]> Git Repo - J-linux.git/blob - drivers/memory/emif.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / memory / emif.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EMIF driver
4  *
5  * Copyright (C) 2012 Texas Instruments, Inc.
6  *
7  * Aneesh V <[email protected]>
8  * Santosh Shilimkar <[email protected]>
9  */
10 #include <linux/cleanup.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/reboot.h>
14 #include <linux/platform_data/emif_plat.h>
15 #include <linux/io.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
18 #include <linux/interrupt.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/spinlock.h>
26 #include <linux/pm.h>
27
28 #include "emif.h"
29 #include "jedec_ddr.h"
30 #include "of_memory.h"
31
32 /**
33  * struct emif_data - Per device static data for driver's use
34  * @duplicate:                  Whether the DDR devices attached to this EMIF
35  *                              instance are exactly same as that on EMIF1. In
36  *                              this case we can save some memory and processing
37  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
38  *                              to this EMIF - read from MR4 register. If there
39  *                              are two devices attached to this EMIF, this
40  *                              value is the maximum of the two temperature
41  *                              levels.
42  * @node:                       node in the device list
43  * @base:                       base address of memory-mapped IO registers.
44  * @dev:                        device pointer.
45  * @regs_cache:                 An array of 'struct emif_regs' that stores
46  *                              calculated register values for different
47  *                              frequencies, to avoid re-calculating them on
48  *                              each DVFS transition.
49  * @curr_regs:                  The set of register values used in the last
50  *                              frequency change (i.e. corresponding to the
51  *                              frequency in effect at the moment)
52  * @plat_data:                  Pointer to saved platform data.
53  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
54  * @np_ddr:                     Pointer to ddr device tree node
55  */
56 struct emif_data {
57         u8                              duplicate;
58         u8                              temperature_level;
59         u8                              lpmode;
60         struct list_head                node;
61         void __iomem                    *base;
62         struct device                   *dev;
63         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
64         struct emif_regs                *curr_regs;
65         struct emif_platform_data       *plat_data;
66         struct dentry                   *debugfs_root;
67         struct device_node              *np_ddr;
68 };
69
70 static struct emif_data *emif1;
71 static DEFINE_SPINLOCK(emif_lock);
72 static LIST_HEAD(device_list);
73
74 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
75         struct emif_regs *regs)
76 {
77         u32 type = emif->plat_data->device_info->type;
78         u32 ip_rev = emif->plat_data->ip_rev;
79
80         seq_printf(s, "EMIF register cache dump for %dMHz\n",
81                 regs->freq/1000000);
82
83         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
84         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
85         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
86         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
87
88         if (ip_rev == EMIF_4D) {
89                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
90                         regs->read_idle_ctrl_shdw_normal);
91                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
92                         regs->read_idle_ctrl_shdw_volt_ramp);
93         } else if (ip_rev == EMIF_4D5) {
94                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
95                         regs->dll_calib_ctrl_shdw_normal);
96                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97                         regs->dll_calib_ctrl_shdw_volt_ramp);
98         }
99
100         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
101                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
102                         regs->ref_ctrl_shdw_derated);
103                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
104                         regs->sdram_tim1_shdw_derated);
105                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
106                         regs->sdram_tim3_shdw_derated);
107         }
108 }
109
110 static int emif_regdump_show(struct seq_file *s, void *unused)
111 {
112         struct emif_data        *emif   = s->private;
113         struct emif_regs        **regs_cache;
114         int                     i;
115
116         if (emif->duplicate)
117                 regs_cache = emif1->regs_cache;
118         else
119                 regs_cache = emif->regs_cache;
120
121         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
122                 do_emif_regdump_show(s, emif, regs_cache[i]);
123                 seq_putc(s, '\n');
124         }
125
126         return 0;
127 }
128
129 DEFINE_SHOW_ATTRIBUTE(emif_regdump);
130
131 static int emif_mr4_show(struct seq_file *s, void *unused)
132 {
133         struct emif_data *emif = s->private;
134
135         seq_printf(s, "MR4=%d\n", emif->temperature_level);
136         return 0;
137 }
138
139 DEFINE_SHOW_ATTRIBUTE(emif_mr4);
140
141 static void emif_debugfs_init(struct emif_data *emif)
142 {
143         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
144                 emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
145                 debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
146                                     &emif_regdump_fops);
147                 debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
148                                     &emif_mr4_fops);
149         }
150 }
151
152 static void emif_debugfs_exit(struct emif_data *emif)
153 {
154         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
155                 debugfs_remove_recursive(emif->debugfs_root);
156                 emif->debugfs_root = NULL;
157         }
158 }
159
160 /*
161  * Get bus width used by EMIF. Note that this may be different from the
162  * bus width of the DDR devices used. For instance two 16-bit DDR devices
163  * may be connected to a given CS of EMIF. In this case bus width as far
164  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
165  */
166 static u32 get_emif_bus_width(struct emif_data *emif)
167 {
168         u32             width;
169         void __iomem    *base = emif->base;
170
171         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
172                         >> NARROW_MODE_SHIFT;
173         width = width == 0 ? 32 : 16;
174
175         return width;
176 }
177
178 static void set_lpmode(struct emif_data *emif, u8 lpmode)
179 {
180         u32 temp;
181         void __iomem *base = emif->base;
182
183         /*
184          * Workaround for errata i743 - LPDDR2 Power-Down State is Not
185          * Efficient
186          *
187          * i743 DESCRIPTION:
188          * The EMIF supports power-down state for low power. The EMIF
189          * automatically puts the SDRAM into power-down after the memory is
190          * not accessed for a defined number of cycles and the
191          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
192          * As the EMIF supports automatic output impedance calibration, a ZQ
193          * calibration long command is issued every time it exits active
194          * power-down and precharge power-down modes. The EMIF waits and
195          * blocks any other command during this calibration.
196          * The EMIF does not allow selective disabling of ZQ calibration upon
197          * exit of power-down mode. Due to very short periods of power-down
198          * cycles, ZQ calibration overhead creates bandwidth issues and
199          * increases overall system power consumption. On the other hand,
200          * issuing ZQ calibration long commands when exiting self-refresh is
201          * still required.
202          *
203          * WORKAROUND
204          * Because there is no power consumption benefit of the power-down due
205          * to the calibration and there is a performance risk, the guideline
206          * is to not allow power-down state and, therefore, to not have set
207          * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
208          */
209         if ((emif->plat_data->ip_rev == EMIF_4D) &&
210             (lpmode == EMIF_LP_MODE_PWR_DN)) {
211                 WARN_ONCE(1,
212                           "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
213                 /* rollback LP_MODE to Self-refresh mode */
214                 lpmode = EMIF_LP_MODE_SELF_REFRESH;
215         }
216
217         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
218         temp &= ~LP_MODE_MASK;
219         temp |= (lpmode << LP_MODE_SHIFT);
220         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
221 }
222
223 static void do_freq_update(void)
224 {
225         struct emif_data *emif;
226
227         /*
228          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
229          *
230          * i728 DESCRIPTION:
231          * The EMIF automatically puts the SDRAM into self-refresh mode
232          * after the EMIF has not performed accesses during
233          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
234          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
235          * to 0x2. If during a small window the following three events
236          * occur:
237          * - The SR_TIMING counter expires
238          * - And frequency change is requested
239          * - And OCP access is requested
240          * Then it causes instable clock on the DDR interface.
241          *
242          * WORKAROUND
243          * To avoid the occurrence of the three events, the workaround
244          * is to disable the self-refresh when requesting a frequency
245          * change. Before requesting a frequency change the software must
246          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
247          * frequency change has been done, the software can reprogram
248          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
249          */
250         list_for_each_entry(emif, &device_list, node) {
251                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
252                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
253         }
254
255         /*
256          * TODO: Do FREQ_UPDATE here when an API
257          * is available for this as part of the new
258          * clock framework
259          */
260
261         list_for_each_entry(emif, &device_list, node) {
262                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
263                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
264         }
265 }
266
267 /* Find addressing table entry based on the device's type and density */
268 static const struct lpddr2_addressing *get_addressing_table(
269         const struct ddr_device_info *device_info)
270 {
271         u32             index, type, density;
272
273         type = device_info->type;
274         density = device_info->density;
275
276         switch (type) {
277         case DDR_TYPE_LPDDR2_S4:
278                 index = density - 1;
279                 break;
280         case DDR_TYPE_LPDDR2_S2:
281                 switch (density) {
282                 case DDR_DENSITY_1Gb:
283                 case DDR_DENSITY_2Gb:
284                         index = density + 3;
285                         break;
286                 default:
287                         index = density - 1;
288                 }
289                 break;
290         default:
291                 return NULL;
292         }
293
294         return &lpddr2_jedec_addressing_table[index];
295 }
296
297 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
298                 bool cs1_used, bool cal_resistors_per_cs)
299 {
300         u32 zq = 0, val = 0;
301
302         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
303         zq |= val << ZQ_REFINTERVAL_SHIFT;
304
305         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
306         zq |= val << ZQ_ZQCL_MULT_SHIFT;
307
308         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
309         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
310
311         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
312
313         if (cal_resistors_per_cs)
314                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
315         else
316                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
317
318         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
319
320         val = cs1_used ? 1 : 0;
321         zq |= val << ZQ_CS1EN_SHIFT;
322
323         return zq;
324 }
325
326 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
327                 const struct emif_custom_configs *custom_configs, bool cs1_used,
328                 u32 sdram_io_width, u32 emif_bus_width)
329 {
330         u32 alert = 0, interval, devcnt;
331
332         if (custom_configs && (custom_configs->mask &
333                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
334                 interval = custom_configs->temp_alert_poll_interval_ms;
335         else
336                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
337
338         interval *= 1000000;                    /* Convert to ns */
339         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
340         alert |= (interval << TA_REFINTERVAL_SHIFT);
341
342         /*
343          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
344          * also to this form and subtract to get TA_DEVCNT, which is
345          * in log2(x) form.
346          */
347         emif_bus_width = __fls(emif_bus_width) - 1;
348         devcnt = emif_bus_width - sdram_io_width;
349         alert |= devcnt << TA_DEVCNT_SHIFT;
350
351         /* DEVWDT is in 'log2(x) - 3' form */
352         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
353
354         alert |= 1 << TA_SFEXITEN_SHIFT;
355         alert |= 1 << TA_CS0EN_SHIFT;
356         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
357
358         return alert;
359 }
360
361 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
362 {
363         u32 pwr_mgmt_ctrl       = 0, timeout;
364         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
365         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
366         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
367         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
368         u32 mask;
369         u8 shift;
370
371         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
372
373         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
374                 lpmode          = cust_cfgs->lpmode;
375                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
376                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
377                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
378         }
379
380         /* Timeout based on DDR frequency */
381         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
382
383         /*
384          * The value to be set in register is "log2(timeout) - 3"
385          * if timeout < 16 load 0 in register
386          * if timeout is not a power of 2, round to next highest power of 2
387          */
388         if (timeout < 16) {
389                 timeout = 0;
390         } else {
391                 if (timeout & (timeout - 1))
392                         timeout <<= 1;
393                 timeout = __fls(timeout) - 3;
394         }
395
396         switch (lpmode) {
397         case EMIF_LP_MODE_CLOCK_STOP:
398                 shift = CS_TIM_SHIFT;
399                 mask = CS_TIM_MASK;
400                 break;
401         case EMIF_LP_MODE_SELF_REFRESH:
402                 /* Workaround for errata i735 */
403                 if (timeout < 6)
404                         timeout = 6;
405
406                 shift = SR_TIM_SHIFT;
407                 mask = SR_TIM_MASK;
408                 break;
409         case EMIF_LP_MODE_PWR_DN:
410                 shift = PD_TIM_SHIFT;
411                 mask = PD_TIM_MASK;
412                 break;
413         case EMIF_LP_MODE_DISABLE:
414         default:
415                 mask = 0;
416                 shift = 0;
417                 break;
418         }
419         /* Round to maximum in case of overflow, BUT warn! */
420         if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
421                 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
422                        lpmode,
423                        timeout_perf,
424                        timeout_pwr,
425                        freq_threshold);
426                 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
427                      timeout, mask >> shift);
428                 timeout = mask >> shift;
429         }
430
431         /* Setup required timing */
432         pwr_mgmt_ctrl = (timeout << shift) & mask;
433         /* setup a default mask for rest of the modes */
434         pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
435                           ~mask;
436
437         /* No CS_TIM in EMIF_4D5 */
438         if (ip_rev == EMIF_4D5)
439                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
440
441         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
442
443         return pwr_mgmt_ctrl;
444 }
445
446 /*
447  * Get the temperature level of the EMIF instance:
448  * Reads the MR4 register of attached SDRAM parts to find out the temperature
449  * level. If there are two parts attached(one on each CS), then the temperature
450  * level for the EMIF instance is the higher of the two temperatures.
451  */
452 static void get_temperature_level(struct emif_data *emif)
453 {
454         u32             temp, temperature_level;
455         void __iomem    *base;
456
457         base = emif->base;
458
459         /* Read mode register 4 */
460         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
461         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
462         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
463                                 MR4_SDRAM_REF_RATE_SHIFT;
464
465         if (emif->plat_data->device_info->cs1_used) {
466                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
467                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
468                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
469                                 >> MR4_SDRAM_REF_RATE_SHIFT;
470                 temperature_level = max(temp, temperature_level);
471         }
472
473         /* treat everything less than nominal(3) in MR4 as nominal */
474         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
475                 temperature_level = SDRAM_TEMP_NOMINAL;
476
477         /* if we get reserved value in MR4 persist with the existing value */
478         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
479                 emif->temperature_level = temperature_level;
480 }
481
482 /*
483  * setup_temperature_sensitive_regs() - set the timings for temperature
484  * sensitive registers. This happens once at initialisation time based
485  * on the temperature at boot time and subsequently based on the temperature
486  * alert interrupt. Temperature alert can happen when the temperature
487  * increases or drops. So this function can have the effect of either
488  * derating the timings or going back to nominal values.
489  */
490 static void setup_temperature_sensitive_regs(struct emif_data *emif,
491                 struct emif_regs *regs)
492 {
493         u32             tim1, tim3, ref_ctrl, type;
494         void __iomem    *base = emif->base;
495         u32             temperature;
496
497         type = emif->plat_data->device_info->type;
498
499         tim1 = regs->sdram_tim1_shdw;
500         tim3 = regs->sdram_tim3_shdw;
501         ref_ctrl = regs->ref_ctrl_shdw;
502
503         /* No de-rating for non-lpddr2 devices */
504         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
505                 goto out;
506
507         temperature = emif->temperature_level;
508         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
509                 ref_ctrl = regs->ref_ctrl_shdw_derated;
510         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
511                 tim1 = regs->sdram_tim1_shdw_derated;
512                 tim3 = regs->sdram_tim3_shdw_derated;
513                 ref_ctrl = regs->ref_ctrl_shdw_derated;
514         }
515
516 out:
517         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
518         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
519         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
520 }
521
522 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
523 {
524         u32             old_temp_level;
525         irqreturn_t     ret;
526         struct emif_custom_configs *custom_configs;
527
528         guard(spinlock_irqsave)(&emif_lock);
529         old_temp_level = emif->temperature_level;
530         get_temperature_level(emif);
531
532         if (unlikely(emif->temperature_level == old_temp_level)) {
533                 return IRQ_HANDLED;
534         } else if (!emif->curr_regs) {
535                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
536                 return IRQ_HANDLED;
537         }
538
539         custom_configs = emif->plat_data->custom_configs;
540
541         /*
542          * IF we detect higher than "nominal rating" from DDR sensor
543          * on an unsupported DDR part, shutdown system
544          */
545         if (custom_configs && !(custom_configs->mask &
546                                 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
547                 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
548                         dev_err(emif->dev,
549                                 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
550                                 __func__, emif->temperature_level);
551                         /*
552                          * Temperature far too high - do kernel_power_off()
553                          * from thread context
554                          */
555                         emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
556                         return IRQ_WAKE_THREAD;
557                 }
558         }
559
560         if (emif->temperature_level < old_temp_level ||
561                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
562                 /*
563                  * Temperature coming down - defer handling to thread OR
564                  * Temperature far too high - do kernel_power_off() from
565                  * thread context
566                  */
567                 ret = IRQ_WAKE_THREAD;
568         } else {
569                 /* Temperature is going up - handle immediately */
570                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
571                 do_freq_update();
572                 ret = IRQ_HANDLED;
573         }
574
575         return ret;
576 }
577
578 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
579 {
580         u32                     interrupts;
581         struct emif_data        *emif = dev_id;
582         void __iomem            *base = emif->base;
583         struct device           *dev = emif->dev;
584         irqreturn_t             ret = IRQ_HANDLED;
585
586         /* Save the status and clear it */
587         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
588         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
589
590         /*
591          * Handle temperature alert
592          * Temperature alert should be same for all ports
593          * So, it's enough to process it only for one of the ports
594          */
595         if (interrupts & TA_SYS_MASK)
596                 ret = handle_temp_alert(base, emif);
597
598         if (interrupts & ERR_SYS_MASK)
599                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
600
601         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
602                 /* Save the status and clear it */
603                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
604                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
605
606                 if (interrupts & ERR_LL_MASK)
607                         dev_err(dev, "Access error from LL port - %x\n",
608                                 interrupts);
609         }
610
611         return ret;
612 }
613
614 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
615 {
616         struct emif_data        *emif = dev_id;
617         unsigned long           irq_state;
618
619         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
620                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
621
622                 /* If we have Power OFF ability, use it, else try restarting */
623                 if (kernel_can_power_off()) {
624                         kernel_power_off();
625                 } else {
626                         WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
627                         kernel_restart("SDRAM Over-temp Emergency restart");
628                 }
629                 return IRQ_HANDLED;
630         }
631
632         spin_lock_irqsave(&emif_lock, irq_state);
633
634         if (emif->curr_regs) {
635                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
636                 do_freq_update();
637         } else {
638                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
639         }
640
641         spin_unlock_irqrestore(&emif_lock, irq_state);
642
643         return IRQ_HANDLED;
644 }
645
646 static void clear_all_interrupts(struct emif_data *emif)
647 {
648         void __iomem    *base = emif->base;
649
650         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
651                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
652         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
653                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
654                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
655 }
656
657 static void disable_and_clear_all_interrupts(struct emif_data *emif)
658 {
659         void __iomem            *base = emif->base;
660
661         /* Disable all interrupts */
662         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
663                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
664         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
665                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
666                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
667
668         /* Clear all interrupts */
669         clear_all_interrupts(emif);
670 }
671
672 static int setup_interrupts(struct emif_data *emif, u32 irq)
673 {
674         u32             interrupts, type;
675         void __iomem    *base = emif->base;
676
677         type = emif->plat_data->device_info->type;
678
679         clear_all_interrupts(emif);
680
681         /* Enable interrupts for SYS interface */
682         interrupts = EN_ERR_SYS_MASK;
683         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
684                 interrupts |= EN_TA_SYS_MASK;
685         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
686
687         /* Enable interrupts for LL interface */
688         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
689                 /* TA need not be enabled for LL */
690                 interrupts = EN_ERR_LL_MASK;
691                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
692         }
693
694         /* setup IRQ handlers */
695         return devm_request_threaded_irq(emif->dev, irq,
696                                     emif_interrupt_handler,
697                                     emif_threaded_isr,
698                                     0, dev_name(emif->dev),
699                                     emif);
700
701 }
702
703 static void emif_onetime_settings(struct emif_data *emif)
704 {
705         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
706         void __iomem                    *base = emif->base;
707         const struct lpddr2_addressing  *addressing;
708         const struct ddr_device_info    *device_info;
709
710         device_info = emif->plat_data->device_info;
711         addressing = get_addressing_table(device_info);
712
713         /*
714          * Init power management settings
715          * We don't know the frequency yet. Use a high frequency
716          * value for a conservative timeout setting
717          */
718         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
719                         emif->plat_data->ip_rev);
720         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
721         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
722
723         /* Init ZQ calibration settings */
724         zq = get_zq_config_reg(addressing, device_info->cs1_used,
725                 device_info->cal_resistors_per_cs);
726         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
727
728         /* Check temperature level temperature level*/
729         get_temperature_level(emif);
730         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
731                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
732
733         /* Init temperature polling */
734         temp_alert_cfg = get_temp_alert_config(addressing,
735                 emif->plat_data->custom_configs, device_info->cs1_used,
736                 device_info->io_width, get_emif_bus_width(emif));
737         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
738
739         /*
740          * Program external PHY control registers that are not frequency
741          * dependent
742          */
743         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
744                 return;
745         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
746         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
747         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
748         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
749         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
750         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
751         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
752         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
753         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
754         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
755         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
756         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
757         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
758         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
759         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
760         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
761         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
762         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
763         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
764         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
765         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
766 }
767
768 static void get_default_timings(struct emif_data *emif)
769 {
770         struct emif_platform_data *pd = emif->plat_data;
771
772         pd->timings             = lpddr2_jedec_timings;
773         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
774
775         dev_warn(emif->dev, "%s: using default timings\n", __func__);
776 }
777
778 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
779                 u32 ip_rev, struct device *dev)
780 {
781         int valid;
782
783         valid = (type == DDR_TYPE_LPDDR2_S4 ||
784                         type == DDR_TYPE_LPDDR2_S2)
785                 && (density >= DDR_DENSITY_64Mb
786                         && density <= DDR_DENSITY_8Gb)
787                 && (io_width >= DDR_IO_WIDTH_8
788                         && io_width <= DDR_IO_WIDTH_32);
789
790         /* Combinations of EMIF and PHY revisions that we support today */
791         switch (ip_rev) {
792         case EMIF_4D:
793                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
794                 break;
795         case EMIF_4D5:
796                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
797                 break;
798         default:
799                 valid = 0;
800         }
801
802         if (!valid)
803                 dev_err(dev, "%s: invalid DDR details\n", __func__);
804         return valid;
805 }
806
807 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
808                 struct device *dev)
809 {
810         int valid = 1;
811
812         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
813                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
814                 valid = cust_cfgs->lpmode_freq_threshold &&
815                         cust_cfgs->lpmode_timeout_performance &&
816                         cust_cfgs->lpmode_timeout_power;
817
818         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
819                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
820
821         if (!valid)
822                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
823
824         return valid;
825 }
826
827 static void of_get_custom_configs(struct device_node *np_emif,
828                 struct emif_data *emif)
829 {
830         struct emif_custom_configs      *cust_cfgs = NULL;
831         int                             len;
832         const __be32                    *lpmode, *poll_intvl;
833
834         lpmode = of_get_property(np_emif, "low-power-mode", &len);
835         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
836
837         if (lpmode || poll_intvl)
838                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
839                         GFP_KERNEL);
840
841         if (!cust_cfgs)
842                 return;
843
844         if (lpmode) {
845                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
846                 cust_cfgs->lpmode = be32_to_cpup(lpmode);
847                 of_property_read_u32(np_emif,
848                                 "low-power-mode-timeout-performance",
849                                 &cust_cfgs->lpmode_timeout_performance);
850                 of_property_read_u32(np_emif,
851                                 "low-power-mode-timeout-power",
852                                 &cust_cfgs->lpmode_timeout_power);
853                 of_property_read_u32(np_emif,
854                                 "low-power-mode-freq-threshold",
855                                 &cust_cfgs->lpmode_freq_threshold);
856         }
857
858         if (poll_intvl) {
859                 cust_cfgs->mask |=
860                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
861                 cust_cfgs->temp_alert_poll_interval_ms =
862                                                 be32_to_cpup(poll_intvl);
863         }
864
865         if (of_property_read_bool(np_emif, "extended-temp-part"))
866                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
867
868         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
869                 devm_kfree(emif->dev, cust_cfgs);
870                 return;
871         }
872
873         emif->plat_data->custom_configs = cust_cfgs;
874 }
875
876 static void of_get_ddr_info(struct device_node *np_emif,
877                 struct device_node *np_ddr,
878                 struct ddr_device_info *dev_info)
879 {
880         u32 density = 0, io_width = 0;
881
882         dev_info->cs1_used = of_property_read_bool(np_emif, "cs1-used");
883         dev_info->cal_resistors_per_cs = of_property_read_bool(np_emif, "cal-resistor-per-cs");
884
885         if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
886                 dev_info->type = DDR_TYPE_LPDDR2_S4;
887         else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
888                 dev_info->type = DDR_TYPE_LPDDR2_S2;
889
890         of_property_read_u32(np_ddr, "density", &density);
891         of_property_read_u32(np_ddr, "io-width", &io_width);
892
893         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
894         if (density & (density - 1))
895                 dev_info->density = 0;
896         else
897                 dev_info->density = __fls(density) - 5;
898
899         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
900         if (io_width & (io_width - 1))
901                 dev_info->io_width = 0;
902         else
903                 dev_info->io_width = __fls(io_width) - 1;
904 }
905
906 static struct emif_data *of_get_memory_device_details(
907                 struct device_node *np_emif, struct device *dev)
908 {
909         struct emif_data                *emif = NULL;
910         struct ddr_device_info          *dev_info = NULL;
911         struct emif_platform_data       *pd = NULL;
912         struct device_node              *np_ddr;
913
914         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
915         if (!np_ddr)
916                 goto error;
917         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
918         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
919         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
920
921         if (!emif || !pd || !dev_info) {
922                 dev_err(dev, "%s: Out of memory!!\n",
923                         __func__);
924                 goto error;
925         }
926
927         emif->plat_data         = pd;
928         pd->device_info         = dev_info;
929         emif->dev               = dev;
930         emif->np_ddr            = np_ddr;
931         emif->temperature_level = SDRAM_TEMP_NOMINAL;
932
933         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
934                 emif->plat_data->ip_rev = EMIF_4D;
935         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
936                 emif->plat_data->ip_rev = EMIF_4D5;
937
938         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
939
940         if (of_property_read_bool(np_emif, "hw-caps-ll-interface"))
941                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
942
943         of_get_ddr_info(np_emif, np_ddr, dev_info);
944         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
945                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
946                         emif->dev)) {
947                 dev_err(dev, "%s: invalid device data!!\n", __func__);
948                 goto error;
949         }
950         /*
951          * For EMIF instances other than EMIF1 see if the devices connected
952          * are exactly same as on EMIF1(which is typically the case). If so,
953          * mark it as a duplicate of EMIF1. This will save some memory and
954          * computation.
955          */
956         if (emif1 && emif1->np_ddr == np_ddr) {
957                 emif->duplicate = true;
958                 goto out;
959         } else if (emif1) {
960                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
961                         __func__);
962         }
963
964         of_get_custom_configs(np_emif, emif);
965         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
966                                         emif->plat_data->device_info->type,
967                                         &emif->plat_data->timings_arr_size);
968
969         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
970         goto out;
971
972 error:
973         return NULL;
974 out:
975         return emif;
976 }
977
978 static struct emif_data *get_device_details(
979                 struct platform_device *pdev)
980 {
981         u32                             size;
982         struct emif_data                *emif = NULL;
983         struct ddr_device_info          *dev_info;
984         struct emif_custom_configs      *cust_cfgs;
985         struct emif_platform_data       *pd;
986         struct device                   *dev;
987         void                            *temp;
988
989         pd = pdev->dev.platform_data;
990         dev = &pdev->dev;
991
992         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
993                         pd->device_info->density, pd->device_info->io_width,
994                         pd->phy_type, pd->ip_rev, dev))) {
995                 dev_err(dev, "%s: invalid device data\n", __func__);
996                 goto error;
997         }
998
999         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1000         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1001         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1002
1003         if (!emif || !temp || !dev_info)
1004                 goto error;
1005
1006         memcpy(temp, pd, sizeof(*pd));
1007         pd = temp;
1008         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1009
1010         pd->device_info         = dev_info;
1011         emif->plat_data         = pd;
1012         emif->dev               = dev;
1013         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1014
1015         /*
1016          * For EMIF instances other than EMIF1 see if the devices connected
1017          * are exactly same as on EMIF1(which is typically the case). If so,
1018          * mark it as a duplicate of EMIF1 and skip copying timings data.
1019          * This will save some memory and some computation later.
1020          */
1021         emif->duplicate = emif1 && (memcmp(dev_info,
1022                 emif1->plat_data->device_info,
1023                 sizeof(struct ddr_device_info)) == 0);
1024
1025         if (emif->duplicate) {
1026                 pd->timings = NULL;
1027                 pd->min_tck = NULL;
1028                 goto out;
1029         } else if (emif1) {
1030                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1031                         __func__);
1032         }
1033
1034         /*
1035          * Copy custom configs - ignore allocation error, if any, as
1036          * custom_configs is not very critical
1037          */
1038         cust_cfgs = pd->custom_configs;
1039         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1040                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1041                 if (temp)
1042                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1043                 pd->custom_configs = temp;
1044         }
1045
1046         /*
1047          * Copy timings and min-tck values from platform data. If it is not
1048          * available or if memory allocation fails, use JEDEC defaults
1049          */
1050         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1051         if (pd->timings) {
1052                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1053                 if (temp) {
1054                         memcpy(temp, pd->timings, size);
1055                         pd->timings = temp;
1056                 } else {
1057                         get_default_timings(emif);
1058                 }
1059         } else {
1060                 get_default_timings(emif);
1061         }
1062
1063         if (pd->min_tck) {
1064                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1065                 if (temp) {
1066                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1067                         pd->min_tck = temp;
1068                 } else {
1069                         pd->min_tck = &lpddr2_jedec_min_tck;
1070                 }
1071         } else {
1072                 pd->min_tck = &lpddr2_jedec_min_tck;
1073         }
1074
1075 out:
1076         return emif;
1077
1078 error:
1079         return NULL;
1080 }
1081
1082 static int emif_probe(struct platform_device *pdev)
1083 {
1084         struct emif_data        *emif;
1085         int                     irq, ret;
1086
1087         if (pdev->dev.of_node)
1088                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1089         else
1090                 emif = get_device_details(pdev);
1091
1092         if (!emif) {
1093                 pr_err("%s: error getting device data\n", __func__);
1094                 goto error;
1095         }
1096
1097         list_add(&emif->node, &device_list);
1098
1099         /* Save pointers to each other in emif and device structures */
1100         emif->dev = &pdev->dev;
1101         platform_set_drvdata(pdev, emif);
1102
1103         emif->base = devm_platform_ioremap_resource(pdev, 0);
1104         if (IS_ERR(emif->base))
1105                 goto error;
1106
1107         irq = platform_get_irq(pdev, 0);
1108         if (irq < 0)
1109                 goto error;
1110
1111         emif_onetime_settings(emif);
1112         emif_debugfs_init(emif);
1113         disable_and_clear_all_interrupts(emif);
1114         ret = setup_interrupts(emif, irq);
1115         if (ret)
1116                 goto error;
1117
1118         /* One-time actions taken on probing the first device */
1119         if (!emif1) {
1120                 emif1 = emif;
1121
1122                 /*
1123                  * TODO: register notifiers for frequency and voltage
1124                  * change here once the respective frameworks are
1125                  * available
1126                  */
1127         }
1128
1129         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1130                 __func__, emif->base, irq);
1131
1132         return 0;
1133 error:
1134         return -ENODEV;
1135 }
1136
1137 static void emif_remove(struct platform_device *pdev)
1138 {
1139         struct emif_data *emif = platform_get_drvdata(pdev);
1140
1141         emif_debugfs_exit(emif);
1142 }
1143
1144 static void emif_shutdown(struct platform_device *pdev)
1145 {
1146         struct emif_data        *emif = platform_get_drvdata(pdev);
1147
1148         disable_and_clear_all_interrupts(emif);
1149 }
1150
1151 #if defined(CONFIG_OF)
1152 static const struct of_device_id emif_of_match[] = {
1153                 { .compatible = "ti,emif-4d" },
1154                 { .compatible = "ti,emif-4d5" },
1155                 {},
1156 };
1157 MODULE_DEVICE_TABLE(of, emif_of_match);
1158 #endif
1159
1160 static struct platform_driver emif_driver = {
1161         .probe          = emif_probe,
1162         .remove         = emif_remove,
1163         .shutdown       = emif_shutdown,
1164         .driver = {
1165                 .name = "emif",
1166                 .of_match_table = of_match_ptr(emif_of_match),
1167         },
1168 };
1169
1170 module_platform_driver(emif_driver);
1171
1172 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1173 MODULE_LICENSE("GPL");
1174 MODULE_ALIAS("platform:emif");
1175 MODULE_AUTHOR("Texas Instruments Inc");
This page took 0.096128 seconds and 4 git commands to generate.