1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009-2011 Red Hat, Inc.
7 * This file is released under the GPL.
10 #include <linux/dm-bufio.h>
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
26 #define DM_MSG_PREFIX "bufio"
29 * Memory management policy:
30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
36 #define DM_BUFIO_MIN_BUFFERS 8
38 #define DM_BUFIO_MEMORY_PERCENT 2
39 #define DM_BUFIO_VMALLOC_PERCENT 25
40 #define DM_BUFIO_WRITEBACK_RATIO 3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16
44 * Check buffer ages in this interval (seconds)
46 #define DM_BUFIO_WORK_TIMER_SECS 30
49 * Free buffers when they are older than this (seconds)
51 #define DM_BUFIO_DEFAULT_AGE_SECS 300
54 * The nr of bytes of cached data to keep around.
56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
59 * Align buffer writes to this boundary.
60 * Tests show that SSDs have the highest IOPS when using 4k writes.
62 #define DM_BUFIO_WRITE_ALIGN 4096
65 * dm_buffer->list_mode
71 /*--------------------------------------------------------------*/
74 * Rather than use an LRU list, we use a clock algorithm where entries
75 * are held in a circular list. When an entry is 'hit' a reference bit
76 * is set. The least recently used entry is approximated by running a
77 * cursor around the list selecting unreferenced entries. Referenced
78 * entries have their reference bit cleared as the cursor passes them.
81 struct list_head list;
87 struct list_head list;
88 struct lru_entry *stop;
93 struct list_head *cursor;
96 struct list_head iterators;
101 static void lru_init(struct lru *lru)
105 INIT_LIST_HEAD(&lru->iterators);
108 static void lru_destroy(struct lru *lru)
110 WARN_ON_ONCE(lru->cursor);
111 WARN_ON_ONCE(!list_empty(&lru->iterators));
115 * Insert a new entry into the lru.
117 static void lru_insert(struct lru *lru, struct lru_entry *le)
120 * Don't be tempted to set to 1, makes the lru aspect
123 atomic_set(&le->referenced, 0);
126 list_add_tail(&le->list, lru->cursor);
128 INIT_LIST_HEAD(&le->list);
129 lru->cursor = &le->list;
137 * Convert a list_head pointer to an lru_entry pointer.
139 static inline struct lru_entry *to_le(struct list_head *l)
141 return container_of(l, struct lru_entry, list);
145 * Initialize an lru_iter and add it to the list of cursors in the lru.
147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
150 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
151 it->e = lru->cursor ? to_le(lru->cursor) : NULL;
152 list_add(&it->list, &lru->iterators);
156 * Remove an lru_iter from the list of cursors in the lru.
158 static inline void lru_iter_end(struct lru_iter *it)
163 /* Predicate function type to be used with lru_iter_next */
164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
167 * Advance the cursor to the next entry that passes the
168 * predicate, and return that entry. Returns NULL if the
169 * iteration is complete.
171 static struct lru_entry *lru_iter_next(struct lru_iter *it,
172 iter_predicate pred, void *context)
179 /* advance the cursor */
180 if (it->e == it->stop)
183 it->e = to_le(it->e->list.next);
185 if (pred(e, context))
193 * Invalidate a specific lru_entry and update all cursors in
194 * the lru accordingly.
196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
200 list_for_each_entry(it, &lru->iterators, list) {
201 /* Move c->e forwards if necc. */
203 it->e = to_le(it->e->list.next);
208 /* Move it->stop backwards if necc. */
210 it->stop = to_le(it->stop->list.prev);
220 * Remove a specific entry from the lru.
222 static void lru_remove(struct lru *lru, struct lru_entry *le)
224 lru_iter_invalidate(lru, le);
225 if (lru->count == 1) {
228 if (lru->cursor == &le->list)
229 lru->cursor = lru->cursor->next;
236 * Mark as referenced.
238 static inline void lru_reference(struct lru_entry *le)
240 atomic_set(&le->referenced, 1);
246 * Remove the least recently used entry (approx), that passes the predicate.
247 * Returns NULL on failure.
252 ER_STOP, /* stop looking for something to evict */
255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
259 unsigned long tested = 0;
260 struct list_head *h = lru->cursor;
261 struct lru_entry *le;
266 * In the worst case we have to loop around twice. Once to clear
267 * the reference flags, and then again to discover the predicate
268 * fails for all entries.
270 while (tested < lru->count) {
271 le = container_of(h, struct lru_entry, list);
273 if (atomic_read(&le->referenced)) {
274 atomic_set(&le->referenced, 0);
277 switch (pred(le, context)) {
280 * Adjust the cursor, so we start the next
283 lru->cursor = le->list.next;
291 lru->cursor = le->list.next;
305 /*--------------------------------------------------------------*/
315 * Describes how the block was allocated:
316 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
317 * See the comment at alloc_buffer_data.
321 DATA_MODE_KMALLOC = 1,
322 DATA_MODE_GET_FREE_PAGES = 2,
323 DATA_MODE_VMALLOC = 3,
328 /* protected by the locks in dm_buffer_cache */
331 /* immutable, so don't need protecting */
334 unsigned char data_mode; /* DATA_MODE_* */
337 * These two fields are used in isolation, so do not need
338 * a surrounding lock.
341 unsigned long last_accessed;
344 * Everything else is protected by the mutex in
348 struct lru_entry lru;
349 unsigned char list_mode; /* LIST_* */
350 blk_status_t read_error;
351 blk_status_t write_error;
352 unsigned int dirty_start;
353 unsigned int dirty_end;
354 unsigned int write_start;
355 unsigned int write_end;
356 struct list_head write_list;
357 struct dm_bufio_client *c;
358 void (*end_io)(struct dm_buffer *b, blk_status_t bs);
359 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
361 unsigned int stack_len;
362 unsigned long stack_entries[MAX_STACK];
366 /*--------------------------------------------------------------*/
369 * The buffer cache manages buffers, particularly:
370 * - inc/dec of holder count
371 * - setting the last_accessed field
372 * - maintains clean/dirty state along with lru
373 * - selecting buffers that match predicates
375 * It does *not* handle:
376 * - allocation/freeing of buffers.
378 * - Eviction or cache sizing.
380 * cache_get() and cache_put() are threadsafe, you do not need to
381 * protect these calls with a surrounding mutex. All the other
382 * methods are not threadsafe; they do use locking primitives, but
383 * only enough to ensure get/put are threadsafe.
388 struct rw_semaphore lock;
392 } ____cacheline_aligned_in_smp;
394 struct dm_buffer_cache {
395 struct lru lru[LIST_SIZE];
397 * We spread entries across multiple trees to reduce contention
400 unsigned int num_locks;
402 struct buffer_tree trees[];
405 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
407 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
409 return dm_hash_locks_index(block, num_locks);
412 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
414 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
415 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
417 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
420 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
422 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
423 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
425 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
428 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
430 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
431 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
433 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
436 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
438 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
439 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
441 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
445 * Sometimes we want to repeatedly get and drop locks as part of an iteration.
446 * This struct helps avoid redundant drop and gets of the same lock.
448 struct lock_history {
449 struct dm_buffer_cache *cache;
451 unsigned int previous;
452 unsigned int no_previous;
455 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
459 lh->no_previous = cache->num_locks;
460 lh->previous = lh->no_previous;
463 static void __lh_lock(struct lock_history *lh, unsigned int index)
466 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
467 write_lock_bh(&lh->cache->trees[index].u.spinlock);
469 down_write(&lh->cache->trees[index].u.lock);
471 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
472 read_lock_bh(&lh->cache->trees[index].u.spinlock);
474 down_read(&lh->cache->trees[index].u.lock);
478 static void __lh_unlock(struct lock_history *lh, unsigned int index)
481 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
482 write_unlock_bh(&lh->cache->trees[index].u.spinlock);
484 up_write(&lh->cache->trees[index].u.lock);
486 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
487 read_unlock_bh(&lh->cache->trees[index].u.spinlock);
489 up_read(&lh->cache->trees[index].u.lock);
494 * Make sure you call this since it will unlock the final lock.
496 static void lh_exit(struct lock_history *lh)
498 if (lh->previous != lh->no_previous) {
499 __lh_unlock(lh, lh->previous);
500 lh->previous = lh->no_previous;
505 * Named 'next' because there is no corresponding
506 * 'up/unlock' call since it's done automatically.
508 static void lh_next(struct lock_history *lh, sector_t b)
510 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
512 if (lh->previous != lh->no_previous) {
513 if (lh->previous != index) {
514 __lh_unlock(lh, lh->previous);
515 __lh_lock(lh, index);
516 lh->previous = index;
519 __lh_lock(lh, index);
520 lh->previous = index;
524 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
526 return container_of(le, struct dm_buffer, lru);
529 static struct dm_buffer *list_to_buffer(struct list_head *l)
531 struct lru_entry *le = list_entry(l, struct lru_entry, list);
533 return le_to_buffer(le);
536 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
540 bc->num_locks = num_locks;
541 bc->no_sleep = no_sleep;
543 for (i = 0; i < bc->num_locks; i++) {
545 rwlock_init(&bc->trees[i].u.spinlock);
547 init_rwsem(&bc->trees[i].u.lock);
548 bc->trees[i].root = RB_ROOT;
551 lru_init(&bc->lru[LIST_CLEAN]);
552 lru_init(&bc->lru[LIST_DIRTY]);
555 static void cache_destroy(struct dm_buffer_cache *bc)
559 for (i = 0; i < bc->num_locks; i++)
560 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
562 lru_destroy(&bc->lru[LIST_CLEAN]);
563 lru_destroy(&bc->lru[LIST_DIRTY]);
569 * not threadsafe, or racey depending how you look at it
571 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
573 return bc->lru[list_mode].count;
576 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
578 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
584 * Gets a specific buffer, indexed by block.
585 * If the buffer is found then its holder count will be incremented and
586 * lru_reference will be called.
590 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
592 struct rb_node *n = root->rb_node;
596 b = container_of(n, struct dm_buffer, node);
598 if (b->block == block)
601 n = block < b->block ? n->rb_left : n->rb_right;
607 static void __cache_inc_buffer(struct dm_buffer *b)
609 atomic_inc(&b->hold_count);
610 WRITE_ONCE(b->last_accessed, jiffies);
613 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
617 cache_read_lock(bc, block);
618 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
620 lru_reference(&b->lru);
621 __cache_inc_buffer(b);
623 cache_read_unlock(bc, block);
631 * Returns true if the hold count hits zero.
634 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
638 cache_read_lock(bc, b->block);
639 BUG_ON(!atomic_read(&b->hold_count));
640 r = atomic_dec_and_test(&b->hold_count);
641 cache_read_unlock(bc, b->block);
648 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
651 * Evicts a buffer based on a predicate. The oldest buffer that
652 * matches the predicate will be selected. In addition to the
653 * predicate the hold_count of the selected buffer will be zero.
655 struct evict_wrapper {
656 struct lock_history *lh;
662 * Wraps the buffer predicate turning it into an lru predicate. Adds
663 * extra test for hold_count.
665 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
667 struct evict_wrapper *w = context;
668 struct dm_buffer *b = le_to_buffer(le);
670 lh_next(w->lh, b->block);
672 if (atomic_read(&b->hold_count))
673 return ER_DONT_EVICT;
675 return w->pred(b, w->context);
678 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
679 b_predicate pred, void *context,
680 struct lock_history *lh)
682 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
683 struct lru_entry *le;
686 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
690 b = le_to_buffer(le);
691 /* __evict_pred will have locked the appropriate tree. */
692 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
697 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
698 b_predicate pred, void *context)
701 struct lock_history lh;
703 lh_init(&lh, bc, true);
704 b = __cache_evict(bc, list_mode, pred, context, &lh);
713 * Mark a buffer as clean or dirty. Not threadsafe.
715 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
717 cache_write_lock(bc, b->block);
718 if (list_mode != b->list_mode) {
719 lru_remove(&bc->lru[b->list_mode], &b->lru);
720 b->list_mode = list_mode;
721 lru_insert(&bc->lru[b->list_mode], &b->lru);
723 cache_write_unlock(bc, b->block);
729 * Runs through the lru associated with 'old_mode', if the predicate matches then
730 * it moves them to 'new_mode'. Not threadsafe.
732 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
733 b_predicate pred, void *context, struct lock_history *lh)
735 struct lru_entry *le;
737 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
740 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
744 b = le_to_buffer(le);
745 b->list_mode = new_mode;
746 lru_insert(&bc->lru[b->list_mode], &b->lru);
750 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
751 b_predicate pred, void *context)
753 struct lock_history lh;
755 lh_init(&lh, bc, true);
756 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
763 * Iterates through all clean or dirty entries calling a function for each
764 * entry. The callback may terminate the iteration early. Not threadsafe.
768 * Iterator functions should return one of these actions to indicate
769 * how the iteration should proceed.
776 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
778 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
779 iter_fn fn, void *context, struct lock_history *lh)
781 struct lru *lru = &bc->lru[list_mode];
782 struct lru_entry *le, *first;
787 first = le = to_le(lru->cursor);
789 struct dm_buffer *b = le_to_buffer(le);
791 lh_next(lh, b->block);
793 switch (fn(b, context)) {
802 le = to_le(le->list.next);
803 } while (le != first);
806 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
807 iter_fn fn, void *context)
809 struct lock_history lh;
811 lh_init(&lh, bc, false);
812 __cache_iterate(bc, list_mode, fn, context, &lh);
819 * Passes ownership of the buffer to the cache. Returns false if the
820 * buffer was already present (in which case ownership does not pass).
821 * eg, a race with another thread.
823 * Holder count should be 1 on insertion.
827 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
829 struct rb_node **new = &root->rb_node, *parent = NULL;
830 struct dm_buffer *found;
833 found = container_of(*new, struct dm_buffer, node);
835 if (found->block == b->block)
839 new = b->block < found->block ?
840 &found->node.rb_left : &found->node.rb_right;
843 rb_link_node(&b->node, parent, new);
844 rb_insert_color(&b->node, root);
849 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
853 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
856 cache_write_lock(bc, b->block);
857 BUG_ON(atomic_read(&b->hold_count) != 1);
858 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
860 lru_insert(&bc->lru[b->list_mode], &b->lru);
861 cache_write_unlock(bc, b->block);
869 * Removes buffer from cache, ownership of the buffer passes back to the caller.
870 * Fails if the hold_count is not one (ie. the caller holds the only reference).
874 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
878 cache_write_lock(bc, b->block);
880 if (atomic_read(&b->hold_count) != 1) {
884 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
885 lru_remove(&bc->lru[b->list_mode], &b->lru);
888 cache_write_unlock(bc, b->block);
895 typedef void (*b_release)(struct dm_buffer *);
897 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
899 struct rb_node *n = root->rb_node;
901 struct dm_buffer *best = NULL;
904 b = container_of(n, struct dm_buffer, node);
906 if (b->block == block)
909 if (block <= b->block) {
920 static void __remove_range(struct dm_buffer_cache *bc,
921 struct rb_root *root,
922 sector_t begin, sector_t end,
923 b_predicate pred, b_release release)
930 b = __find_next(root, begin);
931 if (!b || (b->block >= end))
934 begin = b->block + 1;
936 if (atomic_read(&b->hold_count))
939 if (pred(b, NULL) == ER_EVICT) {
940 rb_erase(&b->node, root);
941 lru_remove(&bc->lru[b->list_mode], &b->lru);
947 static void cache_remove_range(struct dm_buffer_cache *bc,
948 sector_t begin, sector_t end,
949 b_predicate pred, b_release release)
953 BUG_ON(bc->no_sleep);
954 for (i = 0; i < bc->num_locks; i++) {
955 down_write(&bc->trees[i].u.lock);
956 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
957 up_write(&bc->trees[i].u.lock);
961 /*----------------------------------------------------------------*/
964 * Linking of buffers:
965 * All buffers are linked to buffer_cache with their node field.
967 * Clean buffers that are not being written (B_WRITING not set)
968 * are linked to lru[LIST_CLEAN] with their lru_list field.
970 * Dirty and clean buffers that are being written are linked to
971 * lru[LIST_DIRTY] with their lru_list field. When the write
972 * finishes, the buffer cannot be relinked immediately (because we
973 * are in an interrupt context and relinking requires process
974 * context), so some clean-not-writing buffers can be held on
975 * dirty_lru too. They are later added to lru in the process
978 struct dm_bufio_client {
979 struct block_device *bdev;
980 unsigned int block_size;
981 s8 sectors_per_block_bits;
987 int async_write_error;
989 void (*alloc_callback)(struct dm_buffer *buf);
990 void (*write_callback)(struct dm_buffer *buf);
991 struct kmem_cache *slab_buffer;
992 struct kmem_cache *slab_cache;
993 struct dm_io_client *dm_io;
995 struct list_head reserved_buffers;
996 unsigned int need_reserved_buffers;
998 unsigned int minimum_buffers;
1002 struct shrinker *shrinker;
1003 struct work_struct shrink_work;
1004 atomic_long_t need_shrink;
1006 wait_queue_head_t free_buffer_wait;
1008 struct list_head client_list;
1011 * Used by global_cleanup to sort the clients list.
1013 unsigned long oldest_buffer;
1015 struct dm_buffer_cache cache; /* must be last member */
1018 /*----------------------------------------------------------------*/
1020 #define dm_bufio_in_request() (!!current->bio_list)
1022 static void dm_bufio_lock(struct dm_bufio_client *c)
1024 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1025 spin_lock_bh(&c->spinlock);
1027 mutex_lock_nested(&c->lock, dm_bufio_in_request());
1030 static void dm_bufio_unlock(struct dm_bufio_client *c)
1032 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1033 spin_unlock_bh(&c->spinlock);
1035 mutex_unlock(&c->lock);
1038 /*----------------------------------------------------------------*/
1041 * Default cache size: available memory divided by the ratio.
1043 static unsigned long dm_bufio_default_cache_size;
1046 * Total cache size set by the user.
1048 static unsigned long dm_bufio_cache_size;
1051 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1052 * at any time. If it disagrees, the user has changed cache size.
1054 static unsigned long dm_bufio_cache_size_latch;
1056 static DEFINE_SPINLOCK(global_spinlock);
1059 * Buffers are freed after this timeout
1061 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1062 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1064 static unsigned long dm_bufio_peak_allocated;
1065 static unsigned long dm_bufio_allocated_kmem_cache;
1066 static unsigned long dm_bufio_allocated_kmalloc;
1067 static unsigned long dm_bufio_allocated_get_free_pages;
1068 static unsigned long dm_bufio_allocated_vmalloc;
1069 static unsigned long dm_bufio_current_allocated;
1071 /*----------------------------------------------------------------*/
1074 * The current number of clients.
1076 static int dm_bufio_client_count;
1079 * The list of all clients.
1081 static LIST_HEAD(dm_bufio_all_clients);
1084 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1086 static DEFINE_MUTEX(dm_bufio_clients_lock);
1088 static struct workqueue_struct *dm_bufio_wq;
1089 static struct delayed_work dm_bufio_cleanup_old_work;
1090 static struct work_struct dm_bufio_replacement_work;
1093 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1094 static void buffer_record_stack(struct dm_buffer *b)
1096 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1100 /*----------------------------------------------------------------*/
1102 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1104 unsigned char data_mode;
1107 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1108 &dm_bufio_allocated_kmem_cache,
1109 &dm_bufio_allocated_kmalloc,
1110 &dm_bufio_allocated_get_free_pages,
1111 &dm_bufio_allocated_vmalloc,
1114 data_mode = b->data_mode;
1115 diff = (long)b->c->block_size;
1119 spin_lock(&global_spinlock);
1121 *class_ptr[data_mode] += diff;
1123 dm_bufio_current_allocated += diff;
1125 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1126 dm_bufio_peak_allocated = dm_bufio_current_allocated;
1129 if (dm_bufio_current_allocated > dm_bufio_cache_size)
1130 queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1133 spin_unlock(&global_spinlock);
1137 * Change the number of clients and recalculate per-client limit.
1139 static void __cache_size_refresh(void)
1141 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1143 if (WARN_ON(dm_bufio_client_count < 0))
1146 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1149 * Use default if set to 0 and report the actual cache size used.
1151 if (!dm_bufio_cache_size_latch) {
1152 (void)cmpxchg(&dm_bufio_cache_size, 0,
1153 dm_bufio_default_cache_size);
1154 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1159 * Allocating buffer data.
1161 * Small buffers are allocated with kmem_cache, to use space optimally.
1163 * For large buffers, we choose between get_free_pages and vmalloc.
1164 * Each has advantages and disadvantages.
1166 * __get_free_pages can randomly fail if the memory is fragmented.
1167 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1168 * as low as 128M) so using it for caching is not appropriate.
1170 * If the allocation may fail we use __get_free_pages. Memory fragmentation
1171 * won't have a fatal effect here, but it just causes flushes of some other
1172 * buffers and more I/O will be performed. Don't use __get_free_pages if it
1173 * always fails (i.e. order > MAX_PAGE_ORDER).
1175 * If the allocation shouldn't fail we use __vmalloc. This is only for the
1176 * initial reserve allocation, so there's no risk of wasting all vmalloc
1179 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1180 unsigned char *data_mode)
1182 if (unlikely(c->slab_cache != NULL)) {
1183 *data_mode = DATA_MODE_SLAB;
1184 return kmem_cache_alloc(c->slab_cache, gfp_mask);
1187 if (unlikely(c->block_size < PAGE_SIZE)) {
1188 *data_mode = DATA_MODE_KMALLOC;
1189 return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE);
1192 if (c->block_size <= KMALLOC_MAX_SIZE &&
1193 gfp_mask & __GFP_NORETRY) {
1194 *data_mode = DATA_MODE_GET_FREE_PAGES;
1195 return (void *)__get_free_pages(gfp_mask,
1196 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1199 *data_mode = DATA_MODE_VMALLOC;
1201 return __vmalloc(c->block_size, gfp_mask);
1205 * Free buffer's data.
1207 static void free_buffer_data(struct dm_bufio_client *c,
1208 void *data, unsigned char data_mode)
1210 switch (data_mode) {
1211 case DATA_MODE_SLAB:
1212 kmem_cache_free(c->slab_cache, data);
1215 case DATA_MODE_KMALLOC:
1219 case DATA_MODE_GET_FREE_PAGES:
1220 free_pages((unsigned long)data,
1221 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1224 case DATA_MODE_VMALLOC:
1229 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1236 * Allocate buffer and its data.
1238 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1240 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1247 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1249 kmem_cache_free(c->slab_buffer, b);
1252 adjust_total_allocated(b, false);
1254 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1261 * Free buffer and its data.
1263 static void free_buffer(struct dm_buffer *b)
1265 struct dm_bufio_client *c = b->c;
1267 adjust_total_allocated(b, true);
1268 free_buffer_data(c, b->data, b->data_mode);
1269 kmem_cache_free(c->slab_buffer, b);
1273 *--------------------------------------------------------------------------
1274 * Submit I/O on the buffer.
1276 * Bio interface is faster but it has some problems:
1277 * the vector list is limited (increasing this limit increases
1278 * memory-consumption per buffer, so it is not viable);
1280 * the memory must be direct-mapped, not vmalloced;
1282 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1283 * it is not vmalloced, try using the bio interface.
1285 * If the buffer is big, if it is vmalloced or if the underlying device
1286 * rejects the bio because it is too large, use dm-io layer to do the I/O.
1287 * The dm-io layer splits the I/O into multiple requests, avoiding the above
1289 *--------------------------------------------------------------------------
1293 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1294 * that the request was handled directly with bio interface.
1296 static void dmio_complete(unsigned long error, void *context)
1298 struct dm_buffer *b = context;
1300 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1303 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1304 unsigned int n_sectors, unsigned int offset,
1305 unsigned short ioprio)
1308 struct dm_io_request io_req = {
1310 .notify.fn = dmio_complete,
1311 .notify.context = b,
1312 .client = b->c->dm_io,
1314 struct dm_io_region region = {
1320 if (b->data_mode != DATA_MODE_VMALLOC) {
1321 io_req.mem.type = DM_IO_KMEM;
1322 io_req.mem.ptr.addr = (char *)b->data + offset;
1324 io_req.mem.type = DM_IO_VMA;
1325 io_req.mem.ptr.vma = (char *)b->data + offset;
1328 r = dm_io(&io_req, 1, ®ion, NULL, ioprio);
1330 b->end_io(b, errno_to_blk_status(r));
1333 static void bio_complete(struct bio *bio)
1335 struct dm_buffer *b = bio->bi_private;
1336 blk_status_t status = bio->bi_status;
1340 b->end_io(b, status);
1343 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1344 unsigned int n_sectors, unsigned int offset,
1345 unsigned short ioprio)
1351 bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1353 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1356 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1357 bio->bi_iter.bi_sector = sector;
1358 bio->bi_end_io = bio_complete;
1359 bio->bi_private = b;
1360 bio->bi_ioprio = ioprio;
1362 ptr = (char *)b->data + offset;
1363 len = n_sectors << SECTOR_SHIFT;
1365 __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1370 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1374 if (likely(c->sectors_per_block_bits >= 0))
1375 sector = block << c->sectors_per_block_bits;
1377 sector = block * (c->block_size >> SECTOR_SHIFT);
1383 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio,
1384 void (*end_io)(struct dm_buffer *, blk_status_t))
1386 unsigned int n_sectors;
1388 unsigned int offset, end;
1392 sector = block_to_sector(b->c, b->block);
1394 if (op != REQ_OP_WRITE) {
1395 n_sectors = b->c->block_size >> SECTOR_SHIFT;
1398 if (b->c->write_callback)
1399 b->c->write_callback(b);
1400 offset = b->write_start;
1402 offset &= -DM_BUFIO_WRITE_ALIGN;
1403 end += DM_BUFIO_WRITE_ALIGN - 1;
1404 end &= -DM_BUFIO_WRITE_ALIGN;
1405 if (unlikely(end > b->c->block_size))
1406 end = b->c->block_size;
1408 sector += offset >> SECTOR_SHIFT;
1409 n_sectors = (end - offset) >> SECTOR_SHIFT;
1412 if (b->data_mode != DATA_MODE_VMALLOC)
1413 use_bio(b, op, sector, n_sectors, offset, ioprio);
1415 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1419 *--------------------------------------------------------------
1420 * Writing dirty buffers
1421 *--------------------------------------------------------------
1425 * The endio routine for write.
1427 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1430 static void write_endio(struct dm_buffer *b, blk_status_t status)
1432 b->write_error = status;
1433 if (unlikely(status)) {
1434 struct dm_bufio_client *c = b->c;
1436 (void)cmpxchg(&c->async_write_error, 0,
1437 blk_status_to_errno(status));
1440 BUG_ON(!test_bit(B_WRITING, &b->state));
1442 smp_mb__before_atomic();
1443 clear_bit(B_WRITING, &b->state);
1444 smp_mb__after_atomic();
1446 wake_up_bit(&b->state, B_WRITING);
1450 * Initiate a write on a dirty buffer, but don't wait for it.
1452 * - If the buffer is not dirty, exit.
1453 * - If there some previous write going on, wait for it to finish (we can't
1454 * have two writes on the same buffer simultaneously).
1455 * - Submit our write and don't wait on it. We set B_WRITING indicating
1456 * that there is a write in progress.
1458 static void __write_dirty_buffer(struct dm_buffer *b,
1459 struct list_head *write_list)
1461 if (!test_bit(B_DIRTY, &b->state))
1464 clear_bit(B_DIRTY, &b->state);
1465 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1467 b->write_start = b->dirty_start;
1468 b->write_end = b->dirty_end;
1471 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1473 list_add_tail(&b->write_list, write_list);
1476 static void __flush_write_list(struct list_head *write_list)
1478 struct blk_plug plug;
1480 blk_start_plug(&plug);
1481 while (!list_empty(write_list)) {
1482 struct dm_buffer *b =
1483 list_entry(write_list->next, struct dm_buffer, write_list);
1484 list_del(&b->write_list);
1485 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1488 blk_finish_plug(&plug);
1492 * Wait until any activity on the buffer finishes. Possibly write the
1493 * buffer if it is dirty. When this function finishes, there is no I/O
1494 * running on the buffer and the buffer is not dirty.
1496 static void __make_buffer_clean(struct dm_buffer *b)
1498 BUG_ON(atomic_read(&b->hold_count));
1500 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1501 if (!smp_load_acquire(&b->state)) /* fast case */
1504 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1505 __write_dirty_buffer(b, NULL);
1506 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1509 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1511 struct dm_bufio_client *c = context;
1513 /* These should never happen */
1514 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1515 return ER_DONT_EVICT;
1516 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1517 return ER_DONT_EVICT;
1518 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1519 return ER_DONT_EVICT;
1521 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1522 unlikely(test_bit(B_READING, &b->state)))
1523 return ER_DONT_EVICT;
1528 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1530 /* These should never happen */
1531 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1532 return ER_DONT_EVICT;
1533 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1534 return ER_DONT_EVICT;
1540 * Find some buffer that is not held by anybody, clean it, unlink it and
1543 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1545 struct dm_buffer *b;
1547 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1549 /* this also waits for pending reads */
1550 __make_buffer_clean(b);
1554 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1557 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1559 __make_buffer_clean(b);
1567 * Wait until some other threads free some buffer or release hold count on
1570 * This function is entered with c->lock held, drops it and regains it
1573 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1575 DECLARE_WAITQUEUE(wait, current);
1577 add_wait_queue(&c->free_buffer_wait, &wait);
1578 set_current_state(TASK_UNINTERRUPTIBLE);
1582 * It's possible to miss a wake up event since we don't always
1583 * hold c->lock when wake_up is called. So we have a timeout here,
1586 io_schedule_timeout(5 * HZ);
1588 remove_wait_queue(&c->free_buffer_wait, &wait);
1601 * Allocate a new buffer. If the allocation is not possible, wait until
1602 * some other thread frees a buffer.
1604 * May drop the lock and regain it.
1606 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1608 struct dm_buffer *b;
1609 bool tried_noio_alloc = false;
1612 * dm-bufio is resistant to allocation failures (it just keeps
1613 * one buffer reserved in cases all the allocations fail).
1614 * So set flags to not try too hard:
1615 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1616 * mutex and wait ourselves.
1617 * __GFP_NORETRY: don't retry and rather return failure
1618 * __GFP_NOMEMALLOC: don't use emergency reserves
1619 * __GFP_NOWARN: don't print a warning in case of failure
1621 * For debugging, if we set the cache size to 1, no new buffers will
1625 if (dm_bufio_cache_size_latch != 1) {
1626 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1631 if (nf == NF_PREFETCH)
1634 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1636 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1640 tried_noio_alloc = true;
1643 if (!list_empty(&c->reserved_buffers)) {
1644 b = list_to_buffer(c->reserved_buffers.next);
1645 list_del(&b->lru.list);
1646 c->need_reserved_buffers++;
1651 b = __get_unclaimed_buffer(c);
1655 __wait_for_free_buffer(c);
1659 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1661 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1666 if (c->alloc_callback)
1667 c->alloc_callback(b);
1673 * Free a buffer and wake other threads waiting for free buffers.
1675 static void __free_buffer_wake(struct dm_buffer *b)
1677 struct dm_bufio_client *c = b->c;
1680 if (!c->need_reserved_buffers)
1683 list_add(&b->lru.list, &c->reserved_buffers);
1684 c->need_reserved_buffers--;
1688 * We hold the bufio lock here, so no one can add entries to the
1689 * wait queue anyway.
1691 if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1692 wake_up(&c->free_buffer_wait);
1695 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1697 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1698 return ER_DONT_EVICT; /* should never happen */
1700 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1701 return ER_DONT_EVICT;
1706 static void __move_clean_buffers(struct dm_bufio_client *c)
1708 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1711 struct write_context {
1713 struct list_head *write_list;
1716 static enum it_action write_one(struct dm_buffer *b, void *context)
1718 struct write_context *wc = context;
1720 if (wc->no_wait && test_bit(B_WRITING, &b->state))
1723 __write_dirty_buffer(b, wc->write_list);
1727 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1728 struct list_head *write_list)
1730 struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1732 __move_clean_buffers(c);
1733 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1737 * Check if we're over watermark.
1738 * If we are over threshold_buffers, start freeing buffers.
1739 * If we're over "limit_buffers", block until we get under the limit.
1741 static void __check_watermark(struct dm_bufio_client *c,
1742 struct list_head *write_list)
1744 if (cache_count(&c->cache, LIST_DIRTY) >
1745 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1746 __write_dirty_buffers_async(c, 1, write_list);
1750 *--------------------------------------------------------------
1752 *--------------------------------------------------------------
1755 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1758 * Relying on waitqueue_active() is racey, but we sleep
1759 * with schedule_timeout anyway.
1761 if (cache_put(&c->cache, b) &&
1762 unlikely(waitqueue_active(&c->free_buffer_wait)))
1763 wake_up(&c->free_buffer_wait);
1767 * This assumes you have already checked the cache to see if the buffer
1768 * is already present (it will recheck after dropping the lock for allocation).
1770 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1771 enum new_flag nf, int *need_submit,
1772 struct list_head *write_list)
1774 struct dm_buffer *b, *new_b = NULL;
1778 /* This can't be called with NF_GET */
1779 if (WARN_ON_ONCE(nf == NF_GET))
1782 new_b = __alloc_buffer_wait(c, nf);
1787 * We've had a period where the mutex was unlocked, so need to
1788 * recheck the buffer tree.
1790 b = cache_get(&c->cache, block);
1792 __free_buffer_wake(new_b);
1796 __check_watermark(c, write_list);
1799 atomic_set(&b->hold_count, 1);
1800 WRITE_ONCE(b->last_accessed, jiffies);
1804 b->list_mode = LIST_CLEAN;
1809 b->state = 1 << B_READING;
1814 * We mustn't insert into the cache until the B_READING state
1815 * is set. Otherwise another thread could get it and use
1816 * it before it had been read.
1818 cache_insert(&c->cache, b);
1823 if (nf == NF_PREFETCH) {
1824 cache_put_and_wake(c, b);
1829 * Note: it is essential that we don't wait for the buffer to be
1830 * read if dm_bufio_get function is used. Both dm_bufio_get and
1831 * dm_bufio_prefetch can be used in the driver request routine.
1832 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1833 * the same buffer, it would deadlock if we waited.
1835 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1836 cache_put_and_wake(c, b);
1844 * The endio routine for reading: set the error, clear the bit and wake up
1845 * anyone waiting on the buffer.
1847 static void read_endio(struct dm_buffer *b, blk_status_t status)
1849 b->read_error = status;
1851 BUG_ON(!test_bit(B_READING, &b->state));
1853 smp_mb__before_atomic();
1854 clear_bit(B_READING, &b->state);
1855 smp_mb__after_atomic();
1857 wake_up_bit(&b->state, B_READING);
1861 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1862 * functions is similar except that dm_bufio_new doesn't read the
1863 * buffer from the disk (assuming that the caller overwrites all the data
1864 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1866 static void *new_read(struct dm_bufio_client *c, sector_t block,
1867 enum new_flag nf, struct dm_buffer **bp,
1868 unsigned short ioprio)
1870 int need_submit = 0;
1871 struct dm_buffer *b;
1873 LIST_HEAD(write_list);
1878 * Fast path, hopefully the block is already in the cache. No need
1879 * to get the client lock for this.
1881 b = cache_get(&c->cache, block);
1883 if (nf == NF_PREFETCH) {
1884 cache_put_and_wake(c, b);
1889 * Note: it is essential that we don't wait for the buffer to be
1890 * read if dm_bufio_get function is used. Both dm_bufio_get and
1891 * dm_bufio_prefetch can be used in the driver request routine.
1892 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1893 * the same buffer, it would deadlock if we waited.
1895 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1896 cache_put_and_wake(c, b);
1906 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1910 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1911 if (b && (atomic_read(&b->hold_count) == 1))
1912 buffer_record_stack(b);
1915 __flush_write_list(&write_list);
1921 submit_io(b, REQ_OP_READ, ioprio, read_endio);
1923 if (nf != NF_GET) /* we already tested this condition above */
1924 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1926 if (b->read_error) {
1927 int error = blk_status_to_errno(b->read_error);
1929 dm_bufio_release(b);
1931 return ERR_PTR(error);
1939 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1940 struct dm_buffer **bp)
1942 return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT);
1944 EXPORT_SYMBOL_GPL(dm_bufio_get);
1946 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1947 struct dm_buffer **bp, unsigned short ioprio)
1949 if (WARN_ON_ONCE(dm_bufio_in_request()))
1950 return ERR_PTR(-EINVAL);
1952 return new_read(c, block, NF_READ, bp, ioprio);
1955 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1956 struct dm_buffer **bp)
1958 return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT);
1960 EXPORT_SYMBOL_GPL(dm_bufio_read);
1962 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block,
1963 struct dm_buffer **bp, unsigned short ioprio)
1965 return __dm_bufio_read(c, block, bp, ioprio);
1967 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio);
1969 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1970 struct dm_buffer **bp)
1972 if (WARN_ON_ONCE(dm_bufio_in_request()))
1973 return ERR_PTR(-EINVAL);
1975 return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT);
1977 EXPORT_SYMBOL_GPL(dm_bufio_new);
1979 static void __dm_bufio_prefetch(struct dm_bufio_client *c,
1980 sector_t block, unsigned int n_blocks,
1981 unsigned short ioprio)
1983 struct blk_plug plug;
1985 LIST_HEAD(write_list);
1987 if (WARN_ON_ONCE(dm_bufio_in_request()))
1988 return; /* should never happen */
1990 blk_start_plug(&plug);
1992 for (; n_blocks--; block++) {
1994 struct dm_buffer *b;
1996 b = cache_get(&c->cache, block);
1998 /* already in cache */
1999 cache_put_and_wake(c, b);
2004 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
2006 if (unlikely(!list_empty(&write_list))) {
2008 blk_finish_plug(&plug);
2009 __flush_write_list(&write_list);
2010 blk_start_plug(&plug);
2013 if (unlikely(b != NULL)) {
2017 submit_io(b, REQ_OP_READ, ioprio, read_endio);
2018 dm_bufio_release(b);
2030 blk_finish_plug(&plug);
2033 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks)
2035 return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT);
2037 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2039 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block,
2040 unsigned int n_blocks, unsigned short ioprio)
2042 return __dm_bufio_prefetch(c, block, n_blocks, ioprio);
2044 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio);
2046 void dm_bufio_release(struct dm_buffer *b)
2048 struct dm_bufio_client *c = b->c;
2051 * If there were errors on the buffer, and the buffer is not
2052 * to be written, free the buffer. There is no point in caching
2055 if ((b->read_error || b->write_error) &&
2056 !test_bit_acquire(B_READING, &b->state) &&
2057 !test_bit(B_WRITING, &b->state) &&
2058 !test_bit(B_DIRTY, &b->state)) {
2061 /* cache remove can fail if there are other holders */
2062 if (cache_remove(&c->cache, b)) {
2063 __free_buffer_wake(b);
2071 cache_put_and_wake(c, b);
2073 EXPORT_SYMBOL_GPL(dm_bufio_release);
2075 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2076 unsigned int start, unsigned int end)
2078 struct dm_bufio_client *c = b->c;
2080 BUG_ON(start >= end);
2081 BUG_ON(end > b->c->block_size);
2085 BUG_ON(test_bit(B_READING, &b->state));
2087 if (!test_and_set_bit(B_DIRTY, &b->state)) {
2088 b->dirty_start = start;
2090 cache_mark(&c->cache, b, LIST_DIRTY);
2092 if (start < b->dirty_start)
2093 b->dirty_start = start;
2094 if (end > b->dirty_end)
2100 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2102 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2104 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2106 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2108 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2110 LIST_HEAD(write_list);
2112 if (WARN_ON_ONCE(dm_bufio_in_request()))
2113 return; /* should never happen */
2116 __write_dirty_buffers_async(c, 0, &write_list);
2118 __flush_write_list(&write_list);
2120 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2123 * For performance, it is essential that the buffers are written asynchronously
2124 * and simultaneously (so that the block layer can merge the writes) and then
2127 * Finally, we flush hardware disk cache.
2129 static bool is_writing(struct lru_entry *e, void *context)
2131 struct dm_buffer *b = le_to_buffer(e);
2133 return test_bit(B_WRITING, &b->state);
2136 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2139 unsigned long nr_buffers;
2140 struct lru_entry *e;
2143 LIST_HEAD(write_list);
2146 __write_dirty_buffers_async(c, 0, &write_list);
2148 __flush_write_list(&write_list);
2151 nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2152 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2153 while ((e = lru_iter_next(&it, is_writing, c))) {
2154 struct dm_buffer *b = le_to_buffer(e);
2155 __cache_inc_buffer(b);
2157 BUG_ON(test_bit(B_READING, &b->state));
2162 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2165 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2168 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2169 cache_mark(&c->cache, b, LIST_CLEAN);
2171 cache_put_and_wake(c, b);
2177 wake_up(&c->free_buffer_wait);
2180 a = xchg(&c->async_write_error, 0);
2181 f = dm_bufio_issue_flush(c);
2187 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2190 * Use dm-io to send an empty barrier to flush the device.
2192 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2194 struct dm_io_request io_req = {
2195 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2196 .mem.type = DM_IO_KMEM,
2197 .mem.ptr.addr = NULL,
2200 struct dm_io_region io_reg = {
2206 if (WARN_ON_ONCE(dm_bufio_in_request()))
2209 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2211 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2214 * Use dm-io to send a discard request to flush the device.
2216 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2218 struct dm_io_request io_req = {
2219 .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2220 .mem.type = DM_IO_KMEM,
2221 .mem.ptr.addr = NULL,
2224 struct dm_io_region io_reg = {
2226 .sector = block_to_sector(c, block),
2227 .count = block_to_sector(c, count),
2230 if (WARN_ON_ONCE(dm_bufio_in_request()))
2231 return -EINVAL; /* discards are optional */
2233 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2235 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2237 static bool forget_buffer(struct dm_bufio_client *c, sector_t block)
2239 struct dm_buffer *b;
2241 b = cache_get(&c->cache, block);
2243 if (likely(!smp_load_acquire(&b->state))) {
2244 if (cache_remove(&c->cache, b))
2245 __free_buffer_wake(b);
2247 cache_put_and_wake(c, b);
2249 cache_put_and_wake(c, b);
2253 return b ? true : false;
2257 * Free the given buffer.
2259 * This is just a hint, if the buffer is in use or dirty, this function
2262 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2265 forget_buffer(c, block);
2268 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2270 static enum evict_result idle(struct dm_buffer *b, void *context)
2272 return b->state ? ER_DONT_EVICT : ER_EVICT;
2275 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2278 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2281 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2283 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2285 c->minimum_buffers = n;
2287 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2289 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2291 return c->block_size;
2293 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2295 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2297 sector_t s = bdev_nr_sectors(c->bdev);
2303 if (likely(c->sectors_per_block_bits >= 0))
2304 s >>= c->sectors_per_block_bits;
2306 sector_div(s, c->block_size >> SECTOR_SHIFT);
2309 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2311 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2315 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2317 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2321 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2323 void *dm_bufio_get_block_data(struct dm_buffer *b)
2327 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2329 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2333 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2335 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2339 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2341 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2343 bool *warned = context;
2345 WARN_ON(!(*warned));
2347 DMERR("leaked buffer %llx, hold count %u, list %d",
2348 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2349 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2350 stack_trace_print(b->stack_entries, b->stack_len, 1);
2351 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2352 atomic_set(&b->hold_count, 0);
2357 static void drop_buffers(struct dm_bufio_client *c)
2360 struct dm_buffer *b;
2362 if (WARN_ON(dm_bufio_in_request()))
2363 return; /* should never happen */
2366 * An optimization so that the buffers are not written one-by-one.
2368 dm_bufio_write_dirty_buffers_async(c);
2372 while ((b = __get_unclaimed_buffer(c)))
2373 __free_buffer_wake(b);
2375 for (i = 0; i < LIST_SIZE; i++) {
2376 bool warned = false;
2378 cache_iterate(&c->cache, i, warn_leak, &warned);
2381 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2382 while ((b = __get_unclaimed_buffer(c)))
2383 __free_buffer_wake(b);
2386 for (i = 0; i < LIST_SIZE; i++)
2387 WARN_ON(cache_count(&c->cache, i));
2392 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2394 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2396 if (likely(c->sectors_per_block_bits >= 0))
2397 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2399 retain_bytes /= c->block_size;
2401 return retain_bytes;
2404 static void __scan(struct dm_bufio_client *c)
2407 struct dm_buffer *b;
2408 unsigned long freed = 0;
2409 unsigned long retain_target = get_retain_buffers(c);
2410 unsigned long count = cache_total(&c->cache);
2412 for (l = 0; l < LIST_SIZE; l++) {
2414 if (count - freed <= retain_target)
2415 atomic_long_set(&c->need_shrink, 0);
2416 if (!atomic_long_read(&c->need_shrink))
2419 b = cache_evict(&c->cache, l,
2420 l == LIST_CLEAN ? is_clean : is_dirty, c);
2424 __make_buffer_clean(b);
2425 __free_buffer_wake(b);
2427 atomic_long_dec(&c->need_shrink);
2434 static void shrink_work(struct work_struct *w)
2436 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2443 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2445 struct dm_bufio_client *c;
2447 c = shrink->private_data;
2448 atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2449 queue_work(dm_bufio_wq, &c->shrink_work);
2451 return sc->nr_to_scan;
2454 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2456 struct dm_bufio_client *c = shrink->private_data;
2457 unsigned long count = cache_total(&c->cache);
2458 unsigned long retain_target = get_retain_buffers(c);
2459 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2461 if (unlikely(count < retain_target))
2464 count -= retain_target;
2466 if (unlikely(count < queued_for_cleanup))
2469 count -= queued_for_cleanup;
2475 * Create the buffering interface
2477 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2478 unsigned int reserved_buffers, unsigned int aux_size,
2479 void (*alloc_callback)(struct dm_buffer *),
2480 void (*write_callback)(struct dm_buffer *),
2484 unsigned int num_locks;
2485 struct dm_bufio_client *c;
2487 static atomic_t seqno = ATOMIC_INIT(0);
2489 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2490 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2495 num_locks = dm_num_hash_locks();
2496 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2501 cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2504 c->block_size = block_size;
2505 if (is_power_of_2(block_size))
2506 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2508 c->sectors_per_block_bits = -1;
2510 c->alloc_callback = alloc_callback;
2511 c->write_callback = write_callback;
2513 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2515 static_branch_inc(&no_sleep_enabled);
2518 mutex_init(&c->lock);
2519 spin_lock_init(&c->spinlock);
2520 INIT_LIST_HEAD(&c->reserved_buffers);
2521 c->need_reserved_buffers = reserved_buffers;
2523 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2525 init_waitqueue_head(&c->free_buffer_wait);
2526 c->async_write_error = 0;
2528 c->dm_io = dm_io_client_create();
2529 if (IS_ERR(c->dm_io)) {
2530 r = PTR_ERR(c->dm_io);
2534 if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) {
2535 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2537 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u",
2538 block_size, atomic_inc_return(&seqno));
2539 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2540 SLAB_RECLAIM_ACCOUNT, NULL);
2541 if (!c->slab_cache) {
2547 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u",
2548 aux_size, atomic_inc_return(&seqno));
2550 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u",
2551 atomic_inc_return(&seqno));
2552 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2553 0, SLAB_RECLAIM_ACCOUNT, NULL);
2554 if (!c->slab_buffer) {
2559 while (c->need_reserved_buffers) {
2560 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2566 __free_buffer_wake(b);
2569 INIT_WORK(&c->shrink_work, shrink_work);
2570 atomic_long_set(&c->need_shrink, 0);
2572 c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2573 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2579 c->shrinker->count_objects = dm_bufio_shrink_count;
2580 c->shrinker->scan_objects = dm_bufio_shrink_scan;
2581 c->shrinker->seeks = 1;
2582 c->shrinker->batch = 0;
2583 c->shrinker->private_data = c;
2585 shrinker_register(c->shrinker);
2587 mutex_lock(&dm_bufio_clients_lock);
2588 dm_bufio_client_count++;
2589 list_add(&c->client_list, &dm_bufio_all_clients);
2590 __cache_size_refresh();
2591 mutex_unlock(&dm_bufio_clients_lock);
2596 while (!list_empty(&c->reserved_buffers)) {
2597 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2599 list_del(&b->lru.list);
2602 kmem_cache_destroy(c->slab_cache);
2603 kmem_cache_destroy(c->slab_buffer);
2604 dm_io_client_destroy(c->dm_io);
2606 mutex_destroy(&c->lock);
2608 static_branch_dec(&no_sleep_enabled);
2613 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2616 * Free the buffering interface.
2617 * It is required that there are no references on any buffers.
2619 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2625 shrinker_free(c->shrinker);
2626 flush_work(&c->shrink_work);
2628 mutex_lock(&dm_bufio_clients_lock);
2630 list_del(&c->client_list);
2631 dm_bufio_client_count--;
2632 __cache_size_refresh();
2634 mutex_unlock(&dm_bufio_clients_lock);
2636 WARN_ON(c->need_reserved_buffers);
2638 while (!list_empty(&c->reserved_buffers)) {
2639 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2641 list_del(&b->lru.list);
2645 for (i = 0; i < LIST_SIZE; i++)
2646 if (cache_count(&c->cache, i))
2647 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2649 for (i = 0; i < LIST_SIZE; i++)
2650 WARN_ON(cache_count(&c->cache, i));
2652 cache_destroy(&c->cache);
2653 kmem_cache_destroy(c->slab_cache);
2654 kmem_cache_destroy(c->slab_buffer);
2655 dm_io_client_destroy(c->dm_io);
2656 mutex_destroy(&c->lock);
2658 static_branch_dec(&no_sleep_enabled);
2661 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2663 void dm_bufio_client_reset(struct dm_bufio_client *c)
2666 flush_work(&c->shrink_work);
2668 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2670 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2674 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2676 /*--------------------------------------------------------------*/
2678 static unsigned int get_max_age_hz(void)
2680 unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2682 if (max_age > UINT_MAX / HZ)
2683 max_age = UINT_MAX / HZ;
2685 return max_age * HZ;
2688 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2690 return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2693 struct evict_params {
2695 unsigned long age_hz;
2698 * This gets updated with the largest last_accessed (ie. most
2699 * recently used) of the evicted buffers. It will not be reinitialised
2700 * by __evict_many(), so you can use it across multiple invocations.
2702 unsigned long last_accessed;
2706 * We may not be able to evict this buffer if IO pending or the client
2707 * is still using it.
2709 * And if GFP_NOFS is used, we must not do any I/O because we hold
2710 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2711 * rerouted to different bufio client.
2713 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2715 struct evict_params *params = context;
2717 if (!(params->gfp & __GFP_FS) ||
2718 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2719 if (test_bit_acquire(B_READING, &b->state) ||
2720 test_bit(B_WRITING, &b->state) ||
2721 test_bit(B_DIRTY, &b->state))
2722 return ER_DONT_EVICT;
2725 return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2728 static unsigned long __evict_many(struct dm_bufio_client *c,
2729 struct evict_params *params,
2730 int list_mode, unsigned long max_count)
2732 unsigned long count;
2733 unsigned long last_accessed;
2734 struct dm_buffer *b;
2736 for (count = 0; count < max_count; count++) {
2737 b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2741 last_accessed = READ_ONCE(b->last_accessed);
2742 if (time_after_eq(params->last_accessed, last_accessed))
2743 params->last_accessed = last_accessed;
2745 __make_buffer_clean(b);
2746 __free_buffer_wake(b);
2754 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2756 struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2757 unsigned long retain = get_retain_buffers(c);
2758 unsigned long count;
2759 LIST_HEAD(write_list);
2763 __check_watermark(c, &write_list);
2764 if (unlikely(!list_empty(&write_list))) {
2766 __flush_write_list(&write_list);
2770 count = cache_total(&c->cache);
2772 __evict_many(c, ¶ms, LIST_CLEAN, count - retain);
2777 static void cleanup_old_buffers(void)
2779 unsigned long max_age_hz = get_max_age_hz();
2780 struct dm_bufio_client *c;
2782 mutex_lock(&dm_bufio_clients_lock);
2784 __cache_size_refresh();
2786 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2787 evict_old_buffers(c, max_age_hz);
2789 mutex_unlock(&dm_bufio_clients_lock);
2792 static void work_fn(struct work_struct *w)
2794 cleanup_old_buffers();
2796 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2797 DM_BUFIO_WORK_TIMER_SECS * HZ);
2800 /*--------------------------------------------------------------*/
2803 * Global cleanup tries to evict the oldest buffers from across _all_
2804 * the clients. It does this by repeatedly evicting a few buffers from
2805 * the client that holds the oldest buffer. It's approximate, but hopefully
2808 static struct dm_bufio_client *__pop_client(void)
2810 struct list_head *h;
2812 if (list_empty(&dm_bufio_all_clients))
2815 h = dm_bufio_all_clients.next;
2817 return container_of(h, struct dm_bufio_client, client_list);
2821 * Inserts the client in the global client list based on its
2822 * 'oldest_buffer' field.
2824 static void __insert_client(struct dm_bufio_client *new_client)
2826 struct dm_bufio_client *c;
2827 struct list_head *h = dm_bufio_all_clients.next;
2829 while (h != &dm_bufio_all_clients) {
2830 c = container_of(h, struct dm_bufio_client, client_list);
2831 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2836 list_add_tail(&new_client->client_list, h);
2839 static unsigned long __evict_a_few(unsigned long nr_buffers)
2841 unsigned long count;
2842 struct dm_bufio_client *c;
2843 struct evict_params params = {
2846 /* set to jiffies in case there are no buffers in this client */
2847 .last_accessed = jiffies
2855 count = __evict_many(c, ¶ms, LIST_CLEAN, nr_buffers);
2859 c->oldest_buffer = params.last_accessed;
2865 static void check_watermarks(void)
2867 LIST_HEAD(write_list);
2868 struct dm_bufio_client *c;
2870 mutex_lock(&dm_bufio_clients_lock);
2871 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2873 __check_watermark(c, &write_list);
2876 mutex_unlock(&dm_bufio_clients_lock);
2878 __flush_write_list(&write_list);
2881 static void evict_old(void)
2883 unsigned long threshold = dm_bufio_cache_size -
2884 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2886 mutex_lock(&dm_bufio_clients_lock);
2887 while (dm_bufio_current_allocated > threshold) {
2888 if (!__evict_a_few(64))
2892 mutex_unlock(&dm_bufio_clients_lock);
2895 static void do_global_cleanup(struct work_struct *w)
2902 *--------------------------------------------------------------
2904 *--------------------------------------------------------------
2908 * This is called only once for the whole dm_bufio module.
2909 * It initializes memory limit.
2911 static int __init dm_bufio_init(void)
2915 dm_bufio_allocated_kmem_cache = 0;
2916 dm_bufio_allocated_kmalloc = 0;
2917 dm_bufio_allocated_get_free_pages = 0;
2918 dm_bufio_allocated_vmalloc = 0;
2919 dm_bufio_current_allocated = 0;
2921 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2922 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2924 if (mem > ULONG_MAX)
2928 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2929 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2932 dm_bufio_default_cache_size = mem;
2934 mutex_lock(&dm_bufio_clients_lock);
2935 __cache_size_refresh();
2936 mutex_unlock(&dm_bufio_clients_lock);
2938 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2942 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2943 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2944 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2945 DM_BUFIO_WORK_TIMER_SECS * HZ);
2951 * This is called once when unloading the dm_bufio module.
2953 static void __exit dm_bufio_exit(void)
2957 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2958 destroy_workqueue(dm_bufio_wq);
2960 if (dm_bufio_client_count) {
2961 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2962 __func__, dm_bufio_client_count);
2966 if (dm_bufio_current_allocated) {
2967 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2968 __func__, dm_bufio_current_allocated);
2972 if (dm_bufio_allocated_get_free_pages) {
2973 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2974 __func__, dm_bufio_allocated_get_free_pages);
2978 if (dm_bufio_allocated_vmalloc) {
2979 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2980 __func__, dm_bufio_allocated_vmalloc);
2984 WARN_ON(bug); /* leaks are not worth crashing the system */
2987 module_init(dm_bufio_init)
2988 module_exit(dm_bufio_exit)
2990 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2991 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2993 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2994 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2996 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2997 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2999 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
3000 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
3002 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
3003 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
3005 module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444);
3006 MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc");
3008 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
3009 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
3011 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
3012 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
3014 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
3015 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
3018 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
3019 MODULE_LICENSE("GPL");