(27, 16)
27 #define DLYB_CFGR_LNGF          BIT(31)
28
29 #define DLYB_NB_DELAY           11
30 #define DLYB_CFGR_SEL_MAX       (DLYB_NB_DELAY + 1)
31 #define DLYB_CFGR_UNIT_MAX      127
32
33 #define DLYB_LNG_TIMEOUT_US     1000
34 #define SDMMC_VSWEND_TIMEOUT_US 10000
35
36 #define SYSCFG_DLYBSD_CR        0x0
37 #define DLYBSD_CR_EN            BIT(0)
38 #define DLYBSD_CR_RXTAPSEL_MASK GENMASK(6, 1)
39 #define DLYBSD_TAPSEL_NB        32
40 #define DLYBSD_BYP_EN           BIT(16)
41 #define DLYBSD_BYP_CMD          GENMASK(21, 17)
42 #define DLYBSD_ANTIGLITCH_EN    BIT(22)
43
44 #define SYSCFG_DLYBSD_SR        0x4
45 #define DLYBSD_SR_LOCK          BIT(0)
46 #define DLYBSD_SR_RXTAPSEL_ACK  BIT(1)
47
48 #define DLYBSD_TIMEOUT_1S_IN_US 1000000
49
50 struct sdmmc_lli_desc {
51         u32 idmalar;
52         u32 idmabase;
53         u32 idmasize;
54 };
55
56 struct sdmmc_idma {
57         dma_addr_t sg_dma;
58         void *sg_cpu;
59         dma_addr_t bounce_dma_addr;
60         void *bounce_buf;
61         bool use_bounce_buffer;
62 };
63
64 struct sdmmc_dlyb;
65
66 struct sdmmc_tuning_ops {
67         int (*dlyb_enable)(struct sdmmc_dlyb *dlyb);
68         void (*set_input_ck)(struct sdmmc_dlyb *dlyb);
69         int (*tuning_prepare)(struct mmci_host *host);
70         int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused,
71                        int phase, bool sampler __maybe_unused);
72 };
73
74 struct sdmmc_dlyb {
75         void __iomem *base;
76         u32 unit;
77         u32 max;
78         struct sdmmc_tuning_ops *ops;
79 };
80
81 static int sdmmc_idma_validate_data(struct mmci_host *host,
82                                     struct mmc_data *data)
83 {
84         struct sdmmc_idma *idma = host->dma_priv;
85         struct device *dev = mmc_dev(host->mmc);
86         struct scatterlist *sg;
87         int i;
88
89         /*
90          * idma has constraints on idmabase & idmasize for each element
91          * excepted the last element which has no constraint on idmasize
92          */
93         idma->use_bounce_buffer = false;
94         for_each_sg(data->sg, sg, data->sg_len - 1, i) {
95                 if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
96                     !IS_ALIGNED(sg->length,
97                                 host->variant->stm32_idmabsize_align)) {
98                         dev_dbg(mmc_dev(host->mmc),
99                                 "unaligned scatterlist: ofst:%x length:%d\n",
100                                 data->sg->offset, data->sg->length);
101                         goto use_bounce_buffer;
102                 }
103         }
104
105         if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
106                 dev_dbg(mmc_dev(host->mmc),
107                         "unaligned last scatterlist: ofst:%x length:%d\n",
108                         data->sg->offset, data->sg->length);
109                 goto use_bounce_buffer;
110         }
111
112         return 0;
113
114 use_bounce_buffer:
115         if (!idma->bounce_buf) {
116                 idma->bounce_buf = dmam_alloc_coherent(dev,
117                                                        host->mmc->max_req_size,
118                                                        &idma->bounce_dma_addr,
119                                                        GFP_KERNEL);
120                 if (!idma->bounce_buf) {
121                         dev_err(dev, "Unable to map allocate DMA bounce buffer.\n");
122                         return -ENOMEM;
123                 }
124         }
125
126         idma->use_bounce_buffer = true;
127
128         return 0;
129 }
130
131 static int _sdmmc_idma_prep_data(struct mmci_host *host,
132                                  struct mmc_data *data)
133 {
134         struct sdmmc_idma *idma = host->dma_priv;
135
136         if (idma->use_bounce_buffer) {
137                 if (data->flags & MMC_DATA_WRITE) {
138                         unsigned int xfer_bytes = data->blksz * data->blocks;
139
140                         sg_copy_to_buffer(data->sg, data->sg_len,
141                                           idma->bounce_buf, xfer_bytes);
142                         dma_wmb();
143                 }
144         } else {
145                 int n_elem;
146
147                 n_elem = dma_map_sg(mmc_dev(host->mmc),
148                                     data->sg,
149                                     data->sg_len,
150                                     mmc_get_dma_dir(data));
151
152                 if (!n_elem) {
153                         dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
154                         return -EINVAL;
155                 }
156         }
157         return 0;
158 }
159
160 static int sdmmc_idma_prep_data(struct mmci_host *host,
161                                 struct mmc_data *data, bool next)
162 {
163         /* Check if job is already prepared. */
164         if (!next && data->host_cookie == host->next_cookie)
165                 return 0;
166
167         return _sdmmc_idma_prep_data(host, data);
168 }
169
170 static void sdmmc_idma_unprep_data(struct mmci_host *host,
171                                    struct mmc_data *data, int err)
172 {
173         struct sdmmc_idma *idma = host->dma_priv;
174
175         if (idma->use_bounce_buffer) {
176                 if (data->flags & MMC_DATA_READ) {
177                         unsigned int xfer_bytes = data->blksz * data->blocks;
178
179                         sg_copy_from_buffer(data->sg, data->sg_len,
180                                             idma->bounce_buf, xfer_bytes);
181                 }
182         } else {
183                 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
184                              mmc_get_dma_dir(data));
185         }
186 }
187
188 static int sdmmc_idma_setup(struct mmci_host *host)
189 {
190         struct sdmmc_idma *idma;
191         struct device *dev = mmc_dev(host->mmc);
192
193         idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
194         if (!idma)
195                 return -ENOMEM;
196
197         host->dma_priv = idma;
198
199         if (host->variant->dma_lli) {
200                 idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
201                                                    &idma->sg_dma, GFP_KERNEL);
202                 if (!idma->sg_cpu) {
203                         dev_err(dev, "Failed to alloc IDMA descriptor\n");
204                         return -ENOMEM;
205                 }
206                 host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
207                         sizeof(struct sdmmc_lli_desc);
208                 host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
209
210                 host->mmc->max_req_size = SZ_1M;
211         } else {
212                 host->mmc->max_segs = 1;
213                 host->mmc->max_seg_size = host->mmc->max_req_size;
214         }
215
216         dma_set_max_seg_size(dev, host->mmc->max_seg_size);
217         return 0;
218 }
219
220 static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
221
222 {
223         struct sdmmc_idma *idma = host->dma_priv;
224         struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
225         struct mmc_data *data = host->data;
226         struct scatterlist *sg;
227         int i;
228
229         host->dma_in_progress = true;
230
231         if (!host->variant->dma_lli || data->sg_len == 1 ||
232             idma->use_bounce_buffer) {
233                 u32 dma_addr;
234
235                 if (idma->use_bounce_buffer)
236                         dma_addr = idma->bounce_dma_addr;
237                 else
238                         dma_addr = sg_dma_address(data->sg);
239
240                 writel_relaxed(dma_addr,
241                                host->base + MMCI_STM32_IDMABASE0R);
242                 writel_relaxed(MMCI_STM32_IDMAEN,
243                                host->base + MMCI_STM32_IDMACTRLR);
244                 return 0;
245         }
246
247         for_each_sg(data->sg, sg, data->sg_len, i) {
248                 desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
249                 desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
250                         | MMCI_STM32_ABR;
251                 desc[i].idmabase = sg_dma_address(sg);
252                 desc[i].idmasize = sg_dma_len(sg);
253         }
254
255         /* notice the end of link list */
256         desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
257
258         dma_wmb();
259         writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
260         writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
261         writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
262         writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
263         writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
264                        host->base + MMCI_STM32_IDMACTRLR);
265
266         return 0;
267 }
268
269 static void sdmmc_idma_error(struct mmci_host *host)
270 {
271         struct mmc_data *data = host->data;
272         struct sdmmc_idma *idma = host->dma_priv;
273
274         if (!dma_inprogress(host))
275                 return;
276
277         writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
278         host->dma_in_progress = false;
279         data->host_cookie = 0;
280
281         if (!idma->use_bounce_buffer)
282                 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
283                              mmc_get_dma_dir(data));
284 }
285
286 static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
287 {
288         if (!dma_inprogress(host))
289                 return;
290
291         writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
292         host->dma_in_progress = false;
293
294         if (!data->host_cookie)
295                 sdmmc_idma_unprep_data(host, data, 0);
296 }
297
298 static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
299 {
300         unsigned int clk = 0, ddr = 0;
301
302         if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
303             host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
304                 ddr = MCI_STM32_CLK_DDR;
305
306         /*
307          * cclk = mclk / (2 * clkdiv)
308          * clkdiv 0 => bypass
309          * in ddr mode bypass is not possible
310          */
311         if (desired) {
312                 if (desired >= host->mclk && !ddr) {
313                         host->cclk = host->mclk;
314                 } else {
315                         clk = DIV_ROUND_UP(host->mclk, 2 * desired);
316                         if (clk > MCI_STM32_CLK_CLKDIV_MSK)
317                                 clk = MCI_STM32_CLK_CLKDIV_MSK;
318                         host->cclk = host->mclk / (2 * clk);
319                 }
320         } else {
321                 /*
322                  * while power-on phase the clock can't be define to 0,
323                  * Only power-off and power-cyc deactivate the clock.
324                  * if desired clock is 0, set max divider
325                  */
326                 clk = MCI_STM32_CLK_CLKDIV_MSK;
327                 host->cclk = host->mclk / (2 * clk);
328         }
329
330         /* Set actual clock for debug */
331         if (host->mmc->ios.power_mode == MMC_POWER_ON)
332                 host->mmc->actual_clock = host->cclk;
333         else
334                 host->mmc->actual_clock = 0;
335
336         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
337                 clk |= MCI_STM32_CLK_WIDEBUS_4;
338         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
339                 clk |= MCI_STM32_CLK_WIDEBUS_8;
340
341         clk |= MCI_STM32_CLK_HWFCEN;
342         clk |= host->clk_reg_add;
343         clk |= ddr;
344
345         if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50)
346                 clk |= MCI_STM32_CLK_BUSSPEED;
347
348         mmci_write_clkreg(host, clk);
349 }
350
351 static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb)
352 {
353         if (!dlyb || !dlyb->base)
354                 return;
355
356         /* Output clock = Input clock */
357         writel_relaxed(0, dlyb->base + DLYB_CR);
358 }
359
360 static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
361 {
362         struct mmc_ios ios = host->mmc->ios;
363         struct sdmmc_dlyb *dlyb = host->variant_priv;
364
365         /* adds OF options */
366         pwr = host->pwr_reg_add;
367
368         if (dlyb && dlyb->ops->set_input_ck)
369                 dlyb->ops->set_input_ck(dlyb);
370
371         if (ios.power_mode == MMC_POWER_OFF) {
372                 /* Only a reset could power-off sdmmc */
373                 reset_control_assert(host->rst);
374                 udelay(2);
375                 reset_control_deassert(host->rst);
376
377                 /*
378                  * Set the SDMMC in Power-cycle state.
379                  * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
380                  * are driven low, to prevent the Card from being supplied
381                  * through the signal lines.
382                  */
383                 mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
384         } else if (ios.power_mode == MMC_POWER_ON) {
385                 /*
386                  * After power-off (reset): the irq mask defined in probe
387                  * functionis lost
388                  * ault irq mask (probe) must be activated
389                  */
390                 writel(MCI_IRQENABLE | host->variant->start_err,
391                        host->base + MMCIMASK0);
392
393                 /* preserves voltage switch bits */
394                 pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
395                                         MCI_STM32_VSWITCH);
396
397                 /*
398                  * After a power-cycle state, we must set the SDMMC in
399                  * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
400                  * driven high. Then we can set the SDMMC to Power-on state
401                  */
402                 mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
403                 mdelay(1);
404                 mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
405         }
406 }
407
408 static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
409 {
410         u32 datactrl;
411
412         datactrl = mmci_dctrl_blksz(host);
413
414         if (host->hw_revision >= 3) {
415                 u32 thr = 0;
416
417                 if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
418                     host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
419                         thr = ffs(min_t(unsigned int, host->data->blksz,
420                                         host->variant->fifosize));
421                         thr = min_t(u32, thr, MMCI_STM32_THR_MASK);
422                 }
423
424                 writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR);
425         }
426
427         if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
428             host->data->blocks == 1)
429                 datactrl |= MCI_DPSM_STM32_MODE_SDIO;
430         else if (host->data->stop && !host->mrq->sbc)
431                 datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
432         else
433                 datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
434
435         return datactrl;
436 }
437
438 static bool sdmmc_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
439                                 u32 status, u32 err_msk)
440 {
441         void __iomem *base = host->base;
442         u32 busy_d0, busy_d0end, mask, sdmmc_status;
443
444         mask = readl_relaxed(base + MMCIMASK0);
445         sdmmc_status = readl_relaxed(base + MMCISTATUS);
446         busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
447         busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
448
449         /* complete if there is an error or busy_d0end */
450         if ((status & err_msk) || busy_d0end)
451                 goto complete;
452
453         /*
454          * On response the busy signaling is reflected in the BUSYD0 flag.
455          * if busy_d0 is in-progress we must activate busyd0end interrupt
456          * to wait this completion. Else this request has no busy step.
457          */
458         if (busy_d0) {
459                 if (!host->busy_status) {
460                         writel_relaxed(mask | host->variant->busy_detect_mask,
461                                        base + MMCIMASK0);
462                         host->busy_status = status &
463                                 (MCI_CMDSENT | MCI_CMDRESPEND);
464                 }
465                 return false;
466         }
467
468 complete:
469         if (host->busy_status) {
470                 writel_relaxed(mask & ~host->variant->busy_detect_mask,
471                                base + MMCIMASK0);
472                 host->busy_status = 0;
473         }
474
475         writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
476
477         return true;
478 }
479
480 static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb)
481 {
482         writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
483
484         return 0;
485 }
486
487 static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb,
488                                    int unit, int phase, bool sampler)
489 {
490         u32 cfgr;
491
492         writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
493
494         cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
495                FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
496         writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
497
498         if (!sampler)
499                 writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
500
501         return 0;
502 }
503
504 static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host)
505 {
506         struct sdmmc_dlyb *dlyb = host->variant_priv;
507         u32 cfgr;
508         int i, lng, ret;
509
510         for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
511                 dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true);
512
513                 ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
514                                                  (cfgr & DLYB_CFGR_LNGF),
515                                                  1, DLYB_LNG_TIMEOUT_US);
516                 if (ret) {
517                         dev_warn(mmc_dev(host->mmc),
518                                  "delay line cfg timeout unit:%d cfgr:%d\n",
519                                  i, cfgr);
520                         continue;
521                 }
522
523                 lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
524                 if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
525                         break;
526         }
527
528         if (i > DLYB_CFGR_UNIT_MAX)
529                 return -EINVAL;
530
531         dlyb->unit = i;
532         dlyb->max = __fls(lng);
533
534         return 0;
535 }
536
537 static int sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb *dlyb)
538 {
539         u32 cr, sr;
540
541         cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
542         cr |= DLYBSD_CR_EN;
543
544         writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
545
546         return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
547                                            sr, sr & DLYBSD_SR_LOCK, 1,
548                                            DLYBSD_TIMEOUT_1S_IN_US);
549 }
550
551 static int sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb *dlyb,
552                                    int unit __maybe_unused, int phase,
553                                    bool sampler __maybe_unused)
554 {
555         u32 cr, sr;
556
557         cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
558         cr &= ~DLYBSD_CR_RXTAPSEL_MASK;
559         cr |= FIELD_PREP(DLYBSD_CR_RXTAPSEL_MASK, phase);
560
561         writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
562
563         return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
564                                           sr, sr & DLYBSD_SR_RXTAPSEL_ACK, 1,
565                                           DLYBSD_TIMEOUT_1S_IN_US);
566 }
567
568 static int sdmmc_dlyb_mp25_prepare(struct mmci_host *host)
569 {
570         struct sdmmc_dlyb *dlyb = host->variant_priv;
571
572         dlyb->max = DLYBSD_TAPSEL_NB;
573
574         return 0;
575 }
576
577 static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
578 {
579         struct sdmmc_dlyb *dlyb = host->variant_priv;
580         int cur_len = 0, max_len = 0, end_of_len = 0;
581         int phase, ret;
582
583         for (phase = 0; phase <= dlyb->max; phase++) {
584                 ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
585                 if (ret) {
586                         dev_err(mmc_dev(host->mmc), "tuning config failed\n");
587                         return ret;
588                 }
589
590                 if (mmc_send_tuning(host->mmc, opcode, NULL)) {
591                         cur_len = 0;
592                 } else {
593                         cur_len++;
594                         if (cur_len > max_len) {
595                                 max_len = cur_len;
596                                 end_of_len = phase;
597                         }
598                 }
599         }
600
601         if (!max_len) {
602                 dev_err(mmc_dev(host->mmc), "no tuning point found\n");
603                 return -EINVAL;
604         }
605
606         if (dlyb->ops->set_input_ck)
607                 dlyb->ops->set_input_ck(dlyb);
608
609         phase = end_of_len - max_len / 2;
610         ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
611         if (ret) {
612                 dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n");
613                 return ret;
614         }
615
616         dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
617                 dlyb->unit, dlyb->max, phase);
618
619         return 0;
620 }
621
622 static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
623 {
624         struct mmci_host *host = mmc_priv(mmc);
625         struct sdmmc_dlyb *dlyb = host->variant_priv;
626         u32 clk;
627         int ret;
628
629         if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 &&
630              host->mmc->ios.timing != MMC_TIMING_MMC_HS200) ||
631             host->mmc->actual_clock <= 50000000)
632                 return 0;
633
634         if (!dlyb || !dlyb->base)
635                 return -EINVAL;
636
637         ret = dlyb->ops->dlyb_enable(dlyb);
638         if (ret)
639                 return ret;
640
641         /*
642          * SDMMC_FBCK is selected when an external Delay Block is needed
643          * with SDR104 or HS200.
644          */
645         clk = host->clk_reg;
646         clk &= ~MCI_STM32_CLK_SEL_MSK;
647         clk |= MCI_STM32_CLK_SELFBCK;
648         mmci_write_clkreg(host, clk);
649
650         ret = dlyb->ops->tuning_prepare(host);
651         if (ret)
652                 return ret;
653
654         return sdmmc_dlyb_phase_tuning(host, opcode);
655 }
656
657 static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
658 {
659         /* clear the voltage switch completion flag */
660         writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
661         /* enable Voltage switch procedure */
662         mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
663 }
664
665 static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
666                                       struct mmc_ios *ios)
667 {
668         unsigned long flags;
669         u32 status;
670         int ret = 0;
671
672         spin_lock_irqsave(&host->lock, flags);
673         if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
674             host->pwr_reg & MCI_STM32_VSWITCHEN) {
675                 mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
676                 spin_unlock_irqrestore(&host->lock, flags);
677
678                 /* wait voltage switch completion while 10ms */
679                 ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
680                                                  status,
681                                                  (status & MCI_STM32_VSWEND),
682                                                  10, SDMMC_VSWEND_TIMEOUT_US);
683
684                 writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
685                                host->base + MMCICLEAR);
686                 spin_lock_irqsave(&host->lock, flags);
687                 mmci_write_pwrreg(host, host->pwr_reg &
688                                   ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
689         }
690         spin_unlock_irqrestore(&host->lock, flags);
691
692         return ret;
693 }
694
695 static struct mmci_host_ops sdmmc_variant_ops = {
696         .validate_data = sdmmc_idma_validate_data,
697         .prep_data = sdmmc_idma_prep_data,
698         .unprep_data = sdmmc_idma_unprep_data,
699         .get_datactrl_cfg = sdmmc_get_dctrl_cfg,
700         .dma_setup = sdmmc_idma_setup,
701         .dma_start = sdmmc_idma_start,
702         .dma_finalize = sdmmc_idma_finalize,
703         .dma_error = sdmmc_idma_error,
704         .set_clkreg = mmci_sdmmc_set_clkreg,
705         .set_pwrreg = mmci_sdmmc_set_pwrreg,
706         .busy_complete = sdmmc_busy_complete,
707         .pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
708         .post_sig_volt_switch = sdmmc_post_sig_volt_switch,
709 };
710
711 static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = {
712         .dlyb_enable = sdmmc_dlyb_mp15_enable,
713         .set_input_ck = sdmmc_dlyb_mp15_input_ck,
714         .tuning_prepare = sdmmc_dlyb_mp15_prepare,
715         .set_cfg = sdmmc_dlyb_mp15_set_cfg,
716 };
717
718 static struct sdmmc_tuning_ops dlyb_tuning_mp25_ops = {
719         .dlyb_enable = sdmmc_dlyb_mp25_enable,
720         .tuning_prepare = sdmmc_dlyb_mp25_prepare,
721         .set_cfg = sdmmc_dlyb_mp25_set_cfg,
722 };
723
724 void sdmmc_variant_init(struct mmci_host *host)
725 {
726         struct device_node *np = host->mmc->parent->of_node;
727         void __iomem *base_dlyb;
728         struct sdmmc_dlyb *dlyb;
729
730         host->ops = &sdmmc_variant_ops;
731         host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
732
733         base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
734         if (IS_ERR(base_dlyb))
735                 return;
736
737         dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
738         if (!dlyb)
739                 return;
740
741         dlyb->base = base_dlyb;
742         if (of_device_is_compatible(np, "st,stm32mp25-sdmmc2"))
743                 dlyb->ops = &dlyb_tuning_mp25_ops;
744         else
745                 dlyb->ops = &dlyb_tuning_mp15_ops;
746
747         host->variant_priv = dlyb;
748         host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
749 }
This page took 0.07109 seconds and 4 git commands to generate.