]> Git Repo - J-linux.git/blob - drivers/md/raid10.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *    use_far_sets (stored in bit 17 of layout )
37  *    use_far_sets_bugfixed (stored in bit 18 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.  Each device
40  * is divided into far_copies sections.   In each section, chunks are laid out
41  * in a style similar to raid0, but near_copies copies of each chunk is stored
42  * (each on a different drive).  The starting device for each section is offset
43  * near_copies from the starting device of the previous section.  Thus there
44  * are (near_copies * far_copies) of each chunk, and each is on a different
45  * drive.  near_copies and far_copies must be at least one, and their product
46  * is at most raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of being very far
50  * apart on disk, there are adjacent stripes.
51  *
52  * The far and offset algorithms are handled slightly differently if
53  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54  * sets that are (near_copies * far_copies) in size.  The far copied stripes
55  * are still shifted by 'near_copies' devices, but this shifting stays confined
56  * to the set rather than the entire array.  This is done to improve the number
57  * of device combinations that can fail without causing the array to fail.
58  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59  * on a device):
60  *    A B C D    A B C D E
61  *      ...         ...
62  *    D A B C    E A B C D
63  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64  *    [A B] [C D]    [A B] [C D E]
65  *    |...| |...|    |...| | ... |
66  *    [B A] [D C]    [B A] [E C D]
67  */
68
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74                                 int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
78
79 #include "raid1-10.c"
80
81 #define NULL_CMD
82 #define cmd_before(conf, cmd) \
83         do { \
84                 write_sequnlock_irq(&(conf)->resync_lock); \
85                 cmd; \
86         } while (0)
87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
88
89 #define wait_event_barrier_cmd(conf, cond, cmd) \
90         wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91                        cmd_after(conf))
92
93 #define wait_event_barrier(conf, cond) \
94         wait_event_barrier_cmd(conf, cond, NULL_CMD)
95
96 /*
97  * for resync bio, r10bio pointer can be retrieved from the per-bio
98  * 'struct resync_pages'.
99  */
100 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
101 {
102         return get_resync_pages(bio)->raid_bio;
103 }
104
105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107         struct r10conf *conf = data;
108         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
109
110         /* allocate a r10bio with room for raid_disks entries in the
111          * bios array */
112         return kzalloc(size, gfp_flags);
113 }
114
115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116 /* amount of memory to reserve for resync requests */
117 #define RESYNC_WINDOW (1024*1024)
118 /* maximum number of concurrent requests, memory permitting */
119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 /*
124  * When performing a resync, we need to read and compare, so
125  * we need as many pages are there are copies.
126  * When performing a recovery, we need 2 bios, one for read,
127  * one for write (we recover only one drive per r10buf)
128  *
129  */
130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132         struct r10conf *conf = data;
133         struct r10bio *r10_bio;
134         struct bio *bio;
135         int j;
136         int nalloc, nalloc_rp;
137         struct resync_pages *rps;
138
139         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140         if (!r10_bio)
141                 return NULL;
142
143         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145                 nalloc = conf->copies; /* resync */
146         else
147                 nalloc = 2; /* recovery */
148
149         /* allocate once for all bios */
150         if (!conf->have_replacement)
151                 nalloc_rp = nalloc;
152         else
153                 nalloc_rp = nalloc * 2;
154         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155         if (!rps)
156                 goto out_free_r10bio;
157
158         /*
159          * Allocate bios.
160          */
161         for (j = nalloc ; j-- ; ) {
162                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163                 if (!bio)
164                         goto out_free_bio;
165                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166                 r10_bio->devs[j].bio = bio;
167                 if (!conf->have_replacement)
168                         continue;
169                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170                 if (!bio)
171                         goto out_free_bio;
172                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173                 r10_bio->devs[j].repl_bio = bio;
174         }
175         /*
176          * Allocate RESYNC_PAGES data pages and attach them
177          * where needed.
178          */
179         for (j = 0; j < nalloc; j++) {
180                 struct bio *rbio = r10_bio->devs[j].repl_bio;
181                 struct resync_pages *rp, *rp_repl;
182
183                 rp = &rps[j];
184                 if (rbio)
185                         rp_repl = &rps[nalloc + j];
186
187                 bio = r10_bio->devs[j].bio;
188
189                 if (!j || test_bit(MD_RECOVERY_SYNC,
190                                    &conf->mddev->recovery)) {
191                         if (resync_alloc_pages(rp, gfp_flags))
192                                 goto out_free_pages;
193                 } else {
194                         memcpy(rp, &rps[0], sizeof(*rp));
195                         resync_get_all_pages(rp);
196                 }
197
198                 rp->raid_bio = r10_bio;
199                 bio->bi_private = rp;
200                 if (rbio) {
201                         memcpy(rp_repl, rp, sizeof(*rp));
202                         rbio->bi_private = rp_repl;
203                 }
204         }
205
206         return r10_bio;
207
208 out_free_pages:
209         while (--j >= 0)
210                 resync_free_pages(&rps[j]);
211
212         j = 0;
213 out_free_bio:
214         for ( ; j < nalloc; j++) {
215                 if (r10_bio->devs[j].bio)
216                         bio_uninit(r10_bio->devs[j].bio);
217                 kfree(r10_bio->devs[j].bio);
218                 if (r10_bio->devs[j].repl_bio)
219                         bio_uninit(r10_bio->devs[j].repl_bio);
220                 kfree(r10_bio->devs[j].repl_bio);
221         }
222         kfree(rps);
223 out_free_r10bio:
224         rbio_pool_free(r10_bio, conf);
225         return NULL;
226 }
227
228 static void r10buf_pool_free(void *__r10_bio, void *data)
229 {
230         struct r10conf *conf = data;
231         struct r10bio *r10bio = __r10_bio;
232         int j;
233         struct resync_pages *rp = NULL;
234
235         for (j = conf->copies; j--; ) {
236                 struct bio *bio = r10bio->devs[j].bio;
237
238                 if (bio) {
239                         rp = get_resync_pages(bio);
240                         resync_free_pages(rp);
241                         bio_uninit(bio);
242                         kfree(bio);
243                 }
244
245                 bio = r10bio->devs[j].repl_bio;
246                 if (bio) {
247                         bio_uninit(bio);
248                         kfree(bio);
249                 }
250         }
251
252         /* resync pages array stored in the 1st bio's .bi_private */
253         kfree(rp);
254
255         rbio_pool_free(r10bio, conf);
256 }
257
258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
259 {
260         int i;
261
262         for (i = 0; i < conf->geo.raid_disks; i++) {
263                 struct bio **bio = & r10_bio->devs[i].bio;
264                 if (!BIO_SPECIAL(*bio))
265                         bio_put(*bio);
266                 *bio = NULL;
267                 bio = &r10_bio->devs[i].repl_bio;
268                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269                         bio_put(*bio);
270                 *bio = NULL;
271         }
272 }
273
274 static void free_r10bio(struct r10bio *r10_bio)
275 {
276         struct r10conf *conf = r10_bio->mddev->private;
277
278         put_all_bios(conf, r10_bio);
279         mempool_free(r10_bio, &conf->r10bio_pool);
280 }
281
282 static void put_buf(struct r10bio *r10_bio)
283 {
284         struct r10conf *conf = r10_bio->mddev->private;
285
286         mempool_free(r10_bio, &conf->r10buf_pool);
287
288         lower_barrier(conf);
289 }
290
291 static void wake_up_barrier(struct r10conf *conf)
292 {
293         if (wq_has_sleeper(&conf->wait_barrier))
294                 wake_up(&conf->wait_barrier);
295 }
296
297 static void reschedule_retry(struct r10bio *r10_bio)
298 {
299         unsigned long flags;
300         struct mddev *mddev = r10_bio->mddev;
301         struct r10conf *conf = mddev->private;
302
303         spin_lock_irqsave(&conf->device_lock, flags);
304         list_add(&r10_bio->retry_list, &conf->retry_list);
305         conf->nr_queued ++;
306         spin_unlock_irqrestore(&conf->device_lock, flags);
307
308         /* wake up frozen array... */
309         wake_up(&conf->wait_barrier);
310
311         md_wakeup_thread(mddev->thread);
312 }
313
314 /*
315  * raid_end_bio_io() is called when we have finished servicing a mirrored
316  * operation and are ready to return a success/failure code to the buffer
317  * cache layer.
318  */
319 static void raid_end_bio_io(struct r10bio *r10_bio)
320 {
321         struct bio *bio = r10_bio->master_bio;
322         struct r10conf *conf = r10_bio->mddev->private;
323
324         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325                 bio->bi_status = BLK_STS_IOERR;
326
327         bio_endio(bio);
328         /*
329          * Wake up any possible resync thread that waits for the device
330          * to go idle.
331          */
332         allow_barrier(conf);
333
334         free_r10bio(r10_bio);
335 }
336
337 /*
338  * Update disk head position estimator based on IRQ completion info.
339  */
340 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
341 {
342         struct r10conf *conf = r10_bio->mddev->private;
343
344         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345                 r10_bio->devs[slot].addr + (r10_bio->sectors);
346 }
347
348 /*
349  * Find the disk number which triggered given bio
350  */
351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352                          struct bio *bio, int *slotp, int *replp)
353 {
354         int slot;
355         int repl = 0;
356
357         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358                 if (r10_bio->devs[slot].bio == bio)
359                         break;
360                 if (r10_bio->devs[slot].repl_bio == bio) {
361                         repl = 1;
362                         break;
363                 }
364         }
365
366         update_head_pos(slot, r10_bio);
367
368         if (slotp)
369                 *slotp = slot;
370         if (replp)
371                 *replp = repl;
372         return r10_bio->devs[slot].devnum;
373 }
374
375 static void raid10_end_read_request(struct bio *bio)
376 {
377         int uptodate = !bio->bi_status;
378         struct r10bio *r10_bio = bio->bi_private;
379         int slot;
380         struct md_rdev *rdev;
381         struct r10conf *conf = r10_bio->mddev->private;
382
383         slot = r10_bio->read_slot;
384         rdev = r10_bio->devs[slot].rdev;
385         /*
386          * this branch is our 'one mirror IO has finished' event handler:
387          */
388         update_head_pos(slot, r10_bio);
389
390         if (uptodate) {
391                 /*
392                  * Set R10BIO_Uptodate in our master bio, so that
393                  * we will return a good error code to the higher
394                  * levels even if IO on some other mirrored buffer fails.
395                  *
396                  * The 'master' represents the composite IO operation to
397                  * user-side. So if something waits for IO, then it will
398                  * wait for the 'master' bio.
399                  */
400                 set_bit(R10BIO_Uptodate, &r10_bio->state);
401         } else {
402                 /* If all other devices that store this block have
403                  * failed, we want to return the error upwards rather
404                  * than fail the last device.  Here we redefine
405                  * "uptodate" to mean "Don't want to retry"
406                  */
407                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408                              rdev->raid_disk))
409                         uptodate = 1;
410         }
411         if (uptodate) {
412                 raid_end_bio_io(r10_bio);
413                 rdev_dec_pending(rdev, conf->mddev);
414         } else {
415                 /*
416                  * oops, read error - keep the refcount on the rdev
417                  */
418                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419                                    mdname(conf->mddev),
420                                    rdev->bdev,
421                                    (unsigned long long)r10_bio->sector);
422                 set_bit(R10BIO_ReadError, &r10_bio->state);
423                 reschedule_retry(r10_bio);
424         }
425 }
426
427 static void close_write(struct r10bio *r10_bio)
428 {
429         struct mddev *mddev = r10_bio->mddev;
430
431         /* clear the bitmap if all writes complete successfully */
432         mddev->bitmap_ops->endwrite(mddev, r10_bio->sector, r10_bio->sectors,
433                                     !test_bit(R10BIO_Degraded, &r10_bio->state),
434                                     false);
435         md_write_end(mddev);
436 }
437
438 static void one_write_done(struct r10bio *r10_bio)
439 {
440         if (atomic_dec_and_test(&r10_bio->remaining)) {
441                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
442                         reschedule_retry(r10_bio);
443                 else {
444                         close_write(r10_bio);
445                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
446                                 reschedule_retry(r10_bio);
447                         else
448                                 raid_end_bio_io(r10_bio);
449                 }
450         }
451 }
452
453 static void raid10_end_write_request(struct bio *bio)
454 {
455         struct r10bio *r10_bio = bio->bi_private;
456         int dev;
457         int dec_rdev = 1;
458         struct r10conf *conf = r10_bio->mddev->private;
459         int slot, repl;
460         struct md_rdev *rdev = NULL;
461         struct bio *to_put = NULL;
462         bool discard_error;
463
464         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
465
466         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
467
468         if (repl)
469                 rdev = conf->mirrors[dev].replacement;
470         if (!rdev) {
471                 smp_rmb();
472                 repl = 0;
473                 rdev = conf->mirrors[dev].rdev;
474         }
475         /*
476          * this branch is our 'one mirror IO has finished' event handler:
477          */
478         if (bio->bi_status && !discard_error) {
479                 if (repl)
480                         /* Never record new bad blocks to replacement,
481                          * just fail it.
482                          */
483                         md_error(rdev->mddev, rdev);
484                 else {
485                         set_bit(WriteErrorSeen, &rdev->flags);
486                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
487                                 set_bit(MD_RECOVERY_NEEDED,
488                                         &rdev->mddev->recovery);
489
490                         dec_rdev = 0;
491                         if (test_bit(FailFast, &rdev->flags) &&
492                             (bio->bi_opf & MD_FAILFAST)) {
493                                 md_error(rdev->mddev, rdev);
494                         }
495
496                         /*
497                          * When the device is faulty, it is not necessary to
498                          * handle write error.
499                          */
500                         if (!test_bit(Faulty, &rdev->flags))
501                                 set_bit(R10BIO_WriteError, &r10_bio->state);
502                         else {
503                                 /* Fail the request */
504                                 set_bit(R10BIO_Degraded, &r10_bio->state);
505                                 r10_bio->devs[slot].bio = NULL;
506                                 to_put = bio;
507                                 dec_rdev = 1;
508                         }
509                 }
510         } else {
511                 /*
512                  * Set R10BIO_Uptodate in our master bio, so that
513                  * we will return a good error code for to the higher
514                  * levels even if IO on some other mirrored buffer fails.
515                  *
516                  * The 'master' represents the composite IO operation to
517                  * user-side. So if something waits for IO, then it will
518                  * wait for the 'master' bio.
519                  *
520                  * Do not set R10BIO_Uptodate if the current device is
521                  * rebuilding or Faulty. This is because we cannot use
522                  * such device for properly reading the data back (we could
523                  * potentially use it, if the current write would have felt
524                  * before rdev->recovery_offset, but for simplicity we don't
525                  * check this here.
526                  */
527                 if (test_bit(In_sync, &rdev->flags) &&
528                     !test_bit(Faulty, &rdev->flags))
529                         set_bit(R10BIO_Uptodate, &r10_bio->state);
530
531                 /* Maybe we can clear some bad blocks. */
532                 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
533                                       r10_bio->sectors) &&
534                     !discard_error) {
535                         bio_put(bio);
536                         if (repl)
537                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
538                         else
539                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
540                         dec_rdev = 0;
541                         set_bit(R10BIO_MadeGood, &r10_bio->state);
542                 }
543         }
544
545         /*
546          *
547          * Let's see if all mirrored write operations have finished
548          * already.
549          */
550         one_write_done(r10_bio);
551         if (dec_rdev)
552                 rdev_dec_pending(rdev, conf->mddev);
553         if (to_put)
554                 bio_put(to_put);
555 }
556
557 /*
558  * RAID10 layout manager
559  * As well as the chunksize and raid_disks count, there are two
560  * parameters: near_copies and far_copies.
561  * near_copies * far_copies must be <= raid_disks.
562  * Normally one of these will be 1.
563  * If both are 1, we get raid0.
564  * If near_copies == raid_disks, we get raid1.
565  *
566  * Chunks are laid out in raid0 style with near_copies copies of the
567  * first chunk, followed by near_copies copies of the next chunk and
568  * so on.
569  * If far_copies > 1, then after 1/far_copies of the array has been assigned
570  * as described above, we start again with a device offset of near_copies.
571  * So we effectively have another copy of the whole array further down all
572  * the drives, but with blocks on different drives.
573  * With this layout, and block is never stored twice on the one device.
574  *
575  * raid10_find_phys finds the sector offset of a given virtual sector
576  * on each device that it is on.
577  *
578  * raid10_find_virt does the reverse mapping, from a device and a
579  * sector offset to a virtual address
580  */
581
582 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
583 {
584         int n,f;
585         sector_t sector;
586         sector_t chunk;
587         sector_t stripe;
588         int dev;
589         int slot = 0;
590         int last_far_set_start, last_far_set_size;
591
592         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
593         last_far_set_start *= geo->far_set_size;
594
595         last_far_set_size = geo->far_set_size;
596         last_far_set_size += (geo->raid_disks % geo->far_set_size);
597
598         /* now calculate first sector/dev */
599         chunk = r10bio->sector >> geo->chunk_shift;
600         sector = r10bio->sector & geo->chunk_mask;
601
602         chunk *= geo->near_copies;
603         stripe = chunk;
604         dev = sector_div(stripe, geo->raid_disks);
605         if (geo->far_offset)
606                 stripe *= geo->far_copies;
607
608         sector += stripe << geo->chunk_shift;
609
610         /* and calculate all the others */
611         for (n = 0; n < geo->near_copies; n++) {
612                 int d = dev;
613                 int set;
614                 sector_t s = sector;
615                 r10bio->devs[slot].devnum = d;
616                 r10bio->devs[slot].addr = s;
617                 slot++;
618
619                 for (f = 1; f < geo->far_copies; f++) {
620                         set = d / geo->far_set_size;
621                         d += geo->near_copies;
622
623                         if ((geo->raid_disks % geo->far_set_size) &&
624                             (d > last_far_set_start)) {
625                                 d -= last_far_set_start;
626                                 d %= last_far_set_size;
627                                 d += last_far_set_start;
628                         } else {
629                                 d %= geo->far_set_size;
630                                 d += geo->far_set_size * set;
631                         }
632                         s += geo->stride;
633                         r10bio->devs[slot].devnum = d;
634                         r10bio->devs[slot].addr = s;
635                         slot++;
636                 }
637                 dev++;
638                 if (dev >= geo->raid_disks) {
639                         dev = 0;
640                         sector += (geo->chunk_mask + 1);
641                 }
642         }
643 }
644
645 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
646 {
647         struct geom *geo = &conf->geo;
648
649         if (conf->reshape_progress != MaxSector &&
650             ((r10bio->sector >= conf->reshape_progress) !=
651              conf->mddev->reshape_backwards)) {
652                 set_bit(R10BIO_Previous, &r10bio->state);
653                 geo = &conf->prev;
654         } else
655                 clear_bit(R10BIO_Previous, &r10bio->state);
656
657         __raid10_find_phys(geo, r10bio);
658 }
659
660 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
661 {
662         sector_t offset, chunk, vchunk;
663         /* Never use conf->prev as this is only called during resync
664          * or recovery, so reshape isn't happening
665          */
666         struct geom *geo = &conf->geo;
667         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
668         int far_set_size = geo->far_set_size;
669         int last_far_set_start;
670
671         if (geo->raid_disks % geo->far_set_size) {
672                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
673                 last_far_set_start *= geo->far_set_size;
674
675                 if (dev >= last_far_set_start) {
676                         far_set_size = geo->far_set_size;
677                         far_set_size += (geo->raid_disks % geo->far_set_size);
678                         far_set_start = last_far_set_start;
679                 }
680         }
681
682         offset = sector & geo->chunk_mask;
683         if (geo->far_offset) {
684                 int fc;
685                 chunk = sector >> geo->chunk_shift;
686                 fc = sector_div(chunk, geo->far_copies);
687                 dev -= fc * geo->near_copies;
688                 if (dev < far_set_start)
689                         dev += far_set_size;
690         } else {
691                 while (sector >= geo->stride) {
692                         sector -= geo->stride;
693                         if (dev < (geo->near_copies + far_set_start))
694                                 dev += far_set_size - geo->near_copies;
695                         else
696                                 dev -= geo->near_copies;
697                 }
698                 chunk = sector >> geo->chunk_shift;
699         }
700         vchunk = chunk * geo->raid_disks + dev;
701         sector_div(vchunk, geo->near_copies);
702         return (vchunk << geo->chunk_shift) + offset;
703 }
704
705 /*
706  * This routine returns the disk from which the requested read should
707  * be done. There is a per-array 'next expected sequential IO' sector
708  * number - if this matches on the next IO then we use the last disk.
709  * There is also a per-disk 'last know head position' sector that is
710  * maintained from IRQ contexts, both the normal and the resync IO
711  * completion handlers update this position correctly. If there is no
712  * perfect sequential match then we pick the disk whose head is closest.
713  *
714  * If there are 2 mirrors in the same 2 devices, performance degrades
715  * because position is mirror, not device based.
716  *
717  * The rdev for the device selected will have nr_pending incremented.
718  */
719
720 /*
721  * FIXME: possibly should rethink readbalancing and do it differently
722  * depending on near_copies / far_copies geometry.
723  */
724 static struct md_rdev *read_balance(struct r10conf *conf,
725                                     struct r10bio *r10_bio,
726                                     int *max_sectors)
727 {
728         const sector_t this_sector = r10_bio->sector;
729         int disk, slot;
730         int sectors = r10_bio->sectors;
731         int best_good_sectors;
732         sector_t new_distance, best_dist;
733         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
734         int do_balance;
735         int best_dist_slot, best_pending_slot;
736         bool has_nonrot_disk = false;
737         unsigned int min_pending;
738         struct geom *geo = &conf->geo;
739
740         raid10_find_phys(conf, r10_bio);
741         best_dist_slot = -1;
742         min_pending = UINT_MAX;
743         best_dist_rdev = NULL;
744         best_pending_rdev = NULL;
745         best_dist = MaxSector;
746         best_good_sectors = 0;
747         do_balance = 1;
748         clear_bit(R10BIO_FailFast, &r10_bio->state);
749
750         if (raid1_should_read_first(conf->mddev, this_sector, sectors))
751                 do_balance = 0;
752
753         for (slot = 0; slot < conf->copies ; slot++) {
754                 sector_t first_bad;
755                 int bad_sectors;
756                 sector_t dev_sector;
757                 unsigned int pending;
758                 bool nonrot;
759
760                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
761                         continue;
762                 disk = r10_bio->devs[slot].devnum;
763                 rdev = conf->mirrors[disk].replacement;
764                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
765                     r10_bio->devs[slot].addr + sectors >
766                     rdev->recovery_offset)
767                         rdev = conf->mirrors[disk].rdev;
768                 if (rdev == NULL ||
769                     test_bit(Faulty, &rdev->flags))
770                         continue;
771                 if (!test_bit(In_sync, &rdev->flags) &&
772                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
773                         continue;
774
775                 dev_sector = r10_bio->devs[slot].addr;
776                 if (is_badblock(rdev, dev_sector, sectors,
777                                 &first_bad, &bad_sectors)) {
778                         if (best_dist < MaxSector)
779                                 /* Already have a better slot */
780                                 continue;
781                         if (first_bad <= dev_sector) {
782                                 /* Cannot read here.  If this is the
783                                  * 'primary' device, then we must not read
784                                  * beyond 'bad_sectors' from another device.
785                                  */
786                                 bad_sectors -= (dev_sector - first_bad);
787                                 if (!do_balance && sectors > bad_sectors)
788                                         sectors = bad_sectors;
789                                 if (best_good_sectors > sectors)
790                                         best_good_sectors = sectors;
791                         } else {
792                                 sector_t good_sectors =
793                                         first_bad - dev_sector;
794                                 if (good_sectors > best_good_sectors) {
795                                         best_good_sectors = good_sectors;
796                                         best_dist_slot = slot;
797                                         best_dist_rdev = rdev;
798                                 }
799                                 if (!do_balance)
800                                         /* Must read from here */
801                                         break;
802                         }
803                         continue;
804                 } else
805                         best_good_sectors = sectors;
806
807                 if (!do_balance)
808                         break;
809
810                 nonrot = bdev_nonrot(rdev->bdev);
811                 has_nonrot_disk |= nonrot;
812                 pending = atomic_read(&rdev->nr_pending);
813                 if (min_pending > pending && nonrot) {
814                         min_pending = pending;
815                         best_pending_slot = slot;
816                         best_pending_rdev = rdev;
817                 }
818
819                 if (best_dist_slot >= 0)
820                         /* At least 2 disks to choose from so failfast is OK */
821                         set_bit(R10BIO_FailFast, &r10_bio->state);
822                 /* This optimisation is debatable, and completely destroys
823                  * sequential read speed for 'far copies' arrays.  So only
824                  * keep it for 'near' arrays, and review those later.
825                  */
826                 if (geo->near_copies > 1 && !pending)
827                         new_distance = 0;
828
829                 /* for far > 1 always use the lowest address */
830                 else if (geo->far_copies > 1)
831                         new_distance = r10_bio->devs[slot].addr;
832                 else
833                         new_distance = abs(r10_bio->devs[slot].addr -
834                                            conf->mirrors[disk].head_position);
835
836                 if (new_distance < best_dist) {
837                         best_dist = new_distance;
838                         best_dist_slot = slot;
839                         best_dist_rdev = rdev;
840                 }
841         }
842         if (slot >= conf->copies) {
843                 if (has_nonrot_disk) {
844                         slot = best_pending_slot;
845                         rdev = best_pending_rdev;
846                 } else {
847                         slot = best_dist_slot;
848                         rdev = best_dist_rdev;
849                 }
850         }
851
852         if (slot >= 0) {
853                 atomic_inc(&rdev->nr_pending);
854                 r10_bio->read_slot = slot;
855         } else
856                 rdev = NULL;
857         *max_sectors = best_good_sectors;
858
859         return rdev;
860 }
861
862 static void flush_pending_writes(struct r10conf *conf)
863 {
864         /* Any writes that have been queued but are awaiting
865          * bitmap updates get flushed here.
866          */
867         spin_lock_irq(&conf->device_lock);
868
869         if (conf->pending_bio_list.head) {
870                 struct blk_plug plug;
871                 struct bio *bio;
872
873                 bio = bio_list_get(&conf->pending_bio_list);
874                 spin_unlock_irq(&conf->device_lock);
875
876                 /*
877                  * As this is called in a wait_event() loop (see freeze_array),
878                  * current->state might be TASK_UNINTERRUPTIBLE which will
879                  * cause a warning when we prepare to wait again.  As it is
880                  * rare that this path is taken, it is perfectly safe to force
881                  * us to go around the wait_event() loop again, so the warning
882                  * is a false-positive. Silence the warning by resetting
883                  * thread state
884                  */
885                 __set_current_state(TASK_RUNNING);
886
887                 blk_start_plug(&plug);
888                 raid1_prepare_flush_writes(conf->mddev);
889                 wake_up(&conf->wait_barrier);
890
891                 while (bio) { /* submit pending writes */
892                         struct bio *next = bio->bi_next;
893
894                         raid1_submit_write(bio);
895                         bio = next;
896                         cond_resched();
897                 }
898                 blk_finish_plug(&plug);
899         } else
900                 spin_unlock_irq(&conf->device_lock);
901 }
902
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927         write_seqlock_irq(&conf->resync_lock);
928
929         if (WARN_ON_ONCE(force && !conf->barrier))
930                 force = false;
931
932         /* Wait until no block IO is waiting (unless 'force') */
933         wait_event_barrier(conf, force || !conf->nr_waiting);
934
935         /* block any new IO from starting */
936         WRITE_ONCE(conf->barrier, conf->barrier + 1);
937
938         /* Now wait for all pending IO to complete */
939         wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
940                                  conf->barrier < RESYNC_DEPTH);
941
942         write_sequnlock_irq(&conf->resync_lock);
943 }
944
945 static void lower_barrier(struct r10conf *conf)
946 {
947         unsigned long flags;
948
949         write_seqlock_irqsave(&conf->resync_lock, flags);
950         WRITE_ONCE(conf->barrier, conf->barrier - 1);
951         write_sequnlock_irqrestore(&conf->resync_lock, flags);
952         wake_up(&conf->wait_barrier);
953 }
954
955 static bool stop_waiting_barrier(struct r10conf *conf)
956 {
957         struct bio_list *bio_list = current->bio_list;
958         struct md_thread *thread;
959
960         /* barrier is dropped */
961         if (!conf->barrier)
962                 return true;
963
964         /*
965          * If there are already pending requests (preventing the barrier from
966          * rising completely), and the pre-process bio queue isn't empty, then
967          * don't wait, as we need to empty that queue to get the nr_pending
968          * count down.
969          */
970         if (atomic_read(&conf->nr_pending) && bio_list &&
971             (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
972                 return true;
973
974         /* daemon thread must exist while handling io */
975         thread = rcu_dereference_protected(conf->mddev->thread, true);
976         /*
977          * move on if io is issued from raid10d(), nr_pending is not released
978          * from original io(see handle_read_error()). All raise barrier is
979          * blocked until this io is done.
980          */
981         if (thread->tsk == current) {
982                 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
983                 return true;
984         }
985
986         return false;
987 }
988
989 static bool wait_barrier_nolock(struct r10conf *conf)
990 {
991         unsigned int seq = read_seqbegin(&conf->resync_lock);
992
993         if (READ_ONCE(conf->barrier))
994                 return false;
995
996         atomic_inc(&conf->nr_pending);
997         if (!read_seqretry(&conf->resync_lock, seq))
998                 return true;
999
1000         if (atomic_dec_and_test(&conf->nr_pending))
1001                 wake_up_barrier(conf);
1002
1003         return false;
1004 }
1005
1006 static bool wait_barrier(struct r10conf *conf, bool nowait)
1007 {
1008         bool ret = true;
1009
1010         if (wait_barrier_nolock(conf))
1011                 return true;
1012
1013         write_seqlock_irq(&conf->resync_lock);
1014         if (conf->barrier) {
1015                 /* Return false when nowait flag is set */
1016                 if (nowait) {
1017                         ret = false;
1018                 } else {
1019                         conf->nr_waiting++;
1020                         mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1021                         wait_event_barrier(conf, stop_waiting_barrier(conf));
1022                         conf->nr_waiting--;
1023                 }
1024                 if (!conf->nr_waiting)
1025                         wake_up(&conf->wait_barrier);
1026         }
1027         /* Only increment nr_pending when we wait */
1028         if (ret)
1029                 atomic_inc(&conf->nr_pending);
1030         write_sequnlock_irq(&conf->resync_lock);
1031         return ret;
1032 }
1033
1034 static void allow_barrier(struct r10conf *conf)
1035 {
1036         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1037                         (conf->array_freeze_pending))
1038                 wake_up_barrier(conf);
1039 }
1040
1041 static void freeze_array(struct r10conf *conf, int extra)
1042 {
1043         /* stop syncio and normal IO and wait for everything to
1044          * go quiet.
1045          * We increment barrier and nr_waiting, and then
1046          * wait until nr_pending match nr_queued+extra
1047          * This is called in the context of one normal IO request
1048          * that has failed. Thus any sync request that might be pending
1049          * will be blocked by nr_pending, and we need to wait for
1050          * pending IO requests to complete or be queued for re-try.
1051          * Thus the number queued (nr_queued) plus this request (extra)
1052          * must match the number of pending IOs (nr_pending) before
1053          * we continue.
1054          */
1055         write_seqlock_irq(&conf->resync_lock);
1056         conf->array_freeze_pending++;
1057         WRITE_ONCE(conf->barrier, conf->barrier + 1);
1058         conf->nr_waiting++;
1059         wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1060                         conf->nr_queued + extra, flush_pending_writes(conf));
1061         conf->array_freeze_pending--;
1062         write_sequnlock_irq(&conf->resync_lock);
1063 }
1064
1065 static void unfreeze_array(struct r10conf *conf)
1066 {
1067         /* reverse the effect of the freeze */
1068         write_seqlock_irq(&conf->resync_lock);
1069         WRITE_ONCE(conf->barrier, conf->barrier - 1);
1070         conf->nr_waiting--;
1071         wake_up(&conf->wait_barrier);
1072         write_sequnlock_irq(&conf->resync_lock);
1073 }
1074
1075 static sector_t choose_data_offset(struct r10bio *r10_bio,
1076                                    struct md_rdev *rdev)
1077 {
1078         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1079             test_bit(R10BIO_Previous, &r10_bio->state))
1080                 return rdev->data_offset;
1081         else
1082                 return rdev->new_data_offset;
1083 }
1084
1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1086 {
1087         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1088         struct mddev *mddev = plug->cb.data;
1089         struct r10conf *conf = mddev->private;
1090         struct bio *bio;
1091
1092         if (from_schedule) {
1093                 spin_lock_irq(&conf->device_lock);
1094                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095                 spin_unlock_irq(&conf->device_lock);
1096                 wake_up_barrier(conf);
1097                 md_wakeup_thread(mddev->thread);
1098                 kfree(plug);
1099                 return;
1100         }
1101
1102         /* we aren't scheduling, so we can do the write-out directly. */
1103         bio = bio_list_get(&plug->pending);
1104         raid1_prepare_flush_writes(mddev);
1105         wake_up_barrier(conf);
1106
1107         while (bio) { /* submit pending writes */
1108                 struct bio *next = bio->bi_next;
1109
1110                 raid1_submit_write(bio);
1111                 bio = next;
1112                 cond_resched();
1113         }
1114         kfree(plug);
1115 }
1116
1117 /*
1118  * 1. Register the new request and wait if the reconstruction thread has put
1119  * up a bar for new requests. Continue immediately if no resync is active
1120  * currently.
1121  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1122  */
1123 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1124                                  struct bio *bio, sector_t sectors)
1125 {
1126         /* Bail out if REQ_NOWAIT is set for the bio */
1127         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1128                 bio_wouldblock_error(bio);
1129                 return false;
1130         }
1131         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1132             bio->bi_iter.bi_sector < conf->reshape_progress &&
1133             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1134                 allow_barrier(conf);
1135                 if (bio->bi_opf & REQ_NOWAIT) {
1136                         bio_wouldblock_error(bio);
1137                         return false;
1138                 }
1139                 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1140                 wait_event(conf->wait_barrier,
1141                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1142                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1143                            sectors);
1144                 wait_barrier(conf, false);
1145         }
1146         return true;
1147 }
1148
1149 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1150                                 struct r10bio *r10_bio, bool io_accounting)
1151 {
1152         struct r10conf *conf = mddev->private;
1153         struct bio *read_bio;
1154         const enum req_op op = bio_op(bio);
1155         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1156         int max_sectors;
1157         struct md_rdev *rdev;
1158         char b[BDEVNAME_SIZE];
1159         int slot = r10_bio->read_slot;
1160         struct md_rdev *err_rdev = NULL;
1161         gfp_t gfp = GFP_NOIO;
1162         int error;
1163
1164         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1165                 /*
1166                  * This is an error retry, but we cannot
1167                  * safely dereference the rdev in the r10_bio,
1168                  * we must use the one in conf.
1169                  * If it has already been disconnected (unlikely)
1170                  * we lose the device name in error messages.
1171                  */
1172                 int disk;
1173                 /*
1174                  * As we are blocking raid10, it is a little safer to
1175                  * use __GFP_HIGH.
1176                  */
1177                 gfp = GFP_NOIO | __GFP_HIGH;
1178
1179                 disk = r10_bio->devs[slot].devnum;
1180                 err_rdev = conf->mirrors[disk].rdev;
1181                 if (err_rdev)
1182                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1183                 else {
1184                         strcpy(b, "???");
1185                         /* This never gets dereferenced */
1186                         err_rdev = r10_bio->devs[slot].rdev;
1187                 }
1188         }
1189
1190         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1191                 return;
1192         rdev = read_balance(conf, r10_bio, &max_sectors);
1193         if (!rdev) {
1194                 if (err_rdev) {
1195                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196                                             mdname(mddev), b,
1197                                             (unsigned long long)r10_bio->sector);
1198                 }
1199                 raid_end_bio_io(r10_bio);
1200                 return;
1201         }
1202         if (err_rdev)
1203                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1204                                    mdname(mddev),
1205                                    rdev->bdev,
1206                                    (unsigned long long)r10_bio->sector);
1207         if (max_sectors < bio_sectors(bio)) {
1208                 struct bio *split = bio_split(bio, max_sectors,
1209                                               gfp, &conf->bio_split);
1210                 if (IS_ERR(split)) {
1211                         error = PTR_ERR(split);
1212                         goto err_handle;
1213                 }
1214                 bio_chain(split, bio);
1215                 allow_barrier(conf);
1216                 submit_bio_noacct(bio);
1217                 wait_barrier(conf, false);
1218                 bio = split;
1219                 r10_bio->master_bio = bio;
1220                 r10_bio->sectors = max_sectors;
1221         }
1222         slot = r10_bio->read_slot;
1223
1224         if (io_accounting) {
1225                 md_account_bio(mddev, &bio);
1226                 r10_bio->master_bio = bio;
1227         }
1228         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1229
1230         r10_bio->devs[slot].bio = read_bio;
1231         r10_bio->devs[slot].rdev = rdev;
1232
1233         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1234                 choose_data_offset(r10_bio, rdev);
1235         read_bio->bi_end_io = raid10_end_read_request;
1236         read_bio->bi_opf = op | do_sync;
1237         if (test_bit(FailFast, &rdev->flags) &&
1238             test_bit(R10BIO_FailFast, &r10_bio->state))
1239                 read_bio->bi_opf |= MD_FAILFAST;
1240         read_bio->bi_private = r10_bio;
1241         mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1242         submit_bio_noacct(read_bio);
1243         return;
1244 err_handle:
1245         atomic_dec(&rdev->nr_pending);
1246         bio->bi_status = errno_to_blk_status(error);
1247         set_bit(R10BIO_Uptodate, &r10_bio->state);
1248         raid_end_bio_io(r10_bio);
1249 }
1250
1251 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1252                                   struct bio *bio, bool replacement,
1253                                   int n_copy)
1254 {
1255         const enum req_op op = bio_op(bio);
1256         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1257         const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1258         const blk_opf_t do_atomic = bio->bi_opf & REQ_ATOMIC;
1259         unsigned long flags;
1260         struct r10conf *conf = mddev->private;
1261         struct md_rdev *rdev;
1262         int devnum = r10_bio->devs[n_copy].devnum;
1263         struct bio *mbio;
1264
1265         rdev = replacement ? conf->mirrors[devnum].replacement :
1266                              conf->mirrors[devnum].rdev;
1267
1268         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1269         if (replacement)
1270                 r10_bio->devs[n_copy].repl_bio = mbio;
1271         else
1272                 r10_bio->devs[n_copy].bio = mbio;
1273
1274         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1275                                    choose_data_offset(r10_bio, rdev));
1276         mbio->bi_end_io = raid10_end_write_request;
1277         mbio->bi_opf = op | do_sync | do_fua | do_atomic;
1278         if (!replacement && test_bit(FailFast,
1279                                      &conf->mirrors[devnum].rdev->flags)
1280                          && enough(conf, devnum))
1281                 mbio->bi_opf |= MD_FAILFAST;
1282         mbio->bi_private = r10_bio;
1283         mddev_trace_remap(mddev, mbio, r10_bio->sector);
1284         /* flush_pending_writes() needs access to the rdev so...*/
1285         mbio->bi_bdev = (void *)rdev;
1286
1287         atomic_inc(&r10_bio->remaining);
1288
1289         if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1290                 spin_lock_irqsave(&conf->device_lock, flags);
1291                 bio_list_add(&conf->pending_bio_list, mbio);
1292                 spin_unlock_irqrestore(&conf->device_lock, flags);
1293                 md_wakeup_thread(mddev->thread);
1294         }
1295 }
1296
1297 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1298 {
1299         struct r10conf *conf = mddev->private;
1300         struct md_rdev *blocked_rdev;
1301         int i;
1302
1303 retry_wait:
1304         blocked_rdev = NULL;
1305         for (i = 0; i < conf->copies; i++) {
1306                 struct md_rdev *rdev, *rrdev;
1307
1308                 rdev = conf->mirrors[i].rdev;
1309                 if (rdev) {
1310                         sector_t dev_sector = r10_bio->devs[i].addr;
1311
1312                         /*
1313                          * Discard request doesn't care the write result
1314                          * so it doesn't need to wait blocked disk here.
1315                          */
1316                         if (test_bit(WriteErrorSeen, &rdev->flags) &&
1317                             r10_bio->sectors &&
1318                             rdev_has_badblock(rdev, dev_sector,
1319                                               r10_bio->sectors) < 0)
1320                                 /*
1321                                  * Mustn't write here until the bad
1322                                  * block is acknowledged
1323                                  */
1324                                 set_bit(BlockedBadBlocks, &rdev->flags);
1325
1326                         if (rdev_blocked(rdev)) {
1327                                 blocked_rdev = rdev;
1328                                 atomic_inc(&rdev->nr_pending);
1329                                 break;
1330                         }
1331                 }
1332
1333                 rrdev = conf->mirrors[i].replacement;
1334                 if (rrdev && rdev_blocked(rrdev)) {
1335                         atomic_inc(&rrdev->nr_pending);
1336                         blocked_rdev = rrdev;
1337                         break;
1338                 }
1339         }
1340
1341         if (unlikely(blocked_rdev)) {
1342                 /* Have to wait for this device to get unblocked, then retry */
1343                 allow_barrier(conf);
1344                 mddev_add_trace_msg(conf->mddev,
1345                         "raid10 %s wait rdev %d blocked",
1346                         __func__, blocked_rdev->raid_disk);
1347                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1348                 wait_barrier(conf, false);
1349                 goto retry_wait;
1350         }
1351 }
1352
1353 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1354                                  struct r10bio *r10_bio)
1355 {
1356         struct r10conf *conf = mddev->private;
1357         int i, k;
1358         sector_t sectors;
1359         int max_sectors;
1360         int error;
1361
1362         if ((mddev_is_clustered(mddev) &&
1363              md_cluster_ops->area_resyncing(mddev, WRITE,
1364                                             bio->bi_iter.bi_sector,
1365                                             bio_end_sector(bio)))) {
1366                 DEFINE_WAIT(w);
1367                 /* Bail out if REQ_NOWAIT is set for the bio */
1368                 if (bio->bi_opf & REQ_NOWAIT) {
1369                         bio_wouldblock_error(bio);
1370                         return;
1371                 }
1372                 for (;;) {
1373                         prepare_to_wait(&conf->wait_barrier,
1374                                         &w, TASK_IDLE);
1375                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1376                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1377                                 break;
1378                         schedule();
1379                 }
1380                 finish_wait(&conf->wait_barrier, &w);
1381         }
1382
1383         sectors = r10_bio->sectors;
1384         if (!regular_request_wait(mddev, conf, bio, sectors))
1385                 return;
1386         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1387             (mddev->reshape_backwards
1388              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1389                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1390              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1391                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1392                 /* Need to update reshape_position in metadata */
1393                 mddev->reshape_position = conf->reshape_progress;
1394                 set_mask_bits(&mddev->sb_flags, 0,
1395                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1396                 md_wakeup_thread(mddev->thread);
1397                 if (bio->bi_opf & REQ_NOWAIT) {
1398                         allow_barrier(conf);
1399                         bio_wouldblock_error(bio);
1400                         return;
1401                 }
1402                 mddev_add_trace_msg(conf->mddev,
1403                         "raid10 wait reshape metadata");
1404                 wait_event(mddev->sb_wait,
1405                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1406
1407                 conf->reshape_safe = mddev->reshape_position;
1408         }
1409
1410         /* first select target devices under rcu_lock and
1411          * inc refcount on their rdev.  Record them by setting
1412          * bios[x] to bio
1413          * If there are known/acknowledged bad blocks on any device
1414          * on which we have seen a write error, we want to avoid
1415          * writing to those blocks.  This potentially requires several
1416          * writes to write around the bad blocks.  Each set of writes
1417          * gets its own r10_bio with a set of bios attached.
1418          */
1419
1420         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1421         raid10_find_phys(conf, r10_bio);
1422
1423         wait_blocked_dev(mddev, r10_bio);
1424
1425         max_sectors = r10_bio->sectors;
1426
1427         for (i = 0;  i < conf->copies; i++) {
1428                 int d = r10_bio->devs[i].devnum;
1429                 struct md_rdev *rdev, *rrdev;
1430
1431                 rdev = conf->mirrors[d].rdev;
1432                 rrdev = conf->mirrors[d].replacement;
1433                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1434                         rdev = NULL;
1435                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1436                         rrdev = NULL;
1437
1438                 r10_bio->devs[i].bio = NULL;
1439                 r10_bio->devs[i].repl_bio = NULL;
1440
1441                 if (!rdev && !rrdev) {
1442                         set_bit(R10BIO_Degraded, &r10_bio->state);
1443                         continue;
1444                 }
1445                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1446                         sector_t first_bad;
1447                         sector_t dev_sector = r10_bio->devs[i].addr;
1448                         int bad_sectors;
1449                         int is_bad;
1450
1451                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1452                                              &first_bad, &bad_sectors);
1453                         if (is_bad && first_bad <= dev_sector) {
1454                                 /* Cannot write here at all */
1455                                 bad_sectors -= (dev_sector - first_bad);
1456                                 if (bad_sectors < max_sectors)
1457                                         /* Mustn't write more than bad_sectors
1458                                          * to other devices yet
1459                                          */
1460                                         max_sectors = bad_sectors;
1461                                 /* We don't set R10BIO_Degraded as that
1462                                  * only applies if the disk is missing,
1463                                  * so it might be re-added, and we want to
1464                                  * know to recover this chunk.
1465                                  * In this case the device is here, and the
1466                                  * fact that this chunk is not in-sync is
1467                                  * recorded in the bad block log.
1468                                  */
1469                                 continue;
1470                         }
1471                         if (is_bad) {
1472                                 int good_sectors;
1473
1474                                 /*
1475                                  * We cannot atomically write this, so just
1476                                  * error in that case. It could be possible to
1477                                  * atomically write other mirrors, but the
1478                                  * complexity of supporting that is not worth
1479                                  * the benefit.
1480                                  */
1481                                 if (bio->bi_opf & REQ_ATOMIC) {
1482                                         error = -EIO;
1483                                         goto err_handle;
1484                                 }
1485
1486                                 good_sectors = first_bad - dev_sector;
1487                                 if (good_sectors < max_sectors)
1488                                         max_sectors = good_sectors;
1489                         }
1490                 }
1491                 if (rdev) {
1492                         r10_bio->devs[i].bio = bio;
1493                         atomic_inc(&rdev->nr_pending);
1494                 }
1495                 if (rrdev) {
1496                         r10_bio->devs[i].repl_bio = bio;
1497                         atomic_inc(&rrdev->nr_pending);
1498                 }
1499         }
1500
1501         if (max_sectors < r10_bio->sectors)
1502                 r10_bio->sectors = max_sectors;
1503
1504         if (r10_bio->sectors < bio_sectors(bio)) {
1505                 struct bio *split = bio_split(bio, r10_bio->sectors,
1506                                               GFP_NOIO, &conf->bio_split);
1507                 if (IS_ERR(split)) {
1508                         error = PTR_ERR(split);
1509                         goto err_handle;
1510                 }
1511                 bio_chain(split, bio);
1512                 allow_barrier(conf);
1513                 submit_bio_noacct(bio);
1514                 wait_barrier(conf, false);
1515                 bio = split;
1516                 r10_bio->master_bio = bio;
1517         }
1518
1519         md_account_bio(mddev, &bio);
1520         r10_bio->master_bio = bio;
1521         atomic_set(&r10_bio->remaining, 1);
1522         mddev->bitmap_ops->startwrite(mddev, r10_bio->sector, r10_bio->sectors,
1523                                       false);
1524
1525         for (i = 0; i < conf->copies; i++) {
1526                 if (r10_bio->devs[i].bio)
1527                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1528                 if (r10_bio->devs[i].repl_bio)
1529                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1530         }
1531         one_write_done(r10_bio);
1532         return;
1533 err_handle:
1534         for (k = 0;  k < i; k++) {
1535                 int d = r10_bio->devs[k].devnum;
1536                 struct md_rdev *rdev = conf->mirrors[d].rdev;
1537                 struct md_rdev *rrdev = conf->mirrors[d].replacement;
1538
1539                 if (r10_bio->devs[k].bio) {
1540                         rdev_dec_pending(rdev, mddev);
1541                         r10_bio->devs[k].bio = NULL;
1542                 }
1543                 if (r10_bio->devs[k].repl_bio) {
1544                         rdev_dec_pending(rrdev, mddev);
1545                         r10_bio->devs[k].repl_bio = NULL;
1546                 }
1547         }
1548
1549         bio->bi_status = errno_to_blk_status(error);
1550         set_bit(R10BIO_Uptodate, &r10_bio->state);
1551         raid_end_bio_io(r10_bio);
1552 }
1553
1554 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1555 {
1556         struct r10conf *conf = mddev->private;
1557         struct r10bio *r10_bio;
1558
1559         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1560
1561         r10_bio->master_bio = bio;
1562         r10_bio->sectors = sectors;
1563
1564         r10_bio->mddev = mddev;
1565         r10_bio->sector = bio->bi_iter.bi_sector;
1566         r10_bio->state = 0;
1567         r10_bio->read_slot = -1;
1568         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1569                         conf->geo.raid_disks);
1570
1571         if (bio_data_dir(bio) == READ)
1572                 raid10_read_request(mddev, bio, r10_bio, true);
1573         else
1574                 raid10_write_request(mddev, bio, r10_bio);
1575 }
1576
1577 static void raid_end_discard_bio(struct r10bio *r10bio)
1578 {
1579         struct r10conf *conf = r10bio->mddev->private;
1580         struct r10bio *first_r10bio;
1581
1582         while (atomic_dec_and_test(&r10bio->remaining)) {
1583
1584                 allow_barrier(conf);
1585
1586                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1587                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1588                         free_r10bio(r10bio);
1589                         r10bio = first_r10bio;
1590                 } else {
1591                         md_write_end(r10bio->mddev);
1592                         bio_endio(r10bio->master_bio);
1593                         free_r10bio(r10bio);
1594                         break;
1595                 }
1596         }
1597 }
1598
1599 static void raid10_end_discard_request(struct bio *bio)
1600 {
1601         struct r10bio *r10_bio = bio->bi_private;
1602         struct r10conf *conf = r10_bio->mddev->private;
1603         struct md_rdev *rdev = NULL;
1604         int dev;
1605         int slot, repl;
1606
1607         /*
1608          * We don't care the return value of discard bio
1609          */
1610         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1611                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1612
1613         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1614         rdev = repl ? conf->mirrors[dev].replacement :
1615                       conf->mirrors[dev].rdev;
1616
1617         raid_end_discard_bio(r10_bio);
1618         rdev_dec_pending(rdev, conf->mddev);
1619 }
1620
1621 /*
1622  * There are some limitations to handle discard bio
1623  * 1st, the discard size is bigger than stripe_size*2.
1624  * 2st, if the discard bio spans reshape progress, we use the old way to
1625  * handle discard bio
1626  */
1627 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1628 {
1629         struct r10conf *conf = mddev->private;
1630         struct geom *geo = &conf->geo;
1631         int far_copies = geo->far_copies;
1632         bool first_copy = true;
1633         struct r10bio *r10_bio, *first_r10bio;
1634         struct bio *split;
1635         int disk;
1636         sector_t chunk;
1637         unsigned int stripe_size;
1638         unsigned int stripe_data_disks;
1639         sector_t split_size;
1640         sector_t bio_start, bio_end;
1641         sector_t first_stripe_index, last_stripe_index;
1642         sector_t start_disk_offset;
1643         unsigned int start_disk_index;
1644         sector_t end_disk_offset;
1645         unsigned int end_disk_index;
1646         unsigned int remainder;
1647
1648         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1649                 return -EAGAIN;
1650
1651         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1652                 bio_wouldblock_error(bio);
1653                 return 0;
1654         }
1655         wait_barrier(conf, false);
1656
1657         /*
1658          * Check reshape again to avoid reshape happens after checking
1659          * MD_RECOVERY_RESHAPE and before wait_barrier
1660          */
1661         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1662                 goto out;
1663
1664         if (geo->near_copies)
1665                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1666                                         geo->raid_disks % geo->near_copies;
1667         else
1668                 stripe_data_disks = geo->raid_disks;
1669
1670         stripe_size = stripe_data_disks << geo->chunk_shift;
1671
1672         bio_start = bio->bi_iter.bi_sector;
1673         bio_end = bio_end_sector(bio);
1674
1675         /*
1676          * Maybe one discard bio is smaller than strip size or across one
1677          * stripe and discard region is larger than one stripe size. For far
1678          * offset layout, if the discard region is not aligned with stripe
1679          * size, there is hole when we submit discard bio to member disk.
1680          * For simplicity, we only handle discard bio which discard region
1681          * is bigger than stripe_size * 2
1682          */
1683         if (bio_sectors(bio) < stripe_size*2)
1684                 goto out;
1685
1686         /*
1687          * Keep bio aligned with strip size.
1688          */
1689         div_u64_rem(bio_start, stripe_size, &remainder);
1690         if (remainder) {
1691                 split_size = stripe_size - remainder;
1692                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1693                 if (IS_ERR(split)) {
1694                         bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1695                         bio_endio(bio);
1696                         return 0;
1697                 }
1698                 bio_chain(split, bio);
1699                 allow_barrier(conf);
1700                 /* Resend the fist split part */
1701                 submit_bio_noacct(split);
1702                 wait_barrier(conf, false);
1703         }
1704         div_u64_rem(bio_end, stripe_size, &remainder);
1705         if (remainder) {
1706                 split_size = bio_sectors(bio) - remainder;
1707                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1708                 if (IS_ERR(split)) {
1709                         bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1710                         bio_endio(bio);
1711                         return 0;
1712                 }
1713                 bio_chain(split, bio);
1714                 allow_barrier(conf);
1715                 /* Resend the second split part */
1716                 submit_bio_noacct(bio);
1717                 bio = split;
1718                 wait_barrier(conf, false);
1719         }
1720
1721         bio_start = bio->bi_iter.bi_sector;
1722         bio_end = bio_end_sector(bio);
1723
1724         /*
1725          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1726          * One stripe contains the chunks from all member disk (one chunk from
1727          * one disk at the same HBA address). For layout detail, see 'man md 4'
1728          */
1729         chunk = bio_start >> geo->chunk_shift;
1730         chunk *= geo->near_copies;
1731         first_stripe_index = chunk;
1732         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1733         if (geo->far_offset)
1734                 first_stripe_index *= geo->far_copies;
1735         start_disk_offset = (bio_start & geo->chunk_mask) +
1736                                 (first_stripe_index << geo->chunk_shift);
1737
1738         chunk = bio_end >> geo->chunk_shift;
1739         chunk *= geo->near_copies;
1740         last_stripe_index = chunk;
1741         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1742         if (geo->far_offset)
1743                 last_stripe_index *= geo->far_copies;
1744         end_disk_offset = (bio_end & geo->chunk_mask) +
1745                                 (last_stripe_index << geo->chunk_shift);
1746
1747 retry_discard:
1748         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1749         r10_bio->mddev = mddev;
1750         r10_bio->state = 0;
1751         r10_bio->sectors = 0;
1752         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1753         wait_blocked_dev(mddev, r10_bio);
1754
1755         /*
1756          * For far layout it needs more than one r10bio to cover all regions.
1757          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1758          * to record the discard bio. Other r10bio->master_bio record the first
1759          * r10bio. The first r10bio only release after all other r10bios finish.
1760          * The discard bio returns only first r10bio finishes
1761          */
1762         if (first_copy) {
1763                 r10_bio->master_bio = bio;
1764                 set_bit(R10BIO_Discard, &r10_bio->state);
1765                 first_copy = false;
1766                 first_r10bio = r10_bio;
1767         } else
1768                 r10_bio->master_bio = (struct bio *)first_r10bio;
1769
1770         /*
1771          * first select target devices under rcu_lock and
1772          * inc refcount on their rdev.  Record them by setting
1773          * bios[x] to bio
1774          */
1775         for (disk = 0; disk < geo->raid_disks; disk++) {
1776                 struct md_rdev *rdev, *rrdev;
1777
1778                 rdev = conf->mirrors[disk].rdev;
1779                 rrdev = conf->mirrors[disk].replacement;
1780                 r10_bio->devs[disk].bio = NULL;
1781                 r10_bio->devs[disk].repl_bio = NULL;
1782
1783                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1784                         rdev = NULL;
1785                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1786                         rrdev = NULL;
1787                 if (!rdev && !rrdev)
1788                         continue;
1789
1790                 if (rdev) {
1791                         r10_bio->devs[disk].bio = bio;
1792                         atomic_inc(&rdev->nr_pending);
1793                 }
1794                 if (rrdev) {
1795                         r10_bio->devs[disk].repl_bio = bio;
1796                         atomic_inc(&rrdev->nr_pending);
1797                 }
1798         }
1799
1800         atomic_set(&r10_bio->remaining, 1);
1801         for (disk = 0; disk < geo->raid_disks; disk++) {
1802                 sector_t dev_start, dev_end;
1803                 struct bio *mbio, *rbio = NULL;
1804
1805                 /*
1806                  * Now start to calculate the start and end address for each disk.
1807                  * The space between dev_start and dev_end is the discard region.
1808                  *
1809                  * For dev_start, it needs to consider three conditions:
1810                  * 1st, the disk is before start_disk, you can imagine the disk in
1811                  * the next stripe. So the dev_start is the start address of next
1812                  * stripe.
1813                  * 2st, the disk is after start_disk, it means the disk is at the
1814                  * same stripe of first disk
1815                  * 3st, the first disk itself, we can use start_disk_offset directly
1816                  */
1817                 if (disk < start_disk_index)
1818                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1819                 else if (disk > start_disk_index)
1820                         dev_start = first_stripe_index * mddev->chunk_sectors;
1821                 else
1822                         dev_start = start_disk_offset;
1823
1824                 if (disk < end_disk_index)
1825                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1826                 else if (disk > end_disk_index)
1827                         dev_end = last_stripe_index * mddev->chunk_sectors;
1828                 else
1829                         dev_end = end_disk_offset;
1830
1831                 /*
1832                  * It only handles discard bio which size is >= stripe size, so
1833                  * dev_end > dev_start all the time.
1834                  * It doesn't need to use rcu lock to get rdev here. We already
1835                  * add rdev->nr_pending in the first loop.
1836                  */
1837                 if (r10_bio->devs[disk].bio) {
1838                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1839                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1840                                                &mddev->bio_set);
1841                         mbio->bi_end_io = raid10_end_discard_request;
1842                         mbio->bi_private = r10_bio;
1843                         r10_bio->devs[disk].bio = mbio;
1844                         r10_bio->devs[disk].devnum = disk;
1845                         atomic_inc(&r10_bio->remaining);
1846                         md_submit_discard_bio(mddev, rdev, mbio,
1847                                         dev_start + choose_data_offset(r10_bio, rdev),
1848                                         dev_end - dev_start);
1849                         bio_endio(mbio);
1850                 }
1851                 if (r10_bio->devs[disk].repl_bio) {
1852                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1853                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1854                                                &mddev->bio_set);
1855                         rbio->bi_end_io = raid10_end_discard_request;
1856                         rbio->bi_private = r10_bio;
1857                         r10_bio->devs[disk].repl_bio = rbio;
1858                         r10_bio->devs[disk].devnum = disk;
1859                         atomic_inc(&r10_bio->remaining);
1860                         md_submit_discard_bio(mddev, rrdev, rbio,
1861                                         dev_start + choose_data_offset(r10_bio, rrdev),
1862                                         dev_end - dev_start);
1863                         bio_endio(rbio);
1864                 }
1865         }
1866
1867         if (!geo->far_offset && --far_copies) {
1868                 first_stripe_index += geo->stride >> geo->chunk_shift;
1869                 start_disk_offset += geo->stride;
1870                 last_stripe_index += geo->stride >> geo->chunk_shift;
1871                 end_disk_offset += geo->stride;
1872                 atomic_inc(&first_r10bio->remaining);
1873                 raid_end_discard_bio(r10_bio);
1874                 wait_barrier(conf, false);
1875                 goto retry_discard;
1876         }
1877
1878         raid_end_discard_bio(r10_bio);
1879
1880         return 0;
1881 out:
1882         allow_barrier(conf);
1883         return -EAGAIN;
1884 }
1885
1886 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1887 {
1888         struct r10conf *conf = mddev->private;
1889         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1890         int chunk_sects = chunk_mask + 1;
1891         int sectors = bio_sectors(bio);
1892
1893         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1894             && md_flush_request(mddev, bio))
1895                 return true;
1896
1897         md_write_start(mddev, bio);
1898
1899         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1900                 if (!raid10_handle_discard(mddev, bio))
1901                         return true;
1902
1903         /*
1904          * If this request crosses a chunk boundary, we need to split
1905          * it.
1906          */
1907         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1908                      sectors > chunk_sects
1909                      && (conf->geo.near_copies < conf->geo.raid_disks
1910                          || conf->prev.near_copies <
1911                          conf->prev.raid_disks)))
1912                 sectors = chunk_sects -
1913                         (bio->bi_iter.bi_sector &
1914                          (chunk_sects - 1));
1915         __make_request(mddev, bio, sectors);
1916
1917         /* In case raid10d snuck in to freeze_array */
1918         wake_up_barrier(conf);
1919         return true;
1920 }
1921
1922 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1923 {
1924         struct r10conf *conf = mddev->private;
1925         int i;
1926
1927         lockdep_assert_held(&mddev->lock);
1928
1929         if (conf->geo.near_copies < conf->geo.raid_disks)
1930                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1931         if (conf->geo.near_copies > 1)
1932                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1933         if (conf->geo.far_copies > 1) {
1934                 if (conf->geo.far_offset)
1935                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1936                 else
1937                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1938                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1939                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1940         }
1941         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1942                                         conf->geo.raid_disks - mddev->degraded);
1943         for (i = 0; i < conf->geo.raid_disks; i++) {
1944                 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1945
1946                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1947         }
1948         seq_printf(seq, "]");
1949 }
1950
1951 /* check if there are enough drives for
1952  * every block to appear on atleast one.
1953  * Don't consider the device numbered 'ignore'
1954  * as we might be about to remove it.
1955  */
1956 static int _enough(struct r10conf *conf, int previous, int ignore)
1957 {
1958         int first = 0;
1959         int has_enough = 0;
1960         int disks, ncopies;
1961         if (previous) {
1962                 disks = conf->prev.raid_disks;
1963                 ncopies = conf->prev.near_copies;
1964         } else {
1965                 disks = conf->geo.raid_disks;
1966                 ncopies = conf->geo.near_copies;
1967         }
1968
1969         do {
1970                 int n = conf->copies;
1971                 int cnt = 0;
1972                 int this = first;
1973                 while (n--) {
1974                         struct md_rdev *rdev;
1975                         if (this != ignore &&
1976                             (rdev = conf->mirrors[this].rdev) &&
1977                             test_bit(In_sync, &rdev->flags))
1978                                 cnt++;
1979                         this = (this+1) % disks;
1980                 }
1981                 if (cnt == 0)
1982                         goto out;
1983                 first = (first + ncopies) % disks;
1984         } while (first != 0);
1985         has_enough = 1;
1986 out:
1987         return has_enough;
1988 }
1989
1990 static int enough(struct r10conf *conf, int ignore)
1991 {
1992         /* when calling 'enough', both 'prev' and 'geo' must
1993          * be stable.
1994          * This is ensured if ->reconfig_mutex or ->device_lock
1995          * is held.
1996          */
1997         return _enough(conf, 0, ignore) &&
1998                 _enough(conf, 1, ignore);
1999 }
2000
2001 /**
2002  * raid10_error() - RAID10 error handler.
2003  * @mddev: affected md device.
2004  * @rdev: member device to fail.
2005  *
2006  * The routine acknowledges &rdev failure and determines new @mddev state.
2007  * If it failed, then:
2008  *      - &MD_BROKEN flag is set in &mddev->flags.
2009  * Otherwise, it must be degraded:
2010  *      - recovery is interrupted.
2011  *      - &mddev->degraded is bumped.
2012  *
2013  * @rdev is marked as &Faulty excluding case when array is failed and
2014  * &mddev->fail_last_dev is off.
2015  */
2016 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2017 {
2018         struct r10conf *conf = mddev->private;
2019         unsigned long flags;
2020
2021         spin_lock_irqsave(&conf->device_lock, flags);
2022
2023         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2024                 set_bit(MD_BROKEN, &mddev->flags);
2025
2026                 if (!mddev->fail_last_dev) {
2027                         spin_unlock_irqrestore(&conf->device_lock, flags);
2028                         return;
2029                 }
2030         }
2031         if (test_and_clear_bit(In_sync, &rdev->flags))
2032                 mddev->degraded++;
2033
2034         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2035         set_bit(Blocked, &rdev->flags);
2036         set_bit(Faulty, &rdev->flags);
2037         set_mask_bits(&mddev->sb_flags, 0,
2038                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2039         spin_unlock_irqrestore(&conf->device_lock, flags);
2040         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2041                 "md/raid10:%s: Operation continuing on %d devices.\n",
2042                 mdname(mddev), rdev->bdev,
2043                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2044 }
2045
2046 static void print_conf(struct r10conf *conf)
2047 {
2048         int i;
2049         struct md_rdev *rdev;
2050
2051         pr_debug("RAID10 conf printout:\n");
2052         if (!conf) {
2053                 pr_debug("(!conf)\n");
2054                 return;
2055         }
2056         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2057                  conf->geo.raid_disks);
2058
2059         lockdep_assert_held(&conf->mddev->reconfig_mutex);
2060         for (i = 0; i < conf->geo.raid_disks; i++) {
2061                 rdev = conf->mirrors[i].rdev;
2062                 if (rdev)
2063                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2064                                  i, !test_bit(In_sync, &rdev->flags),
2065                                  !test_bit(Faulty, &rdev->flags),
2066                                  rdev->bdev);
2067         }
2068 }
2069
2070 static void close_sync(struct r10conf *conf)
2071 {
2072         wait_barrier(conf, false);
2073         allow_barrier(conf);
2074
2075         mempool_exit(&conf->r10buf_pool);
2076 }
2077
2078 static int raid10_spare_active(struct mddev *mddev)
2079 {
2080         int i;
2081         struct r10conf *conf = mddev->private;
2082         struct raid10_info *tmp;
2083         int count = 0;
2084         unsigned long flags;
2085
2086         /*
2087          * Find all non-in_sync disks within the RAID10 configuration
2088          * and mark them in_sync
2089          */
2090         for (i = 0; i < conf->geo.raid_disks; i++) {
2091                 tmp = conf->mirrors + i;
2092                 if (tmp->replacement
2093                     && tmp->replacement->recovery_offset == MaxSector
2094                     && !test_bit(Faulty, &tmp->replacement->flags)
2095                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2096                         /* Replacement has just become active */
2097                         if (!tmp->rdev
2098                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2099                                 count++;
2100                         if (tmp->rdev) {
2101                                 /* Replaced device not technically faulty,
2102                                  * but we need to be sure it gets removed
2103                                  * and never re-added.
2104                                  */
2105                                 set_bit(Faulty, &tmp->rdev->flags);
2106                                 sysfs_notify_dirent_safe(
2107                                         tmp->rdev->sysfs_state);
2108                         }
2109                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2110                 } else if (tmp->rdev
2111                            && tmp->rdev->recovery_offset == MaxSector
2112                            && !test_bit(Faulty, &tmp->rdev->flags)
2113                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2114                         count++;
2115                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2116                 }
2117         }
2118         spin_lock_irqsave(&conf->device_lock, flags);
2119         mddev->degraded -= count;
2120         spin_unlock_irqrestore(&conf->device_lock, flags);
2121
2122         print_conf(conf);
2123         return count;
2124 }
2125
2126 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2127 {
2128         struct r10conf *conf = mddev->private;
2129         int err = -EEXIST;
2130         int mirror, repl_slot = -1;
2131         int first = 0;
2132         int last = conf->geo.raid_disks - 1;
2133         struct raid10_info *p;
2134
2135         if (mddev->recovery_cp < MaxSector)
2136                 /* only hot-add to in-sync arrays, as recovery is
2137                  * very different from resync
2138                  */
2139                 return -EBUSY;
2140         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2141                 return -EINVAL;
2142
2143         if (rdev->raid_disk >= 0)
2144                 first = last = rdev->raid_disk;
2145
2146         if (rdev->saved_raid_disk >= first &&
2147             rdev->saved_raid_disk < conf->geo.raid_disks &&
2148             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2149                 mirror = rdev->saved_raid_disk;
2150         else
2151                 mirror = first;
2152         for ( ; mirror <= last ; mirror++) {
2153                 p = &conf->mirrors[mirror];
2154                 if (p->recovery_disabled == mddev->recovery_disabled)
2155                         continue;
2156                 if (p->rdev) {
2157                         if (test_bit(WantReplacement, &p->rdev->flags) &&
2158                             p->replacement == NULL && repl_slot < 0)
2159                                 repl_slot = mirror;
2160                         continue;
2161                 }
2162
2163                 err = mddev_stack_new_rdev(mddev, rdev);
2164                 if (err)
2165                         return err;
2166                 p->head_position = 0;
2167                 p->recovery_disabled = mddev->recovery_disabled - 1;
2168                 rdev->raid_disk = mirror;
2169                 err = 0;
2170                 if (rdev->saved_raid_disk != mirror)
2171                         conf->fullsync = 1;
2172                 WRITE_ONCE(p->rdev, rdev);
2173                 break;
2174         }
2175
2176         if (err && repl_slot >= 0) {
2177                 p = &conf->mirrors[repl_slot];
2178                 clear_bit(In_sync, &rdev->flags);
2179                 set_bit(Replacement, &rdev->flags);
2180                 rdev->raid_disk = repl_slot;
2181                 err = mddev_stack_new_rdev(mddev, rdev);
2182                 if (err)
2183                         return err;
2184                 conf->fullsync = 1;
2185                 WRITE_ONCE(p->replacement, rdev);
2186         }
2187
2188         print_conf(conf);
2189         return err;
2190 }
2191
2192 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2193 {
2194         struct r10conf *conf = mddev->private;
2195         int err = 0;
2196         int number = rdev->raid_disk;
2197         struct md_rdev **rdevp;
2198         struct raid10_info *p;
2199
2200         print_conf(conf);
2201         if (unlikely(number >= mddev->raid_disks))
2202                 return 0;
2203         p = conf->mirrors + number;
2204         if (rdev == p->rdev)
2205                 rdevp = &p->rdev;
2206         else if (rdev == p->replacement)
2207                 rdevp = &p->replacement;
2208         else
2209                 return 0;
2210
2211         if (test_bit(In_sync, &rdev->flags) ||
2212             atomic_read(&rdev->nr_pending)) {
2213                 err = -EBUSY;
2214                 goto abort;
2215         }
2216         /* Only remove non-faulty devices if recovery
2217          * is not possible.
2218          */
2219         if (!test_bit(Faulty, &rdev->flags) &&
2220             mddev->recovery_disabled != p->recovery_disabled &&
2221             (!p->replacement || p->replacement == rdev) &&
2222             number < conf->geo.raid_disks &&
2223             enough(conf, -1)) {
2224                 err = -EBUSY;
2225                 goto abort;
2226         }
2227         WRITE_ONCE(*rdevp, NULL);
2228         if (p->replacement) {
2229                 /* We must have just cleared 'rdev' */
2230                 WRITE_ONCE(p->rdev, p->replacement);
2231                 clear_bit(Replacement, &p->replacement->flags);
2232                 WRITE_ONCE(p->replacement, NULL);
2233         }
2234
2235         clear_bit(WantReplacement, &rdev->flags);
2236         err = md_integrity_register(mddev);
2237
2238 abort:
2239
2240         print_conf(conf);
2241         return err;
2242 }
2243
2244 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2245 {
2246         struct r10conf *conf = r10_bio->mddev->private;
2247
2248         if (!bio->bi_status)
2249                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2250         else
2251                 /* The write handler will notice the lack of
2252                  * R10BIO_Uptodate and record any errors etc
2253                  */
2254                 atomic_add(r10_bio->sectors,
2255                            &conf->mirrors[d].rdev->corrected_errors);
2256
2257         /* for reconstruct, we always reschedule after a read.
2258          * for resync, only after all reads
2259          */
2260         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2261         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2262             atomic_dec_and_test(&r10_bio->remaining)) {
2263                 /* we have read all the blocks,
2264                  * do the comparison in process context in raid10d
2265                  */
2266                 reschedule_retry(r10_bio);
2267         }
2268 }
2269
2270 static void end_sync_read(struct bio *bio)
2271 {
2272         struct r10bio *r10_bio = get_resync_r10bio(bio);
2273         struct r10conf *conf = r10_bio->mddev->private;
2274         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2275
2276         __end_sync_read(r10_bio, bio, d);
2277 }
2278
2279 static void end_reshape_read(struct bio *bio)
2280 {
2281         /* reshape read bio isn't allocated from r10buf_pool */
2282         struct r10bio *r10_bio = bio->bi_private;
2283
2284         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2285 }
2286
2287 static void end_sync_request(struct r10bio *r10_bio)
2288 {
2289         struct mddev *mddev = r10_bio->mddev;
2290
2291         while (atomic_dec_and_test(&r10_bio->remaining)) {
2292                 if (r10_bio->master_bio == NULL) {
2293                         /* the primary of several recovery bios */
2294                         sector_t s = r10_bio->sectors;
2295                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2296                             test_bit(R10BIO_WriteError, &r10_bio->state))
2297                                 reschedule_retry(r10_bio);
2298                         else
2299                                 put_buf(r10_bio);
2300                         md_done_sync(mddev, s, 1);
2301                         break;
2302                 } else {
2303                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2304                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2305                             test_bit(R10BIO_WriteError, &r10_bio->state))
2306                                 reschedule_retry(r10_bio);
2307                         else
2308                                 put_buf(r10_bio);
2309                         r10_bio = r10_bio2;
2310                 }
2311         }
2312 }
2313
2314 static void end_sync_write(struct bio *bio)
2315 {
2316         struct r10bio *r10_bio = get_resync_r10bio(bio);
2317         struct mddev *mddev = r10_bio->mddev;
2318         struct r10conf *conf = mddev->private;
2319         int d;
2320         int slot;
2321         int repl;
2322         struct md_rdev *rdev = NULL;
2323
2324         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2325         if (repl)
2326                 rdev = conf->mirrors[d].replacement;
2327         else
2328                 rdev = conf->mirrors[d].rdev;
2329
2330         if (bio->bi_status) {
2331                 if (repl)
2332                         md_error(mddev, rdev);
2333                 else {
2334                         set_bit(WriteErrorSeen, &rdev->flags);
2335                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2336                                 set_bit(MD_RECOVERY_NEEDED,
2337                                         &rdev->mddev->recovery);
2338                         set_bit(R10BIO_WriteError, &r10_bio->state);
2339                 }
2340         } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2341                                      r10_bio->sectors)) {
2342                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2343         }
2344
2345         rdev_dec_pending(rdev, mddev);
2346
2347         end_sync_request(r10_bio);
2348 }
2349
2350 /*
2351  * Note: sync and recover and handled very differently for raid10
2352  * This code is for resync.
2353  * For resync, we read through virtual addresses and read all blocks.
2354  * If there is any error, we schedule a write.  The lowest numbered
2355  * drive is authoritative.
2356  * However requests come for physical address, so we need to map.
2357  * For every physical address there are raid_disks/copies virtual addresses,
2358  * which is always are least one, but is not necessarly an integer.
2359  * This means that a physical address can span multiple chunks, so we may
2360  * have to submit multiple io requests for a single sync request.
2361  */
2362 /*
2363  * We check if all blocks are in-sync and only write to blocks that
2364  * aren't in sync
2365  */
2366 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2367 {
2368         struct r10conf *conf = mddev->private;
2369         int i, first;
2370         struct bio *tbio, *fbio;
2371         int vcnt;
2372         struct page **tpages, **fpages;
2373
2374         atomic_set(&r10_bio->remaining, 1);
2375
2376         /* find the first device with a block */
2377         for (i=0; i<conf->copies; i++)
2378                 if (!r10_bio->devs[i].bio->bi_status)
2379                         break;
2380
2381         if (i == conf->copies)
2382                 goto done;
2383
2384         first = i;
2385         fbio = r10_bio->devs[i].bio;
2386         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2387         fbio->bi_iter.bi_idx = 0;
2388         fpages = get_resync_pages(fbio)->pages;
2389
2390         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2391         /* now find blocks with errors */
2392         for (i=0 ; i < conf->copies ; i++) {
2393                 int  j, d;
2394                 struct md_rdev *rdev;
2395                 struct resync_pages *rp;
2396
2397                 tbio = r10_bio->devs[i].bio;
2398
2399                 if (tbio->bi_end_io != end_sync_read)
2400                         continue;
2401                 if (i == first)
2402                         continue;
2403
2404                 tpages = get_resync_pages(tbio)->pages;
2405                 d = r10_bio->devs[i].devnum;
2406                 rdev = conf->mirrors[d].rdev;
2407                 if (!r10_bio->devs[i].bio->bi_status) {
2408                         /* We know that the bi_io_vec layout is the same for
2409                          * both 'first' and 'i', so we just compare them.
2410                          * All vec entries are PAGE_SIZE;
2411                          */
2412                         int sectors = r10_bio->sectors;
2413                         for (j = 0; j < vcnt; j++) {
2414                                 int len = PAGE_SIZE;
2415                                 if (sectors < (len / 512))
2416                                         len = sectors * 512;
2417                                 if (memcmp(page_address(fpages[j]),
2418                                            page_address(tpages[j]),
2419                                            len))
2420                                         break;
2421                                 sectors -= len/512;
2422                         }
2423                         if (j == vcnt)
2424                                 continue;
2425                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2426                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2427                                 /* Don't fix anything. */
2428                                 continue;
2429                 } else if (test_bit(FailFast, &rdev->flags)) {
2430                         /* Just give up on this device */
2431                         md_error(rdev->mddev, rdev);
2432                         continue;
2433                 }
2434                 /* Ok, we need to write this bio, either to correct an
2435                  * inconsistency or to correct an unreadable block.
2436                  * First we need to fixup bv_offset, bv_len and
2437                  * bi_vecs, as the read request might have corrupted these
2438                  */
2439                 rp = get_resync_pages(tbio);
2440                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2441
2442                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2443
2444                 rp->raid_bio = r10_bio;
2445                 tbio->bi_private = rp;
2446                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2447                 tbio->bi_end_io = end_sync_write;
2448
2449                 bio_copy_data(tbio, fbio);
2450
2451                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2452                 atomic_inc(&r10_bio->remaining);
2453                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2454
2455                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2456                         tbio->bi_opf |= MD_FAILFAST;
2457                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2458                 submit_bio_noacct(tbio);
2459         }
2460
2461         /* Now write out to any replacement devices
2462          * that are active
2463          */
2464         for (i = 0; i < conf->copies; i++) {
2465                 int d;
2466
2467                 tbio = r10_bio->devs[i].repl_bio;
2468                 if (!tbio || !tbio->bi_end_io)
2469                         continue;
2470                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2471                     && r10_bio->devs[i].bio != fbio)
2472                         bio_copy_data(tbio, fbio);
2473                 d = r10_bio->devs[i].devnum;
2474                 atomic_inc(&r10_bio->remaining);
2475                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2476                              bio_sectors(tbio));
2477                 submit_bio_noacct(tbio);
2478         }
2479
2480 done:
2481         if (atomic_dec_and_test(&r10_bio->remaining)) {
2482                 md_done_sync(mddev, r10_bio->sectors, 1);
2483                 put_buf(r10_bio);
2484         }
2485 }
2486
2487 /*
2488  * Now for the recovery code.
2489  * Recovery happens across physical sectors.
2490  * We recover all non-is_sync drives by finding the virtual address of
2491  * each, and then choose a working drive that also has that virt address.
2492  * There is a separate r10_bio for each non-in_sync drive.
2493  * Only the first two slots are in use. The first for reading,
2494  * The second for writing.
2495  *
2496  */
2497 static void fix_recovery_read_error(struct r10bio *r10_bio)
2498 {
2499         /* We got a read error during recovery.
2500          * We repeat the read in smaller page-sized sections.
2501          * If a read succeeds, write it to the new device or record
2502          * a bad block if we cannot.
2503          * If a read fails, record a bad block on both old and
2504          * new devices.
2505          */
2506         struct mddev *mddev = r10_bio->mddev;
2507         struct r10conf *conf = mddev->private;
2508         struct bio *bio = r10_bio->devs[0].bio;
2509         sector_t sect = 0;
2510         int sectors = r10_bio->sectors;
2511         int idx = 0;
2512         int dr = r10_bio->devs[0].devnum;
2513         int dw = r10_bio->devs[1].devnum;
2514         struct page **pages = get_resync_pages(bio)->pages;
2515
2516         while (sectors) {
2517                 int s = sectors;
2518                 struct md_rdev *rdev;
2519                 sector_t addr;
2520                 int ok;
2521
2522                 if (s > (PAGE_SIZE>>9))
2523                         s = PAGE_SIZE >> 9;
2524
2525                 rdev = conf->mirrors[dr].rdev;
2526                 addr = r10_bio->devs[0].addr + sect;
2527                 ok = sync_page_io(rdev,
2528                                   addr,
2529                                   s << 9,
2530                                   pages[idx],
2531                                   REQ_OP_READ, false);
2532                 if (ok) {
2533                         rdev = conf->mirrors[dw].rdev;
2534                         addr = r10_bio->devs[1].addr + sect;
2535                         ok = sync_page_io(rdev,
2536                                           addr,
2537                                           s << 9,
2538                                           pages[idx],
2539                                           REQ_OP_WRITE, false);
2540                         if (!ok) {
2541                                 set_bit(WriteErrorSeen, &rdev->flags);
2542                                 if (!test_and_set_bit(WantReplacement,
2543                                                       &rdev->flags))
2544                                         set_bit(MD_RECOVERY_NEEDED,
2545                                                 &rdev->mddev->recovery);
2546                         }
2547                 }
2548                 if (!ok) {
2549                         /* We don't worry if we cannot set a bad block -
2550                          * it really is bad so there is no loss in not
2551                          * recording it yet
2552                          */
2553                         rdev_set_badblocks(rdev, addr, s, 0);
2554
2555                         if (rdev != conf->mirrors[dw].rdev) {
2556                                 /* need bad block on destination too */
2557                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2558                                 addr = r10_bio->devs[1].addr + sect;
2559                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2560                                 if (!ok) {
2561                                         /* just abort the recovery */
2562                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2563                                                   mdname(mddev));
2564
2565                                         conf->mirrors[dw].recovery_disabled
2566                                                 = mddev->recovery_disabled;
2567                                         set_bit(MD_RECOVERY_INTR,
2568                                                 &mddev->recovery);
2569                                         break;
2570                                 }
2571                         }
2572                 }
2573
2574                 sectors -= s;
2575                 sect += s;
2576                 idx++;
2577         }
2578 }
2579
2580 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2581 {
2582         struct r10conf *conf = mddev->private;
2583         int d;
2584         struct bio *wbio = r10_bio->devs[1].bio;
2585         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2586
2587         /* Need to test wbio2->bi_end_io before we call
2588          * submit_bio_noacct as if the former is NULL,
2589          * the latter is free to free wbio2.
2590          */
2591         if (wbio2 && !wbio2->bi_end_io)
2592                 wbio2 = NULL;
2593
2594         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2595                 fix_recovery_read_error(r10_bio);
2596                 if (wbio->bi_end_io)
2597                         end_sync_request(r10_bio);
2598                 if (wbio2)
2599                         end_sync_request(r10_bio);
2600                 return;
2601         }
2602
2603         /*
2604          * share the pages with the first bio
2605          * and submit the write request
2606          */
2607         d = r10_bio->devs[1].devnum;
2608         if (wbio->bi_end_io) {
2609                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2610                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2611                 submit_bio_noacct(wbio);
2612         }
2613         if (wbio2) {
2614                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2615                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2616                              bio_sectors(wbio2));
2617                 submit_bio_noacct(wbio2);
2618         }
2619 }
2620
2621 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2622                             int sectors, struct page *page, enum req_op op)
2623 {
2624         if (rdev_has_badblock(rdev, sector, sectors) &&
2625             (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2626                 return -1;
2627         if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2628                 /* success */
2629                 return 1;
2630         if (op == REQ_OP_WRITE) {
2631                 set_bit(WriteErrorSeen, &rdev->flags);
2632                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2633                         set_bit(MD_RECOVERY_NEEDED,
2634                                 &rdev->mddev->recovery);
2635         }
2636         /* need to record an error - either for the block or the device */
2637         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2638                 md_error(rdev->mddev, rdev);
2639         return 0;
2640 }
2641
2642 /*
2643  * This is a kernel thread which:
2644  *
2645  *      1.      Retries failed read operations on working mirrors.
2646  *      2.      Updates the raid superblock when problems encounter.
2647  *      3.      Performs writes following reads for array synchronising.
2648  */
2649
2650 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2651 {
2652         int sect = 0; /* Offset from r10_bio->sector */
2653         int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2654         struct md_rdev *rdev;
2655         int d = r10_bio->devs[slot].devnum;
2656
2657         /* still own a reference to this rdev, so it cannot
2658          * have been cleared recently.
2659          */
2660         rdev = conf->mirrors[d].rdev;
2661
2662         if (test_bit(Faulty, &rdev->flags))
2663                 /* drive has already been failed, just ignore any
2664                    more fix_read_error() attempts */
2665                 return;
2666
2667         if (exceed_read_errors(mddev, rdev)) {
2668                 r10_bio->devs[slot].bio = IO_BLOCKED;
2669                 return;
2670         }
2671
2672         while(sectors) {
2673                 int s = sectors;
2674                 int sl = slot;
2675                 int success = 0;
2676                 int start;
2677
2678                 if (s > (PAGE_SIZE>>9))
2679                         s = PAGE_SIZE >> 9;
2680
2681                 do {
2682                         d = r10_bio->devs[sl].devnum;
2683                         rdev = conf->mirrors[d].rdev;
2684                         if (rdev &&
2685                             test_bit(In_sync, &rdev->flags) &&
2686                             !test_bit(Faulty, &rdev->flags) &&
2687                             rdev_has_badblock(rdev,
2688                                               r10_bio->devs[sl].addr + sect,
2689                                               s) == 0) {
2690                                 atomic_inc(&rdev->nr_pending);
2691                                 success = sync_page_io(rdev,
2692                                                        r10_bio->devs[sl].addr +
2693                                                        sect,
2694                                                        s<<9,
2695                                                        conf->tmppage,
2696                                                        REQ_OP_READ, false);
2697                                 rdev_dec_pending(rdev, mddev);
2698                                 if (success)
2699                                         break;
2700                         }
2701                         sl++;
2702                         if (sl == conf->copies)
2703                                 sl = 0;
2704                 } while (sl != slot);
2705
2706                 if (!success) {
2707                         /* Cannot read from anywhere, just mark the block
2708                          * as bad on the first device to discourage future
2709                          * reads.
2710                          */
2711                         int dn = r10_bio->devs[slot].devnum;
2712                         rdev = conf->mirrors[dn].rdev;
2713
2714                         if (!rdev_set_badblocks(
2715                                     rdev,
2716                                     r10_bio->devs[slot].addr
2717                                     + sect,
2718                                     s, 0)) {
2719                                 md_error(mddev, rdev);
2720                                 r10_bio->devs[slot].bio
2721                                         = IO_BLOCKED;
2722                         }
2723                         break;
2724                 }
2725
2726                 start = sl;
2727                 /* write it back and re-read */
2728                 while (sl != slot) {
2729                         if (sl==0)
2730                                 sl = conf->copies;
2731                         sl--;
2732                         d = r10_bio->devs[sl].devnum;
2733                         rdev = conf->mirrors[d].rdev;
2734                         if (!rdev ||
2735                             test_bit(Faulty, &rdev->flags) ||
2736                             !test_bit(In_sync, &rdev->flags))
2737                                 continue;
2738
2739                         atomic_inc(&rdev->nr_pending);
2740                         if (r10_sync_page_io(rdev,
2741                                              r10_bio->devs[sl].addr +
2742                                              sect,
2743                                              s, conf->tmppage, REQ_OP_WRITE)
2744                             == 0) {
2745                                 /* Well, this device is dead */
2746                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2747                                           mdname(mddev), s,
2748                                           (unsigned long long)(
2749                                                   sect +
2750                                                   choose_data_offset(r10_bio,
2751                                                                      rdev)),
2752                                           rdev->bdev);
2753                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2754                                           mdname(mddev),
2755                                           rdev->bdev);
2756                         }
2757                         rdev_dec_pending(rdev, mddev);
2758                 }
2759                 sl = start;
2760                 while (sl != slot) {
2761                         if (sl==0)
2762                                 sl = conf->copies;
2763                         sl--;
2764                         d = r10_bio->devs[sl].devnum;
2765                         rdev = conf->mirrors[d].rdev;
2766                         if (!rdev ||
2767                             test_bit(Faulty, &rdev->flags) ||
2768                             !test_bit(In_sync, &rdev->flags))
2769                                 continue;
2770
2771                         atomic_inc(&rdev->nr_pending);
2772                         switch (r10_sync_page_io(rdev,
2773                                              r10_bio->devs[sl].addr +
2774                                              sect,
2775                                              s, conf->tmppage, REQ_OP_READ)) {
2776                         case 0:
2777                                 /* Well, this device is dead */
2778                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2779                                        mdname(mddev), s,
2780                                        (unsigned long long)(
2781                                                sect +
2782                                                choose_data_offset(r10_bio, rdev)),
2783                                        rdev->bdev);
2784                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2785                                        mdname(mddev),
2786                                        rdev->bdev);
2787                                 break;
2788                         case 1:
2789                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2790                                        mdname(mddev), s,
2791                                        (unsigned long long)(
2792                                                sect +
2793                                                choose_data_offset(r10_bio, rdev)),
2794                                        rdev->bdev);
2795                                 atomic_add(s, &rdev->corrected_errors);
2796                         }
2797
2798                         rdev_dec_pending(rdev, mddev);
2799                 }
2800
2801                 sectors -= s;
2802                 sect += s;
2803         }
2804 }
2805
2806 static int narrow_write_error(struct r10bio *r10_bio, int i)
2807 {
2808         struct bio *bio = r10_bio->master_bio;
2809         struct mddev *mddev = r10_bio->mddev;
2810         struct r10conf *conf = mddev->private;
2811         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2812         /* bio has the data to be written to slot 'i' where
2813          * we just recently had a write error.
2814          * We repeatedly clone the bio and trim down to one block,
2815          * then try the write.  Where the write fails we record
2816          * a bad block.
2817          * It is conceivable that the bio doesn't exactly align with
2818          * blocks.  We must handle this.
2819          *
2820          * We currently own a reference to the rdev.
2821          */
2822
2823         int block_sectors;
2824         sector_t sector;
2825         int sectors;
2826         int sect_to_write = r10_bio->sectors;
2827         int ok = 1;
2828
2829         if (rdev->badblocks.shift < 0)
2830                 return 0;
2831
2832         block_sectors = roundup(1 << rdev->badblocks.shift,
2833                                 bdev_logical_block_size(rdev->bdev) >> 9);
2834         sector = r10_bio->sector;
2835         sectors = ((r10_bio->sector + block_sectors)
2836                    & ~(sector_t)(block_sectors - 1))
2837                 - sector;
2838
2839         while (sect_to_write) {
2840                 struct bio *wbio;
2841                 sector_t wsector;
2842                 if (sectors > sect_to_write)
2843                         sectors = sect_to_write;
2844                 /* Write at 'sector' for 'sectors' */
2845                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2846                                        &mddev->bio_set);
2847                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2848                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2849                 wbio->bi_iter.bi_sector = wsector +
2850                                    choose_data_offset(r10_bio, rdev);
2851                 wbio->bi_opf = REQ_OP_WRITE;
2852
2853                 if (submit_bio_wait(wbio) < 0)
2854                         /* Failure! */
2855                         ok = rdev_set_badblocks(rdev, wsector,
2856                                                 sectors, 0)
2857                                 && ok;
2858
2859                 bio_put(wbio);
2860                 sect_to_write -= sectors;
2861                 sector += sectors;
2862                 sectors = block_sectors;
2863         }
2864         return ok;
2865 }
2866
2867 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2868 {
2869         int slot = r10_bio->read_slot;
2870         struct bio *bio;
2871         struct r10conf *conf = mddev->private;
2872         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2873
2874         /* we got a read error. Maybe the drive is bad.  Maybe just
2875          * the block and we can fix it.
2876          * We freeze all other IO, and try reading the block from
2877          * other devices.  When we find one, we re-write
2878          * and check it that fixes the read error.
2879          * This is all done synchronously while the array is
2880          * frozen.
2881          */
2882         bio = r10_bio->devs[slot].bio;
2883         bio_put(bio);
2884         r10_bio->devs[slot].bio = NULL;
2885
2886         if (mddev->ro)
2887                 r10_bio->devs[slot].bio = IO_BLOCKED;
2888         else if (!test_bit(FailFast, &rdev->flags)) {
2889                 freeze_array(conf, 1);
2890                 fix_read_error(conf, mddev, r10_bio);
2891                 unfreeze_array(conf);
2892         } else
2893                 md_error(mddev, rdev);
2894
2895         rdev_dec_pending(rdev, mddev);
2896         r10_bio->state = 0;
2897         raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2898         /*
2899          * allow_barrier after re-submit to ensure no sync io
2900          * can be issued while regular io pending.
2901          */
2902         allow_barrier(conf);
2903 }
2904
2905 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2906 {
2907         /* Some sort of write request has finished and it
2908          * succeeded in writing where we thought there was a
2909          * bad block.  So forget the bad block.
2910          * Or possibly if failed and we need to record
2911          * a bad block.
2912          */
2913         int m;
2914         struct md_rdev *rdev;
2915
2916         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2917             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2918                 for (m = 0; m < conf->copies; m++) {
2919                         int dev = r10_bio->devs[m].devnum;
2920                         rdev = conf->mirrors[dev].rdev;
2921                         if (r10_bio->devs[m].bio == NULL ||
2922                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2923                                 continue;
2924                         if (!r10_bio->devs[m].bio->bi_status) {
2925                                 rdev_clear_badblocks(
2926                                         rdev,
2927                                         r10_bio->devs[m].addr,
2928                                         r10_bio->sectors, 0);
2929                         } else {
2930                                 if (!rdev_set_badblocks(
2931                                             rdev,
2932                                             r10_bio->devs[m].addr,
2933                                             r10_bio->sectors, 0))
2934                                         md_error(conf->mddev, rdev);
2935                         }
2936                         rdev = conf->mirrors[dev].replacement;
2937                         if (r10_bio->devs[m].repl_bio == NULL ||
2938                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2939                                 continue;
2940
2941                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2942                                 rdev_clear_badblocks(
2943                                         rdev,
2944                                         r10_bio->devs[m].addr,
2945                                         r10_bio->sectors, 0);
2946                         } else {
2947                                 if (!rdev_set_badblocks(
2948                                             rdev,
2949                                             r10_bio->devs[m].addr,
2950                                             r10_bio->sectors, 0))
2951                                         md_error(conf->mddev, rdev);
2952                         }
2953                 }
2954                 put_buf(r10_bio);
2955         } else {
2956                 bool fail = false;
2957                 for (m = 0; m < conf->copies; m++) {
2958                         int dev = r10_bio->devs[m].devnum;
2959                         struct bio *bio = r10_bio->devs[m].bio;
2960                         rdev = conf->mirrors[dev].rdev;
2961                         if (bio == IO_MADE_GOOD) {
2962                                 rdev_clear_badblocks(
2963                                         rdev,
2964                                         r10_bio->devs[m].addr,
2965                                         r10_bio->sectors, 0);
2966                                 rdev_dec_pending(rdev, conf->mddev);
2967                         } else if (bio != NULL && bio->bi_status) {
2968                                 fail = true;
2969                                 if (!narrow_write_error(r10_bio, m)) {
2970                                         md_error(conf->mddev, rdev);
2971                                         set_bit(R10BIO_Degraded,
2972                                                 &r10_bio->state);
2973                                 }
2974                                 rdev_dec_pending(rdev, conf->mddev);
2975                         }
2976                         bio = r10_bio->devs[m].repl_bio;
2977                         rdev = conf->mirrors[dev].replacement;
2978                         if (rdev && bio == IO_MADE_GOOD) {
2979                                 rdev_clear_badblocks(
2980                                         rdev,
2981                                         r10_bio->devs[m].addr,
2982                                         r10_bio->sectors, 0);
2983                                 rdev_dec_pending(rdev, conf->mddev);
2984                         }
2985                 }
2986                 if (fail) {
2987                         spin_lock_irq(&conf->device_lock);
2988                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2989                         conf->nr_queued++;
2990                         spin_unlock_irq(&conf->device_lock);
2991                         /*
2992                          * In case freeze_array() is waiting for condition
2993                          * nr_pending == nr_queued + extra to be true.
2994                          */
2995                         wake_up(&conf->wait_barrier);
2996                         md_wakeup_thread(conf->mddev->thread);
2997                 } else {
2998                         if (test_bit(R10BIO_WriteError,
2999                                      &r10_bio->state))
3000                                 close_write(r10_bio);
3001                         raid_end_bio_io(r10_bio);
3002                 }
3003         }
3004 }
3005
3006 static void raid10d(struct md_thread *thread)
3007 {
3008         struct mddev *mddev = thread->mddev;
3009         struct r10bio *r10_bio;
3010         unsigned long flags;
3011         struct r10conf *conf = mddev->private;
3012         struct list_head *head = &conf->retry_list;
3013         struct blk_plug plug;
3014
3015         md_check_recovery(mddev);
3016
3017         if (!list_empty_careful(&conf->bio_end_io_list) &&
3018             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3019                 LIST_HEAD(tmp);
3020                 spin_lock_irqsave(&conf->device_lock, flags);
3021                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3022                         while (!list_empty(&conf->bio_end_io_list)) {
3023                                 list_move(conf->bio_end_io_list.prev, &tmp);
3024                                 conf->nr_queued--;
3025                         }
3026                 }
3027                 spin_unlock_irqrestore(&conf->device_lock, flags);
3028                 while (!list_empty(&tmp)) {
3029                         r10_bio = list_first_entry(&tmp, struct r10bio,
3030                                                    retry_list);
3031                         list_del(&r10_bio->retry_list);
3032                         if (mddev->degraded)
3033                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3034
3035                         if (test_bit(R10BIO_WriteError,
3036                                      &r10_bio->state))
3037                                 close_write(r10_bio);
3038                         raid_end_bio_io(r10_bio);
3039                 }
3040         }
3041
3042         blk_start_plug(&plug);
3043         for (;;) {
3044
3045                 flush_pending_writes(conf);
3046
3047                 spin_lock_irqsave(&conf->device_lock, flags);
3048                 if (list_empty(head)) {
3049                         spin_unlock_irqrestore(&conf->device_lock, flags);
3050                         break;
3051                 }
3052                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3053                 list_del(head->prev);
3054                 conf->nr_queued--;
3055                 spin_unlock_irqrestore(&conf->device_lock, flags);
3056
3057                 mddev = r10_bio->mddev;
3058                 conf = mddev->private;
3059                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3060                     test_bit(R10BIO_WriteError, &r10_bio->state))
3061                         handle_write_completed(conf, r10_bio);
3062                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3063                         reshape_request_write(mddev, r10_bio);
3064                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3065                         sync_request_write(mddev, r10_bio);
3066                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3067                         recovery_request_write(mddev, r10_bio);
3068                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3069                         handle_read_error(mddev, r10_bio);
3070                 else
3071                         WARN_ON_ONCE(1);
3072
3073                 cond_resched();
3074                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3075                         md_check_recovery(mddev);
3076         }
3077         blk_finish_plug(&plug);
3078 }
3079
3080 static int init_resync(struct r10conf *conf)
3081 {
3082         int ret, buffs, i;
3083
3084         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3085         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3086         conf->have_replacement = 0;
3087         for (i = 0; i < conf->geo.raid_disks; i++)
3088                 if (conf->mirrors[i].replacement)
3089                         conf->have_replacement = 1;
3090         ret = mempool_init(&conf->r10buf_pool, buffs,
3091                            r10buf_pool_alloc, r10buf_pool_free, conf);
3092         if (ret)
3093                 return ret;
3094         conf->next_resync = 0;
3095         return 0;
3096 }
3097
3098 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3099 {
3100         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3101         struct rsync_pages *rp;
3102         struct bio *bio;
3103         int nalloc;
3104         int i;
3105
3106         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3107             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3108                 nalloc = conf->copies; /* resync */
3109         else
3110                 nalloc = 2; /* recovery */
3111
3112         for (i = 0; i < nalloc; i++) {
3113                 bio = r10bio->devs[i].bio;
3114                 rp = bio->bi_private;
3115                 bio_reset(bio, NULL, 0);
3116                 bio->bi_private = rp;
3117                 bio = r10bio->devs[i].repl_bio;
3118                 if (bio) {
3119                         rp = bio->bi_private;
3120                         bio_reset(bio, NULL, 0);
3121                         bio->bi_private = rp;
3122                 }
3123         }
3124         return r10bio;
3125 }
3126
3127 /*
3128  * Set cluster_sync_high since we need other nodes to add the
3129  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3130  */
3131 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3132 {
3133         sector_t window_size;
3134         int extra_chunk, chunks;
3135
3136         /*
3137          * First, here we define "stripe" as a unit which across
3138          * all member devices one time, so we get chunks by use
3139          * raid_disks / near_copies. Otherwise, if near_copies is
3140          * close to raid_disks, then resync window could increases
3141          * linearly with the increase of raid_disks, which means
3142          * we will suspend a really large IO window while it is not
3143          * necessary. If raid_disks is not divisible by near_copies,
3144          * an extra chunk is needed to ensure the whole "stripe" is
3145          * covered.
3146          */
3147
3148         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3149         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3150                 extra_chunk = 0;
3151         else
3152                 extra_chunk = 1;
3153         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3154
3155         /*
3156          * At least use a 32M window to align with raid1's resync window
3157          */
3158         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3159                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3160
3161         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3162 }
3163
3164 /*
3165  * perform a "sync" on one "block"
3166  *
3167  * We need to make sure that no normal I/O request - particularly write
3168  * requests - conflict with active sync requests.
3169  *
3170  * This is achieved by tracking pending requests and a 'barrier' concept
3171  * that can be installed to exclude normal IO requests.
3172  *
3173  * Resync and recovery are handled very differently.
3174  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3175  *
3176  * For resync, we iterate over virtual addresses, read all copies,
3177  * and update if there are differences.  If only one copy is live,
3178  * skip it.
3179  * For recovery, we iterate over physical addresses, read a good
3180  * value for each non-in_sync drive, and over-write.
3181  *
3182  * So, for recovery we may have several outstanding complex requests for a
3183  * given address, one for each out-of-sync device.  We model this by allocating
3184  * a number of r10_bio structures, one for each out-of-sync device.
3185  * As we setup these structures, we collect all bio's together into a list
3186  * which we then process collectively to add pages, and then process again
3187  * to pass to submit_bio_noacct.
3188  *
3189  * The r10_bio structures are linked using a borrowed master_bio pointer.
3190  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3191  * has its remaining count decremented to 0, the whole complex operation
3192  * is complete.
3193  *
3194  */
3195
3196 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3197                                     sector_t max_sector, int *skipped)
3198 {
3199         struct r10conf *conf = mddev->private;
3200         struct r10bio *r10_bio;
3201         struct bio *biolist = NULL, *bio;
3202         sector_t nr_sectors;
3203         int i;
3204         int max_sync;
3205         sector_t sync_blocks;
3206         sector_t sectors_skipped = 0;
3207         int chunks_skipped = 0;
3208         sector_t chunk_mask = conf->geo.chunk_mask;
3209         int page_idx = 0;
3210         int error_disk = -1;
3211
3212         /*
3213          * Allow skipping a full rebuild for incremental assembly
3214          * of a clean array, like RAID1 does.
3215          */
3216         if (mddev->bitmap == NULL &&
3217             mddev->recovery_cp == MaxSector &&
3218             mddev->reshape_position == MaxSector &&
3219             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3220             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3221             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3222             conf->fullsync == 0) {
3223                 *skipped = 1;
3224                 return mddev->dev_sectors - sector_nr;
3225         }
3226
3227         if (!mempool_initialized(&conf->r10buf_pool))
3228                 if (init_resync(conf))
3229                         return 0;
3230
3231  skipped:
3232         if (sector_nr >= max_sector) {
3233                 conf->cluster_sync_low = 0;
3234                 conf->cluster_sync_high = 0;
3235
3236                 /* If we aborted, we need to abort the
3237                  * sync on the 'current' bitmap chucks (there can
3238                  * be several when recovering multiple devices).
3239                  * as we may have started syncing it but not finished.
3240                  * We can find the current address in
3241                  * mddev->curr_resync, but for recovery,
3242                  * we need to convert that to several
3243                  * virtual addresses.
3244                  */
3245                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3246                         end_reshape(conf);
3247                         close_sync(conf);
3248                         return 0;
3249                 }
3250
3251                 if (mddev->curr_resync < max_sector) { /* aborted */
3252                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3253                                 mddev->bitmap_ops->end_sync(mddev,
3254                                                             mddev->curr_resync,
3255                                                             &sync_blocks);
3256                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3257                                 sector_t sect =
3258                                         raid10_find_virt(conf, mddev->curr_resync, i);
3259
3260                                 mddev->bitmap_ops->end_sync(mddev, sect,
3261                                                             &sync_blocks);
3262                         }
3263                 } else {
3264                         /* completed sync */
3265                         if ((!mddev->bitmap || conf->fullsync)
3266                             && conf->have_replacement
3267                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3268                                 /* Completed a full sync so the replacements
3269                                  * are now fully recovered.
3270                                  */
3271                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3272                                         struct md_rdev *rdev =
3273                                                 conf->mirrors[i].replacement;
3274
3275                                         if (rdev)
3276                                                 rdev->recovery_offset = MaxSector;
3277                                 }
3278                         }
3279                         conf->fullsync = 0;
3280                 }
3281                 mddev->bitmap_ops->close_sync(mddev);
3282                 close_sync(conf);
3283                 *skipped = 1;
3284                 return sectors_skipped;
3285         }
3286
3287         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3288                 return reshape_request(mddev, sector_nr, skipped);
3289
3290         if (chunks_skipped >= conf->geo.raid_disks) {
3291                 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3292                         test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3293                 if (error_disk >= 0 &&
3294                     !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3295                         /*
3296                          * recovery fails, set mirrors.recovery_disabled,
3297                          * device shouldn't be added to there.
3298                          */
3299                         conf->mirrors[error_disk].recovery_disabled =
3300                                                 mddev->recovery_disabled;
3301                         return 0;
3302                 }
3303                 /*
3304                  * if there has been nothing to do on any drive,
3305                  * then there is nothing to do at all.
3306                  */
3307                 *skipped = 1;
3308                 return (max_sector - sector_nr) + sectors_skipped;
3309         }
3310
3311         if (max_sector > mddev->resync_max)
3312                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3313
3314         /* make sure whole request will fit in a chunk - if chunks
3315          * are meaningful
3316          */
3317         if (conf->geo.near_copies < conf->geo.raid_disks &&
3318             max_sector > (sector_nr | chunk_mask))
3319                 max_sector = (sector_nr | chunk_mask) + 1;
3320
3321         /*
3322          * If there is non-resync activity waiting for a turn, then let it
3323          * though before starting on this new sync request.
3324          */
3325         if (conf->nr_waiting)
3326                 schedule_timeout_uninterruptible(1);
3327
3328         /* Again, very different code for resync and recovery.
3329          * Both must result in an r10bio with a list of bios that
3330          * have bi_end_io, bi_sector, bi_bdev set,
3331          * and bi_private set to the r10bio.
3332          * For recovery, we may actually create several r10bios
3333          * with 2 bios in each, that correspond to the bios in the main one.
3334          * In this case, the subordinate r10bios link back through a
3335          * borrowed master_bio pointer, and the counter in the master
3336          * includes a ref from each subordinate.
3337          */
3338         /* First, we decide what to do and set ->bi_end_io
3339          * To end_sync_read if we want to read, and
3340          * end_sync_write if we will want to write.
3341          */
3342
3343         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3344         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3345                 /* recovery... the complicated one */
3346                 int j;
3347                 r10_bio = NULL;
3348
3349                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3350                         bool still_degraded;
3351                         struct r10bio *rb2;
3352                         sector_t sect;
3353                         bool must_sync;
3354                         int any_working;
3355                         struct raid10_info *mirror = &conf->mirrors[i];
3356                         struct md_rdev *mrdev, *mreplace;
3357
3358                         mrdev = mirror->rdev;
3359                         mreplace = mirror->replacement;
3360
3361                         if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3362                             test_bit(In_sync, &mrdev->flags)))
3363                                 mrdev = NULL;
3364                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3365                                 mreplace = NULL;
3366
3367                         if (!mrdev && !mreplace)
3368                                 continue;
3369
3370                         still_degraded = false;
3371                         /* want to reconstruct this device */
3372                         rb2 = r10_bio;
3373                         sect = raid10_find_virt(conf, sector_nr, i);
3374                         if (sect >= mddev->resync_max_sectors)
3375                                 /* last stripe is not complete - don't
3376                                  * try to recover this sector.
3377                                  */
3378                                 continue;
3379                         /* Unless we are doing a full sync, or a replacement
3380                          * we only need to recover the block if it is set in
3381                          * the bitmap
3382                          */
3383                         must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3384                                                                   &sync_blocks,
3385                                                                   true);
3386                         if (sync_blocks < max_sync)
3387                                 max_sync = sync_blocks;
3388                         if (!must_sync &&
3389                             mreplace == NULL &&
3390                             !conf->fullsync) {
3391                                 /* yep, skip the sync_blocks here, but don't assume
3392                                  * that there will never be anything to do here
3393                                  */
3394                                 chunks_skipped = -1;
3395                                 continue;
3396                         }
3397                         if (mrdev)
3398                                 atomic_inc(&mrdev->nr_pending);
3399                         if (mreplace)
3400                                 atomic_inc(&mreplace->nr_pending);
3401
3402                         r10_bio = raid10_alloc_init_r10buf(conf);
3403                         r10_bio->state = 0;
3404                         raise_barrier(conf, rb2 != NULL);
3405                         atomic_set(&r10_bio->remaining, 0);
3406
3407                         r10_bio->master_bio = (struct bio*)rb2;
3408                         if (rb2)
3409                                 atomic_inc(&rb2->remaining);
3410                         r10_bio->mddev = mddev;
3411                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3412                         r10_bio->sector = sect;
3413
3414                         raid10_find_phys(conf, r10_bio);
3415
3416                         /* Need to check if the array will still be
3417                          * degraded
3418                          */
3419                         for (j = 0; j < conf->geo.raid_disks; j++) {
3420                                 struct md_rdev *rdev = conf->mirrors[j].rdev;
3421
3422                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3423                                         still_degraded = false;
3424                                         break;
3425                                 }
3426                         }
3427
3428                         must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3429                                                 &sync_blocks, still_degraded);
3430
3431                         any_working = 0;
3432                         for (j=0; j<conf->copies;j++) {
3433                                 int k;
3434                                 int d = r10_bio->devs[j].devnum;
3435                                 sector_t from_addr, to_addr;
3436                                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3437                                 sector_t sector, first_bad;
3438                                 int bad_sectors;
3439                                 if (!rdev ||
3440                                     !test_bit(In_sync, &rdev->flags))
3441                                         continue;
3442                                 /* This is where we read from */
3443                                 any_working = 1;
3444                                 sector = r10_bio->devs[j].addr;
3445
3446                                 if (is_badblock(rdev, sector, max_sync,
3447                                                 &first_bad, &bad_sectors)) {
3448                                         if (first_bad > sector)
3449                                                 max_sync = first_bad - sector;
3450                                         else {
3451                                                 bad_sectors -= (sector
3452                                                                 - first_bad);
3453                                                 if (max_sync > bad_sectors)
3454                                                         max_sync = bad_sectors;
3455                                                 continue;
3456                                         }
3457                                 }
3458                                 bio = r10_bio->devs[0].bio;
3459                                 bio->bi_next = biolist;
3460                                 biolist = bio;
3461                                 bio->bi_end_io = end_sync_read;
3462                                 bio->bi_opf = REQ_OP_READ;
3463                                 if (test_bit(FailFast, &rdev->flags))
3464                                         bio->bi_opf |= MD_FAILFAST;
3465                                 from_addr = r10_bio->devs[j].addr;
3466                                 bio->bi_iter.bi_sector = from_addr +
3467                                         rdev->data_offset;
3468                                 bio_set_dev(bio, rdev->bdev);
3469                                 atomic_inc(&rdev->nr_pending);
3470                                 /* and we write to 'i' (if not in_sync) */
3471
3472                                 for (k=0; k<conf->copies; k++)
3473                                         if (r10_bio->devs[k].devnum == i)
3474                                                 break;
3475                                 BUG_ON(k == conf->copies);
3476                                 to_addr = r10_bio->devs[k].addr;
3477                                 r10_bio->devs[0].devnum = d;
3478                                 r10_bio->devs[0].addr = from_addr;
3479                                 r10_bio->devs[1].devnum = i;
3480                                 r10_bio->devs[1].addr = to_addr;
3481
3482                                 if (mrdev) {
3483                                         bio = r10_bio->devs[1].bio;
3484                                         bio->bi_next = biolist;
3485                                         biolist = bio;
3486                                         bio->bi_end_io = end_sync_write;
3487                                         bio->bi_opf = REQ_OP_WRITE;
3488                                         bio->bi_iter.bi_sector = to_addr
3489                                                 + mrdev->data_offset;
3490                                         bio_set_dev(bio, mrdev->bdev);
3491                                         atomic_inc(&r10_bio->remaining);
3492                                 } else
3493                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3494
3495                                 /* and maybe write to replacement */
3496                                 bio = r10_bio->devs[1].repl_bio;
3497                                 if (bio)
3498                                         bio->bi_end_io = NULL;
3499                                 /* Note: if replace is not NULL, then bio
3500                                  * cannot be NULL as r10buf_pool_alloc will
3501                                  * have allocated it.
3502                                  */
3503                                 if (!mreplace)
3504                                         break;
3505                                 bio->bi_next = biolist;
3506                                 biolist = bio;
3507                                 bio->bi_end_io = end_sync_write;
3508                                 bio->bi_opf = REQ_OP_WRITE;
3509                                 bio->bi_iter.bi_sector = to_addr +
3510                                         mreplace->data_offset;
3511                                 bio_set_dev(bio, mreplace->bdev);
3512                                 atomic_inc(&r10_bio->remaining);
3513                                 break;
3514                         }
3515                         if (j == conf->copies) {
3516                                 /* Cannot recover, so abort the recovery or
3517                                  * record a bad block */
3518                                 if (any_working) {
3519                                         /* problem is that there are bad blocks
3520                                          * on other device(s)
3521                                          */
3522                                         int k;
3523                                         for (k = 0; k < conf->copies; k++)
3524                                                 if (r10_bio->devs[k].devnum == i)
3525                                                         break;
3526                                         if (mrdev && !test_bit(In_sync,
3527                                                       &mrdev->flags)
3528                                             && !rdev_set_badblocks(
3529                                                     mrdev,
3530                                                     r10_bio->devs[k].addr,
3531                                                     max_sync, 0))
3532                                                 any_working = 0;
3533                                         if (mreplace &&
3534                                             !rdev_set_badblocks(
3535                                                     mreplace,
3536                                                     r10_bio->devs[k].addr,
3537                                                     max_sync, 0))
3538                                                 any_working = 0;
3539                                 }
3540                                 if (!any_working)  {
3541                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3542                                                               &mddev->recovery))
3543                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3544                                                        mdname(mddev));
3545                                         mirror->recovery_disabled
3546                                                 = mddev->recovery_disabled;
3547                                 } else {
3548                                         error_disk = i;
3549                                 }
3550                                 put_buf(r10_bio);
3551                                 if (rb2)
3552                                         atomic_dec(&rb2->remaining);
3553                                 r10_bio = rb2;
3554                                 if (mrdev)
3555                                         rdev_dec_pending(mrdev, mddev);
3556                                 if (mreplace)
3557                                         rdev_dec_pending(mreplace, mddev);
3558                                 break;
3559                         }
3560                         if (mrdev)
3561                                 rdev_dec_pending(mrdev, mddev);
3562                         if (mreplace)
3563                                 rdev_dec_pending(mreplace, mddev);
3564                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3565                                 /* Only want this if there is elsewhere to
3566                                  * read from. 'j' is currently the first
3567                                  * readable copy.
3568                                  */
3569                                 int targets = 1;
3570                                 for (; j < conf->copies; j++) {
3571                                         int d = r10_bio->devs[j].devnum;
3572                                         if (conf->mirrors[d].rdev &&
3573                                             test_bit(In_sync,
3574                                                       &conf->mirrors[d].rdev->flags))
3575                                                 targets++;
3576                                 }
3577                                 if (targets == 1)
3578                                         r10_bio->devs[0].bio->bi_opf
3579                                                 &= ~MD_FAILFAST;
3580                         }
3581                 }
3582                 if (biolist == NULL) {
3583                         while (r10_bio) {
3584                                 struct r10bio *rb2 = r10_bio;
3585                                 r10_bio = (struct r10bio*) rb2->master_bio;
3586                                 rb2->master_bio = NULL;
3587                                 put_buf(rb2);
3588                         }
3589                         goto giveup;
3590                 }
3591         } else {
3592                 /* resync. Schedule a read for every block at this virt offset */
3593                 int count = 0;
3594
3595                 /*
3596                  * Since curr_resync_completed could probably not update in
3597                  * time, and we will set cluster_sync_low based on it.
3598                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3599                  * safety reason, which ensures curr_resync_completed is
3600                  * updated in bitmap_cond_end_sync.
3601                  */
3602                 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3603                                         mddev_is_clustered(mddev) &&
3604                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3605
3606                 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3607                                                    &sync_blocks,
3608                                                    mddev->degraded) &&
3609                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3610                                                  &mddev->recovery)) {
3611                         /* We can skip this block */
3612                         *skipped = 1;
3613                         return sync_blocks + sectors_skipped;
3614                 }
3615                 if (sync_blocks < max_sync)
3616                         max_sync = sync_blocks;
3617                 r10_bio = raid10_alloc_init_r10buf(conf);
3618                 r10_bio->state = 0;
3619
3620                 r10_bio->mddev = mddev;
3621                 atomic_set(&r10_bio->remaining, 0);
3622                 raise_barrier(conf, 0);
3623                 conf->next_resync = sector_nr;
3624
3625                 r10_bio->master_bio = NULL;
3626                 r10_bio->sector = sector_nr;
3627                 set_bit(R10BIO_IsSync, &r10_bio->state);
3628                 raid10_find_phys(conf, r10_bio);
3629                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3630
3631                 for (i = 0; i < conf->copies; i++) {
3632                         int d = r10_bio->devs[i].devnum;
3633                         sector_t first_bad, sector;
3634                         int bad_sectors;
3635                         struct md_rdev *rdev;
3636
3637                         if (r10_bio->devs[i].repl_bio)
3638                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3639
3640                         bio = r10_bio->devs[i].bio;
3641                         bio->bi_status = BLK_STS_IOERR;
3642                         rdev = conf->mirrors[d].rdev;
3643                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3644                                 continue;
3645
3646                         sector = r10_bio->devs[i].addr;
3647                         if (is_badblock(rdev, sector, max_sync,
3648                                         &first_bad, &bad_sectors)) {
3649                                 if (first_bad > sector)
3650                                         max_sync = first_bad - sector;
3651                                 else {
3652                                         bad_sectors -= (sector - first_bad);
3653                                         if (max_sync > bad_sectors)
3654                                                 max_sync = bad_sectors;
3655                                         continue;
3656                                 }
3657                         }
3658                         atomic_inc(&rdev->nr_pending);
3659                         atomic_inc(&r10_bio->remaining);
3660                         bio->bi_next = biolist;
3661                         biolist = bio;
3662                         bio->bi_end_io = end_sync_read;
3663                         bio->bi_opf = REQ_OP_READ;
3664                         if (test_bit(FailFast, &rdev->flags))
3665                                 bio->bi_opf |= MD_FAILFAST;
3666                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3667                         bio_set_dev(bio, rdev->bdev);
3668                         count++;
3669
3670                         rdev = conf->mirrors[d].replacement;
3671                         if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3672                                 continue;
3673
3674                         atomic_inc(&rdev->nr_pending);
3675
3676                         /* Need to set up for writing to the replacement */
3677                         bio = r10_bio->devs[i].repl_bio;
3678                         bio->bi_status = BLK_STS_IOERR;
3679
3680                         sector = r10_bio->devs[i].addr;
3681                         bio->bi_next = biolist;
3682                         biolist = bio;
3683                         bio->bi_end_io = end_sync_write;
3684                         bio->bi_opf = REQ_OP_WRITE;
3685                         if (test_bit(FailFast, &rdev->flags))
3686                                 bio->bi_opf |= MD_FAILFAST;
3687                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3688                         bio_set_dev(bio, rdev->bdev);
3689                         count++;
3690                 }
3691
3692                 if (count < 2) {
3693                         for (i=0; i<conf->copies; i++) {
3694                                 int d = r10_bio->devs[i].devnum;
3695                                 if (r10_bio->devs[i].bio->bi_end_io)
3696                                         rdev_dec_pending(conf->mirrors[d].rdev,
3697                                                          mddev);
3698                                 if (r10_bio->devs[i].repl_bio &&
3699                                     r10_bio->devs[i].repl_bio->bi_end_io)
3700                                         rdev_dec_pending(
3701                                                 conf->mirrors[d].replacement,
3702                                                 mddev);
3703                         }
3704                         put_buf(r10_bio);
3705                         biolist = NULL;
3706                         goto giveup;
3707                 }
3708         }
3709
3710         nr_sectors = 0;
3711         if (sector_nr + max_sync < max_sector)
3712                 max_sector = sector_nr + max_sync;
3713         do {
3714                 struct page *page;
3715                 int len = PAGE_SIZE;
3716                 if (sector_nr + (len>>9) > max_sector)
3717                         len = (max_sector - sector_nr) << 9;
3718                 if (len == 0)
3719                         break;
3720                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3721                         struct resync_pages *rp = get_resync_pages(bio);
3722                         page = resync_fetch_page(rp, page_idx);
3723                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3724                                 bio->bi_status = BLK_STS_RESOURCE;
3725                                 bio_endio(bio);
3726                                 goto giveup;
3727                         }
3728                 }
3729                 nr_sectors += len>>9;
3730                 sector_nr += len>>9;
3731         } while (++page_idx < RESYNC_PAGES);
3732         r10_bio->sectors = nr_sectors;
3733
3734         if (mddev_is_clustered(mddev) &&
3735             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3736                 /* It is resync not recovery */
3737                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3738                         conf->cluster_sync_low = mddev->curr_resync_completed;
3739                         raid10_set_cluster_sync_high(conf);
3740                         /* Send resync message */
3741                         md_cluster_ops->resync_info_update(mddev,
3742                                                 conf->cluster_sync_low,
3743                                                 conf->cluster_sync_high);
3744                 }
3745         } else if (mddev_is_clustered(mddev)) {
3746                 /* This is recovery not resync */
3747                 sector_t sect_va1, sect_va2;
3748                 bool broadcast_msg = false;
3749
3750                 for (i = 0; i < conf->geo.raid_disks; i++) {
3751                         /*
3752                          * sector_nr is a device address for recovery, so we
3753                          * need translate it to array address before compare
3754                          * with cluster_sync_high.
3755                          */
3756                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3757
3758                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3759                                 broadcast_msg = true;
3760                                 /*
3761                                  * curr_resync_completed is similar as
3762                                  * sector_nr, so make the translation too.
3763                                  */
3764                                 sect_va2 = raid10_find_virt(conf,
3765                                         mddev->curr_resync_completed, i);
3766
3767                                 if (conf->cluster_sync_low == 0 ||
3768                                     conf->cluster_sync_low > sect_va2)
3769                                         conf->cluster_sync_low = sect_va2;
3770                         }
3771                 }
3772                 if (broadcast_msg) {
3773                         raid10_set_cluster_sync_high(conf);
3774                         md_cluster_ops->resync_info_update(mddev,
3775                                                 conf->cluster_sync_low,
3776                                                 conf->cluster_sync_high);
3777                 }
3778         }
3779
3780         while (biolist) {
3781                 bio = biolist;
3782                 biolist = biolist->bi_next;
3783
3784                 bio->bi_next = NULL;
3785                 r10_bio = get_resync_r10bio(bio);
3786                 r10_bio->sectors = nr_sectors;
3787
3788                 if (bio->bi_end_io == end_sync_read) {
3789                         md_sync_acct_bio(bio, nr_sectors);
3790                         bio->bi_status = 0;
3791                         submit_bio_noacct(bio);
3792                 }
3793         }
3794
3795         if (sectors_skipped)
3796                 /* pretend they weren't skipped, it makes
3797                  * no important difference in this case
3798                  */
3799                 md_done_sync(mddev, sectors_skipped, 1);
3800
3801         return sectors_skipped + nr_sectors;
3802  giveup:
3803         /* There is nowhere to write, so all non-sync
3804          * drives must be failed or in resync, all drives
3805          * have a bad block, so try the next chunk...
3806          */
3807         if (sector_nr + max_sync < max_sector)
3808                 max_sector = sector_nr + max_sync;
3809
3810         sectors_skipped += (max_sector - sector_nr);
3811         chunks_skipped ++;
3812         sector_nr = max_sector;
3813         goto skipped;
3814 }
3815
3816 static sector_t
3817 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3818 {
3819         sector_t size;
3820         struct r10conf *conf = mddev->private;
3821
3822         if (!raid_disks)
3823                 raid_disks = min(conf->geo.raid_disks,
3824                                  conf->prev.raid_disks);
3825         if (!sectors)
3826                 sectors = conf->dev_sectors;
3827
3828         size = sectors >> conf->geo.chunk_shift;
3829         sector_div(size, conf->geo.far_copies);
3830         size = size * raid_disks;
3831         sector_div(size, conf->geo.near_copies);
3832
3833         return size << conf->geo.chunk_shift;
3834 }
3835
3836 static void calc_sectors(struct r10conf *conf, sector_t size)
3837 {
3838         /* Calculate the number of sectors-per-device that will
3839          * actually be used, and set conf->dev_sectors and
3840          * conf->stride
3841          */
3842
3843         size = size >> conf->geo.chunk_shift;
3844         sector_div(size, conf->geo.far_copies);
3845         size = size * conf->geo.raid_disks;
3846         sector_div(size, conf->geo.near_copies);
3847         /* 'size' is now the number of chunks in the array */
3848         /* calculate "used chunks per device" */
3849         size = size * conf->copies;
3850
3851         /* We need to round up when dividing by raid_disks to
3852          * get the stride size.
3853          */
3854         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3855
3856         conf->dev_sectors = size << conf->geo.chunk_shift;
3857
3858         if (conf->geo.far_offset)
3859                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3860         else {
3861                 sector_div(size, conf->geo.far_copies);
3862                 conf->geo.stride = size << conf->geo.chunk_shift;
3863         }
3864 }
3865
3866 enum geo_type {geo_new, geo_old, geo_start};
3867 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3868 {
3869         int nc, fc, fo;
3870         int layout, chunk, disks;
3871         switch (new) {
3872         case geo_old:
3873                 layout = mddev->layout;
3874                 chunk = mddev->chunk_sectors;
3875                 disks = mddev->raid_disks - mddev->delta_disks;
3876                 break;
3877         case geo_new:
3878                 layout = mddev->new_layout;
3879                 chunk = mddev->new_chunk_sectors;
3880                 disks = mddev->raid_disks;
3881                 break;
3882         default: /* avoid 'may be unused' warnings */
3883         case geo_start: /* new when starting reshape - raid_disks not
3884                          * updated yet. */
3885                 layout = mddev->new_layout;
3886                 chunk = mddev->new_chunk_sectors;
3887                 disks = mddev->raid_disks + mddev->delta_disks;
3888                 break;
3889         }
3890         if (layout >> 19)
3891                 return -1;
3892         if (chunk < (PAGE_SIZE >> 9) ||
3893             !is_power_of_2(chunk))
3894                 return -2;
3895         nc = layout & 255;
3896         fc = (layout >> 8) & 255;
3897         fo = layout & (1<<16);
3898         geo->raid_disks = disks;
3899         geo->near_copies = nc;
3900         geo->far_copies = fc;
3901         geo->far_offset = fo;
3902         switch (layout >> 17) {
3903         case 0: /* original layout.  simple but not always optimal */
3904                 geo->far_set_size = disks;
3905                 break;
3906         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3907                  * actually using this, but leave code here just in case.*/
3908                 geo->far_set_size = disks/fc;
3909                 WARN(geo->far_set_size < fc,
3910                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3911                 break;
3912         case 2: /* "improved" layout fixed to match documentation */
3913                 geo->far_set_size = fc * nc;
3914                 break;
3915         default: /* Not a valid layout */
3916                 return -1;
3917         }
3918         geo->chunk_mask = chunk - 1;
3919         geo->chunk_shift = ffz(~chunk);
3920         return nc*fc;
3921 }
3922
3923 static void raid10_free_conf(struct r10conf *conf)
3924 {
3925         if (!conf)
3926                 return;
3927
3928         mempool_exit(&conf->r10bio_pool);
3929         kfree(conf->mirrors);
3930         kfree(conf->mirrors_old);
3931         kfree(conf->mirrors_new);
3932         safe_put_page(conf->tmppage);
3933         bioset_exit(&conf->bio_split);
3934         kfree(conf);
3935 }
3936
3937 static struct r10conf *setup_conf(struct mddev *mddev)
3938 {
3939         struct r10conf *conf = NULL;
3940         int err = -EINVAL;
3941         struct geom geo;
3942         int copies;
3943
3944         copies = setup_geo(&geo, mddev, geo_new);
3945
3946         if (copies == -2) {
3947                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3948                         mdname(mddev), PAGE_SIZE);
3949                 goto out;
3950         }
3951
3952         if (copies < 2 || copies > mddev->raid_disks) {
3953                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3954                         mdname(mddev), mddev->new_layout);
3955                 goto out;
3956         }
3957
3958         err = -ENOMEM;
3959         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3960         if (!conf)
3961                 goto out;
3962
3963         /* FIXME calc properly */
3964         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3965                                 sizeof(struct raid10_info),
3966                                 GFP_KERNEL);
3967         if (!conf->mirrors)
3968                 goto out;
3969
3970         conf->tmppage = alloc_page(GFP_KERNEL);
3971         if (!conf->tmppage)
3972                 goto out;
3973
3974         conf->geo = geo;
3975         conf->copies = copies;
3976         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3977                            rbio_pool_free, conf);
3978         if (err)
3979                 goto out;
3980
3981         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3982         if (err)
3983                 goto out;
3984
3985         calc_sectors(conf, mddev->dev_sectors);
3986         if (mddev->reshape_position == MaxSector) {
3987                 conf->prev = conf->geo;
3988                 conf->reshape_progress = MaxSector;
3989         } else {
3990                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3991                         err = -EINVAL;
3992                         goto out;
3993                 }
3994                 conf->reshape_progress = mddev->reshape_position;
3995                 if (conf->prev.far_offset)
3996                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3997                 else
3998                         /* far_copies must be 1 */
3999                         conf->prev.stride = conf->dev_sectors;
4000         }
4001         conf->reshape_safe = conf->reshape_progress;
4002         spin_lock_init(&conf->device_lock);
4003         INIT_LIST_HEAD(&conf->retry_list);
4004         INIT_LIST_HEAD(&conf->bio_end_io_list);
4005
4006         seqlock_init(&conf->resync_lock);
4007         init_waitqueue_head(&conf->wait_barrier);
4008         atomic_set(&conf->nr_pending, 0);
4009
4010         err = -ENOMEM;
4011         rcu_assign_pointer(conf->thread,
4012                            md_register_thread(raid10d, mddev, "raid10"));
4013         if (!conf->thread)
4014                 goto out;
4015
4016         conf->mddev = mddev;
4017         return conf;
4018
4019  out:
4020         raid10_free_conf(conf);
4021         return ERR_PTR(err);
4022 }
4023
4024 static unsigned int raid10_nr_stripes(struct r10conf *conf)
4025 {
4026         unsigned int raid_disks = conf->geo.raid_disks;
4027
4028         if (conf->geo.raid_disks % conf->geo.near_copies)
4029                 return raid_disks;
4030         return raid_disks / conf->geo.near_copies;
4031 }
4032
4033 static int raid10_set_queue_limits(struct mddev *mddev)
4034 {
4035         struct r10conf *conf = mddev->private;
4036         struct queue_limits lim;
4037         int err;
4038
4039         md_init_stacking_limits(&lim);
4040         lim.max_write_zeroes_sectors = 0;
4041         lim.io_min = mddev->chunk_sectors << 9;
4042         lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
4043         lim.features |= BLK_FEAT_ATOMIC_WRITES_STACKED;
4044         err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
4045         if (err) {
4046                 queue_limits_cancel_update(mddev->gendisk->queue);
4047                 return err;
4048         }
4049         return queue_limits_set(mddev->gendisk->queue, &lim);
4050 }
4051
4052 static int raid10_run(struct mddev *mddev)
4053 {
4054         struct r10conf *conf;
4055         int i, disk_idx;
4056         struct raid10_info *disk;
4057         struct md_rdev *rdev;
4058         sector_t size;
4059         sector_t min_offset_diff = 0;
4060         int first = 1;
4061         int ret = -EIO;
4062
4063         if (mddev->private == NULL) {
4064                 conf = setup_conf(mddev);
4065                 if (IS_ERR(conf))
4066                         return PTR_ERR(conf);
4067                 mddev->private = conf;
4068         }
4069         conf = mddev->private;
4070         if (!conf)
4071                 goto out;
4072
4073         rcu_assign_pointer(mddev->thread, conf->thread);
4074         rcu_assign_pointer(conf->thread, NULL);
4075
4076         if (mddev_is_clustered(conf->mddev)) {
4077                 int fc, fo;
4078
4079                 fc = (mddev->layout >> 8) & 255;
4080                 fo = mddev->layout & (1<<16);
4081                 if (fc > 1 || fo > 0) {
4082                         pr_err("only near layout is supported by clustered"
4083                                 " raid10\n");
4084                         goto out_free_conf;
4085                 }
4086         }
4087
4088         rdev_for_each(rdev, mddev) {
4089                 long long diff;
4090
4091                 disk_idx = rdev->raid_disk;
4092                 if (disk_idx < 0)
4093                         continue;
4094                 if (disk_idx >= conf->geo.raid_disks &&
4095                     disk_idx >= conf->prev.raid_disks)
4096                         continue;
4097                 disk = conf->mirrors + disk_idx;
4098
4099                 if (test_bit(Replacement, &rdev->flags)) {
4100                         if (disk->replacement)
4101                                 goto out_free_conf;
4102                         disk->replacement = rdev;
4103                 } else {
4104                         if (disk->rdev)
4105                                 goto out_free_conf;
4106                         disk->rdev = rdev;
4107                 }
4108                 diff = (rdev->new_data_offset - rdev->data_offset);
4109                 if (!mddev->reshape_backwards)
4110                         diff = -diff;
4111                 if (diff < 0)
4112                         diff = 0;
4113                 if (first || diff < min_offset_diff)
4114                         min_offset_diff = diff;
4115
4116                 disk->head_position = 0;
4117                 first = 0;
4118         }
4119
4120         if (!mddev_is_dm(conf->mddev)) {
4121                 int err = raid10_set_queue_limits(mddev);
4122
4123                 if (err) {
4124                         ret = err;
4125                         goto out_free_conf;
4126                 }
4127         }
4128
4129         /* need to check that every block has at least one working mirror */
4130         if (!enough(conf, -1)) {
4131                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4132                        mdname(mddev));
4133                 goto out_free_conf;
4134         }
4135
4136         if (conf->reshape_progress != MaxSector) {
4137                 /* must ensure that shape change is supported */
4138                 if (conf->geo.far_copies != 1 &&
4139                     conf->geo.far_offset == 0)
4140                         goto out_free_conf;
4141                 if (conf->prev.far_copies != 1 &&
4142                     conf->prev.far_offset == 0)
4143                         goto out_free_conf;
4144         }
4145
4146         mddev->degraded = 0;
4147         for (i = 0;
4148              i < conf->geo.raid_disks
4149                      || i < conf->prev.raid_disks;
4150              i++) {
4151
4152                 disk = conf->mirrors + i;
4153
4154                 if (!disk->rdev && disk->replacement) {
4155                         /* The replacement is all we have - use it */
4156                         disk->rdev = disk->replacement;
4157                         disk->replacement = NULL;
4158                         clear_bit(Replacement, &disk->rdev->flags);
4159                 }
4160
4161                 if (!disk->rdev ||
4162                     !test_bit(In_sync, &disk->rdev->flags)) {
4163                         disk->head_position = 0;
4164                         mddev->degraded++;
4165                         if (disk->rdev &&
4166                             disk->rdev->saved_raid_disk < 0)
4167                                 conf->fullsync = 1;
4168                 }
4169
4170                 if (disk->replacement &&
4171                     !test_bit(In_sync, &disk->replacement->flags) &&
4172                     disk->replacement->saved_raid_disk < 0) {
4173                         conf->fullsync = 1;
4174                 }
4175
4176                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4177         }
4178
4179         if (mddev->recovery_cp != MaxSector)
4180                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4181                           mdname(mddev));
4182         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4183                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4184                 conf->geo.raid_disks);
4185         /*
4186          * Ok, everything is just fine now
4187          */
4188         mddev->dev_sectors = conf->dev_sectors;
4189         size = raid10_size(mddev, 0, 0);
4190         md_set_array_sectors(mddev, size);
4191         mddev->resync_max_sectors = size;
4192         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4193
4194         if (md_integrity_register(mddev))
4195                 goto out_free_conf;
4196
4197         if (conf->reshape_progress != MaxSector) {
4198                 unsigned long before_length, after_length;
4199
4200                 before_length = ((1 << conf->prev.chunk_shift) *
4201                                  conf->prev.far_copies);
4202                 after_length = ((1 << conf->geo.chunk_shift) *
4203                                 conf->geo.far_copies);
4204
4205                 if (max(before_length, after_length) > min_offset_diff) {
4206                         /* This cannot work */
4207                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4208                         goto out_free_conf;
4209                 }
4210                 conf->offset_diff = min_offset_diff;
4211
4212                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4213                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4214                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4215                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4216         }
4217
4218         return 0;
4219
4220 out_free_conf:
4221         md_unregister_thread(mddev, &mddev->thread);
4222         raid10_free_conf(conf);
4223         mddev->private = NULL;
4224 out:
4225         return ret;
4226 }
4227
4228 static void raid10_free(struct mddev *mddev, void *priv)
4229 {
4230         raid10_free_conf(priv);
4231 }
4232
4233 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4234 {
4235         struct r10conf *conf = mddev->private;
4236
4237         if (quiesce)
4238                 raise_barrier(conf, 0);
4239         else
4240                 lower_barrier(conf);
4241 }
4242
4243 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4244 {
4245         /* Resize of 'far' arrays is not supported.
4246          * For 'near' and 'offset' arrays we can set the
4247          * number of sectors used to be an appropriate multiple
4248          * of the chunk size.
4249          * For 'offset', this is far_copies*chunksize.
4250          * For 'near' the multiplier is the LCM of
4251          * near_copies and raid_disks.
4252          * So if far_copies > 1 && !far_offset, fail.
4253          * Else find LCM(raid_disks, near_copy)*far_copies and
4254          * multiply by chunk_size.  Then round to this number.
4255          * This is mostly done by raid10_size()
4256          */
4257         struct r10conf *conf = mddev->private;
4258         sector_t oldsize, size;
4259         int ret;
4260
4261         if (mddev->reshape_position != MaxSector)
4262                 return -EBUSY;
4263
4264         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4265                 return -EINVAL;
4266
4267         oldsize = raid10_size(mddev, 0, 0);
4268         size = raid10_size(mddev, sectors, 0);
4269         if (mddev->external_size &&
4270             mddev->array_sectors > size)
4271                 return -EINVAL;
4272
4273         ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4274         if (ret)
4275                 return ret;
4276
4277         md_set_array_sectors(mddev, size);
4278         if (sectors > mddev->dev_sectors &&
4279             mddev->recovery_cp > oldsize) {
4280                 mddev->recovery_cp = oldsize;
4281                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4282         }
4283         calc_sectors(conf, sectors);
4284         mddev->dev_sectors = conf->dev_sectors;
4285         mddev->resync_max_sectors = size;
4286         return 0;
4287 }
4288
4289 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4290 {
4291         struct md_rdev *rdev;
4292         struct r10conf *conf;
4293
4294         if (mddev->degraded > 0) {
4295                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4296                         mdname(mddev));
4297                 return ERR_PTR(-EINVAL);
4298         }
4299         sector_div(size, devs);
4300
4301         /* Set new parameters */
4302         mddev->new_level = 10;
4303         /* new layout: far_copies = 1, near_copies = 2 */
4304         mddev->new_layout = (1<<8) + 2;
4305         mddev->new_chunk_sectors = mddev->chunk_sectors;
4306         mddev->delta_disks = mddev->raid_disks;
4307         mddev->raid_disks *= 2;
4308         /* make sure it will be not marked as dirty */
4309         mddev->recovery_cp = MaxSector;
4310         mddev->dev_sectors = size;
4311
4312         conf = setup_conf(mddev);
4313         if (!IS_ERR(conf)) {
4314                 rdev_for_each(rdev, mddev)
4315                         if (rdev->raid_disk >= 0) {
4316                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4317                                 rdev->sectors = size;
4318                         }
4319         }
4320
4321         return conf;
4322 }
4323
4324 static void *raid10_takeover(struct mddev *mddev)
4325 {
4326         struct r0conf *raid0_conf;
4327
4328         /* raid10 can take over:
4329          *  raid0 - providing it has only two drives
4330          */
4331         if (mddev->level == 0) {
4332                 /* for raid0 takeover only one zone is supported */
4333                 raid0_conf = mddev->private;
4334                 if (raid0_conf->nr_strip_zones > 1) {
4335                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4336                                 mdname(mddev));
4337                         return ERR_PTR(-EINVAL);
4338                 }
4339                 return raid10_takeover_raid0(mddev,
4340                         raid0_conf->strip_zone->zone_end,
4341                         raid0_conf->strip_zone->nb_dev);
4342         }
4343         return ERR_PTR(-EINVAL);
4344 }
4345
4346 static int raid10_check_reshape(struct mddev *mddev)
4347 {
4348         /* Called when there is a request to change
4349          * - layout (to ->new_layout)
4350          * - chunk size (to ->new_chunk_sectors)
4351          * - raid_disks (by delta_disks)
4352          * or when trying to restart a reshape that was ongoing.
4353          *
4354          * We need to validate the request and possibly allocate
4355          * space if that might be an issue later.
4356          *
4357          * Currently we reject any reshape of a 'far' mode array,
4358          * allow chunk size to change if new is generally acceptable,
4359          * allow raid_disks to increase, and allow
4360          * a switch between 'near' mode and 'offset' mode.
4361          */
4362         struct r10conf *conf = mddev->private;
4363         struct geom geo;
4364
4365         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4366                 return -EINVAL;
4367
4368         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4369                 /* mustn't change number of copies */
4370                 return -EINVAL;
4371         if (geo.far_copies > 1 && !geo.far_offset)
4372                 /* Cannot switch to 'far' mode */
4373                 return -EINVAL;
4374
4375         if (mddev->array_sectors & geo.chunk_mask)
4376                         /* not factor of array size */
4377                         return -EINVAL;
4378
4379         if (!enough(conf, -1))
4380                 return -EINVAL;
4381
4382         kfree(conf->mirrors_new);
4383         conf->mirrors_new = NULL;
4384         if (mddev->delta_disks > 0) {
4385                 /* allocate new 'mirrors' list */
4386                 conf->mirrors_new =
4387                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4388                                 sizeof(struct raid10_info),
4389                                 GFP_KERNEL);
4390                 if (!conf->mirrors_new)
4391                         return -ENOMEM;
4392         }
4393         return 0;
4394 }
4395
4396 /*
4397  * Need to check if array has failed when deciding whether to:
4398  *  - start an array
4399  *  - remove non-faulty devices
4400  *  - add a spare
4401  *  - allow a reshape
4402  * This determination is simple when no reshape is happening.
4403  * However if there is a reshape, we need to carefully check
4404  * both the before and after sections.
4405  * This is because some failed devices may only affect one
4406  * of the two sections, and some non-in_sync devices may
4407  * be insync in the section most affected by failed devices.
4408  */
4409 static int calc_degraded(struct r10conf *conf)
4410 {
4411         int degraded, degraded2;
4412         int i;
4413
4414         degraded = 0;
4415         /* 'prev' section first */
4416         for (i = 0; i < conf->prev.raid_disks; i++) {
4417                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4418
4419                 if (!rdev || test_bit(Faulty, &rdev->flags))
4420                         degraded++;
4421                 else if (!test_bit(In_sync, &rdev->flags))
4422                         /* When we can reduce the number of devices in
4423                          * an array, this might not contribute to
4424                          * 'degraded'.  It does now.
4425                          */
4426                         degraded++;
4427         }
4428         if (conf->geo.raid_disks == conf->prev.raid_disks)
4429                 return degraded;
4430         degraded2 = 0;
4431         for (i = 0; i < conf->geo.raid_disks; i++) {
4432                 struct md_rdev *rdev = conf->mirrors[i].rdev;
4433
4434                 if (!rdev || test_bit(Faulty, &rdev->flags))
4435                         degraded2++;
4436                 else if (!test_bit(In_sync, &rdev->flags)) {
4437                         /* If reshape is increasing the number of devices,
4438                          * this section has already been recovered, so
4439                          * it doesn't contribute to degraded.
4440                          * else it does.
4441                          */
4442                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4443                                 degraded2++;
4444                 }
4445         }
4446         if (degraded2 > degraded)
4447                 return degraded2;
4448         return degraded;
4449 }
4450
4451 static int raid10_start_reshape(struct mddev *mddev)
4452 {
4453         /* A 'reshape' has been requested. This commits
4454          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4455          * This also checks if there are enough spares and adds them
4456          * to the array.
4457          * We currently require enough spares to make the final
4458          * array non-degraded.  We also require that the difference
4459          * between old and new data_offset - on each device - is
4460          * enough that we never risk over-writing.
4461          */
4462
4463         unsigned long before_length, after_length;
4464         sector_t min_offset_diff = 0;
4465         int first = 1;
4466         struct geom new;
4467         struct r10conf *conf = mddev->private;
4468         struct md_rdev *rdev;
4469         int spares = 0;
4470         int ret;
4471
4472         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4473                 return -EBUSY;
4474
4475         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4476                 return -EINVAL;
4477
4478         before_length = ((1 << conf->prev.chunk_shift) *
4479                          conf->prev.far_copies);
4480         after_length = ((1 << conf->geo.chunk_shift) *
4481                         conf->geo.far_copies);
4482
4483         rdev_for_each(rdev, mddev) {
4484                 if (!test_bit(In_sync, &rdev->flags)
4485                     && !test_bit(Faulty, &rdev->flags))
4486                         spares++;
4487                 if (rdev->raid_disk >= 0) {
4488                         long long diff = (rdev->new_data_offset
4489                                           - rdev->data_offset);
4490                         if (!mddev->reshape_backwards)
4491                                 diff = -diff;
4492                         if (diff < 0)
4493                                 diff = 0;
4494                         if (first || diff < min_offset_diff)
4495                                 min_offset_diff = diff;
4496                         first = 0;
4497                 }
4498         }
4499
4500         if (max(before_length, after_length) > min_offset_diff)
4501                 return -EINVAL;
4502
4503         if (spares < mddev->delta_disks)
4504                 return -EINVAL;
4505
4506         conf->offset_diff = min_offset_diff;
4507         spin_lock_irq(&conf->device_lock);
4508         if (conf->mirrors_new) {
4509                 memcpy(conf->mirrors_new, conf->mirrors,
4510                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4511                 smp_mb();
4512                 kfree(conf->mirrors_old);
4513                 conf->mirrors_old = conf->mirrors;
4514                 conf->mirrors = conf->mirrors_new;
4515                 conf->mirrors_new = NULL;
4516         }
4517         setup_geo(&conf->geo, mddev, geo_start);
4518         smp_mb();
4519         if (mddev->reshape_backwards) {
4520                 sector_t size = raid10_size(mddev, 0, 0);
4521                 if (size < mddev->array_sectors) {
4522                         spin_unlock_irq(&conf->device_lock);
4523                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4524                                 mdname(mddev));
4525                         return -EINVAL;
4526                 }
4527                 mddev->resync_max_sectors = size;
4528                 conf->reshape_progress = size;
4529         } else
4530                 conf->reshape_progress = 0;
4531         conf->reshape_safe = conf->reshape_progress;
4532         spin_unlock_irq(&conf->device_lock);
4533
4534         if (mddev->delta_disks && mddev->bitmap) {
4535                 struct mdp_superblock_1 *sb = NULL;
4536                 sector_t oldsize, newsize;
4537
4538                 oldsize = raid10_size(mddev, 0, 0);
4539                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4540
4541                 if (!mddev_is_clustered(mddev)) {
4542                         ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4543                         if (ret)
4544                                 goto abort;
4545                         else
4546                                 goto out;
4547                 }
4548
4549                 rdev_for_each(rdev, mddev) {
4550                         if (rdev->raid_disk > -1 &&
4551                             !test_bit(Faulty, &rdev->flags))
4552                                 sb = page_address(rdev->sb_page);
4553                 }
4554
4555                 /*
4556                  * some node is already performing reshape, and no need to
4557                  * call bitmap_ops->resize again since it should be called when
4558                  * receiving BITMAP_RESIZE msg
4559                  */
4560                 if ((sb && (le32_to_cpu(sb->feature_map) &
4561                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4562                         goto out;
4563
4564                 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4565                 if (ret)
4566                         goto abort;
4567
4568                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4569                 if (ret) {
4570                         mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4571                         goto abort;
4572                 }
4573         }
4574 out:
4575         if (mddev->delta_disks > 0) {
4576                 rdev_for_each(rdev, mddev)
4577                         if (rdev->raid_disk < 0 &&
4578                             !test_bit(Faulty, &rdev->flags)) {
4579                                 if (raid10_add_disk(mddev, rdev) == 0) {
4580                                         if (rdev->raid_disk >=
4581                                             conf->prev.raid_disks)
4582                                                 set_bit(In_sync, &rdev->flags);
4583                                         else
4584                                                 rdev->recovery_offset = 0;
4585
4586                                         /* Failure here is OK */
4587                                         sysfs_link_rdev(mddev, rdev);
4588                                 }
4589                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4590                                    && !test_bit(Faulty, &rdev->flags)) {
4591                                 /* This is a spare that was manually added */
4592                                 set_bit(In_sync, &rdev->flags);
4593                         }
4594         }
4595         /* When a reshape changes the number of devices,
4596          * ->degraded is measured against the larger of the
4597          * pre and  post numbers.
4598          */
4599         spin_lock_irq(&conf->device_lock);
4600         mddev->degraded = calc_degraded(conf);
4601         spin_unlock_irq(&conf->device_lock);
4602         mddev->raid_disks = conf->geo.raid_disks;
4603         mddev->reshape_position = conf->reshape_progress;
4604         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4605
4606         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4607         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4608         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4609         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4610         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4611         conf->reshape_checkpoint = jiffies;
4612         md_new_event();
4613         return 0;
4614
4615 abort:
4616         mddev->recovery = 0;
4617         spin_lock_irq(&conf->device_lock);
4618         conf->geo = conf->prev;
4619         mddev->raid_disks = conf->geo.raid_disks;
4620         rdev_for_each(rdev, mddev)
4621                 rdev->new_data_offset = rdev->data_offset;
4622         smp_wmb();
4623         conf->reshape_progress = MaxSector;
4624         conf->reshape_safe = MaxSector;
4625         mddev->reshape_position = MaxSector;
4626         spin_unlock_irq(&conf->device_lock);
4627         return ret;
4628 }
4629
4630 /* Calculate the last device-address that could contain
4631  * any block from the chunk that includes the array-address 's'
4632  * and report the next address.
4633  * i.e. the address returned will be chunk-aligned and after
4634  * any data that is in the chunk containing 's'.
4635  */
4636 static sector_t last_dev_address(sector_t s, struct geom *geo)
4637 {
4638         s = (s | geo->chunk_mask) + 1;
4639         s >>= geo->chunk_shift;
4640         s *= geo->near_copies;
4641         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4642         s *= geo->far_copies;
4643         s <<= geo->chunk_shift;
4644         return s;
4645 }
4646
4647 /* Calculate the first device-address that could contain
4648  * any block from the chunk that includes the array-address 's'.
4649  * This too will be the start of a chunk
4650  */
4651 static sector_t first_dev_address(sector_t s, struct geom *geo)
4652 {
4653         s >>= geo->chunk_shift;
4654         s *= geo->near_copies;
4655         sector_div(s, geo->raid_disks);
4656         s *= geo->far_copies;
4657         s <<= geo->chunk_shift;
4658         return s;
4659 }
4660
4661 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4662                                 int *skipped)
4663 {
4664         /* We simply copy at most one chunk (smallest of old and new)
4665          * at a time, possibly less if that exceeds RESYNC_PAGES,
4666          * or we hit a bad block or something.
4667          * This might mean we pause for normal IO in the middle of
4668          * a chunk, but that is not a problem as mddev->reshape_position
4669          * can record any location.
4670          *
4671          * If we will want to write to a location that isn't
4672          * yet recorded as 'safe' (i.e. in metadata on disk) then
4673          * we need to flush all reshape requests and update the metadata.
4674          *
4675          * When reshaping forwards (e.g. to more devices), we interpret
4676          * 'safe' as the earliest block which might not have been copied
4677          * down yet.  We divide this by previous stripe size and multiply
4678          * by previous stripe length to get lowest device offset that we
4679          * cannot write to yet.
4680          * We interpret 'sector_nr' as an address that we want to write to.
4681          * From this we use last_device_address() to find where we might
4682          * write to, and first_device_address on the  'safe' position.
4683          * If this 'next' write position is after the 'safe' position,
4684          * we must update the metadata to increase the 'safe' position.
4685          *
4686          * When reshaping backwards, we round in the opposite direction
4687          * and perform the reverse test:  next write position must not be
4688          * less than current safe position.
4689          *
4690          * In all this the minimum difference in data offsets
4691          * (conf->offset_diff - always positive) allows a bit of slack,
4692          * so next can be after 'safe', but not by more than offset_diff
4693          *
4694          * We need to prepare all the bios here before we start any IO
4695          * to ensure the size we choose is acceptable to all devices.
4696          * The means one for each copy for write-out and an extra one for
4697          * read-in.
4698          * We store the read-in bio in ->master_bio and the others in
4699          * ->devs[x].bio and ->devs[x].repl_bio.
4700          */
4701         struct r10conf *conf = mddev->private;
4702         struct r10bio *r10_bio;
4703         sector_t next, safe, last;
4704         int max_sectors;
4705         int nr_sectors;
4706         int s;
4707         struct md_rdev *rdev;
4708         int need_flush = 0;
4709         struct bio *blist;
4710         struct bio *bio, *read_bio;
4711         int sectors_done = 0;
4712         struct page **pages;
4713
4714         if (sector_nr == 0) {
4715                 /* If restarting in the middle, skip the initial sectors */
4716                 if (mddev->reshape_backwards &&
4717                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4718                         sector_nr = (raid10_size(mddev, 0, 0)
4719                                      - conf->reshape_progress);
4720                 } else if (!mddev->reshape_backwards &&
4721                            conf->reshape_progress > 0)
4722                         sector_nr = conf->reshape_progress;
4723                 if (sector_nr) {
4724                         mddev->curr_resync_completed = sector_nr;
4725                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4726                         *skipped = 1;
4727                         return sector_nr;
4728                 }
4729         }
4730
4731         /* We don't use sector_nr to track where we are up to
4732          * as that doesn't work well for ->reshape_backwards.
4733          * So just use ->reshape_progress.
4734          */
4735         if (mddev->reshape_backwards) {
4736                 /* 'next' is the earliest device address that we might
4737                  * write to for this chunk in the new layout
4738                  */
4739                 next = first_dev_address(conf->reshape_progress - 1,
4740                                          &conf->geo);
4741
4742                 /* 'safe' is the last device address that we might read from
4743                  * in the old layout after a restart
4744                  */
4745                 safe = last_dev_address(conf->reshape_safe - 1,
4746                                         &conf->prev);
4747
4748                 if (next + conf->offset_diff < safe)
4749                         need_flush = 1;
4750
4751                 last = conf->reshape_progress - 1;
4752                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4753                                                & conf->prev.chunk_mask);
4754                 if (sector_nr + RESYNC_SECTORS < last)
4755                         sector_nr = last + 1 - RESYNC_SECTORS;
4756         } else {
4757                 /* 'next' is after the last device address that we
4758                  * might write to for this chunk in the new layout
4759                  */
4760                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4761
4762                 /* 'safe' is the earliest device address that we might
4763                  * read from in the old layout after a restart
4764                  */
4765                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4766
4767                 /* Need to update metadata if 'next' might be beyond 'safe'
4768                  * as that would possibly corrupt data
4769                  */
4770                 if (next > safe + conf->offset_diff)
4771                         need_flush = 1;
4772
4773                 sector_nr = conf->reshape_progress;
4774                 last  = sector_nr | (conf->geo.chunk_mask
4775                                      & conf->prev.chunk_mask);
4776
4777                 if (sector_nr + RESYNC_SECTORS <= last)
4778                         last = sector_nr + RESYNC_SECTORS - 1;
4779         }
4780
4781         if (need_flush ||
4782             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4783                 /* Need to update reshape_position in metadata */
4784                 wait_barrier(conf, false);
4785                 mddev->reshape_position = conf->reshape_progress;
4786                 if (mddev->reshape_backwards)
4787                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4788                                 - conf->reshape_progress;
4789                 else
4790                         mddev->curr_resync_completed = conf->reshape_progress;
4791                 conf->reshape_checkpoint = jiffies;
4792                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4793                 md_wakeup_thread(mddev->thread);
4794                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4795                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4796                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4797                         allow_barrier(conf);
4798                         return sectors_done;
4799                 }
4800                 conf->reshape_safe = mddev->reshape_position;
4801                 allow_barrier(conf);
4802         }
4803
4804         raise_barrier(conf, 0);
4805 read_more:
4806         /* Now schedule reads for blocks from sector_nr to last */
4807         r10_bio = raid10_alloc_init_r10buf(conf);
4808         r10_bio->state = 0;
4809         raise_barrier(conf, 1);
4810         atomic_set(&r10_bio->remaining, 0);
4811         r10_bio->mddev = mddev;
4812         r10_bio->sector = sector_nr;
4813         set_bit(R10BIO_IsReshape, &r10_bio->state);
4814         r10_bio->sectors = last - sector_nr + 1;
4815         rdev = read_balance(conf, r10_bio, &max_sectors);
4816         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4817
4818         if (!rdev) {
4819                 /* Cannot read from here, so need to record bad blocks
4820                  * on all the target devices.
4821                  */
4822                 // FIXME
4823                 mempool_free(r10_bio, &conf->r10buf_pool);
4824                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4825                 return sectors_done;
4826         }
4827
4828         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4829                                     GFP_KERNEL, &mddev->bio_set);
4830         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4831                                + rdev->data_offset);
4832         read_bio->bi_private = r10_bio;
4833         read_bio->bi_end_io = end_reshape_read;
4834         r10_bio->master_bio = read_bio;
4835         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4836
4837         /*
4838          * Broadcast RESYNC message to other nodes, so all nodes would not
4839          * write to the region to avoid conflict.
4840         */
4841         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4842                 struct mdp_superblock_1 *sb = NULL;
4843                 int sb_reshape_pos = 0;
4844
4845                 conf->cluster_sync_low = sector_nr;
4846                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4847                 sb = page_address(rdev->sb_page);
4848                 if (sb) {
4849                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4850                         /*
4851                          * Set cluster_sync_low again if next address for array
4852                          * reshape is less than cluster_sync_low. Since we can't
4853                          * update cluster_sync_low until it has finished reshape.
4854                          */
4855                         if (sb_reshape_pos < conf->cluster_sync_low)
4856                                 conf->cluster_sync_low = sb_reshape_pos;
4857                 }
4858
4859                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4860                                                           conf->cluster_sync_high);
4861         }
4862
4863         /* Now find the locations in the new layout */
4864         __raid10_find_phys(&conf->geo, r10_bio);
4865
4866         blist = read_bio;
4867         read_bio->bi_next = NULL;
4868
4869         for (s = 0; s < conf->copies*2; s++) {
4870                 struct bio *b;
4871                 int d = r10_bio->devs[s/2].devnum;
4872                 struct md_rdev *rdev2;
4873                 if (s&1) {
4874                         rdev2 = conf->mirrors[d].replacement;
4875                         b = r10_bio->devs[s/2].repl_bio;
4876                 } else {
4877                         rdev2 = conf->mirrors[d].rdev;
4878                         b = r10_bio->devs[s/2].bio;
4879                 }
4880                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4881                         continue;
4882
4883                 bio_set_dev(b, rdev2->bdev);
4884                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4885                         rdev2->new_data_offset;
4886                 b->bi_end_io = end_reshape_write;
4887                 b->bi_opf = REQ_OP_WRITE;
4888                 b->bi_next = blist;
4889                 blist = b;
4890         }
4891
4892         /* Now add as many pages as possible to all of these bios. */
4893
4894         nr_sectors = 0;
4895         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4896         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4897                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4898                 int len = (max_sectors - s) << 9;
4899                 if (len > PAGE_SIZE)
4900                         len = PAGE_SIZE;
4901                 for (bio = blist; bio ; bio = bio->bi_next) {
4902                         if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4903                                 bio->bi_status = BLK_STS_RESOURCE;
4904                                 bio_endio(bio);
4905                                 return sectors_done;
4906                         }
4907                 }
4908                 sector_nr += len >> 9;
4909                 nr_sectors += len >> 9;
4910         }
4911         r10_bio->sectors = nr_sectors;
4912
4913         /* Now submit the read */
4914         md_sync_acct_bio(read_bio, r10_bio->sectors);
4915         atomic_inc(&r10_bio->remaining);
4916         read_bio->bi_next = NULL;
4917         submit_bio_noacct(read_bio);
4918         sectors_done += nr_sectors;
4919         if (sector_nr <= last)
4920                 goto read_more;
4921
4922         lower_barrier(conf);
4923
4924         /* Now that we have done the whole section we can
4925          * update reshape_progress
4926          */
4927         if (mddev->reshape_backwards)
4928                 conf->reshape_progress -= sectors_done;
4929         else
4930                 conf->reshape_progress += sectors_done;
4931
4932         return sectors_done;
4933 }
4934
4935 static void end_reshape_request(struct r10bio *r10_bio);
4936 static int handle_reshape_read_error(struct mddev *mddev,
4937                                      struct r10bio *r10_bio);
4938 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4939 {
4940         /* Reshape read completed.  Hopefully we have a block
4941          * to write out.
4942          * If we got a read error then we do sync 1-page reads from
4943          * elsewhere until we find the data - or give up.
4944          */
4945         struct r10conf *conf = mddev->private;
4946         int s;
4947
4948         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4949                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4950                         /* Reshape has been aborted */
4951                         md_done_sync(mddev, r10_bio->sectors, 0);
4952                         return;
4953                 }
4954
4955         /* We definitely have the data in the pages, schedule the
4956          * writes.
4957          */
4958         atomic_set(&r10_bio->remaining, 1);
4959         for (s = 0; s < conf->copies*2; s++) {
4960                 struct bio *b;
4961                 int d = r10_bio->devs[s/2].devnum;
4962                 struct md_rdev *rdev;
4963                 if (s&1) {
4964                         rdev = conf->mirrors[d].replacement;
4965                         b = r10_bio->devs[s/2].repl_bio;
4966                 } else {
4967                         rdev = conf->mirrors[d].rdev;
4968                         b = r10_bio->devs[s/2].bio;
4969                 }
4970                 if (!rdev || test_bit(Faulty, &rdev->flags))
4971                         continue;
4972
4973                 atomic_inc(&rdev->nr_pending);
4974                 md_sync_acct_bio(b, r10_bio->sectors);
4975                 atomic_inc(&r10_bio->remaining);
4976                 b->bi_next = NULL;
4977                 submit_bio_noacct(b);
4978         }
4979         end_reshape_request(r10_bio);
4980 }
4981
4982 static void end_reshape(struct r10conf *conf)
4983 {
4984         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4985                 return;
4986
4987         spin_lock_irq(&conf->device_lock);
4988         conf->prev = conf->geo;
4989         md_finish_reshape(conf->mddev);
4990         smp_wmb();
4991         conf->reshape_progress = MaxSector;
4992         conf->reshape_safe = MaxSector;
4993         spin_unlock_irq(&conf->device_lock);
4994
4995         mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4996         conf->fullsync = 0;
4997 }
4998
4999 static void raid10_update_reshape_pos(struct mddev *mddev)
5000 {
5001         struct r10conf *conf = mddev->private;
5002         sector_t lo, hi;
5003
5004         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5005         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5006             || mddev->reshape_position == MaxSector)
5007                 conf->reshape_progress = mddev->reshape_position;
5008         else
5009                 WARN_ON_ONCE(1);
5010 }
5011
5012 static int handle_reshape_read_error(struct mddev *mddev,
5013                                      struct r10bio *r10_bio)
5014 {
5015         /* Use sync reads to get the blocks from somewhere else */
5016         int sectors = r10_bio->sectors;
5017         struct r10conf *conf = mddev->private;
5018         struct r10bio *r10b;
5019         int slot = 0;
5020         int idx = 0;
5021         struct page **pages;
5022
5023         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5024         if (!r10b) {
5025                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5026                 return -ENOMEM;
5027         }
5028
5029         /* reshape IOs share pages from .devs[0].bio */
5030         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5031
5032         r10b->sector = r10_bio->sector;
5033         __raid10_find_phys(&conf->prev, r10b);
5034
5035         while (sectors) {
5036                 int s = sectors;
5037                 int success = 0;
5038                 int first_slot = slot;
5039
5040                 if (s > (PAGE_SIZE >> 9))
5041                         s = PAGE_SIZE >> 9;
5042
5043                 while (!success) {
5044                         int d = r10b->devs[slot].devnum;
5045                         struct md_rdev *rdev = conf->mirrors[d].rdev;
5046                         sector_t addr;
5047                         if (rdev == NULL ||
5048                             test_bit(Faulty, &rdev->flags) ||
5049                             !test_bit(In_sync, &rdev->flags))
5050                                 goto failed;
5051
5052                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5053                         atomic_inc(&rdev->nr_pending);
5054                         success = sync_page_io(rdev,
5055                                                addr,
5056                                                s << 9,
5057                                                pages[idx],
5058                                                REQ_OP_READ, false);
5059                         rdev_dec_pending(rdev, mddev);
5060                         if (success)
5061                                 break;
5062                 failed:
5063                         slot++;
5064                         if (slot >= conf->copies)
5065                                 slot = 0;
5066                         if (slot == first_slot)
5067                                 break;
5068                 }
5069                 if (!success) {
5070                         /* couldn't read this block, must give up */
5071                         set_bit(MD_RECOVERY_INTR,
5072                                 &mddev->recovery);
5073                         kfree(r10b);
5074                         return -EIO;
5075                 }
5076                 sectors -= s;
5077                 idx++;
5078         }
5079         kfree(r10b);
5080         return 0;
5081 }
5082
5083 static void end_reshape_write(struct bio *bio)
5084 {
5085         struct r10bio *r10_bio = get_resync_r10bio(bio);
5086         struct mddev *mddev = r10_bio->mddev;
5087         struct r10conf *conf = mddev->private;
5088         int d;
5089         int slot;
5090         int repl;
5091         struct md_rdev *rdev = NULL;
5092
5093         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5094         rdev = repl ? conf->mirrors[d].replacement :
5095                       conf->mirrors[d].rdev;
5096
5097         if (bio->bi_status) {
5098                 /* FIXME should record badblock */
5099                 md_error(mddev, rdev);
5100         }
5101
5102         rdev_dec_pending(rdev, mddev);
5103         end_reshape_request(r10_bio);
5104 }
5105
5106 static void end_reshape_request(struct r10bio *r10_bio)
5107 {
5108         if (!atomic_dec_and_test(&r10_bio->remaining))
5109                 return;
5110         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5111         bio_put(r10_bio->master_bio);
5112         put_buf(r10_bio);
5113 }
5114
5115 static void raid10_finish_reshape(struct mddev *mddev)
5116 {
5117         struct r10conf *conf = mddev->private;
5118
5119         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5120                 return;
5121
5122         if (mddev->delta_disks > 0) {
5123                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5124                         mddev->recovery_cp = mddev->resync_max_sectors;
5125                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5126                 }
5127                 mddev->resync_max_sectors = mddev->array_sectors;
5128         } else {
5129                 int d;
5130                 for (d = conf->geo.raid_disks ;
5131                      d < conf->geo.raid_disks - mddev->delta_disks;
5132                      d++) {
5133                         struct md_rdev *rdev = conf->mirrors[d].rdev;
5134                         if (rdev)
5135                                 clear_bit(In_sync, &rdev->flags);
5136                         rdev = conf->mirrors[d].replacement;
5137                         if (rdev)
5138                                 clear_bit(In_sync, &rdev->flags);
5139                 }
5140         }
5141         mddev->layout = mddev->new_layout;
5142         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5143         mddev->reshape_position = MaxSector;
5144         mddev->delta_disks = 0;
5145         mddev->reshape_backwards = 0;
5146 }
5147
5148 static struct md_personality raid10_personality =
5149 {
5150         .name           = "raid10",
5151         .level          = 10,
5152         .owner          = THIS_MODULE,
5153         .make_request   = raid10_make_request,
5154         .run            = raid10_run,
5155         .free           = raid10_free,
5156         .status         = raid10_status,
5157         .error_handler  = raid10_error,
5158         .hot_add_disk   = raid10_add_disk,
5159         .hot_remove_disk= raid10_remove_disk,
5160         .spare_active   = raid10_spare_active,
5161         .sync_request   = raid10_sync_request,
5162         .quiesce        = raid10_quiesce,
5163         .size           = raid10_size,
5164         .resize         = raid10_resize,
5165         .takeover       = raid10_takeover,
5166         .check_reshape  = raid10_check_reshape,
5167         .start_reshape  = raid10_start_reshape,
5168         .finish_reshape = raid10_finish_reshape,
5169         .update_reshape_pos = raid10_update_reshape_pos,
5170 };
5171
5172 static int __init raid_init(void)
5173 {
5174         return register_md_personality(&raid10_personality);
5175 }
5176
5177 static void raid_exit(void)
5178 {
5179         unregister_md_personality(&raid10_personality);
5180 }
5181
5182 module_init(raid_init);
5183 module_exit(raid_exit);
5184 MODULE_LICENSE("GPL");
5185 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5186 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5187 MODULE_ALIAS("md-raid10");
5188 MODULE_ALIAS("md-level-10");
This page took 0.330615 seconds and 4 git commands to generate.