1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Access SD/MMC cards through SPI master controllers
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
10 * (C) Copyright 2007, ATRON electronic GmbH,
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/crc7.h>
19 #include <linux/crc-itu-t.h>
20 #include <linux/scatterlist.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
24 #include <linux/mmc/slot-gpio.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spi/mmc_spi.h>
29 #include <linux/unaligned.h>
34 * - For now, we won't try to interoperate with a real mmc/sd/sdio
35 * controller, although some of them do have hardware support for
36 * SPI protocol. The main reason for such configs would be mmc-ish
37 * cards like DataFlash, which don't support that "native" protocol.
39 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
40 * switch between driver stacks, and in any case if "native" mode
41 * is available, it will be faster and hence preferable.
43 * - MMC depends on a different chipselect management policy than the
44 * SPI interface currently supports for shared bus segments: it needs
45 * to issue multiple spi_message requests with the chipselect active,
46 * using the results of one message to decide the next one to issue.
48 * Pending updates to the programming interface, this driver expects
49 * that it not share the bus with other drivers (precluding conflicts).
51 * - We tell the controller to keep the chipselect active from the
52 * beginning of an mmc_host_ops.request until the end. So beware
53 * of SPI controller drivers that mis-handle the cs_change flag!
55 * However, many cards seem OK with chipselect flapping up/down
56 * during that time ... at least on unshared bus segments.
61 * Local protocol constants, internal to data block protocols.
64 /* Response tokens used to ack each block written: */
65 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
66 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
67 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
68 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70 /* Read and write blocks start with these tokens and end with crc;
71 * on error, read tokens act like a subset of R2_SPI_* values.
73 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
74 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
75 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77 #define MMC_SPI_BLOCKSIZE 512
79 #define MMC_SPI_R1B_TIMEOUT_MS 3000
80 #define MMC_SPI_INIT_TIMEOUT_MS 3000
82 /* One of the critical speed parameters is the amount of data which may
83 * be transferred in one command. If this value is too low, the SD card
84 * controller has to do multiple partial block writes (argggh!). With
85 * today (2008) SD cards there is little speed gain if we transfer more
86 * than 64 KBytes at a time. So use this value until there is any indication
87 * that we should do more here.
89 #define MMC_SPI_BLOCKSATONCE 128
91 /****************************************************************************/
94 * Local Data Structures
97 /* "scratch" is per-{command,block} data exchanged with the card */
104 struct mmc_spi_host {
105 struct mmc_host *mmc;
106 struct spi_device *spi;
108 unsigned char power_mode;
111 struct mmc_spi_platform_data *pdata;
113 /* for bulk data transfers */
114 struct spi_transfer token, t, crc, early_status;
115 struct spi_message m;
117 /* for status readback */
118 struct spi_transfer status;
119 struct spi_message readback;
121 /* buffer used for commands and for message "overhead" */
122 struct scratch *data;
124 /* Specs say to write ones most of the time, even when the card
125 * has no need to read its input data; and many cards won't care.
126 * This is our source of those ones.
132 /****************************************************************************/
135 * MMC-over-SPI protocol glue, used by the MMC stack interface
138 static inline int mmc_cs_off(struct mmc_spi_host *host)
140 /* chipselect will always be inactive after setup() */
141 return spi_setup(host->spi);
144 static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
146 if (len > sizeof(*host->data)) {
151 host->status.len = len;
153 return spi_sync_locked(host->spi, &host->readback);
156 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
159 u8 *cp = host->data->status;
160 unsigned long start = jiffies;
166 status = mmc_spi_readbytes(host, n);
170 for (i = 0; i < n; i++) {
175 /* If we need long timeouts, we may release the CPU */
177 } while (time_is_after_jiffies(start + timeout));
182 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
184 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
187 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
189 return mmc_spi_skip(host, timeout, 1, 0xff);
194 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
195 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
196 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
198 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
199 * newer cards R7 (IF_COND).
202 static char *maptype(struct mmc_command *cmd)
204 switch (mmc_spi_resp_type(cmd)) {
205 case MMC_RSP_SPI_R1: return "R1";
206 case MMC_RSP_SPI_R1B: return "R1B";
207 case MMC_RSP_SPI_R2: return "R2/R5";
208 case MMC_RSP_SPI_R3: return "R3/R4/R7";
213 /* return zero, else negative errno after setting cmd->error */
214 static int mmc_spi_response_get(struct mmc_spi_host *host,
215 struct mmc_command *cmd, int cs_on)
217 unsigned long timeout_ms;
218 u8 *cp = host->data->status;
219 u8 *end = cp + host->t.len;
223 unsigned short rotator;
226 /* Except for data block reads, the whole response will already
227 * be stored in the scratch buffer. It's somewhere after the
228 * command and the first byte we read after it. We ignore that
229 * first byte. After STOP_TRANSMISSION command it may include
230 * two data bits, but otherwise it's all ones.
233 while (cp < end && *cp == 0xff)
236 /* Data block reads (R1 response types) may need more data... */
238 cp = host->data->status;
241 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
242 * status byte ... and we already scanned 2 bytes.
244 * REVISIT block read paths use nasty byte-at-a-time I/O
245 * so it can always DMA directly into the target buffer.
246 * It'd probably be better to memcpy() the first chunk and
247 * avoid extra i/o calls...
249 * Note we check for more than 8 bytes, because in practice,
250 * some SD cards are slow...
252 for (i = 2; i < 16; i++) {
253 value = mmc_spi_readbytes(host, 1);
266 /* Houston, we have an ugly card with a bit-shifted response */
267 rotator = *cp++ << 8;
268 /* read the next byte */
270 value = mmc_spi_readbytes(host, 1);
273 cp = host->data->status;
277 while (rotator & 0x8000) {
281 cmd->resp[0] = rotator >> 8;
284 cmd->resp[0] = *cp++;
288 /* Status byte: the entire seven-bit R1 response. */
289 if (cmd->resp[0] != 0) {
290 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
292 value = -EFAULT; /* Bad address */
293 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
294 value = -ENOSYS; /* Function not implemented */
295 else if (R1_SPI_COM_CRC & cmd->resp[0])
296 value = -EILSEQ; /* Illegal byte sequence */
297 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
299 value = -EIO; /* I/O error */
300 /* else R1_SPI_IDLE, "it's resetting" */
303 switch (mmc_spi_resp_type(cmd)) {
305 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
306 * and less-common stuff like various erase operations.
308 case MMC_RSP_SPI_R1B:
309 /* maybe we read all the busy tokens already */
310 while (cp < end && *cp == 0)
313 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
314 MMC_SPI_R1B_TIMEOUT_MS;
315 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
319 /* SPI R2 == R1 + second status byte; SEND_STATUS
320 * SPI R5 == R1 + data byte; IO_RW_DIRECT
323 /* read the next byte */
325 value = mmc_spi_readbytes(host, 1);
328 cp = host->data->status;
332 rotator = leftover << 8;
333 rotator |= *cp << bitshift;
334 cmd->resp[0] |= (rotator & 0xFF00);
336 cmd->resp[0] |= *cp << 8;
340 /* SPI R3, R4, or R7 == R1 + 4 bytes */
342 rotator = leftover << 8;
344 for (i = 0; i < 4; i++) {
346 /* read the next byte */
348 value = mmc_spi_readbytes(host, 1);
351 cp = host->data->status;
355 rotator |= *cp++ << bitshift;
356 cmd->resp[1] |= (rotator >> 8);
359 cmd->resp[1] |= *cp++;
364 /* SPI R1 == just one status byte */
369 dev_dbg(&host->spi->dev, "bad response type %04x\n",
370 mmc_spi_resp_type(cmd));
377 dev_dbg(&host->spi->dev,
378 " ... CMD%d response SPI_%s: resp %04x %08x\n",
379 cmd->opcode, maptype(cmd), cmd->resp[0], cmd->resp[1]);
381 /* disable chipselect on errors and some success cases */
382 if (value >= 0 && cs_on)
391 /* Issue command and read its response.
392 * Returns zero on success, negative for error.
394 * On error, caller must cope with mmc core retry mechanism. That
395 * means immediate low-level resubmit, which affects the bus lock...
398 mmc_spi_command_send(struct mmc_spi_host *host,
399 struct mmc_request *mrq,
400 struct mmc_command *cmd, int cs_on)
402 struct scratch *data = host->data;
403 u8 *cp = data->status;
405 struct spi_transfer *t;
407 /* We can handle most commands (except block reads) in one full
408 * duplex I/O operation before either starting the next transfer
409 * (data block or command) or else deselecting the card.
411 * First, write 7 bytes:
412 * - an all-ones byte to ensure the card is ready
413 * - opcode byte (plus start and transmission bits)
414 * - four bytes of big-endian argument
415 * - crc7 (plus end bit) ... always computed, it's cheap
417 * We init the whole buffer to all-ones, which is what we need
418 * to write while we're reading (later) response data.
420 memset(cp, 0xff, sizeof(data->status));
422 cp[1] = 0x40 | cmd->opcode;
423 put_unaligned_be32(cmd->arg, cp + 2);
424 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
427 /* Then, read up to 13 bytes (while writing all-ones):
428 * - N(CR) (== 1..8) bytes of all-ones
429 * - status byte (for all response types)
430 * - the rest of the response, either:
431 * + nothing, for R1 or R1B responses
432 * + second status byte, for R2 responses
433 * + four data bytes, for R3 and R7 responses
435 * Finally, read some more bytes ... in the nice cases we know in
436 * advance how many, and reading 1 more is always OK:
437 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
438 * - N(RC) (== 1..N) bytes of all-ones, before next command
439 * - N(WR) (== 1..N) bytes of all-ones, before data write
441 * So in those cases one full duplex I/O of at most 21 bytes will
442 * handle the whole command, leaving the card ready to receive a
443 * data block or new command. We do that whenever we can, shaving
444 * CPU and IRQ costs (especially when using DMA or FIFOs).
446 * There are two other cases, where it's not generally practical
447 * to rely on a single I/O:
449 * - R1B responses need at least N(EC) bytes of all-zeroes.
451 * In this case we can *try* to fit it into one I/O, then
452 * maybe read more data later.
454 * - Data block reads are more troublesome, since a variable
455 * number of padding bytes precede the token and data.
456 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
457 * + N(AC) (== 1..many) bytes of all-ones
459 * In this case we currently only have minimal speedups here:
460 * when N(CR) == 1 we can avoid I/O in response_get().
462 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
463 cp += 2; /* min(N(CR)) + status */
466 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
467 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
469 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
471 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
472 cp = data->status + sizeof(data->status);
473 /* else: R1 (most commands) */
476 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n",
477 cmd->opcode, maptype(cmd));
479 /* send command, leaving chipselect active */
480 spi_message_init(&host->m);
483 memset(t, 0, sizeof(*t));
484 t->tx_buf = t->rx_buf = data->status;
485 t->len = cp - data->status;
487 spi_message_add_tail(t, &host->m);
489 status = spi_sync_locked(host->spi, &host->m);
491 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
496 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
497 return mmc_spi_response_get(host, cmd, cs_on);
500 /* Build data message with up to four separate transfers. For TX, we
501 * start by writing the data token. And in most cases, we finish with
504 * We always provide TX data for data and CRC. The MMC/SD protocol
505 * requires us to write ones; but Linux defaults to writing zeroes;
506 * so we explicitly initialize it to all ones on RX paths.
509 mmc_spi_setup_data_message(struct mmc_spi_host *host, bool multiple, bool write)
511 struct spi_transfer *t;
512 struct scratch *scratch = host->data;
514 spi_message_init(&host->m);
516 /* for reads, readblock() skips 0xff bytes before finding
517 * the token; for writes, this transfer issues that token.
521 memset(t, 0, sizeof(*t));
524 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
526 scratch->data_token = SPI_TOKEN_SINGLE;
527 t->tx_buf = &scratch->data_token;
528 spi_message_add_tail(t, &host->m);
531 /* Body of transfer is buffer, then CRC ...
532 * either TX-only, or RX with TX-ones.
535 memset(t, 0, sizeof(*t));
536 t->tx_buf = host->ones;
537 /* length and actual buffer info are written later */
538 spi_message_add_tail(t, &host->m);
541 memset(t, 0, sizeof(*t));
544 /* the actual CRC may get written later */
545 t->tx_buf = &scratch->crc_val;
547 t->tx_buf = host->ones;
548 t->rx_buf = &scratch->crc_val;
550 spi_message_add_tail(t, &host->m);
553 * A single block read is followed by N(EC) [0+] all-ones bytes
554 * before deselect ... don't bother.
556 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
557 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
558 * collect that single byte, so readblock() doesn't need to.
560 * For a write, the one-byte data response follows immediately, then
561 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
562 * Then single block reads may deselect, and multiblock ones issue
563 * the next token (next data block, or STOP_TRAN). We can try to
564 * minimize I/O ops by using a single read to collect end-of-busy.
566 if (multiple || write) {
567 t = &host->early_status;
568 memset(t, 0, sizeof(*t));
569 t->len = write ? sizeof(scratch->status) : 1;
570 t->tx_buf = host->ones;
571 t->rx_buf = scratch->status;
573 spi_message_add_tail(t, &host->m);
579 * - caller handled preceding N(WR) [1+] all-ones bytes
584 * - an all-ones byte ... card writes a data-response byte
585 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
587 * Return negative errno, else success.
590 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
591 unsigned long timeout)
593 struct spi_device *spi = host->spi;
595 struct scratch *scratch = host->data;
598 if (host->mmc->use_spi_crc)
599 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
601 status = spi_sync_locked(spi, &host->m);
603 dev_dbg(&spi->dev, "write error (%d)\n", status);
608 * Get the transmission data-response reply. It must follow
609 * immediately after the data block we transferred. This reply
610 * doesn't necessarily tell whether the write operation succeeded;
611 * it just says if the transmission was ok and whether *earlier*
612 * writes succeeded; see the standard.
614 * In practice, there are (even modern SDHC-)cards which are late
615 * in sending the response, and miss the time frame by a few bits,
616 * so we have to cope with this situation and check the response
617 * bit-by-bit. Arggh!!!
619 pattern = get_unaligned_be32(scratch->status);
621 /* First 3 bit of pattern are undefined */
622 pattern |= 0xE0000000;
624 /* left-adjust to leading 0 bit */
625 while (pattern & 0x80000000)
627 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
631 case SPI_RESPONSE_ACCEPTED:
634 case SPI_RESPONSE_CRC_ERR:
635 /* host shall then issue MMC_STOP_TRANSMISSION */
638 case SPI_RESPONSE_WRITE_ERR:
639 /* host shall then issue MMC_STOP_TRANSMISSION,
640 * and should MMC_SEND_STATUS to sort it out
649 dev_dbg(&spi->dev, "write error %02x (%d)\n",
650 scratch->status[0], status);
656 /* Return when not busy. If we didn't collect that status yet,
657 * we'll need some more I/O.
659 for (i = 4; i < sizeof(scratch->status); i++) {
660 /* card is non-busy if the most recent bit is 1 */
661 if (scratch->status[i] & 0x01)
664 return mmc_spi_wait_unbusy(host, timeout);
669 * - skip leading all-ones bytes ... either
670 * + N(AC) [1..f(clock,CSD)] usually, else
671 * + N(CX) [0..8] when reading CSD or CID
673 * + token ... if error token, no data or crc
677 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
678 * before dropping chipselect.
680 * For multiblock reads, caller either reads the next block or issues a
681 * STOP_TRANSMISSION command.
684 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
685 unsigned long timeout)
687 struct spi_device *spi = host->spi;
689 struct scratch *scratch = host->data;
690 unsigned int bitshift;
693 /* At least one SD card sends an all-zeroes byte when N(CX)
694 * applies, before the all-ones bytes ... just cope with that.
696 status = mmc_spi_readbytes(host, 1);
699 status = scratch->status[0];
700 if (status == 0xff || status == 0)
701 status = mmc_spi_readtoken(host, timeout);
704 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
708 /* The token may be bit-shifted...
709 * the first 0-bit precedes the data stream.
712 while (status & 0x80) {
716 leftover = status << 1;
718 status = spi_sync_locked(spi, &host->m);
720 dev_dbg(&spi->dev, "read error %d\n", status);
725 /* Walk through the data and the crc and do
726 * all the magic to get byte-aligned data.
730 unsigned int bitright = 8 - bitshift;
732 for (len = t->len; len; len--) {
734 *cp++ = leftover | (temp >> bitshift);
735 leftover = temp << bitright;
737 cp = (u8 *) &scratch->crc_val;
739 *cp++ = leftover | (temp >> bitshift);
740 leftover = temp << bitright;
742 *cp = leftover | (temp >> bitshift);
745 if (host->mmc->use_spi_crc) {
746 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
748 be16_to_cpus(&scratch->crc_val);
749 if (scratch->crc_val != crc) {
751 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
752 scratch->crc_val, crc, t->len);
763 * An MMC/SD data stage includes one or more blocks, optional CRCs,
764 * and inline handshaking. That handhaking makes it unlike most
765 * other SPI protocol stacks.
768 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
769 struct mmc_data *data, u32 blk_size)
771 struct spi_device *spi = host->spi;
772 struct spi_transfer *t;
773 struct scatterlist *sg;
775 bool multiple = (data->blocks > 1);
776 bool write = (data->flags & MMC_DATA_WRITE);
777 const char *write_or_read = write ? "write" : "read";
779 unsigned long timeout;
781 mmc_spi_setup_data_message(host, multiple, write);
785 clock_rate = t->speed_hz;
787 clock_rate = spi->max_speed_hz;
789 timeout = data->timeout_ns / 1000 +
790 data->timeout_clks * 1000000 / clock_rate;
791 timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
793 /* Handle scatterlist segments one at a time, with synch for
794 * each 512-byte block
796 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
799 unsigned length = sg->length;
801 /* allow pio too; we don't allow highmem */
802 kmap_addr = kmap(sg_page(sg));
804 t->tx_buf = kmap_addr + sg->offset;
806 t->rx_buf = kmap_addr + sg->offset;
808 /* transfer each block, and update request status */
810 t->len = min(length, blk_size);
812 dev_dbg(&spi->dev, " %s block, %d bytes\n", write_or_read, t->len);
815 status = mmc_spi_writeblock(host, t, timeout);
817 status = mmc_spi_readblock(host, t, timeout);
821 data->bytes_xfered += t->len;
828 /* discard mappings */
832 flush_dcache_page(sg_page(sg));
836 data->error = status;
837 dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
842 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
843 * can be issued before multiblock writes. Unlike its more widely
844 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
845 * that can affect the STOP_TRAN logic. Complete (and current)
846 * MMC specs should sort that out before Linux starts using CMD23.
848 if (write && multiple) {
849 struct scratch *scratch = host->data;
851 const unsigned statlen = sizeof(scratch->status);
853 dev_dbg(&spi->dev, " STOP_TRAN\n");
855 /* Tweak the per-block message we set up earlier by morphing
856 * it to hold single buffer with the token followed by some
857 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
858 * "not busy any longer" status, and leave chip selected.
860 INIT_LIST_HEAD(&host->m.transfers);
861 list_add(&host->early_status.transfer_list,
864 memset(scratch->status, 0xff, statlen);
865 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
867 host->early_status.tx_buf = host->early_status.rx_buf;
868 host->early_status.len = statlen;
870 tmp = spi_sync_locked(spi, &host->m);
877 /* Ideally we collected "not busy" status with one I/O,
878 * avoiding wasteful byte-at-a-time scanning... but more
879 * I/O is often needed.
881 for (tmp = 2; tmp < statlen; tmp++) {
882 if (scratch->status[tmp] != 0)
885 tmp = mmc_spi_wait_unbusy(host, timeout);
886 if (tmp < 0 && !data->error)
891 /****************************************************************************/
894 * MMC driver implementation -- the interface to the MMC stack
897 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
899 struct mmc_spi_host *host = mmc_priv(mmc);
900 int status = -EINVAL;
902 struct mmc_command stop;
905 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
907 struct mmc_command *cmd;
911 if (!mmc_spi_resp_type(cmd)) {
912 dev_dbg(&host->spi->dev, "bogus command\n");
913 cmd->error = -EINVAL;
918 if (cmd && !mmc_spi_resp_type(cmd)) {
919 dev_dbg(&host->spi->dev, "bogus STOP command\n");
920 cmd->error = -EINVAL;
926 mmc_request_done(host->mmc, mrq);
932 /* request exclusive bus access */
933 spi_bus_lock(host->spi->controller);
936 /* issue command; then optionally data and stop */
937 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
938 if (status == 0 && mrq->data) {
939 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
942 * The SPI bus is not always reliable for large data transfers.
943 * If an occasional crc error is reported by the SD device with
944 * data read/write over SPI, it may be recovered by repeating
945 * the last SD command again. The retry count is set to 5 to
946 * ensure the driver passes stress tests.
948 if (mrq->data->error == -EILSEQ && crc_retry) {
949 stop.opcode = MMC_STOP_TRANSMISSION;
951 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
952 status = mmc_spi_command_send(host, mrq, &stop, 0);
954 mrq->data->error = 0;
959 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
964 /* release the bus */
965 spi_bus_unlock(host->spi->controller);
967 mmc_request_done(host->mmc, mrq);
970 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
972 * NOTE that here we can't know that the card has just been powered up;
973 * not all MMC/SD sockets support power switching.
975 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
976 * this doesn't seem to do the right thing at all...
978 static void mmc_spi_initsequence(struct mmc_spi_host *host)
980 /* Try to be very sure any previous command has completed;
981 * wait till not-busy, skip debris from any old commands.
983 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
984 mmc_spi_readbytes(host, 10);
987 * Do a burst with chipselect active-high. We need to do this to
988 * meet the requirement of 74 clock cycles with both chipselect
989 * and CMD (MOSI) high before CMD0 ... after the card has been
990 * powered up to Vdd(min), and so is ready to take commands.
992 * Some cards are particularly needy of this (e.g. Viking "SD256")
993 * while most others don't seem to care.
995 * Note that this is one of the places MMC/SD plays games with the
996 * SPI protocol. Another is that when chipselect is released while
997 * the card returns BUSY status, the clock must issue several cycles
998 * with chipselect high before the card will stop driving its output.
1000 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1001 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1002 * inverted by gpiolib, so if we want to ascertain to drive it high
1003 * we should toggle the default with an XOR as we do here.
1005 host->spi->mode ^= SPI_CS_HIGH;
1006 if (spi_setup(host->spi) != 0) {
1007 /* Just warn; most cards work without it. */
1008 dev_warn(&host->spi->dev,
1009 "can't change chip-select polarity\n");
1010 host->spi->mode ^= SPI_CS_HIGH;
1012 mmc_spi_readbytes(host, 18);
1014 host->spi->mode ^= SPI_CS_HIGH;
1015 if (spi_setup(host->spi) != 0) {
1016 /* Wot, we can't get the same setup we had before? */
1017 dev_err(&host->spi->dev,
1018 "can't restore chip-select polarity\n");
1023 static char *mmc_powerstring(u8 power_mode)
1025 switch (power_mode) {
1026 case MMC_POWER_OFF: return "off";
1027 case MMC_POWER_UP: return "up";
1028 case MMC_POWER_ON: return "on";
1033 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1035 struct mmc_spi_host *host = mmc_priv(mmc);
1037 if (host->power_mode != ios->power_mode) {
1040 canpower = host->pdata && host->pdata->setpower;
1042 dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1043 mmc_powerstring(ios->power_mode),
1045 canpower ? ", can switch" : "");
1047 /* switch power on/off if possible, accounting for
1048 * max 250msec powerup time if needed.
1051 switch (ios->power_mode) {
1054 host->pdata->setpower(&host->spi->dev,
1056 if (ios->power_mode == MMC_POWER_UP)
1057 msleep(host->powerup_msecs);
1061 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1062 if (ios->power_mode == MMC_POWER_ON)
1063 mmc_spi_initsequence(host);
1065 /* If powering down, ground all card inputs to avoid power
1066 * delivery from data lines! On a shared SPI bus, this
1067 * will probably be temporary; 6.4.2 of the simplified SD
1068 * spec says this must last at least 1msec.
1070 * - Clock low means CPOL 0, e.g. mode 0
1071 * - MOSI low comes from writing zero
1072 * - Chipselect is usually active low...
1074 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1078 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1079 mres = spi_setup(host->spi);
1081 dev_dbg(&host->spi->dev,
1082 "switch to SPI mode 0 failed\n");
1084 if (spi_write(host->spi, &nullbyte, 1) < 0)
1085 dev_dbg(&host->spi->dev,
1086 "put spi signals to low failed\n");
1089 * Now clock should be low due to spi mode 0;
1090 * MOSI should be low because of written 0x00;
1091 * chipselect should be low (it is active low)
1092 * power supply is off, so now MMC is off too!
1094 * FIXME no, chipselect can be high since the
1095 * device is inactive and SPI_CS_HIGH is clear...
1099 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1100 mres = spi_setup(host->spi);
1102 dev_dbg(&host->spi->dev,
1103 "switch back to SPI mode 3 failed\n");
1107 host->power_mode = ios->power_mode;
1110 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1113 host->spi->max_speed_hz = ios->clock;
1114 status = spi_setup(host->spi);
1115 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n",
1116 host->spi->max_speed_hz, status);
1120 static const struct mmc_host_ops mmc_spi_ops = {
1121 .request = mmc_spi_request,
1122 .set_ios = mmc_spi_set_ios,
1123 .get_ro = mmc_gpio_get_ro,
1124 .get_cd = mmc_gpio_get_cd,
1128 /****************************************************************************/
1131 * SPI driver implementation
1135 mmc_spi_detect_irq(int irq, void *mmc)
1137 struct mmc_spi_host *host = mmc_priv(mmc);
1138 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1140 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1144 static int mmc_spi_probe(struct spi_device *spi)
1147 struct mmc_host *mmc;
1148 struct mmc_spi_host *host;
1150 bool has_ro = false;
1152 /* We rely on full duplex transfers, mostly to reduce
1153 * per-transfer overheads (by making fewer transfers).
1155 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX)
1158 /* MMC and SD specs only seem to care that sampling is on the
1159 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1160 * should be legit. We'll use mode 0 since the steady state is 0,
1161 * which is appropriate for hotplugging, unless the platform data
1162 * specify mode 3 (if hardware is not compatible to mode 0).
1164 if (spi->mode != SPI_MODE_3)
1165 spi->mode = SPI_MODE_0;
1166 spi->bits_per_word = 8;
1168 status = spi_setup(spi);
1170 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1171 spi->mode, spi->max_speed_hz / 1000,
1176 /* We need a supply of ones to transmit. This is the only time
1177 * the CPU touches these, so cache coherency isn't a concern.
1179 * NOTE if many systems use more than one MMC-over-SPI connector
1180 * it'd save some memory to share this. That's evidently rare.
1183 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1186 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1188 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1192 mmc->ops = &mmc_spi_ops;
1193 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1194 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1195 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1196 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1198 mmc->caps = MMC_CAP_SPI;
1200 /* SPI doesn't need the lowspeed device identification thing for
1201 * MMC or SD cards, since it never comes up in open drain mode.
1202 * That's good; some SPI masters can't handle very low speeds!
1204 * However, low speed SDIO cards need not handle over 400 KHz;
1205 * that's the only reason not to use a few MHz for f_min (until
1206 * the upper layer reads the target frequency from the CSD).
1208 if (spi->controller->min_speed_hz > 400000)
1209 dev_warn(&spi->dev,"Controller unable to reduce bus clock to 400 KHz\n");
1211 mmc->f_min = max(spi->controller->min_speed_hz, 400000);
1212 mmc->f_max = spi->max_speed_hz;
1214 host = mmc_priv(mmc);
1220 dev_set_drvdata(&spi->dev, mmc);
1222 /* Platform data is used to hook up things like card sensing
1223 * and power switching gpios.
1225 host->pdata = mmc_spi_get_pdata(spi);
1227 mmc->ocr_avail = host->pdata->ocr_mask;
1228 if (!mmc->ocr_avail) {
1229 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1230 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1232 if (host->pdata && host->pdata->setpower) {
1233 host->powerup_msecs = host->pdata->powerup_msecs;
1234 if (!host->powerup_msecs || host->powerup_msecs > 250)
1235 host->powerup_msecs = 250;
1238 /* Preallocate buffers */
1239 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1243 /* setup message for status/busy readback */
1244 spi_message_init(&host->readback);
1246 spi_message_add_tail(&host->status, &host->readback);
1247 host->status.tx_buf = host->ones;
1248 host->status.rx_buf = &host->data->status;
1249 host->status.cs_change = 1;
1251 /* register card detect irq */
1252 if (host->pdata && host->pdata->init) {
1253 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1255 goto fail_glue_init;
1258 /* pass platform capabilities, if any */
1260 mmc->caps |= host->pdata->caps;
1261 mmc->caps2 |= host->pdata->caps2;
1264 status = mmc_add_host(mmc);
1266 goto fail_glue_init;
1269 * Index 0 is card detect
1270 * Old boardfiles were specifying 1 ms as debounce
1272 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1273 if (status == -EPROBE_DEFER)
1274 goto fail_gpiod_request;
1277 * The platform has a CD GPIO signal that may support
1278 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1279 * if polling is needed or not.
1281 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1282 mmc_gpiod_request_cd_irq(mmc);
1284 mmc_detect_change(mmc, 0);
1286 /* Index 1 is write protect/read only */
1287 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1288 if (status == -EPROBE_DEFER)
1289 goto fail_gpiod_request;
1293 dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1294 dev_name(&mmc->class_dev),
1295 has_ro ? "" : ", no WP",
1296 (host->pdata && host->pdata->setpower)
1297 ? "" : ", no poweroff",
1298 (mmc->caps & MMC_CAP_NEEDS_POLL)
1299 ? ", cd polling" : "");
1303 mmc_remove_host(mmc);
1307 mmc_spi_put_pdata(spi);
1315 static void mmc_spi_remove(struct spi_device *spi)
1317 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1318 struct mmc_spi_host *host = mmc_priv(mmc);
1320 /* prevent new mmc_detect_change() calls */
1321 if (host->pdata && host->pdata->exit)
1322 host->pdata->exit(&spi->dev, mmc);
1324 mmc_remove_host(mmc);
1329 spi->max_speed_hz = mmc->f_max;
1330 mmc_spi_put_pdata(spi);
1334 static const struct spi_device_id mmc_spi_dev_ids[] = {
1338 MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1340 static const struct of_device_id mmc_spi_of_match_table[] = {
1341 { .compatible = "mmc-spi-slot", },
1344 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1346 static struct spi_driver mmc_spi_driver = {
1349 .of_match_table = mmc_spi_of_match_table,
1351 .id_table = mmc_spi_dev_ids,
1352 .probe = mmc_spi_probe,
1353 .remove = mmc_spi_remove,
1356 module_spi_driver(mmc_spi_driver);
1358 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1359 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1360 MODULE_LICENSE("GPL");
1361 MODULE_ALIAS("spi:mmc_spi");