1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/mmc/core/sd.c
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sysfs.h>
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/sd.h>
33 static const unsigned int tran_exp[] = {
34 10000, 100000, 1000000, 10000000,
38 static const unsigned char tran_mant[] = {
39 0, 10, 12, 13, 15, 20, 25, 30,
40 35, 40, 45, 50, 55, 60, 70, 80,
43 static const unsigned int taac_exp[] = {
44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
47 static const unsigned int taac_mant[] = {
48 0, 10, 12, 13, 15, 20, 25, 30,
49 35, 40, 45, 50, 55, 60, 70, 80,
52 static const unsigned int sd_au_size[] = {
53 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
54 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
55 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
56 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
59 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
60 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
63 struct mmc_card *card;
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
70 void mmc_decode_cid(struct mmc_card *card)
72 u32 *resp = card->raw_cid;
75 * Add the raw card ID (cid) data to the entropy pool. It doesn't
76 * matter that not all of it is unique, it's just bonus entropy.
78 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
81 * SD doesn't currently have a version field so we will
82 * have to assume we can parse this.
84 card->cid.manfid = unstuff_bits(resp, 120, 8);
85 card->cid.oemid = unstuff_bits(resp, 104, 16);
86 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
87 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
88 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
89 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
90 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
91 card->cid.hwrev = unstuff_bits(resp, 60, 4);
92 card->cid.fwrev = unstuff_bits(resp, 56, 4);
93 card->cid.serial = unstuff_bits(resp, 24, 32);
94 card->cid.year = unstuff_bits(resp, 12, 8);
95 card->cid.month = unstuff_bits(resp, 8, 4);
97 card->cid.year += 2000; /* SD cards year offset */
101 * Given a 128-bit response, decode to our card CSD structure.
103 static int mmc_decode_csd(struct mmc_card *card, bool is_sduc)
105 struct mmc_csd *csd = &card->csd;
106 unsigned int e, m, csd_struct;
107 u32 *resp = card->raw_csd;
109 csd_struct = unstuff_bits(resp, 126, 2);
111 switch (csd_struct) {
113 m = unstuff_bits(resp, 115, 4);
114 e = unstuff_bits(resp, 112, 3);
115 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
116 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100;
118 m = unstuff_bits(resp, 99, 4);
119 e = unstuff_bits(resp, 96, 3);
120 csd->max_dtr = tran_exp[e] * tran_mant[m];
121 csd->cmdclass = unstuff_bits(resp, 84, 12);
123 e = unstuff_bits(resp, 47, 3);
124 m = unstuff_bits(resp, 62, 12);
125 csd->capacity = (1 + m) << (e + 2);
127 csd->read_blkbits = unstuff_bits(resp, 80, 4);
128 csd->read_partial = unstuff_bits(resp, 79, 1);
129 csd->write_misalign = unstuff_bits(resp, 78, 1);
130 csd->read_misalign = unstuff_bits(resp, 77, 1);
131 csd->dsr_imp = unstuff_bits(resp, 76, 1);
132 csd->r2w_factor = unstuff_bits(resp, 26, 3);
133 csd->write_blkbits = unstuff_bits(resp, 22, 4);
134 csd->write_partial = unstuff_bits(resp, 21, 1);
136 if (unstuff_bits(resp, 46, 1)) {
138 } else if (csd->write_blkbits >= 9) {
139 csd->erase_size = unstuff_bits(resp, 39, 7) + 1;
140 csd->erase_size <<= csd->write_blkbits - 9;
143 if (unstuff_bits(resp, 13, 1))
144 mmc_card_set_readonly(card);
149 * This is a block-addressed SDHC, SDXC or SDUC card.
150 * Most interesting fields are unused and have fixed
151 * values. To avoid getting tripped by buggy cards,
152 * we assume those fixed values ourselves.
154 mmc_card_set_blockaddr(card);
156 csd->taac_ns = 0; /* Unused */
157 csd->taac_clks = 0; /* Unused */
159 m = unstuff_bits(resp, 99, 4);
160 e = unstuff_bits(resp, 96, 3);
161 csd->max_dtr = tran_exp[e] * tran_mant[m];
162 csd->cmdclass = unstuff_bits(resp, 84, 12);
165 m = unstuff_bits(resp, 48, 22);
167 m = unstuff_bits(resp, 48, 28);
170 if (csd->c_size >= 0x400000 && is_sduc)
171 mmc_card_set_ult_capacity(card);
172 else if (csd->c_size >= 0xFFFF)
173 mmc_card_set_ext_capacity(card);
175 csd->capacity = (1 + (typeof(sector_t))m) << 10;
177 csd->read_blkbits = 9;
178 csd->read_partial = 0;
179 csd->write_misalign = 0;
180 csd->read_misalign = 0;
181 csd->r2w_factor = 4; /* Unused */
182 csd->write_blkbits = 9;
183 csd->write_partial = 0;
186 if (unstuff_bits(resp, 13, 1))
187 mmc_card_set_readonly(card);
190 pr_err("%s: unrecognised CSD structure version %d\n",
191 mmc_hostname(card->host), csd_struct);
195 card->erase_size = csd->erase_size;
201 * Given a 64-bit response, decode to our card SCR structure.
203 int mmc_decode_scr(struct mmc_card *card)
205 struct sd_scr *scr = &card->scr;
206 unsigned int scr_struct;
209 resp[3] = card->raw_scr[1];
210 resp[2] = card->raw_scr[0];
212 scr_struct = unstuff_bits(resp, 60, 4);
213 if (scr_struct != 0) {
214 pr_err("%s: unrecognised SCR structure version %d\n",
215 mmc_hostname(card->host), scr_struct);
219 scr->sda_vsn = unstuff_bits(resp, 56, 4);
220 scr->bus_widths = unstuff_bits(resp, 48, 4);
221 if (scr->sda_vsn == SCR_SPEC_VER_2)
222 /* Check if Physical Layer Spec v3.0 is supported */
223 scr->sda_spec3 = unstuff_bits(resp, 47, 1);
225 if (scr->sda_spec3) {
226 scr->sda_spec4 = unstuff_bits(resp, 42, 1);
227 scr->sda_specx = unstuff_bits(resp, 38, 4);
230 if (unstuff_bits(resp, 55, 1))
231 card->erased_byte = 0xFF;
233 card->erased_byte = 0x0;
236 scr->cmds = unstuff_bits(resp, 32, 4);
237 else if (scr->sda_spec3)
238 scr->cmds = unstuff_bits(resp, 32, 2);
240 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
241 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
242 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
243 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
251 * Fetch and process SD Status register.
253 static int mmc_read_ssr(struct mmc_card *card)
255 unsigned int au, es, et, eo;
261 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
262 pr_warn("%s: card lacks mandatory SD Status function\n",
263 mmc_hostname(card->host));
267 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
271 if (mmc_app_sd_status(card, raw_ssr)) {
272 pr_warn("%s: problem reading SD Status register\n",
273 mmc_hostname(card->host));
278 for (i = 0; i < 16; i++)
279 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
284 * unstuff_bits only works with four u32s so we have to offset the
285 * bitfield positions accordingly.
287 au = unstuff_bits(card->raw_ssr, 428 - 384, 4);
289 if (au <= 9 || card->scr.sda_spec3) {
290 card->ssr.au = sd_au_size[au];
291 es = unstuff_bits(card->raw_ssr, 408 - 384, 16);
292 et = unstuff_bits(card->raw_ssr, 402 - 384, 6);
294 eo = unstuff_bits(card->raw_ssr, 400 - 384, 2);
295 card->ssr.erase_timeout = (et * 1000) / es;
296 card->ssr.erase_offset = eo * 1000;
299 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
300 mmc_hostname(card->host));
305 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
307 resp[3] = card->raw_ssr[6];
308 discard_support = unstuff_bits(resp, 313 - 288, 1);
309 card->erase_arg = (card->scr.sda_specx && discard_support) ?
310 SD_DISCARD_ARG : SD_ERASE_ARG;
316 * Fetches and decodes switch information
318 static int mmc_read_switch(struct mmc_card *card)
323 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
326 if (!(card->csd.cmdclass & CCC_SWITCH)) {
327 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
328 mmc_hostname(card->host));
332 status = kmalloc(64, GFP_KERNEL);
337 * Find out the card's support bits with a mode 0 operation.
338 * The argument does not matter, as the support bits do not
339 * change with the arguments.
341 err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status);
344 * If the host or the card can't do the switch,
345 * fail more gracefully.
347 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
350 pr_warn("%s: problem reading Bus Speed modes\n",
351 mmc_hostname(card->host));
357 if (status[13] & SD_MODE_HIGH_SPEED)
358 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
360 if (card->scr.sda_spec3) {
361 card->sw_caps.sd3_bus_mode = status[13];
362 /* Driver Strengths supported by the card */
363 card->sw_caps.sd3_drv_type = status[9];
364 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
374 * Test if the card supports high-speed mode and, if so, switch to it.
376 int mmc_sd_switch_hs(struct mmc_card *card)
381 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
384 if (!(card->csd.cmdclass & CCC_SWITCH))
387 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
390 if (card->sw_caps.hs_max_dtr == 0)
393 status = kmalloc(64, GFP_KERNEL);
397 err = mmc_sd_switch(card, SD_SWITCH_SET, 0,
398 HIGH_SPEED_BUS_SPEED, status);
402 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
403 pr_warn("%s: Problem switching card into high-speed mode!\n",
404 mmc_hostname(card->host));
416 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
418 int card_drv_type, drive_strength, drv_type;
421 card->drive_strength = 0;
423 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
425 drive_strength = mmc_select_drive_strength(card,
426 card->sw_caps.uhs_max_dtr,
427 card_drv_type, &drv_type);
429 if (drive_strength) {
430 err = mmc_sd_switch(card, SD_SWITCH_SET, 2,
431 drive_strength, status);
434 if ((status[15] & 0xF) != drive_strength) {
435 pr_warn("%s: Problem setting drive strength!\n",
436 mmc_hostname(card->host));
439 card->drive_strength = drive_strength;
443 mmc_set_driver_type(card->host, drv_type);
448 static void sd_update_bus_speed_mode(struct mmc_card *card)
451 * If the host doesn't support any of the UHS-I modes, fallback on
454 if (!mmc_host_uhs(card->host)) {
455 card->sd_bus_speed = 0;
459 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
460 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
461 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
462 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
463 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
464 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
465 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
466 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
467 SD_MODE_UHS_SDR50)) {
468 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
471 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
472 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
473 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
474 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
475 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
476 SD_MODE_UHS_SDR12)) {
477 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
481 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
484 unsigned int timing = 0;
486 switch (card->sd_bus_speed) {
487 case UHS_SDR104_BUS_SPEED:
488 timing = MMC_TIMING_UHS_SDR104;
489 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
491 case UHS_DDR50_BUS_SPEED:
492 timing = MMC_TIMING_UHS_DDR50;
493 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
495 case UHS_SDR50_BUS_SPEED:
496 timing = MMC_TIMING_UHS_SDR50;
497 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
499 case UHS_SDR25_BUS_SPEED:
500 timing = MMC_TIMING_UHS_SDR25;
501 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
503 case UHS_SDR12_BUS_SPEED:
504 timing = MMC_TIMING_UHS_SDR12;
505 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
511 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status);
515 if ((status[16] & 0xF) != card->sd_bus_speed)
516 pr_warn("%s: Problem setting bus speed mode!\n",
517 mmc_hostname(card->host));
519 mmc_set_timing(card->host, timing);
520 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
526 /* Get host's max current setting at its current voltage */
527 static u32 sd_get_host_max_current(struct mmc_host *host)
529 u32 voltage, max_current;
531 voltage = 1 << host->ios.vdd;
533 case MMC_VDD_165_195:
534 max_current = host->max_current_180;
538 max_current = host->max_current_300;
542 max_current = host->max_current_330;
551 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
553 int current_limit = SD_SET_CURRENT_NO_CHANGE;
558 * Current limit switch is only defined for SDR50, SDR104, and DDR50
559 * bus speed modes. For other bus speed modes, we do not change the
562 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
563 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
564 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
568 * Host has different current capabilities when operating at
569 * different voltages, so find out its max current first.
571 max_current = sd_get_host_max_current(card->host);
574 * We only check host's capability here, if we set a limit that is
575 * higher than the card's maximum current, the card will be using its
576 * maximum current, e.g. if the card's maximum current is 300ma, and
577 * when we set current limit to 200ma, the card will draw 200ma, and
578 * when we set current limit to 400/600/800ma, the card will draw its
579 * maximum 300ma from the host.
581 * The above is incorrect: if we try to set a current limit that is
582 * not supported by the card, the card can rightfully error out the
583 * attempt, and remain at the default current limit. This results
584 * in a 300mA card being limited to 200mA even though the host
585 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
586 * an iMX6 host. --rmk
588 if (max_current >= 800 &&
589 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
590 current_limit = SD_SET_CURRENT_LIMIT_800;
591 else if (max_current >= 600 &&
592 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
593 current_limit = SD_SET_CURRENT_LIMIT_600;
594 else if (max_current >= 400 &&
595 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
596 current_limit = SD_SET_CURRENT_LIMIT_400;
597 else if (max_current >= 200 &&
598 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
599 current_limit = SD_SET_CURRENT_LIMIT_200;
601 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
602 err = mmc_sd_switch(card, SD_SWITCH_SET, 3,
603 current_limit, status);
607 if (((status[15] >> 4) & 0x0F) != current_limit)
608 pr_warn("%s: Problem setting current limit!\n",
609 mmc_hostname(card->host));
617 * UHS-I specific initialization procedure
619 static int mmc_sd_init_uhs_card(struct mmc_card *card)
624 if (!(card->csd.cmdclass & CCC_SWITCH))
627 status = kmalloc(64, GFP_KERNEL);
631 /* Set 4-bit bus width */
632 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
636 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
639 * Select the bus speed mode depending on host
640 * and card capability.
642 sd_update_bus_speed_mode(card);
644 /* Set the driver strength for the card */
645 err = sd_select_driver_type(card, status);
649 /* Set current limit for the card */
650 err = sd_set_current_limit(card, status);
654 /* Set bus speed mode of the card */
655 err = sd_set_bus_speed_mode(card, status);
660 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
661 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
663 if (!mmc_host_is_spi(card->host) &&
664 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
665 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
666 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
667 err = mmc_execute_tuning(card);
670 * As SD Specifications Part1 Physical Layer Specification
671 * Version 3.01 says, CMD19 tuning is available for unlocked
672 * cards in transfer state of 1.8V signaling mode. The small
673 * difference between v3.00 and 3.01 spec means that CMD19
674 * tuning is also available for DDR50 mode.
676 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
677 pr_warn("%s: ddr50 tuning failed\n",
678 mmc_hostname(card->host));
689 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
690 card->raw_cid[2], card->raw_cid[3]);
691 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
692 card->raw_csd[2], card->raw_csd[3]);
693 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
695 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
696 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
697 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
698 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
699 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
700 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
702 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
703 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
704 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
705 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
706 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
707 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
708 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
709 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
710 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
711 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
712 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
715 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr,
718 struct mmc_card *card = mmc_dev_to_card(dev);
719 struct mmc_host *host = card->host;
721 if (card->csd.dsr_imp && host->dsr_req)
722 return sysfs_emit(buf, "0x%x\n", host->dsr);
723 /* return default DSR value */
724 return sysfs_emit(buf, "0x%x\n", 0x404);
727 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
729 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
730 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
731 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
733 #define sdio_info_attr(num) \
734 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
736 struct mmc_card *card = mmc_dev_to_card(dev); \
738 if (num > card->num_info) \
740 if (!card->info[num - 1][0]) \
742 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \
744 static DEVICE_ATTR_RO(info##num)
751 static struct attribute *sd_std_attrs[] = {
752 &dev_attr_vendor.attr,
753 &dev_attr_device.attr,
754 &dev_attr_revision.attr,
755 &dev_attr_info1.attr,
756 &dev_attr_info2.attr,
757 &dev_attr_info3.attr,
758 &dev_attr_info4.attr,
764 &dev_attr_erase_size.attr,
765 &dev_attr_preferred_erase_size.attr,
766 &dev_attr_fwrev.attr,
767 &dev_attr_hwrev.attr,
768 &dev_attr_manfid.attr,
770 &dev_attr_oemid.attr,
771 &dev_attr_serial.attr,
778 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
781 struct device *dev = kobj_to_dev(kobj);
782 struct mmc_card *card = mmc_dev_to_card(dev);
784 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
785 if ((attr == &dev_attr_vendor.attr ||
786 attr == &dev_attr_device.attr ||
787 attr == &dev_attr_revision.attr ||
788 attr == &dev_attr_info1.attr ||
789 attr == &dev_attr_info2.attr ||
790 attr == &dev_attr_info3.attr ||
791 attr == &dev_attr_info4.attr
792 ) &&!mmc_card_sd_combo(card))
798 static const struct attribute_group sd_std_group = {
799 .attrs = sd_std_attrs,
800 .is_visible = sd_std_is_visible,
802 __ATTRIBUTE_GROUPS(sd_std);
804 const struct device_type sd_type = {
805 .groups = sd_std_groups,
809 * Fetch CID from card.
811 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
821 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
825 * Since we're changing the OCR value, we seem to
826 * need to tell some cards to go back to the idle
827 * state. We wait 1ms to give cards time to
833 * If SD_SEND_IF_COND indicates an SD 2.0
834 * compliant card and we should set bit 30
835 * of the ocr to indicate that we can handle
836 * block-addressed SDHC cards.
838 err = mmc_send_if_cond(host, ocr);
841 /* Set HO2T as well - SDUC card won't respond otherwise */
846 * If the host supports one of UHS-I modes, request the card
847 * to switch to 1.8V signaling level. If the card has failed
848 * repeatedly to switch however, skip this.
850 if (retries && mmc_host_uhs(host))
854 * If the host can supply more than 150mA at current voltage,
855 * XPC should be set to 1.
857 max_current = sd_get_host_max_current(host);
858 if (max_current > 150)
861 err = mmc_send_app_op_cond(host, ocr, rocr);
866 * In case the S18A bit is set in the response, let's start the signal
867 * voltage switch procedure. SPI mode doesn't support CMD11.
868 * Note that, according to the spec, the S18A bit is not valid unless
869 * the CCS bit is set as well. We deliberately deviate from the spec in
870 * regards to this, which allows UHS-I to be supported for SDSC cards.
872 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
873 rocr && (*rocr & SD_ROCR_S18A)) {
874 err = mmc_set_uhs_voltage(host, pocr);
875 if (err == -EAGAIN) {
884 err = mmc_send_cid(host, cid);
888 int mmc_sd_get_csd(struct mmc_card *card, bool is_sduc)
893 * Fetch CSD from card.
895 err = mmc_send_csd(card, card->raw_csd);
899 err = mmc_decode_csd(card, is_sduc);
906 int mmc_sd_get_ro(struct mmc_host *host)
911 * Some systems don't feature a write-protect pin and don't need one.
912 * E.g. because they only have micro-SD card slot. For those systems
913 * assume that the SD card is always read-write.
915 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
918 if (!host->ops->get_ro)
921 ro = host->ops->get_ro(host);
926 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
933 * Fetch SCR from card.
935 err = mmc_app_send_scr(card);
939 err = mmc_decode_scr(card);
944 * Fetch and process SD Status register.
946 err = mmc_read_ssr(card);
950 /* Erase init depends on CSD and SSR */
951 mmc_init_erase(card);
955 * Fetch switch information from card. Note, sd3_bus_mode can change if
956 * voltage switch outcome changes, so do this always.
958 err = mmc_read_switch(card);
963 * For SPI, enable CRC as appropriate.
964 * This CRC enable is located AFTER the reading of the
965 * card registers because some SDHC cards are not able
966 * to provide valid CRCs for non-512-byte blocks.
968 if (mmc_host_is_spi(host)) {
969 err = mmc_spi_set_crc(host, use_spi_crc);
975 * Check if read-only switch is active.
978 int ro = mmc_sd_get_ro(host);
981 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
984 mmc_card_set_readonly(card);
991 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
993 unsigned max_dtr = (unsigned int)-1;
995 if (mmc_card_hs(card)) {
996 if (max_dtr > card->sw_caps.hs_max_dtr)
997 max_dtr = card->sw_caps.hs_max_dtr;
998 } else if (max_dtr > card->csd.max_dtr) {
999 max_dtr = card->csd.max_dtr;
1005 static bool mmc_sd_card_using_v18(struct mmc_card *card)
1008 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1009 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1010 * they can be used to determine if the card has already switched to
1013 return card->sw_caps.sd3_bus_mode &
1014 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1017 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1020 struct mmc_host *host = card->host;
1021 struct mmc_request mrq = {};
1022 struct mmc_command cmd = {};
1023 struct mmc_data data = {};
1024 struct scatterlist sg;
1027 reg_buf = kzalloc(512, GFP_KERNEL);
1035 * Arguments of CMD49:
1036 * [31:31] MIO (0 = memory).
1037 * [30:27] FNO (function number).
1038 * [26:26] MW - mask write mode (0 = disable).
1039 * [25:18] page number.
1040 * [17:9] offset address.
1041 * [8:0] length (0 = 1 byte).
1043 cmd.arg = fno << 27 | page << 18 | offset << 9;
1045 /* The first byte in the buffer is the data to be written. */
1046 reg_buf[0] = reg_data;
1048 data.flags = MMC_DATA_WRITE;
1053 sg_init_one(&sg, reg_buf, 512);
1055 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1056 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1058 mmc_set_data_timeout(&data, card);
1059 mmc_wait_for_req(host, &mrq);
1064 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1065 * after the CMD49. Although, let's leave this to be managed by the
1077 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1078 u16 offset, u16 len, u8 *reg_buf)
1083 * Command arguments of CMD48:
1084 * [31:31] MIO (0 = memory).
1085 * [30:27] FNO (function number).
1086 * [26:26] reserved (0).
1087 * [25:18] page number.
1088 * [17:9] offset address.
1089 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1091 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1093 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1094 cmd_args, reg_buf, 512);
1097 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1103 reg_buf = kzalloc(512, GFP_KERNEL);
1107 /* Read the extension register for power management function. */
1108 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1110 pr_warn("%s: error %d reading PM func of ext reg\n",
1111 mmc_hostname(card->host), err);
1115 /* PM revision consists of 4 bits. */
1116 card->ext_power.rev = reg_buf[0] & 0xf;
1118 /* Power Off Notification support at bit 4. */
1119 if ((reg_buf[1] & BIT(4)) && !mmc_card_broken_sd_poweroff_notify(card))
1120 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1122 /* Power Sustenance support at bit 5. */
1123 if (reg_buf[1] & BIT(5))
1124 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1126 /* Power Down Mode support at bit 6. */
1127 if (reg_buf[1] & BIT(6))
1128 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1130 card->ext_power.fno = fno;
1131 card->ext_power.page = page;
1132 card->ext_power.offset = offset;
1139 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1145 reg_buf = kzalloc(512, GFP_KERNEL);
1149 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1151 pr_warn("%s: error %d reading PERF func of ext reg\n",
1152 mmc_hostname(card->host), err);
1156 /* PERF revision. */
1157 card->ext_perf.rev = reg_buf[0];
1159 /* FX_EVENT support at bit 0. */
1160 if (reg_buf[1] & BIT(0))
1161 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1163 /* Card initiated self-maintenance support at bit 0. */
1164 if (reg_buf[2] & BIT(0))
1165 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1167 /* Host initiated self-maintenance support at bit 1. */
1168 if (reg_buf[2] & BIT(1))
1169 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1171 /* Cache support at bit 0. */
1172 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card))
1173 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1175 /* Command queue support indicated via queue depth bits (0 to 4). */
1176 if (reg_buf[6] & 0x1f)
1177 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1179 card->ext_perf.fno = fno;
1180 card->ext_perf.page = page;
1181 card->ext_perf.offset = offset;
1188 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1191 u8 num_regs, fno, page;
1192 u16 sfc, offset, ext = *next_ext_addr;
1196 * Parse only one register set per extension, as that is sufficient to
1197 * support the standard functions. This means another 48 bytes in the
1198 * buffer must be available.
1203 /* Standard Function Code */
1204 memcpy(&sfc, &gen_info_buf[ext], 2);
1206 /* Address to the next extension. */
1207 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1209 /* Number of registers for this extension. */
1210 num_regs = gen_info_buf[ext + 42];
1212 /* We support only one register per extension. */
1216 /* Extension register address. */
1217 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1219 /* 9 bits (0 to 8) contains the offset address. */
1220 offset = reg_addr & 0x1ff;
1222 /* 8 bits (9 to 16) contains the page number. */
1223 page = reg_addr >> 9 & 0xff ;
1225 /* 4 bits (18 to 21) contains the function number. */
1226 fno = reg_addr >> 18 & 0xf;
1228 /* Standard Function Code for power management. */
1230 return sd_parse_ext_reg_power(card, fno, page, offset);
1232 /* Standard Function Code for performance enhancement. */
1234 return sd_parse_ext_reg_perf(card, fno, page, offset);
1239 static int sd_read_ext_regs(struct mmc_card *card)
1242 u8 num_ext, *gen_info_buf;
1243 u16 rev, len, next_ext_addr;
1245 if (mmc_host_is_spi(card->host))
1248 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1251 gen_info_buf = kzalloc(512, GFP_KERNEL);
1256 * Read 512 bytes of general info, which is found at function number 0,
1257 * at page 0 and with no offset.
1259 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1261 pr_err("%s: error %d reading general info of SD ext reg\n",
1262 mmc_hostname(card->host), err);
1266 /* General info structure revision. */
1267 memcpy(&rev, &gen_info_buf[0], 2);
1269 /* Length of general info in bytes. */
1270 memcpy(&len, &gen_info_buf[2], 2);
1272 /* Number of extensions to be find. */
1273 num_ext = gen_info_buf[4];
1276 * We only support revision 0 and limit it to 512 bytes for simplicity.
1277 * No matter what, let's return zero to allow us to continue using the
1278 * card, even if we can't support the features from the SD function
1279 * extensions registers.
1281 if (rev != 0 || len > 512) {
1282 pr_warn("%s: non-supported SD ext reg layout\n",
1283 mmc_hostname(card->host));
1288 * Parse the extension registers. The first extension should start
1289 * immediately after the general info header (16 bytes).
1292 for (i = 0; i < num_ext; i++) {
1293 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1295 pr_err("%s: error %d parsing SD ext reg\n",
1296 mmc_hostname(card->host), err);
1302 kfree(gen_info_buf);
1306 static bool sd_cache_enabled(struct mmc_host *host)
1308 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1311 static int sd_flush_cache(struct mmc_host *host)
1313 struct mmc_card *card = host->card;
1314 u8 *reg_buf, fno, page;
1318 if (!sd_cache_enabled(host))
1321 reg_buf = kzalloc(512, GFP_KERNEL);
1326 * Set Flush Cache at bit 0 in the performance enhancement register at
1329 fno = card->ext_perf.fno;
1330 page = card->ext_perf.page;
1331 offset = card->ext_perf.offset + 261;
1333 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1335 pr_warn("%s: error %d writing Cache Flush bit\n",
1336 mmc_hostname(host), err);
1340 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1341 MMC_BUSY_EXTR_SINGLE);
1346 * Read the Flush Cache bit. The card shall reset it, to confirm that
1347 * it's has completed the flushing of the cache.
1349 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1351 pr_warn("%s: error %d reading Cache Flush bit\n",
1352 mmc_hostname(host), err);
1356 if (reg_buf[0] & BIT(0))
1363 static int sd_enable_cache(struct mmc_card *card)
1368 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1370 reg_buf = kzalloc(512, GFP_KERNEL);
1375 * Set Cache Enable at bit 0 in the performance enhancement register at
1378 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1379 card->ext_perf.offset + 260, BIT(0));
1381 pr_warn("%s: error %d writing Cache Enable bit\n",
1382 mmc_hostname(card->host), err);
1386 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1387 MMC_BUSY_EXTR_SINGLE);
1389 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1397 * Handle the detection and initialisation of a card.
1399 * In the case of a resume, "oldcard" will contain the card
1400 * we're trying to reinitialise.
1402 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1403 struct mmc_card *oldcard)
1405 struct mmc_card *card;
1409 bool v18_fixup_failed = false;
1411 WARN_ON(!host->claimed);
1413 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1418 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1419 pr_debug("%s: Perhaps the card was replaced\n",
1420 mmc_hostname(host));
1427 * Allocate card structure.
1429 card = mmc_alloc_card(host, &sd_type);
1431 return PTR_ERR(card);
1434 card->type = MMC_TYPE_SD;
1435 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1439 * Call the optional HC's init_card function to handle quirks.
1441 if (host->ops->init_card)
1442 host->ops->init_card(host, card);
1445 * For native busses: get card RCA and quit open drain mode.
1447 if (!mmc_host_is_spi(host)) {
1448 err = mmc_send_relative_addr(host, &card->rca);
1454 u32 sduc_arg = SD_OCR_CCS | SD_OCR_2T;
1455 bool is_sduc = (rocr & sduc_arg) == sduc_arg;
1457 err = mmc_sd_get_csd(card, is_sduc);
1461 mmc_decode_cid(card);
1465 * handling only for cards supporting DSR and hosts requesting
1468 if (card->csd.dsr_imp && host->dsr_req)
1472 * Select card, as all following commands rely on that.
1474 if (!mmc_host_is_spi(host)) {
1475 err = mmc_select_card(card);
1480 /* Apply quirks prior to card setup */
1481 mmc_fixup_device(card, mmc_sd_fixups);
1483 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1488 * If the card has not been power cycled, it may still be using 1.8V
1489 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1492 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1493 mmc_sd_card_using_v18(card) &&
1494 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1495 if (mmc_host_set_uhs_voltage(host) ||
1496 mmc_sd_init_uhs_card(card)) {
1497 v18_fixup_failed = true;
1498 mmc_power_cycle(host, ocr);
1500 mmc_remove_card(card);
1506 /* Initialization sequence for UHS-I cards */
1507 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1508 err = mmc_sd_init_uhs_card(card);
1513 * Attempt to change to high-speed (if supported)
1515 err = mmc_sd_switch_hs(card);
1517 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1524 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1526 if (host->ios.timing == MMC_TIMING_SD_HS &&
1527 host->ops->prepare_sd_hs_tuning) {
1528 err = host->ops->prepare_sd_hs_tuning(host, card);
1534 * Switch to wider bus (if supported).
1536 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1537 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1538 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1542 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1545 if (host->ios.timing == MMC_TIMING_SD_HS &&
1546 host->ops->execute_sd_hs_tuning) {
1547 err = host->ops->execute_sd_hs_tuning(host, card);
1554 /* Read/parse the extension registers. */
1555 err = sd_read_ext_regs(card);
1560 /* Enable internal SD cache if supported. */
1561 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1562 err = sd_enable_cache(card);
1567 if (!mmc_card_ult_capacity(card) && host->cqe_ops && !host->cqe_enabled) {
1568 err = host->cqe_ops->cqe_enable(host, card);
1570 host->cqe_enabled = true;
1571 host->hsq_enabled = true;
1572 pr_info("%s: Host Software Queue enabled\n",
1573 mmc_hostname(host));
1577 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1578 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1579 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1580 mmc_hostname(host));
1590 mmc_remove_card(card);
1596 * Host is being removed. Free up the current card.
1598 static void mmc_sd_remove(struct mmc_host *host)
1600 mmc_remove_card(host->card);
1605 * Card detection - card is alive.
1607 static int mmc_sd_alive(struct mmc_host *host)
1609 return mmc_send_status(host->card, NULL);
1613 * Card detection callback from host.
1615 static void mmc_sd_detect(struct mmc_host *host)
1619 mmc_get_card(host->card, NULL);
1622 * Just check if our card has been removed.
1624 err = _mmc_detect_card_removed(host);
1626 mmc_put_card(host->card, NULL);
1629 mmc_sd_remove(host);
1631 mmc_claim_host(host);
1632 mmc_detach_bus(host);
1633 mmc_power_off(host);
1634 mmc_release_host(host);
1638 static int sd_can_poweroff_notify(struct mmc_card *card)
1640 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1643 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1645 struct sd_busy_data *data = cb_data;
1646 struct mmc_card *card = data->card;
1650 * Read the status register for the power management function. It's at
1651 * one byte offset and is one byte long. The Power Off Notification
1654 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1655 card->ext_power.offset + 1, 1, data->reg_buf);
1657 pr_warn("%s: error %d reading status reg of PM func\n",
1658 mmc_hostname(card->host), err);
1662 *busy = !(data->reg_buf[0] & BIT(0));
1666 static int sd_poweroff_notify(struct mmc_card *card)
1668 struct sd_busy_data cb_data;
1672 reg_buf = kzalloc(512, GFP_KERNEL);
1677 * Set the Power Off Notification bit in the power management settings
1678 * register at 2 bytes offset.
1680 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1681 card->ext_power.offset + 2, BIT(0));
1683 pr_warn("%s: error %d writing Power Off Notify bit\n",
1684 mmc_hostname(card->host), err);
1688 /* Find out when the command is completed. */
1689 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1690 MMC_BUSY_EXTR_SINGLE);
1694 cb_data.card = card;
1695 cb_data.reg_buf = reg_buf;
1696 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1697 &sd_busy_poweroff_notify_cb, &cb_data);
1704 static int _mmc_sd_suspend(struct mmc_host *host)
1706 struct mmc_card *card = host->card;
1709 mmc_claim_host(host);
1711 if (mmc_card_suspended(card))
1714 if (sd_can_poweroff_notify(card))
1715 err = sd_poweroff_notify(card);
1716 else if (!mmc_host_is_spi(host))
1717 err = mmc_deselect_cards(host);
1720 mmc_power_off(host);
1721 mmc_card_set_suspended(card);
1725 mmc_release_host(host);
1730 * Callback for suspend
1732 static int mmc_sd_suspend(struct mmc_host *host)
1736 err = _mmc_sd_suspend(host);
1738 pm_runtime_disable(&host->card->dev);
1739 pm_runtime_set_suspended(&host->card->dev);
1746 * This function tries to determine if the same card is still present
1747 * and, if so, restore all state to it.
1749 static int _mmc_sd_resume(struct mmc_host *host)
1753 mmc_claim_host(host);
1755 if (!mmc_card_suspended(host->card))
1758 mmc_power_up(host, host->card->ocr);
1759 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1760 mmc_card_clr_suspended(host->card);
1763 mmc_release_host(host);
1768 * Callback for resume
1770 static int mmc_sd_resume(struct mmc_host *host)
1772 pm_runtime_enable(&host->card->dev);
1777 * Callback for runtime_suspend.
1779 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1783 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1786 err = _mmc_sd_suspend(host);
1788 pr_err("%s: error %d doing aggressive suspend\n",
1789 mmc_hostname(host), err);
1795 * Callback for runtime_resume.
1797 static int mmc_sd_runtime_resume(struct mmc_host *host)
1801 err = _mmc_sd_resume(host);
1802 if (err && err != -ENOMEDIUM)
1803 pr_err("%s: error %d doing runtime resume\n",
1804 mmc_hostname(host), err);
1809 static int mmc_sd_hw_reset(struct mmc_host *host)
1811 mmc_power_cycle(host, host->card->ocr);
1812 return mmc_sd_init_card(host, host->card->ocr, host->card);
1815 static const struct mmc_bus_ops mmc_sd_ops = {
1816 .remove = mmc_sd_remove,
1817 .detect = mmc_sd_detect,
1818 .runtime_suspend = mmc_sd_runtime_suspend,
1819 .runtime_resume = mmc_sd_runtime_resume,
1820 .suspend = mmc_sd_suspend,
1821 .resume = mmc_sd_resume,
1822 .alive = mmc_sd_alive,
1823 .shutdown = mmc_sd_suspend,
1824 .hw_reset = mmc_sd_hw_reset,
1825 .cache_enabled = sd_cache_enabled,
1826 .flush_cache = sd_flush_cache,
1830 * Starting point for SD card init.
1832 int mmc_attach_sd(struct mmc_host *host)
1837 WARN_ON(!host->claimed);
1839 err = mmc_send_app_op_cond(host, 0, &ocr);
1843 mmc_attach_bus(host, &mmc_sd_ops);
1844 if (host->ocr_avail_sd)
1845 host->ocr_avail = host->ocr_avail_sd;
1848 * We need to get OCR a different way for SPI.
1850 if (mmc_host_is_spi(host)) {
1853 err = mmc_spi_read_ocr(host, 0, &ocr);
1859 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1860 * these bits as being in-valid and especially also bit7.
1864 rocr = mmc_select_voltage(host, ocr);
1867 * Can we support the voltage(s) of the card(s)?
1875 * Detect and init the card.
1877 err = mmc_sd_init_card(host, rocr, NULL);
1881 mmc_release_host(host);
1882 err = mmc_add_card(host->card);
1886 mmc_claim_host(host);
1890 mmc_remove_card(host->card);
1892 mmc_claim_host(host);
1894 mmc_detach_bus(host);
1896 pr_err("%s: error %d whilst initialising SD card\n",
1897 mmc_hostname(host), err);