]> Git Repo - J-linux.git/blob - drivers/md/dm-verity-target.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / md / dm-verity-target.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <[email protected]>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/scatterlist.h>
23 #include <linux/string.h>
24 #include <linux/jump_label.h>
25 #include <linux/security.h>
26
27 #define DM_MSG_PREFIX                   "verity"
28
29 #define DM_VERITY_ENV_LENGTH            42
30 #define DM_VERITY_ENV_VAR_NAME          "DM_VERITY_ERR_BLOCK_NR"
31
32 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
33
34 #define DM_VERITY_MAX_CORRUPTED_ERRS    100
35
36 #define DM_VERITY_OPT_LOGGING           "ignore_corruption"
37 #define DM_VERITY_OPT_RESTART           "restart_on_corruption"
38 #define DM_VERITY_OPT_PANIC             "panic_on_corruption"
39 #define DM_VERITY_OPT_ERROR_RESTART     "restart_on_error"
40 #define DM_VERITY_OPT_ERROR_PANIC       "panic_on_error"
41 #define DM_VERITY_OPT_IGN_ZEROES        "ignore_zero_blocks"
42 #define DM_VERITY_OPT_AT_MOST_ONCE      "check_at_most_once"
43 #define DM_VERITY_OPT_TASKLET_VERIFY    "try_verify_in_tasklet"
44
45 #define DM_VERITY_OPTS_MAX              (5 + DM_VERITY_OPTS_FEC + \
46                                          DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
47
48 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
49
50 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
51
52 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
53
54 /* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */
55 static DEFINE_STATIC_KEY_FALSE(ahash_enabled);
56
57 struct dm_verity_prefetch_work {
58         struct work_struct work;
59         struct dm_verity *v;
60         unsigned short ioprio;
61         sector_t block;
62         unsigned int n_blocks;
63 };
64
65 /*
66  * Auxiliary structure appended to each dm-bufio buffer. If the value
67  * hash_verified is nonzero, hash of the block has been verified.
68  *
69  * The variable hash_verified is set to 0 when allocating the buffer, then
70  * it can be changed to 1 and it is never reset to 0 again.
71  *
72  * There is no lock around this value, a race condition can at worst cause
73  * that multiple processes verify the hash of the same buffer simultaneously
74  * and write 1 to hash_verified simultaneously.
75  * This condition is harmless, so we don't need locking.
76  */
77 struct buffer_aux {
78         int hash_verified;
79 };
80
81 /*
82  * Initialize struct buffer_aux for a freshly created buffer.
83  */
84 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
85 {
86         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
87
88         aux->hash_verified = 0;
89 }
90
91 /*
92  * Translate input sector number to the sector number on the target device.
93  */
94 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
95 {
96         return dm_target_offset(v->ti, bi_sector);
97 }
98
99 /*
100  * Return hash position of a specified block at a specified tree level
101  * (0 is the lowest level).
102  * The lowest "hash_per_block_bits"-bits of the result denote hash position
103  * inside a hash block. The remaining bits denote location of the hash block.
104  */
105 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
106                                          int level)
107 {
108         return block >> (level * v->hash_per_block_bits);
109 }
110
111 static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req,
112                                 const u8 *data, size_t len,
113                                 struct crypto_wait *wait)
114 {
115         struct scatterlist sg;
116
117         if (likely(!is_vmalloc_addr(data))) {
118                 sg_init_one(&sg, data, len);
119                 ahash_request_set_crypt(req, &sg, NULL, len);
120                 return crypto_wait_req(crypto_ahash_update(req), wait);
121         }
122
123         do {
124                 int r;
125                 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
126
127                 flush_kernel_vmap_range((void *)data, this_step);
128                 sg_init_table(&sg, 1);
129                 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
130                 ahash_request_set_crypt(req, &sg, NULL, this_step);
131                 r = crypto_wait_req(crypto_ahash_update(req), wait);
132                 if (unlikely(r))
133                         return r;
134                 data += this_step;
135                 len -= this_step;
136         } while (len);
137
138         return 0;
139 }
140
141 /*
142  * Wrapper for crypto_ahash_init, which handles verity salting.
143  */
144 static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req,
145                                 struct crypto_wait *wait, bool may_sleep)
146 {
147         int r;
148
149         ahash_request_set_tfm(req, v->ahash_tfm);
150         ahash_request_set_callback(req,
151                 may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
152                 crypto_req_done, (void *)wait);
153         crypto_init_wait(wait);
154
155         r = crypto_wait_req(crypto_ahash_init(req), wait);
156
157         if (unlikely(r < 0)) {
158                 if (r != -ENOMEM)
159                         DMERR("crypto_ahash_init failed: %d", r);
160                 return r;
161         }
162
163         if (likely(v->salt_size && (v->version >= 1)))
164                 r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
165
166         return r;
167 }
168
169 static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req,
170                               u8 *digest, struct crypto_wait *wait)
171 {
172         int r;
173
174         if (unlikely(v->salt_size && (!v->version))) {
175                 r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
176
177                 if (r < 0) {
178                         DMERR("%s failed updating salt: %d", __func__, r);
179                         goto out;
180                 }
181         }
182
183         ahash_request_set_crypt(req, NULL, digest, 0);
184         r = crypto_wait_req(crypto_ahash_final(req), wait);
185 out:
186         return r;
187 }
188
189 int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
190                 const u8 *data, size_t len, u8 *digest, bool may_sleep)
191 {
192         int r;
193
194         if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
195                 struct ahash_request *req = verity_io_hash_req(v, io);
196                 struct crypto_wait wait;
197
198                 r = verity_ahash_init(v, req, &wait, may_sleep) ?:
199                     verity_ahash_update(v, req, data, len, &wait) ?:
200                     verity_ahash_final(v, req, digest, &wait);
201         } else {
202                 struct shash_desc *desc = verity_io_hash_req(v, io);
203
204                 desc->tfm = v->shash_tfm;
205                 r = crypto_shash_import(desc, v->initial_hashstate) ?:
206                     crypto_shash_finup(desc, data, len, digest);
207         }
208         if (unlikely(r))
209                 DMERR("Error hashing block: %d", r);
210         return r;
211 }
212
213 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
214                                  sector_t *hash_block, unsigned int *offset)
215 {
216         sector_t position = verity_position_at_level(v, block, level);
217         unsigned int idx;
218
219         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
220
221         if (!offset)
222                 return;
223
224         idx = position & ((1 << v->hash_per_block_bits) - 1);
225         if (!v->version)
226                 *offset = idx * v->digest_size;
227         else
228                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
229 }
230
231 /*
232  * Handle verification errors.
233  */
234 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
235                              unsigned long long block)
236 {
237         char verity_env[DM_VERITY_ENV_LENGTH];
238         char *envp[] = { verity_env, NULL };
239         const char *type_str = "";
240         struct mapped_device *md = dm_table_get_md(v->ti->table);
241
242         /* Corruption should be visible in device status in all modes */
243         v->hash_failed = true;
244
245         if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
246                 goto out;
247
248         v->corrupted_errs++;
249
250         switch (type) {
251         case DM_VERITY_BLOCK_TYPE_DATA:
252                 type_str = "data";
253                 break;
254         case DM_VERITY_BLOCK_TYPE_METADATA:
255                 type_str = "metadata";
256                 break;
257         default:
258                 BUG();
259         }
260
261         DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
262                     type_str, block);
263
264         if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
265                 DMERR("%s: reached maximum errors", v->data_dev->name);
266                 dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
267         }
268
269         snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
270                 DM_VERITY_ENV_VAR_NAME, type, block);
271
272         kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
273
274 out:
275         if (v->mode == DM_VERITY_MODE_LOGGING)
276                 return 0;
277
278         if (v->mode == DM_VERITY_MODE_RESTART)
279                 kernel_restart("dm-verity device corrupted");
280
281         if (v->mode == DM_VERITY_MODE_PANIC)
282                 panic("dm-verity device corrupted");
283
284         return 1;
285 }
286
287 /*
288  * Verify hash of a metadata block pertaining to the specified data block
289  * ("block" argument) at a specified level ("level" argument).
290  *
291  * On successful return, verity_io_want_digest(v, io) contains the hash value
292  * for a lower tree level or for the data block (if we're at the lowest level).
293  *
294  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
295  * If "skip_unverified" is false, unverified buffer is hashed and verified
296  * against current value of verity_io_want_digest(v, io).
297  */
298 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
299                                sector_t block, int level, bool skip_unverified,
300                                u8 *want_digest)
301 {
302         struct dm_buffer *buf;
303         struct buffer_aux *aux;
304         u8 *data;
305         int r;
306         sector_t hash_block;
307         unsigned int offset;
308         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
309
310         verity_hash_at_level(v, block, level, &hash_block, &offset);
311
312         if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
313                 data = dm_bufio_get(v->bufio, hash_block, &buf);
314                 if (data == NULL) {
315                         /*
316                          * In tasklet and the hash was not in the bufio cache.
317                          * Return early and resume execution from a work-queue
318                          * to read the hash from disk.
319                          */
320                         return -EAGAIN;
321                 }
322         } else {
323                 data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
324                                                 &buf, bio_prio(bio));
325         }
326
327         if (IS_ERR(data))
328                 return PTR_ERR(data);
329
330         aux = dm_bufio_get_aux_data(buf);
331
332         if (!aux->hash_verified) {
333                 if (skip_unverified) {
334                         r = 1;
335                         goto release_ret_r;
336                 }
337
338                 r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
339                                 verity_io_real_digest(v, io), !io->in_bh);
340                 if (unlikely(r < 0))
341                         goto release_ret_r;
342
343                 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
344                                   v->digest_size) == 0))
345                         aux->hash_verified = 1;
346                 else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
347                         /*
348                          * Error handling code (FEC included) cannot be run in a
349                          * tasklet since it may sleep, so fallback to work-queue.
350                          */
351                         r = -EAGAIN;
352                         goto release_ret_r;
353                 } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
354                                              hash_block, data) == 0)
355                         aux->hash_verified = 1;
356                 else if (verity_handle_err(v,
357                                            DM_VERITY_BLOCK_TYPE_METADATA,
358                                            hash_block)) {
359                         struct bio *bio;
360                         io->had_mismatch = true;
361                         bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
362                         dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
363                                          block, 0);
364                         r = -EIO;
365                         goto release_ret_r;
366                 }
367         }
368
369         data += offset;
370         memcpy(want_digest, data, v->digest_size);
371         r = 0;
372
373 release_ret_r:
374         dm_bufio_release(buf);
375         return r;
376 }
377
378 /*
379  * Find a hash for a given block, write it to digest and verify the integrity
380  * of the hash tree if necessary.
381  */
382 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
383                           sector_t block, u8 *digest, bool *is_zero)
384 {
385         int r = 0, i;
386
387         if (likely(v->levels)) {
388                 /*
389                  * First, we try to get the requested hash for
390                  * the current block. If the hash block itself is
391                  * verified, zero is returned. If it isn't, this
392                  * function returns 1 and we fall back to whole
393                  * chain verification.
394                  */
395                 r = verity_verify_level(v, io, block, 0, true, digest);
396                 if (likely(r <= 0))
397                         goto out;
398         }
399
400         memcpy(digest, v->root_digest, v->digest_size);
401
402         for (i = v->levels - 1; i >= 0; i--) {
403                 r = verity_verify_level(v, io, block, i, false, digest);
404                 if (unlikely(r))
405                         goto out;
406         }
407 out:
408         if (!r && v->zero_digest)
409                 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
410         else
411                 *is_zero = false;
412
413         return r;
414 }
415
416 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
417                                    sector_t cur_block, u8 *dest)
418 {
419         struct page *page;
420         void *buffer;
421         int r;
422         struct dm_io_request io_req;
423         struct dm_io_region io_loc;
424
425         page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
426         buffer = page_to_virt(page);
427
428         io_req.bi_opf = REQ_OP_READ;
429         io_req.mem.type = DM_IO_KMEM;
430         io_req.mem.ptr.addr = buffer;
431         io_req.notify.fn = NULL;
432         io_req.client = v->io;
433         io_loc.bdev = v->data_dev->bdev;
434         io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
435         io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
436         r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
437         if (unlikely(r))
438                 goto free_ret;
439
440         r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
441                         verity_io_real_digest(v, io), true);
442         if (unlikely(r))
443                 goto free_ret;
444
445         if (memcmp(verity_io_real_digest(v, io),
446                    verity_io_want_digest(v, io), v->digest_size)) {
447                 r = -EIO;
448                 goto free_ret;
449         }
450
451         memcpy(dest, buffer, 1 << v->data_dev_block_bits);
452         r = 0;
453 free_ret:
454         mempool_free(page, &v->recheck_pool);
455
456         return r;
457 }
458
459 static int verity_handle_data_hash_mismatch(struct dm_verity *v,
460                                             struct dm_verity_io *io,
461                                             struct bio *bio, sector_t blkno,
462                                             u8 *data)
463 {
464         if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
465                 /*
466                  * Error handling code (FEC included) cannot be run in the
467                  * BH workqueue, so fallback to a standard workqueue.
468                  */
469                 return -EAGAIN;
470         }
471         if (verity_recheck(v, io, blkno, data) == 0) {
472                 if (v->validated_blocks)
473                         set_bit(blkno, v->validated_blocks);
474                 return 0;
475         }
476 #if defined(CONFIG_DM_VERITY_FEC)
477         if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
478                               data) == 0)
479                 return 0;
480 #endif
481         if (bio->bi_status)
482                 return -EIO; /* Error correction failed; Just return error */
483
484         if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
485                 io->had_mismatch = true;
486                 dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
487                 return -EIO;
488         }
489         return 0;
490 }
491
492 /*
493  * Verify one "dm_verity_io" structure.
494  */
495 static int verity_verify_io(struct dm_verity_io *io)
496 {
497         struct dm_verity *v = io->v;
498         const unsigned int block_size = 1 << v->data_dev_block_bits;
499         struct bvec_iter iter_copy;
500         struct bvec_iter *iter;
501         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
502         unsigned int b;
503
504         if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
505                 /*
506                  * Copy the iterator in case we need to restart
507                  * verification in a work-queue.
508                  */
509                 iter_copy = io->iter;
510                 iter = &iter_copy;
511         } else
512                 iter = &io->iter;
513
514         for (b = 0; b < io->n_blocks;
515              b++, bio_advance_iter(bio, iter, block_size)) {
516                 int r;
517                 sector_t cur_block = io->block + b;
518                 bool is_zero;
519                 struct bio_vec bv;
520                 void *data;
521
522                 if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
523                     likely(test_bit(cur_block, v->validated_blocks)))
524                         continue;
525
526                 r = verity_hash_for_block(v, io, cur_block,
527                                           verity_io_want_digest(v, io),
528                                           &is_zero);
529                 if (unlikely(r < 0))
530                         return r;
531
532                 bv = bio_iter_iovec(bio, *iter);
533                 if (unlikely(bv.bv_len < block_size)) {
534                         /*
535                          * Data block spans pages.  This should not happen,
536                          * since dm-verity sets dma_alignment to the data block
537                          * size minus 1, and dm-verity also doesn't allow the
538                          * data block size to be greater than PAGE_SIZE.
539                          */
540                         DMERR_LIMIT("unaligned io (data block spans pages)");
541                         return -EIO;
542                 }
543
544                 data = bvec_kmap_local(&bv);
545
546                 if (is_zero) {
547                         /*
548                          * If we expect a zero block, don't validate, just
549                          * return zeros.
550                          */
551                         memset(data, 0, block_size);
552                         kunmap_local(data);
553                         continue;
554                 }
555
556                 r = verity_hash(v, io, data, block_size,
557                                 verity_io_real_digest(v, io), !io->in_bh);
558                 if (unlikely(r < 0)) {
559                         kunmap_local(data);
560                         return r;
561                 }
562
563                 if (likely(memcmp(verity_io_real_digest(v, io),
564                                   verity_io_want_digest(v, io), v->digest_size) == 0)) {
565                         if (v->validated_blocks)
566                                 set_bit(cur_block, v->validated_blocks);
567                         kunmap_local(data);
568                         continue;
569                 }
570                 r = verity_handle_data_hash_mismatch(v, io, bio, cur_block,
571                                                      data);
572                 kunmap_local(data);
573                 if (unlikely(r))
574                         return r;
575         }
576
577         return 0;
578 }
579
580 /*
581  * Skip verity work in response to I/O error when system is shutting down.
582  */
583 static inline bool verity_is_system_shutting_down(void)
584 {
585         return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
586                 || system_state == SYSTEM_RESTART;
587 }
588
589 static void restart_io_error(struct work_struct *w)
590 {
591         kernel_restart("dm-verity device has I/O error");
592 }
593
594 /*
595  * End one "io" structure with a given error.
596  */
597 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
598 {
599         struct dm_verity *v = io->v;
600         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
601
602         bio->bi_end_io = io->orig_bi_end_io;
603         bio->bi_status = status;
604
605         if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
606                 verity_fec_finish_io(io);
607
608         if (unlikely(status != BLK_STS_OK) &&
609             unlikely(!(bio->bi_opf & REQ_RAHEAD)) &&
610             !io->had_mismatch &&
611             !verity_is_system_shutting_down()) {
612                 if (v->error_mode == DM_VERITY_MODE_PANIC) {
613                         panic("dm-verity device has I/O error");
614                 }
615                 if (v->error_mode == DM_VERITY_MODE_RESTART) {
616                         static DECLARE_WORK(restart_work, restart_io_error);
617                         queue_work(v->verify_wq, &restart_work);
618                         /*
619                          * We deliberately don't call bio_endio here, because
620                          * the machine will be restarted anyway.
621                          */
622                         return;
623                 }
624         }
625
626         bio_endio(bio);
627 }
628
629 static void verity_work(struct work_struct *w)
630 {
631         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
632
633         io->in_bh = false;
634
635         verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
636 }
637
638 static void verity_bh_work(struct work_struct *w)
639 {
640         struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
641         int err;
642
643         io->in_bh = true;
644         err = verity_verify_io(io);
645         if (err == -EAGAIN || err == -ENOMEM) {
646                 /* fallback to retrying with work-queue */
647                 INIT_WORK(&io->work, verity_work);
648                 queue_work(io->v->verify_wq, &io->work);
649                 return;
650         }
651
652         verity_finish_io(io, errno_to_blk_status(err));
653 }
654
655 static void verity_end_io(struct bio *bio)
656 {
657         struct dm_verity_io *io = bio->bi_private;
658
659         if (bio->bi_status &&
660             (!verity_fec_is_enabled(io->v) ||
661              verity_is_system_shutting_down() ||
662              (bio->bi_opf & REQ_RAHEAD))) {
663                 verity_finish_io(io, bio->bi_status);
664                 return;
665         }
666
667         if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
668                 INIT_WORK(&io->bh_work, verity_bh_work);
669                 queue_work(system_bh_wq, &io->bh_work);
670         } else {
671                 INIT_WORK(&io->work, verity_work);
672                 queue_work(io->v->verify_wq, &io->work);
673         }
674 }
675
676 /*
677  * Prefetch buffers for the specified io.
678  * The root buffer is not prefetched, it is assumed that it will be cached
679  * all the time.
680  */
681 static void verity_prefetch_io(struct work_struct *work)
682 {
683         struct dm_verity_prefetch_work *pw =
684                 container_of(work, struct dm_verity_prefetch_work, work);
685         struct dm_verity *v = pw->v;
686         int i;
687
688         for (i = v->levels - 2; i >= 0; i--) {
689                 sector_t hash_block_start;
690                 sector_t hash_block_end;
691
692                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
693                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
694
695                 if (!i) {
696                         unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
697
698                         cluster >>= v->data_dev_block_bits;
699                         if (unlikely(!cluster))
700                                 goto no_prefetch_cluster;
701
702                         if (unlikely(cluster & (cluster - 1)))
703                                 cluster = 1 << __fls(cluster);
704
705                         hash_block_start &= ~(sector_t)(cluster - 1);
706                         hash_block_end |= cluster - 1;
707                         if (unlikely(hash_block_end >= v->hash_blocks))
708                                 hash_block_end = v->hash_blocks - 1;
709                 }
710 no_prefetch_cluster:
711                 dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
712                                         hash_block_end - hash_block_start + 1,
713                                         pw->ioprio);
714         }
715
716         kfree(pw);
717 }
718
719 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
720                                    unsigned short ioprio)
721 {
722         sector_t block = io->block;
723         unsigned int n_blocks = io->n_blocks;
724         struct dm_verity_prefetch_work *pw;
725
726         if (v->validated_blocks) {
727                 while (n_blocks && test_bit(block, v->validated_blocks)) {
728                         block++;
729                         n_blocks--;
730                 }
731                 while (n_blocks && test_bit(block + n_blocks - 1,
732                                             v->validated_blocks))
733                         n_blocks--;
734                 if (!n_blocks)
735                         return;
736         }
737
738         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
739                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
740
741         if (!pw)
742                 return;
743
744         INIT_WORK(&pw->work, verity_prefetch_io);
745         pw->v = v;
746         pw->block = block;
747         pw->n_blocks = n_blocks;
748         pw->ioprio = ioprio;
749         queue_work(v->verify_wq, &pw->work);
750 }
751
752 /*
753  * Bio map function. It allocates dm_verity_io structure and bio vector and
754  * fills them. Then it issues prefetches and the I/O.
755  */
756 static int verity_map(struct dm_target *ti, struct bio *bio)
757 {
758         struct dm_verity *v = ti->private;
759         struct dm_verity_io *io;
760
761         bio_set_dev(bio, v->data_dev->bdev);
762         bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
763
764         if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
765             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
766                 DMERR_LIMIT("unaligned io");
767                 return DM_MAPIO_KILL;
768         }
769
770         if (bio_end_sector(bio) >>
771             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
772                 DMERR_LIMIT("io out of range");
773                 return DM_MAPIO_KILL;
774         }
775
776         if (bio_data_dir(bio) == WRITE)
777                 return DM_MAPIO_KILL;
778
779         io = dm_per_bio_data(bio, ti->per_io_data_size);
780         io->v = v;
781         io->orig_bi_end_io = bio->bi_end_io;
782         io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
783         io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
784         io->had_mismatch = false;
785
786         bio->bi_end_io = verity_end_io;
787         bio->bi_private = io;
788         io->iter = bio->bi_iter;
789
790         verity_fec_init_io(io);
791
792         verity_submit_prefetch(v, io, bio_prio(bio));
793
794         submit_bio_noacct(bio);
795
796         return DM_MAPIO_SUBMITTED;
797 }
798
799 /*
800  * Status: V (valid) or C (corruption found)
801  */
802 static void verity_status(struct dm_target *ti, status_type_t type,
803                           unsigned int status_flags, char *result, unsigned int maxlen)
804 {
805         struct dm_verity *v = ti->private;
806         unsigned int args = 0;
807         unsigned int sz = 0;
808         unsigned int x;
809
810         switch (type) {
811         case STATUSTYPE_INFO:
812                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
813                 break;
814         case STATUSTYPE_TABLE:
815                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
816                         v->version,
817                         v->data_dev->name,
818                         v->hash_dev->name,
819                         1 << v->data_dev_block_bits,
820                         1 << v->hash_dev_block_bits,
821                         (unsigned long long)v->data_blocks,
822                         (unsigned long long)v->hash_start,
823                         v->alg_name
824                         );
825                 for (x = 0; x < v->digest_size; x++)
826                         DMEMIT("%02x", v->root_digest[x]);
827                 DMEMIT(" ");
828                 if (!v->salt_size)
829                         DMEMIT("-");
830                 else
831                         for (x = 0; x < v->salt_size; x++)
832                                 DMEMIT("%02x", v->salt[x]);
833                 if (v->mode != DM_VERITY_MODE_EIO)
834                         args++;
835                 if (v->error_mode != DM_VERITY_MODE_EIO)
836                         args++;
837                 if (verity_fec_is_enabled(v))
838                         args += DM_VERITY_OPTS_FEC;
839                 if (v->zero_digest)
840                         args++;
841                 if (v->validated_blocks)
842                         args++;
843                 if (v->use_bh_wq)
844                         args++;
845                 if (v->signature_key_desc)
846                         args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
847                 if (!args)
848                         return;
849                 DMEMIT(" %u", args);
850                 if (v->mode != DM_VERITY_MODE_EIO) {
851                         DMEMIT(" ");
852                         switch (v->mode) {
853                         case DM_VERITY_MODE_LOGGING:
854                                 DMEMIT(DM_VERITY_OPT_LOGGING);
855                                 break;
856                         case DM_VERITY_MODE_RESTART:
857                                 DMEMIT(DM_VERITY_OPT_RESTART);
858                                 break;
859                         case DM_VERITY_MODE_PANIC:
860                                 DMEMIT(DM_VERITY_OPT_PANIC);
861                                 break;
862                         default:
863                                 BUG();
864                         }
865                 }
866                 if (v->error_mode != DM_VERITY_MODE_EIO) {
867                         DMEMIT(" ");
868                         switch (v->error_mode) {
869                         case DM_VERITY_MODE_RESTART:
870                                 DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
871                                 break;
872                         case DM_VERITY_MODE_PANIC:
873                                 DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
874                                 break;
875                         default:
876                                 BUG();
877                         }
878                 }
879                 if (v->zero_digest)
880                         DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
881                 if (v->validated_blocks)
882                         DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
883                 if (v->use_bh_wq)
884                         DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
885                 sz = verity_fec_status_table(v, sz, result, maxlen);
886                 if (v->signature_key_desc)
887                         DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
888                                 " %s", v->signature_key_desc);
889                 break;
890
891         case STATUSTYPE_IMA:
892                 DMEMIT_TARGET_NAME_VERSION(ti->type);
893                 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
894                 DMEMIT(",verity_version=%u", v->version);
895                 DMEMIT(",data_device_name=%s", v->data_dev->name);
896                 DMEMIT(",hash_device_name=%s", v->hash_dev->name);
897                 DMEMIT(",verity_algorithm=%s", v->alg_name);
898
899                 DMEMIT(",root_digest=");
900                 for (x = 0; x < v->digest_size; x++)
901                         DMEMIT("%02x", v->root_digest[x]);
902
903                 DMEMIT(",salt=");
904                 if (!v->salt_size)
905                         DMEMIT("-");
906                 else
907                         for (x = 0; x < v->salt_size; x++)
908                                 DMEMIT("%02x", v->salt[x]);
909
910                 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
911                 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
912                 if (v->signature_key_desc)
913                         DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
914
915                 if (v->mode != DM_VERITY_MODE_EIO) {
916                         DMEMIT(",verity_mode=");
917                         switch (v->mode) {
918                         case DM_VERITY_MODE_LOGGING:
919                                 DMEMIT(DM_VERITY_OPT_LOGGING);
920                                 break;
921                         case DM_VERITY_MODE_RESTART:
922                                 DMEMIT(DM_VERITY_OPT_RESTART);
923                                 break;
924                         case DM_VERITY_MODE_PANIC:
925                                 DMEMIT(DM_VERITY_OPT_PANIC);
926                                 break;
927                         default:
928                                 DMEMIT("invalid");
929                         }
930                 }
931                 if (v->error_mode != DM_VERITY_MODE_EIO) {
932                         DMEMIT(",verity_error_mode=");
933                         switch (v->error_mode) {
934                         case DM_VERITY_MODE_RESTART:
935                                 DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
936                                 break;
937                         case DM_VERITY_MODE_PANIC:
938                                 DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
939                                 break;
940                         default:
941                                 DMEMIT("invalid");
942                         }
943                 }
944                 DMEMIT(";");
945                 break;
946         }
947 }
948
949 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
950 {
951         struct dm_verity *v = ti->private;
952
953         *bdev = v->data_dev->bdev;
954
955         if (ti->len != bdev_nr_sectors(v->data_dev->bdev))
956                 return 1;
957         return 0;
958 }
959
960 static int verity_iterate_devices(struct dm_target *ti,
961                                   iterate_devices_callout_fn fn, void *data)
962 {
963         struct dm_verity *v = ti->private;
964
965         return fn(ti, v->data_dev, 0, ti->len, data);
966 }
967
968 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
969 {
970         struct dm_verity *v = ti->private;
971
972         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
973                 limits->logical_block_size = 1 << v->data_dev_block_bits;
974
975         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
976                 limits->physical_block_size = 1 << v->data_dev_block_bits;
977
978         limits->io_min = limits->logical_block_size;
979
980         /*
981          * Similar to what dm-crypt does, opt dm-verity out of support for
982          * direct I/O that is aligned to less than the traditional direct I/O
983          * alignment requirement of logical_block_size.  This prevents dm-verity
984          * data blocks from crossing pages, eliminating various edge cases.
985          */
986         limits->dma_alignment = limits->logical_block_size - 1;
987 }
988
989 #ifdef CONFIG_SECURITY
990
991 static int verity_init_sig(struct dm_verity *v, const void *sig,
992                            size_t sig_size)
993 {
994         v->sig_size = sig_size;
995
996         if (sig) {
997                 v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL);
998                 if (!v->root_digest_sig)
999                         return -ENOMEM;
1000         }
1001
1002         return 0;
1003 }
1004
1005 static void verity_free_sig(struct dm_verity *v)
1006 {
1007         kfree(v->root_digest_sig);
1008 }
1009
1010 #else
1011
1012 static inline int verity_init_sig(struct dm_verity *v, const void *sig,
1013                                   size_t sig_size)
1014 {
1015         return 0;
1016 }
1017
1018 static inline void verity_free_sig(struct dm_verity *v)
1019 {
1020 }
1021
1022 #endif /* CONFIG_SECURITY */
1023
1024 static void verity_dtr(struct dm_target *ti)
1025 {
1026         struct dm_verity *v = ti->private;
1027
1028         if (v->verify_wq)
1029                 destroy_workqueue(v->verify_wq);
1030
1031         mempool_exit(&v->recheck_pool);
1032         if (v->io)
1033                 dm_io_client_destroy(v->io);
1034
1035         if (v->bufio)
1036                 dm_bufio_client_destroy(v->bufio);
1037
1038         kvfree(v->validated_blocks);
1039         kfree(v->salt);
1040         kfree(v->initial_hashstate);
1041         kfree(v->root_digest);
1042         kfree(v->zero_digest);
1043         verity_free_sig(v);
1044
1045         if (v->ahash_tfm) {
1046                 static_branch_dec(&ahash_enabled);
1047                 crypto_free_ahash(v->ahash_tfm);
1048         } else {
1049                 crypto_free_shash(v->shash_tfm);
1050         }
1051
1052         kfree(v->alg_name);
1053
1054         if (v->hash_dev)
1055                 dm_put_device(ti, v->hash_dev);
1056
1057         if (v->data_dev)
1058                 dm_put_device(ti, v->data_dev);
1059
1060         verity_fec_dtr(v);
1061
1062         kfree(v->signature_key_desc);
1063
1064         if (v->use_bh_wq)
1065                 static_branch_dec(&use_bh_wq_enabled);
1066
1067         kfree(v);
1068
1069         dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1070 }
1071
1072 static int verity_alloc_most_once(struct dm_verity *v)
1073 {
1074         struct dm_target *ti = v->ti;
1075
1076         /* the bitset can only handle INT_MAX blocks */
1077         if (v->data_blocks > INT_MAX) {
1078                 ti->error = "device too large to use check_at_most_once";
1079                 return -E2BIG;
1080         }
1081
1082         v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1083                                        sizeof(unsigned long),
1084                                        GFP_KERNEL);
1085         if (!v->validated_blocks) {
1086                 ti->error = "failed to allocate bitset for check_at_most_once";
1087                 return -ENOMEM;
1088         }
1089
1090         return 0;
1091 }
1092
1093 static int verity_alloc_zero_digest(struct dm_verity *v)
1094 {
1095         int r = -ENOMEM;
1096         struct dm_verity_io *io;
1097         u8 *zero_data;
1098
1099         v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1100
1101         if (!v->zero_digest)
1102                 return r;
1103
1104         io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL);
1105
1106         if (!io)
1107                 return r; /* verity_dtr will free zero_digest */
1108
1109         zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1110
1111         if (!zero_data)
1112                 goto out;
1113
1114         r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1115                         v->zero_digest, true);
1116
1117 out:
1118         kfree(io);
1119         kfree(zero_data);
1120
1121         return r;
1122 }
1123
1124 static inline bool verity_is_verity_mode(const char *arg_name)
1125 {
1126         return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1127                 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1128                 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1129 }
1130
1131 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1132 {
1133         if (v->mode)
1134                 return -EINVAL;
1135
1136         if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1137                 v->mode = DM_VERITY_MODE_LOGGING;
1138         else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1139                 v->mode = DM_VERITY_MODE_RESTART;
1140         else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1141                 v->mode = DM_VERITY_MODE_PANIC;
1142
1143         return 0;
1144 }
1145
1146 static inline bool verity_is_verity_error_mode(const char *arg_name)
1147 {
1148         return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) ||
1149                 !strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC));
1150 }
1151
1152 static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name)
1153 {
1154         if (v->error_mode)
1155                 return -EINVAL;
1156
1157         if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART))
1158                 v->error_mode = DM_VERITY_MODE_RESTART;
1159         else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC))
1160                 v->error_mode = DM_VERITY_MODE_PANIC;
1161
1162         return 0;
1163 }
1164
1165 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1166                                  struct dm_verity_sig_opts *verify_args,
1167                                  bool only_modifier_opts)
1168 {
1169         int r = 0;
1170         unsigned int argc;
1171         struct dm_target *ti = v->ti;
1172         const char *arg_name;
1173
1174         static const struct dm_arg _args[] = {
1175                 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1176         };
1177
1178         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1179         if (r)
1180                 return -EINVAL;
1181
1182         if (!argc)
1183                 return 0;
1184
1185         do {
1186                 arg_name = dm_shift_arg(as);
1187                 argc--;
1188
1189                 if (verity_is_verity_mode(arg_name)) {
1190                         if (only_modifier_opts)
1191                                 continue;
1192                         r = verity_parse_verity_mode(v, arg_name);
1193                         if (r) {
1194                                 ti->error = "Conflicting error handling parameters";
1195                                 return r;
1196                         }
1197                         continue;
1198
1199                 } else if (verity_is_verity_error_mode(arg_name)) {
1200                         if (only_modifier_opts)
1201                                 continue;
1202                         r = verity_parse_verity_error_mode(v, arg_name);
1203                         if (r) {
1204                                 ti->error = "Conflicting error handling parameters";
1205                                 return r;
1206                         }
1207                         continue;
1208
1209                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1210                         if (only_modifier_opts)
1211                                 continue;
1212                         r = verity_alloc_zero_digest(v);
1213                         if (r) {
1214                                 ti->error = "Cannot allocate zero digest";
1215                                 return r;
1216                         }
1217                         continue;
1218
1219                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1220                         if (only_modifier_opts)
1221                                 continue;
1222                         r = verity_alloc_most_once(v);
1223                         if (r)
1224                                 return r;
1225                         continue;
1226
1227                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1228                         v->use_bh_wq = true;
1229                         static_branch_inc(&use_bh_wq_enabled);
1230                         continue;
1231
1232                 } else if (verity_is_fec_opt_arg(arg_name)) {
1233                         if (only_modifier_opts)
1234                                 continue;
1235                         r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1236                         if (r)
1237                                 return r;
1238                         continue;
1239
1240                 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
1241                         if (only_modifier_opts)
1242                                 continue;
1243                         r = verity_verify_sig_parse_opt_args(as, v,
1244                                                              verify_args,
1245                                                              &argc, arg_name);
1246                         if (r)
1247                                 return r;
1248                         continue;
1249
1250                 } else if (only_modifier_opts) {
1251                         /*
1252                          * Ignore unrecognized opt, could easily be an extra
1253                          * argument to an option whose parsing was skipped.
1254                          * Normal parsing (@only_modifier_opts=false) will
1255                          * properly parse all options (and their extra args).
1256                          */
1257                         continue;
1258                 }
1259
1260                 DMERR("Unrecognized verity feature request: %s", arg_name);
1261                 ti->error = "Unrecognized verity feature request";
1262                 return -EINVAL;
1263         } while (argc && !r);
1264
1265         return r;
1266 }
1267
1268 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1269 {
1270         struct dm_target *ti = v->ti;
1271         struct crypto_ahash *ahash;
1272         struct crypto_shash *shash = NULL;
1273         const char *driver_name;
1274
1275         v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1276         if (!v->alg_name) {
1277                 ti->error = "Cannot allocate algorithm name";
1278                 return -ENOMEM;
1279         }
1280
1281         /*
1282          * Allocate the hash transformation object that this dm-verity instance
1283          * will use.  The vast majority of dm-verity users use CPU-based
1284          * hashing, so when possible use the shash API to minimize the crypto
1285          * API overhead.  If the ahash API resolves to a different driver
1286          * (likely an off-CPU hardware offload), use ahash instead.  Also use
1287          * ahash if the obsolete dm-verity format with the appended salt is
1288          * being used, so that quirk only needs to be handled in one place.
1289          */
1290         ahash = crypto_alloc_ahash(alg_name, 0,
1291                                    v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1292         if (IS_ERR(ahash)) {
1293                 ti->error = "Cannot initialize hash function";
1294                 return PTR_ERR(ahash);
1295         }
1296         driver_name = crypto_ahash_driver_name(ahash);
1297         if (v->version >= 1 /* salt prepended, not appended? */) {
1298                 shash = crypto_alloc_shash(alg_name, 0, 0);
1299                 if (!IS_ERR(shash) &&
1300                     strcmp(crypto_shash_driver_name(shash), driver_name) != 0) {
1301                         /*
1302                          * ahash gave a different driver than shash, so probably
1303                          * this is a case of real hardware offload.  Use ahash.
1304                          */
1305                         crypto_free_shash(shash);
1306                         shash = NULL;
1307                 }
1308         }
1309         if (!IS_ERR_OR_NULL(shash)) {
1310                 crypto_free_ahash(ahash);
1311                 ahash = NULL;
1312                 v->shash_tfm = shash;
1313                 v->digest_size = crypto_shash_digestsize(shash);
1314                 v->hash_reqsize = sizeof(struct shash_desc) +
1315                                   crypto_shash_descsize(shash);
1316                 DMINFO("%s using shash \"%s\"", alg_name, driver_name);
1317         } else {
1318                 v->ahash_tfm = ahash;
1319                 static_branch_inc(&ahash_enabled);
1320                 v->digest_size = crypto_ahash_digestsize(ahash);
1321                 v->hash_reqsize = sizeof(struct ahash_request) +
1322                                   crypto_ahash_reqsize(ahash);
1323                 DMINFO("%s using ahash \"%s\"", alg_name, driver_name);
1324         }
1325         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1326                 ti->error = "Digest size too big";
1327                 return -EINVAL;
1328         }
1329         return 0;
1330 }
1331
1332 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1333 {
1334         struct dm_target *ti = v->ti;
1335
1336         if (strcmp(arg, "-") != 0) {
1337                 v->salt_size = strlen(arg) / 2;
1338                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1339                 if (!v->salt) {
1340                         ti->error = "Cannot allocate salt";
1341                         return -ENOMEM;
1342                 }
1343                 if (strlen(arg) != v->salt_size * 2 ||
1344                     hex2bin(v->salt, arg, v->salt_size)) {
1345                         ti->error = "Invalid salt";
1346                         return -EINVAL;
1347                 }
1348         }
1349         if (v->shash_tfm) {
1350                 SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1351                 int r;
1352
1353                 /*
1354                  * Compute the pre-salted hash state that can be passed to
1355                  * crypto_shash_import() for each block later.
1356                  */
1357                 v->initial_hashstate = kmalloc(
1358                         crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1359                 if (!v->initial_hashstate) {
1360                         ti->error = "Cannot allocate initial hash state";
1361                         return -ENOMEM;
1362                 }
1363                 desc->tfm = v->shash_tfm;
1364                 r = crypto_shash_init(desc) ?:
1365                     crypto_shash_update(desc, v->salt, v->salt_size) ?:
1366                     crypto_shash_export(desc, v->initial_hashstate);
1367                 if (r) {
1368                         ti->error = "Cannot set up initial hash state";
1369                         return r;
1370                 }
1371         }
1372         return 0;
1373 }
1374
1375 /*
1376  * Target parameters:
1377  *      <version>       The current format is version 1.
1378  *                      Vsn 0 is compatible with original Chromium OS releases.
1379  *      <data device>
1380  *      <hash device>
1381  *      <data block size>
1382  *      <hash block size>
1383  *      <the number of data blocks>
1384  *      <hash start block>
1385  *      <algorithm>
1386  *      <digest>
1387  *      <salt>          Hex string or "-" if no salt.
1388  */
1389 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1390 {
1391         struct dm_verity *v;
1392         struct dm_verity_sig_opts verify_args = {0};
1393         struct dm_arg_set as;
1394         unsigned int num;
1395         unsigned long long num_ll;
1396         int r;
1397         int i;
1398         sector_t hash_position;
1399         char dummy;
1400         char *root_hash_digest_to_validate;
1401
1402         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1403         if (!v) {
1404                 ti->error = "Cannot allocate verity structure";
1405                 return -ENOMEM;
1406         }
1407         ti->private = v;
1408         v->ti = ti;
1409
1410         r = verity_fec_ctr_alloc(v);
1411         if (r)
1412                 goto bad;
1413
1414         if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1415                 ti->error = "Device must be readonly";
1416                 r = -EINVAL;
1417                 goto bad;
1418         }
1419
1420         if (argc < 10) {
1421                 ti->error = "Not enough arguments";
1422                 r = -EINVAL;
1423                 goto bad;
1424         }
1425
1426         /* Parse optional parameters that modify primary args */
1427         if (argc > 10) {
1428                 as.argc = argc - 10;
1429                 as.argv = argv + 10;
1430                 r = verity_parse_opt_args(&as, v, &verify_args, true);
1431                 if (r < 0)
1432                         goto bad;
1433         }
1434
1435         if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1436             num > 1) {
1437                 ti->error = "Invalid version";
1438                 r = -EINVAL;
1439                 goto bad;
1440         }
1441         v->version = num;
1442
1443         r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1444         if (r) {
1445                 ti->error = "Data device lookup failed";
1446                 goto bad;
1447         }
1448
1449         r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1450         if (r) {
1451                 ti->error = "Hash device lookup failed";
1452                 goto bad;
1453         }
1454
1455         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1456             !num || (num & (num - 1)) ||
1457             num < bdev_logical_block_size(v->data_dev->bdev) ||
1458             num > PAGE_SIZE) {
1459                 ti->error = "Invalid data device block size";
1460                 r = -EINVAL;
1461                 goto bad;
1462         }
1463         v->data_dev_block_bits = __ffs(num);
1464
1465         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1466             !num || (num & (num - 1)) ||
1467             num < bdev_logical_block_size(v->hash_dev->bdev) ||
1468             num > INT_MAX) {
1469                 ti->error = "Invalid hash device block size";
1470                 r = -EINVAL;
1471                 goto bad;
1472         }
1473         v->hash_dev_block_bits = __ffs(num);
1474
1475         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1476             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1477             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1478                 ti->error = "Invalid data blocks";
1479                 r = -EINVAL;
1480                 goto bad;
1481         }
1482         v->data_blocks = num_ll;
1483
1484         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1485                 ti->error = "Data device is too small";
1486                 r = -EINVAL;
1487                 goto bad;
1488         }
1489
1490         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1491             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1492             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1493                 ti->error = "Invalid hash start";
1494                 r = -EINVAL;
1495                 goto bad;
1496         }
1497         v->hash_start = num_ll;
1498
1499         r = verity_setup_hash_alg(v, argv[7]);
1500         if (r)
1501                 goto bad;
1502
1503         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1504         if (!v->root_digest) {
1505                 ti->error = "Cannot allocate root digest";
1506                 r = -ENOMEM;
1507                 goto bad;
1508         }
1509         if (strlen(argv[8]) != v->digest_size * 2 ||
1510             hex2bin(v->root_digest, argv[8], v->digest_size)) {
1511                 ti->error = "Invalid root digest";
1512                 r = -EINVAL;
1513                 goto bad;
1514         }
1515         root_hash_digest_to_validate = argv[8];
1516
1517         r = verity_setup_salt_and_hashstate(v, argv[9]);
1518         if (r)
1519                 goto bad;
1520
1521         argv += 10;
1522         argc -= 10;
1523
1524         /* Optional parameters */
1525         if (argc) {
1526                 as.argc = argc;
1527                 as.argv = argv;
1528                 r = verity_parse_opt_args(&as, v, &verify_args, false);
1529                 if (r < 0)
1530                         goto bad;
1531         }
1532
1533         /* Root hash signature is  a optional parameter*/
1534         r = verity_verify_root_hash(root_hash_digest_to_validate,
1535                                     strlen(root_hash_digest_to_validate),
1536                                     verify_args.sig,
1537                                     verify_args.sig_size);
1538         if (r < 0) {
1539                 ti->error = "Root hash verification failed";
1540                 goto bad;
1541         }
1542
1543         r = verity_init_sig(v, verify_args.sig, verify_args.sig_size);
1544         if (r < 0) {
1545                 ti->error = "Cannot allocate root digest signature";
1546                 goto bad;
1547         }
1548
1549         v->hash_per_block_bits =
1550                 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1551
1552         v->levels = 0;
1553         if (v->data_blocks)
1554                 while (v->hash_per_block_bits * v->levels < 64 &&
1555                        (unsigned long long)(v->data_blocks - 1) >>
1556                        (v->hash_per_block_bits * v->levels))
1557                         v->levels++;
1558
1559         if (v->levels > DM_VERITY_MAX_LEVELS) {
1560                 ti->error = "Too many tree levels";
1561                 r = -E2BIG;
1562                 goto bad;
1563         }
1564
1565         hash_position = v->hash_start;
1566         for (i = v->levels - 1; i >= 0; i--) {
1567                 sector_t s;
1568
1569                 v->hash_level_block[i] = hash_position;
1570                 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1571                                         >> ((i + 1) * v->hash_per_block_bits);
1572                 if (hash_position + s < hash_position) {
1573                         ti->error = "Hash device offset overflow";
1574                         r = -E2BIG;
1575                         goto bad;
1576                 }
1577                 hash_position += s;
1578         }
1579         v->hash_blocks = hash_position;
1580
1581         r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1582         if (unlikely(r)) {
1583                 ti->error = "Cannot allocate mempool";
1584                 goto bad;
1585         }
1586
1587         v->io = dm_io_client_create();
1588         if (IS_ERR(v->io)) {
1589                 r = PTR_ERR(v->io);
1590                 v->io = NULL;
1591                 ti->error = "Cannot allocate dm io";
1592                 goto bad;
1593         }
1594
1595         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1596                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1597                 dm_bufio_alloc_callback, NULL,
1598                 v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1599         if (IS_ERR(v->bufio)) {
1600                 ti->error = "Cannot initialize dm-bufio";
1601                 r = PTR_ERR(v->bufio);
1602                 v->bufio = NULL;
1603                 goto bad;
1604         }
1605
1606         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1607                 ti->error = "Hash device is too small";
1608                 r = -E2BIG;
1609                 goto bad;
1610         }
1611
1612         /*
1613          * Using WQ_HIGHPRI improves throughput and completion latency by
1614          * reducing wait times when reading from a dm-verity device.
1615          *
1616          * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1617          * allows verify_wq to preempt softirq since verification in BH workqueue
1618          * will fall-back to using it for error handling (or if the bufio cache
1619          * doesn't have required hashes).
1620          */
1621         v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1622         if (!v->verify_wq) {
1623                 ti->error = "Cannot allocate workqueue";
1624                 r = -ENOMEM;
1625                 goto bad;
1626         }
1627
1628         ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize;
1629
1630         r = verity_fec_ctr(v);
1631         if (r)
1632                 goto bad;
1633
1634         ti->per_io_data_size = roundup(ti->per_io_data_size,
1635                                        __alignof__(struct dm_verity_io));
1636
1637         verity_verify_sig_opts_cleanup(&verify_args);
1638
1639         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1640
1641         return 0;
1642
1643 bad:
1644
1645         verity_verify_sig_opts_cleanup(&verify_args);
1646         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1647         verity_dtr(ti);
1648
1649         return r;
1650 }
1651
1652 /*
1653  * Get the verity mode (error behavior) of a verity target.
1654  *
1655  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1656  * target.
1657  */
1658 int dm_verity_get_mode(struct dm_target *ti)
1659 {
1660         struct dm_verity *v = ti->private;
1661
1662         if (!dm_is_verity_target(ti))
1663                 return -EINVAL;
1664
1665         return v->mode;
1666 }
1667
1668 /*
1669  * Get the root digest of a verity target.
1670  *
1671  * Returns a copy of the root digest, the caller is responsible for
1672  * freeing the memory of the digest.
1673  */
1674 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1675 {
1676         struct dm_verity *v = ti->private;
1677
1678         if (!dm_is_verity_target(ti))
1679                 return -EINVAL;
1680
1681         *root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1682         if (*root_digest == NULL)
1683                 return -ENOMEM;
1684
1685         *digest_size = v->digest_size;
1686
1687         return 0;
1688 }
1689
1690 #ifdef CONFIG_SECURITY
1691
1692 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
1693
1694 static int verity_security_set_signature(struct block_device *bdev,
1695                                          struct dm_verity *v)
1696 {
1697         /*
1698          * if the dm-verity target is unsigned, v->root_digest_sig will
1699          * be NULL, and the hook call is still required to let LSMs mark
1700          * the device as unsigned. This information is crucial for LSMs to
1701          * block operations such as execution on unsigned files
1702          */
1703         return security_bdev_setintegrity(bdev,
1704                                           LSM_INT_DMVERITY_SIG_VALID,
1705                                           v->root_digest_sig,
1706                                           v->sig_size);
1707 }
1708
1709 #else
1710
1711 static inline int verity_security_set_signature(struct block_device *bdev,
1712                                                 struct dm_verity *v)
1713 {
1714         return 0;
1715 }
1716
1717 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
1718
1719 /*
1720  * Expose verity target's root hash and signature data to LSMs before resume.
1721  *
1722  * Returns 0 on success, or -ENOMEM if the system is out of memory.
1723  */
1724 static int verity_preresume(struct dm_target *ti)
1725 {
1726         struct block_device *bdev;
1727         struct dm_verity_digest root_digest;
1728         struct dm_verity *v;
1729         int r;
1730
1731         v = ti->private;
1732         bdev = dm_disk(dm_table_get_md(ti->table))->part0;
1733         root_digest.digest = v->root_digest;
1734         root_digest.digest_len = v->digest_size;
1735         if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm)
1736                 root_digest.alg = crypto_ahash_alg_name(v->ahash_tfm);
1737         else
1738                 root_digest.alg = crypto_shash_alg_name(v->shash_tfm);
1739
1740         r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest,
1741                                        sizeof(root_digest));
1742         if (r)
1743                 return r;
1744
1745         r =  verity_security_set_signature(bdev, v);
1746         if (r)
1747                 goto bad;
1748
1749         return 0;
1750
1751 bad:
1752
1753         security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0);
1754
1755         return r;
1756 }
1757
1758 #endif /* CONFIG_SECURITY */
1759
1760 static struct target_type verity_target = {
1761         .name           = "verity",
1762 /* Note: the LSMs depend on the singleton and immutable features */
1763         .features       = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1764         .version        = {1, 10, 0},
1765         .module         = THIS_MODULE,
1766         .ctr            = verity_ctr,
1767         .dtr            = verity_dtr,
1768         .map            = verity_map,
1769         .status         = verity_status,
1770         .prepare_ioctl  = verity_prepare_ioctl,
1771         .iterate_devices = verity_iterate_devices,
1772         .io_hints       = verity_io_hints,
1773 #ifdef CONFIG_SECURITY
1774         .preresume      = verity_preresume,
1775 #endif /* CONFIG_SECURITY */
1776 };
1777 module_dm(verity);
1778
1779 /*
1780  * Check whether a DM target is a verity target.
1781  */
1782 bool dm_is_verity_target(struct dm_target *ti)
1783 {
1784         return ti->type == &verity_target;
1785 }
1786
1787 MODULE_AUTHOR("Mikulas Patocka <[email protected]>");
1788 MODULE_AUTHOR("Mandeep Baines <[email protected]>");
1789 MODULE_AUTHOR("Will Drewry <[email protected]>");
1790 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1791 MODULE_LICENSE("GPL");
This page took 0.129576 seconds and 4 git commands to generate.