]> Git Repo - J-linux.git/blob - drivers/irqchip/irq-gic-v3-its.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <[email protected]>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/genalloc.h>
16 #include <linux/interrupt.h>
17 #include <linux/iommu.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqdomain.h>
20 #include <linux/list.h>
21 #include <linux/log2.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/memblock.h>
24 #include <linux/mm.h>
25 #include <linux/msi.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_pci.h>
30 #include <linux/of_platform.h>
31 #include <linux/percpu.h>
32 #include <linux/set_memory.h>
33 #include <linux/slab.h>
34 #include <linux/syscore_ops.h>
35
36 #include <linux/irqchip.h>
37 #include <linux/irqchip/arm-gic-v3.h>
38 #include <linux/irqchip/arm-gic-v4.h>
39
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42
43 #include "irq-gic-common.h"
44 #include "irq-msi-lib.h"
45
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
49 #define ITS_FLAGS_FORCE_NON_SHAREABLE           (1ULL << 3)
50 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801        (1ULL << 4)
51
52 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
53 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
54 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
55
56 static u32 lpi_id_bits;
57
58 /*
59  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60  * deal with (one configuration byte per interrupt). PENDBASE has to
61  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62  */
63 #define LPI_NRBITS              lpi_id_bits
64 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66
67 static u8 __ro_after_init lpi_prop_prio;
68 static struct its_node *find_4_1_its(void);
69
70 /*
71  * Collection structure - just an ID, and a redistributor address to
72  * ping. We use one per CPU as a bag of interrupts assigned to this
73  * CPU.
74  */
75 struct its_collection {
76         u64                     target_address;
77         u16                     col_id;
78 };
79
80 /*
81  * The ITS_BASER structure - contains memory information, cached
82  * value of BASER register configuration and ITS page size.
83  */
84 struct its_baser {
85         void            *base;
86         u64             val;
87         u32             order;
88         u32             psz;
89 };
90
91 struct its_device;
92
93 /*
94  * The ITS structure - contains most of the infrastructure, with the
95  * top-level MSI domain, the command queue, the collections, and the
96  * list of devices writing to it.
97  *
98  * dev_alloc_lock has to be taken for device allocations, while the
99  * spinlock must be taken to parse data structures such as the device
100  * list.
101  */
102 struct its_node {
103         raw_spinlock_t          lock;
104         struct mutex            dev_alloc_lock;
105         struct list_head        entry;
106         void __iomem            *base;
107         void __iomem            *sgir_base;
108         phys_addr_t             phys_base;
109         struct its_cmd_block    *cmd_base;
110         struct its_cmd_block    *cmd_write;
111         struct its_baser        tables[GITS_BASER_NR_REGS];
112         struct its_collection   *collections;
113         struct fwnode_handle    *fwnode_handle;
114         u64                     (*get_msi_base)(struct its_device *its_dev);
115         u64                     typer;
116         u64                     cbaser_save;
117         u32                     ctlr_save;
118         u32                     mpidr;
119         struct list_head        its_device_list;
120         u64                     flags;
121         unsigned long           list_nr;
122         int                     numa_node;
123         unsigned int            msi_domain_flags;
124         u32                     pre_its_base; /* for Socionext Synquacer */
125         int                     vlpi_redist_offset;
126 };
127
128 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
129 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
130 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
131
132 #define ITS_ITT_ALIGN           SZ_256
133
134 /* The maximum number of VPEID bits supported by VLPI commands */
135 #define ITS_MAX_VPEID_BITS                                              \
136         ({                                                              \
137                 int nvpeid = 16;                                        \
138                 if (gic_rdists->has_rvpeid &&                           \
139                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
140                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
141                                       GICD_TYPER2_VID);                 \
142                                                                         \
143                 nvpeid;                                                 \
144         })
145 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
146
147 /* Convert page order to size in bytes */
148 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
149
150 struct event_lpi_map {
151         unsigned long           *lpi_map;
152         u16                     *col_map;
153         irq_hw_number_t         lpi_base;
154         int                     nr_lpis;
155         raw_spinlock_t          vlpi_lock;
156         struct its_vm           *vm;
157         struct its_vlpi_map     *vlpi_maps;
158         int                     nr_vlpis;
159 };
160
161 /*
162  * The ITS view of a device - belongs to an ITS, owns an interrupt
163  * translation table, and a list of interrupts.  If it some of its
164  * LPIs are injected into a guest (GICv4), the event_map.vm field
165  * indicates which one.
166  */
167 struct its_device {
168         struct list_head        entry;
169         struct its_node         *its;
170         struct event_lpi_map    event_map;
171         void                    *itt;
172         u32                     itt_sz;
173         u32                     nr_ites;
174         u32                     device_id;
175         bool                    shared;
176 };
177
178 static struct {
179         raw_spinlock_t          lock;
180         struct its_device       *dev;
181         struct its_vpe          **vpes;
182         int                     next_victim;
183 } vpe_proxy;
184
185 struct cpu_lpi_count {
186         atomic_t        managed;
187         atomic_t        unmanaged;
188 };
189
190 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
191
192 static LIST_HEAD(its_nodes);
193 static DEFINE_RAW_SPINLOCK(its_lock);
194 static struct rdists *gic_rdists;
195 static struct irq_domain *its_parent;
196
197 static unsigned long its_list_map;
198 static u16 vmovp_seq_num;
199 static DEFINE_RAW_SPINLOCK(vmovp_lock);
200
201 static DEFINE_IDA(its_vpeid_ida);
202
203 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
204 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
205 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
206 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
207
208 static struct page *its_alloc_pages_node(int node, gfp_t gfp,
209                                          unsigned int order)
210 {
211         struct page *page;
212         int ret = 0;
213
214         page = alloc_pages_node(node, gfp, order);
215
216         if (!page)
217                 return NULL;
218
219         ret = set_memory_decrypted((unsigned long)page_address(page),
220                                    1 << order);
221         /*
222          * If set_memory_decrypted() fails then we don't know what state the
223          * page is in, so we can't free it. Instead we leak it.
224          * set_memory_decrypted() will already have WARNed.
225          */
226         if (ret)
227                 return NULL;
228
229         return page;
230 }
231
232 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
233 {
234         return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
235 }
236
237 static void its_free_pages(void *addr, unsigned int order)
238 {
239         /*
240          * If the memory cannot be encrypted again then we must leak the pages.
241          * set_memory_encrypted() will already have WARNed.
242          */
243         if (set_memory_encrypted((unsigned long)addr, 1 << order))
244                 return;
245         free_pages((unsigned long)addr, order);
246 }
247
248 static struct gen_pool *itt_pool;
249
250 static void *itt_alloc_pool(int node, int size)
251 {
252         unsigned long addr;
253         struct page *page;
254
255         if (size >= PAGE_SIZE) {
256                 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
257
258                 return page ? page_address(page) : NULL;
259         }
260
261         do {
262                 addr = gen_pool_alloc(itt_pool, size);
263                 if (addr)
264                         break;
265
266                 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
267                 if (!page)
268                         break;
269
270                 gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
271         } while (!addr);
272
273         return (void *)addr;
274 }
275
276 static void itt_free_pool(void *addr, int size)
277 {
278         if (!addr)
279                 return;
280
281         if (size >= PAGE_SIZE) {
282                 its_free_pages(addr, get_order(size));
283                 return;
284         }
285
286         gen_pool_free(itt_pool, (unsigned long)addr, size);
287 }
288
289 /*
290  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
291  * always have vSGIs mapped.
292  */
293 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
294 {
295         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
296 }
297
298 static bool rdists_support_shareable(void)
299 {
300         return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
301 }
302
303 static u16 get_its_list(struct its_vm *vm)
304 {
305         struct its_node *its;
306         unsigned long its_list = 0;
307
308         list_for_each_entry(its, &its_nodes, entry) {
309                 if (!is_v4(its))
310                         continue;
311
312                 if (require_its_list_vmovp(vm, its))
313                         __set_bit(its->list_nr, &its_list);
314         }
315
316         return (u16)its_list;
317 }
318
319 static inline u32 its_get_event_id(struct irq_data *d)
320 {
321         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
322         return d->hwirq - its_dev->event_map.lpi_base;
323 }
324
325 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
326                                                u32 event)
327 {
328         struct its_node *its = its_dev->its;
329
330         return its->collections + its_dev->event_map.col_map[event];
331 }
332
333 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
334                                                u32 event)
335 {
336         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
337                 return NULL;
338
339         return &its_dev->event_map.vlpi_maps[event];
340 }
341
342 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
343 {
344         if (irqd_is_forwarded_to_vcpu(d)) {
345                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
346                 u32 event = its_get_event_id(d);
347
348                 return dev_event_to_vlpi_map(its_dev, event);
349         }
350
351         return NULL;
352 }
353
354 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
355 {
356         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
357         return vpe->col_idx;
358 }
359
360 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
361 {
362         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
363 }
364
365 static struct irq_chip its_vpe_irq_chip;
366
367 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
368 {
369         struct its_vpe *vpe = NULL;
370         int cpu;
371
372         if (d->chip == &its_vpe_irq_chip) {
373                 vpe = irq_data_get_irq_chip_data(d);
374         } else {
375                 struct its_vlpi_map *map = get_vlpi_map(d);
376                 if (map)
377                         vpe = map->vpe;
378         }
379
380         if (vpe) {
381                 cpu = vpe_to_cpuid_lock(vpe, flags);
382         } else {
383                 /* Physical LPIs are already locked via the irq_desc lock */
384                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
385                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
386                 /* Keep GCC quiet... */
387                 *flags = 0;
388         }
389
390         return cpu;
391 }
392
393 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
394 {
395         struct its_vpe *vpe = NULL;
396
397         if (d->chip == &its_vpe_irq_chip) {
398                 vpe = irq_data_get_irq_chip_data(d);
399         } else {
400                 struct its_vlpi_map *map = get_vlpi_map(d);
401                 if (map)
402                         vpe = map->vpe;
403         }
404
405         if (vpe)
406                 vpe_to_cpuid_unlock(vpe, flags);
407 }
408
409 static struct its_collection *valid_col(struct its_collection *col)
410 {
411         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
412                 return NULL;
413
414         return col;
415 }
416
417 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
418 {
419         if (valid_col(its->collections + vpe->col_idx))
420                 return vpe;
421
422         return NULL;
423 }
424
425 /*
426  * ITS command descriptors - parameters to be encoded in a command
427  * block.
428  */
429 struct its_cmd_desc {
430         union {
431                 struct {
432                         struct its_device *dev;
433                         u32 event_id;
434                 } its_inv_cmd;
435
436                 struct {
437                         struct its_device *dev;
438                         u32 event_id;
439                 } its_clear_cmd;
440
441                 struct {
442                         struct its_device *dev;
443                         u32 event_id;
444                 } its_int_cmd;
445
446                 struct {
447                         struct its_device *dev;
448                         int valid;
449                 } its_mapd_cmd;
450
451                 struct {
452                         struct its_collection *col;
453                         int valid;
454                 } its_mapc_cmd;
455
456                 struct {
457                         struct its_device *dev;
458                         u32 phys_id;
459                         u32 event_id;
460                 } its_mapti_cmd;
461
462                 struct {
463                         struct its_device *dev;
464                         struct its_collection *col;
465                         u32 event_id;
466                 } its_movi_cmd;
467
468                 struct {
469                         struct its_device *dev;
470                         u32 event_id;
471                 } its_discard_cmd;
472
473                 struct {
474                         struct its_collection *col;
475                 } its_invall_cmd;
476
477                 struct {
478                         struct its_vpe *vpe;
479                 } its_vinvall_cmd;
480
481                 struct {
482                         struct its_vpe *vpe;
483                         struct its_collection *col;
484                         bool valid;
485                 } its_vmapp_cmd;
486
487                 struct {
488                         struct its_vpe *vpe;
489                         struct its_device *dev;
490                         u32 virt_id;
491                         u32 event_id;
492                         bool db_enabled;
493                 } its_vmapti_cmd;
494
495                 struct {
496                         struct its_vpe *vpe;
497                         struct its_device *dev;
498                         u32 event_id;
499                         bool db_enabled;
500                 } its_vmovi_cmd;
501
502                 struct {
503                         struct its_vpe *vpe;
504                         struct its_collection *col;
505                         u16 seq_num;
506                         u16 its_list;
507                 } its_vmovp_cmd;
508
509                 struct {
510                         struct its_vpe *vpe;
511                 } its_invdb_cmd;
512
513                 struct {
514                         struct its_vpe *vpe;
515                         u8 sgi;
516                         u8 priority;
517                         bool enable;
518                         bool group;
519                         bool clear;
520                 } its_vsgi_cmd;
521         };
522 };
523
524 /*
525  * The ITS command block, which is what the ITS actually parses.
526  */
527 struct its_cmd_block {
528         union {
529                 u64     raw_cmd[4];
530                 __le64  raw_cmd_le[4];
531         };
532 };
533
534 #define ITS_CMD_QUEUE_SZ                SZ_64K
535 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
536
537 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
538                                                     struct its_cmd_block *,
539                                                     struct its_cmd_desc *);
540
541 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
542                                               struct its_cmd_block *,
543                                               struct its_cmd_desc *);
544
545 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
546 {
547         u64 mask = GENMASK_ULL(h, l);
548         *raw_cmd &= ~mask;
549         *raw_cmd |= (val << l) & mask;
550 }
551
552 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
553 {
554         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
555 }
556
557 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
558 {
559         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
560 }
561
562 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
563 {
564         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
565 }
566
567 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
568 {
569         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
570 }
571
572 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
573 {
574         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
575 }
576
577 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
578 {
579         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
580 }
581
582 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
583 {
584         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
585 }
586
587 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
588 {
589         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
590 }
591
592 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
593 {
594         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
595 }
596
597 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
598 {
599         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
600 }
601
602 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
603 {
604         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
605 }
606
607 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
608 {
609         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
610 }
611
612 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
613 {
614         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
615 }
616
617 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
618 {
619         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
620 }
621
622 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
623 {
624         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
625 }
626
627 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
628 {
629         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
630 }
631
632 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
633 {
634         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
635 }
636
637 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
638 {
639         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
640 }
641
642 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
643 {
644         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
645 }
646
647 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
648 {
649         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
650 }
651
652 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
653                                         u32 vpe_db_lpi)
654 {
655         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
656 }
657
658 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
659                                         u32 vpe_db_lpi)
660 {
661         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
662 }
663
664 static void its_encode_db(struct its_cmd_block *cmd, bool db)
665 {
666         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
667 }
668
669 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
670 {
671         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
672 }
673
674 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
675 {
676         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
677 }
678
679 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
680 {
681         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
682 }
683
684 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
685 {
686         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
687 }
688
689 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
690 {
691         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
692 }
693
694 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
695 {
696         /* Let's fixup BE commands */
697         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
698         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
699         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
700         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
701 }
702
703 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
704                                                  struct its_cmd_block *cmd,
705                                                  struct its_cmd_desc *desc)
706 {
707         unsigned long itt_addr;
708         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
709
710         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
711
712         its_encode_cmd(cmd, GITS_CMD_MAPD);
713         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
714         its_encode_size(cmd, size - 1);
715         its_encode_itt(cmd, itt_addr);
716         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
717
718         its_fixup_cmd(cmd);
719
720         return NULL;
721 }
722
723 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
724                                                  struct its_cmd_block *cmd,
725                                                  struct its_cmd_desc *desc)
726 {
727         its_encode_cmd(cmd, GITS_CMD_MAPC);
728         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
729         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
730         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
731
732         its_fixup_cmd(cmd);
733
734         return desc->its_mapc_cmd.col;
735 }
736
737 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
738                                                   struct its_cmd_block *cmd,
739                                                   struct its_cmd_desc *desc)
740 {
741         struct its_collection *col;
742
743         col = dev_event_to_col(desc->its_mapti_cmd.dev,
744                                desc->its_mapti_cmd.event_id);
745
746         its_encode_cmd(cmd, GITS_CMD_MAPTI);
747         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
748         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
749         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
750         its_encode_collection(cmd, col->col_id);
751
752         its_fixup_cmd(cmd);
753
754         return valid_col(col);
755 }
756
757 static struct its_collection *its_build_movi_cmd(struct its_node *its,
758                                                  struct its_cmd_block *cmd,
759                                                  struct its_cmd_desc *desc)
760 {
761         struct its_collection *col;
762
763         col = dev_event_to_col(desc->its_movi_cmd.dev,
764                                desc->its_movi_cmd.event_id);
765
766         its_encode_cmd(cmd, GITS_CMD_MOVI);
767         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
768         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
769         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
770
771         its_fixup_cmd(cmd);
772
773         return valid_col(col);
774 }
775
776 static struct its_collection *its_build_discard_cmd(struct its_node *its,
777                                                     struct its_cmd_block *cmd,
778                                                     struct its_cmd_desc *desc)
779 {
780         struct its_collection *col;
781
782         col = dev_event_to_col(desc->its_discard_cmd.dev,
783                                desc->its_discard_cmd.event_id);
784
785         its_encode_cmd(cmd, GITS_CMD_DISCARD);
786         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
787         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
788
789         its_fixup_cmd(cmd);
790
791         return valid_col(col);
792 }
793
794 static struct its_collection *its_build_inv_cmd(struct its_node *its,
795                                                 struct its_cmd_block *cmd,
796                                                 struct its_cmd_desc *desc)
797 {
798         struct its_collection *col;
799
800         col = dev_event_to_col(desc->its_inv_cmd.dev,
801                                desc->its_inv_cmd.event_id);
802
803         its_encode_cmd(cmd, GITS_CMD_INV);
804         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
805         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
806
807         its_fixup_cmd(cmd);
808
809         return valid_col(col);
810 }
811
812 static struct its_collection *its_build_int_cmd(struct its_node *its,
813                                                 struct its_cmd_block *cmd,
814                                                 struct its_cmd_desc *desc)
815 {
816         struct its_collection *col;
817
818         col = dev_event_to_col(desc->its_int_cmd.dev,
819                                desc->its_int_cmd.event_id);
820
821         its_encode_cmd(cmd, GITS_CMD_INT);
822         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
823         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
824
825         its_fixup_cmd(cmd);
826
827         return valid_col(col);
828 }
829
830 static struct its_collection *its_build_clear_cmd(struct its_node *its,
831                                                   struct its_cmd_block *cmd,
832                                                   struct its_cmd_desc *desc)
833 {
834         struct its_collection *col;
835
836         col = dev_event_to_col(desc->its_clear_cmd.dev,
837                                desc->its_clear_cmd.event_id);
838
839         its_encode_cmd(cmd, GITS_CMD_CLEAR);
840         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
841         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
842
843         its_fixup_cmd(cmd);
844
845         return valid_col(col);
846 }
847
848 static struct its_collection *its_build_invall_cmd(struct its_node *its,
849                                                    struct its_cmd_block *cmd,
850                                                    struct its_cmd_desc *desc)
851 {
852         its_encode_cmd(cmd, GITS_CMD_INVALL);
853         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
854
855         its_fixup_cmd(cmd);
856
857         return desc->its_invall_cmd.col;
858 }
859
860 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
861                                              struct its_cmd_block *cmd,
862                                              struct its_cmd_desc *desc)
863 {
864         its_encode_cmd(cmd, GITS_CMD_VINVALL);
865         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
866
867         its_fixup_cmd(cmd);
868
869         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
870 }
871
872 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
873                                            struct its_cmd_block *cmd,
874                                            struct its_cmd_desc *desc)
875 {
876         struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
877         unsigned long vpt_addr, vconf_addr;
878         u64 target;
879         bool alloc;
880
881         its_encode_cmd(cmd, GITS_CMD_VMAPP);
882         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
883         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
884
885         if (!desc->its_vmapp_cmd.valid) {
886                 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
887                 if (is_v4_1(its)) {
888                         its_encode_alloc(cmd, alloc);
889                         /*
890                          * Unmapping a VPE is self-synchronizing on GICv4.1,
891                          * no need to issue a VSYNC.
892                          */
893                         vpe = NULL;
894                 }
895
896                 goto out;
897         }
898
899         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
900         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
901
902         its_encode_target(cmd, target);
903         its_encode_vpt_addr(cmd, vpt_addr);
904         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
905
906         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
907
908         if (!is_v4_1(its))
909                 goto out;
910
911         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
912
913         its_encode_alloc(cmd, alloc);
914
915         /*
916          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
917          * to be unmapped first, and in this case, we may remap the vPE
918          * back while the VPT is not empty. So we can't assume that the
919          * VPT is empty on map. This is why we never advertise PTZ.
920          */
921         its_encode_ptz(cmd, false);
922         its_encode_vconf_addr(cmd, vconf_addr);
923         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
924
925 out:
926         its_fixup_cmd(cmd);
927
928         return vpe;
929 }
930
931 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
932                                             struct its_cmd_block *cmd,
933                                             struct its_cmd_desc *desc)
934 {
935         u32 db;
936
937         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
938                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
939         else
940                 db = 1023;
941
942         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
943         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
944         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
945         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
946         its_encode_db_phys_id(cmd, db);
947         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
948
949         its_fixup_cmd(cmd);
950
951         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
952 }
953
954 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
955                                            struct its_cmd_block *cmd,
956                                            struct its_cmd_desc *desc)
957 {
958         u32 db;
959
960         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
961                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
962         else
963                 db = 1023;
964
965         its_encode_cmd(cmd, GITS_CMD_VMOVI);
966         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
967         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
968         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
969         its_encode_db_phys_id(cmd, db);
970         its_encode_db_valid(cmd, true);
971
972         its_fixup_cmd(cmd);
973
974         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
975 }
976
977 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
978                                            struct its_cmd_block *cmd,
979                                            struct its_cmd_desc *desc)
980 {
981         u64 target;
982
983         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
984         its_encode_cmd(cmd, GITS_CMD_VMOVP);
985         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
986         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
987         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
988         its_encode_target(cmd, target);
989
990         if (is_v4_1(its)) {
991                 its_encode_db(cmd, true);
992                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
993         }
994
995         its_fixup_cmd(cmd);
996
997         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
998 }
999
1000 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
1001                                           struct its_cmd_block *cmd,
1002                                           struct its_cmd_desc *desc)
1003 {
1004         struct its_vlpi_map *map;
1005
1006         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
1007                                     desc->its_inv_cmd.event_id);
1008
1009         its_encode_cmd(cmd, GITS_CMD_INV);
1010         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
1011         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
1012
1013         its_fixup_cmd(cmd);
1014
1015         return valid_vpe(its, map->vpe);
1016 }
1017
1018 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
1019                                           struct its_cmd_block *cmd,
1020                                           struct its_cmd_desc *desc)
1021 {
1022         struct its_vlpi_map *map;
1023
1024         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
1025                                     desc->its_int_cmd.event_id);
1026
1027         its_encode_cmd(cmd, GITS_CMD_INT);
1028         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
1029         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
1030
1031         its_fixup_cmd(cmd);
1032
1033         return valid_vpe(its, map->vpe);
1034 }
1035
1036 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
1037                                             struct its_cmd_block *cmd,
1038                                             struct its_cmd_desc *desc)
1039 {
1040         struct its_vlpi_map *map;
1041
1042         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
1043                                     desc->its_clear_cmd.event_id);
1044
1045         its_encode_cmd(cmd, GITS_CMD_CLEAR);
1046         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
1047         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
1048
1049         its_fixup_cmd(cmd);
1050
1051         return valid_vpe(its, map->vpe);
1052 }
1053
1054 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
1055                                            struct its_cmd_block *cmd,
1056                                            struct its_cmd_desc *desc)
1057 {
1058         if (WARN_ON(!is_v4_1(its)))
1059                 return NULL;
1060
1061         its_encode_cmd(cmd, GITS_CMD_INVDB);
1062         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
1063
1064         its_fixup_cmd(cmd);
1065
1066         return valid_vpe(its, desc->its_invdb_cmd.vpe);
1067 }
1068
1069 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
1070                                           struct its_cmd_block *cmd,
1071                                           struct its_cmd_desc *desc)
1072 {
1073         if (WARN_ON(!is_v4_1(its)))
1074                 return NULL;
1075
1076         its_encode_cmd(cmd, GITS_CMD_VSGI);
1077         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
1078         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
1079         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
1080         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
1081         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
1082         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1083
1084         its_fixup_cmd(cmd);
1085
1086         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1087 }
1088
1089 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1090                                  struct its_cmd_block *ptr)
1091 {
1092         return (ptr - its->cmd_base) * sizeof(*ptr);
1093 }
1094
1095 static int its_queue_full(struct its_node *its)
1096 {
1097         int widx;
1098         int ridx;
1099
1100         widx = its->cmd_write - its->cmd_base;
1101         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1102
1103         /* This is incredibly unlikely to happen, unless the ITS locks up. */
1104         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1105                 return 1;
1106
1107         return 0;
1108 }
1109
1110 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1111 {
1112         struct its_cmd_block *cmd;
1113         u32 count = 1000000;    /* 1s! */
1114
1115         while (its_queue_full(its)) {
1116                 count--;
1117                 if (!count) {
1118                         pr_err_ratelimited("ITS queue not draining\n");
1119                         return NULL;
1120                 }
1121                 cpu_relax();
1122                 udelay(1);
1123         }
1124
1125         cmd = its->cmd_write++;
1126
1127         /* Handle queue wrapping */
1128         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1129                 its->cmd_write = its->cmd_base;
1130
1131         /* Clear command  */
1132         cmd->raw_cmd[0] = 0;
1133         cmd->raw_cmd[1] = 0;
1134         cmd->raw_cmd[2] = 0;
1135         cmd->raw_cmd[3] = 0;
1136
1137         return cmd;
1138 }
1139
1140 static struct its_cmd_block *its_post_commands(struct its_node *its)
1141 {
1142         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1143
1144         writel_relaxed(wr, its->base + GITS_CWRITER);
1145
1146         return its->cmd_write;
1147 }
1148
1149 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1150 {
1151         /*
1152          * Make sure the commands written to memory are observable by
1153          * the ITS.
1154          */
1155         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1156                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1157         else
1158                 dsb(ishst);
1159 }
1160
1161 static int its_wait_for_range_completion(struct its_node *its,
1162                                          u64    prev_idx,
1163                                          struct its_cmd_block *to)
1164 {
1165         u64 rd_idx, to_idx, linear_idx;
1166         u32 count = 1000000;    /* 1s! */
1167
1168         /* Linearize to_idx if the command set has wrapped around */
1169         to_idx = its_cmd_ptr_to_offset(its, to);
1170         if (to_idx < prev_idx)
1171                 to_idx += ITS_CMD_QUEUE_SZ;
1172
1173         linear_idx = prev_idx;
1174
1175         while (1) {
1176                 s64 delta;
1177
1178                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1179
1180                 /*
1181                  * Compute the read pointer progress, taking the
1182                  * potential wrap-around into account.
1183                  */
1184                 delta = rd_idx - prev_idx;
1185                 if (rd_idx < prev_idx)
1186                         delta += ITS_CMD_QUEUE_SZ;
1187
1188                 linear_idx += delta;
1189                 if (linear_idx >= to_idx)
1190                         break;
1191
1192                 count--;
1193                 if (!count) {
1194                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1195                                            to_idx, linear_idx);
1196                         return -1;
1197                 }
1198                 prev_idx = rd_idx;
1199                 cpu_relax();
1200                 udelay(1);
1201         }
1202
1203         return 0;
1204 }
1205
1206 /* Warning, macro hell follows */
1207 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1208 void name(struct its_node *its,                                         \
1209           buildtype builder,                                            \
1210           struct its_cmd_desc *desc)                                    \
1211 {                                                                       \
1212         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1213         synctype *sync_obj;                                             \
1214         unsigned long flags;                                            \
1215         u64 rd_idx;                                                     \
1216                                                                         \
1217         raw_spin_lock_irqsave(&its->lock, flags);                       \
1218                                                                         \
1219         cmd = its_allocate_entry(its);                                  \
1220         if (!cmd) {             /* We're soooooo screewed... */         \
1221                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1222                 return;                                                 \
1223         }                                                               \
1224         sync_obj = builder(its, cmd, desc);                             \
1225         its_flush_cmd(its, cmd);                                        \
1226                                                                         \
1227         if (sync_obj) {                                                 \
1228                 sync_cmd = its_allocate_entry(its);                     \
1229                 if (!sync_cmd)                                          \
1230                         goto post;                                      \
1231                                                                         \
1232                 buildfn(its, sync_cmd, sync_obj);                       \
1233                 its_flush_cmd(its, sync_cmd);                           \
1234         }                                                               \
1235                                                                         \
1236 post:                                                                   \
1237         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1238         next_cmd = its_post_commands(its);                              \
1239         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1240                                                                         \
1241         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1242                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1243 }
1244
1245 static void its_build_sync_cmd(struct its_node *its,
1246                                struct its_cmd_block *sync_cmd,
1247                                struct its_collection *sync_col)
1248 {
1249         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1250         its_encode_target(sync_cmd, sync_col->target_address);
1251
1252         its_fixup_cmd(sync_cmd);
1253 }
1254
1255 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1256                              struct its_collection, its_build_sync_cmd)
1257
1258 static void its_build_vsync_cmd(struct its_node *its,
1259                                 struct its_cmd_block *sync_cmd,
1260                                 struct its_vpe *sync_vpe)
1261 {
1262         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1263         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1264
1265         its_fixup_cmd(sync_cmd);
1266 }
1267
1268 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1269                              struct its_vpe, its_build_vsync_cmd)
1270
1271 static void its_send_int(struct its_device *dev, u32 event_id)
1272 {
1273         struct its_cmd_desc desc;
1274
1275         desc.its_int_cmd.dev = dev;
1276         desc.its_int_cmd.event_id = event_id;
1277
1278         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1279 }
1280
1281 static void its_send_clear(struct its_device *dev, u32 event_id)
1282 {
1283         struct its_cmd_desc desc;
1284
1285         desc.its_clear_cmd.dev = dev;
1286         desc.its_clear_cmd.event_id = event_id;
1287
1288         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1289 }
1290
1291 static void its_send_inv(struct its_device *dev, u32 event_id)
1292 {
1293         struct its_cmd_desc desc;
1294
1295         desc.its_inv_cmd.dev = dev;
1296         desc.its_inv_cmd.event_id = event_id;
1297
1298         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1299 }
1300
1301 static void its_send_mapd(struct its_device *dev, int valid)
1302 {
1303         struct its_cmd_desc desc;
1304
1305         desc.its_mapd_cmd.dev = dev;
1306         desc.its_mapd_cmd.valid = !!valid;
1307
1308         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1309 }
1310
1311 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1312                           int valid)
1313 {
1314         struct its_cmd_desc desc;
1315
1316         desc.its_mapc_cmd.col = col;
1317         desc.its_mapc_cmd.valid = !!valid;
1318
1319         its_send_single_command(its, its_build_mapc_cmd, &desc);
1320 }
1321
1322 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1323 {
1324         struct its_cmd_desc desc;
1325
1326         desc.its_mapti_cmd.dev = dev;
1327         desc.its_mapti_cmd.phys_id = irq_id;
1328         desc.its_mapti_cmd.event_id = id;
1329
1330         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1331 }
1332
1333 static void its_send_movi(struct its_device *dev,
1334                           struct its_collection *col, u32 id)
1335 {
1336         struct its_cmd_desc desc;
1337
1338         desc.its_movi_cmd.dev = dev;
1339         desc.its_movi_cmd.col = col;
1340         desc.its_movi_cmd.event_id = id;
1341
1342         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1343 }
1344
1345 static void its_send_discard(struct its_device *dev, u32 id)
1346 {
1347         struct its_cmd_desc desc;
1348
1349         desc.its_discard_cmd.dev = dev;
1350         desc.its_discard_cmd.event_id = id;
1351
1352         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1353 }
1354
1355 static void its_send_invall(struct its_node *its, struct its_collection *col)
1356 {
1357         struct its_cmd_desc desc;
1358
1359         desc.its_invall_cmd.col = col;
1360
1361         its_send_single_command(its, its_build_invall_cmd, &desc);
1362 }
1363
1364 static void its_send_vmapti(struct its_device *dev, u32 id)
1365 {
1366         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1367         struct its_cmd_desc desc;
1368
1369         desc.its_vmapti_cmd.vpe = map->vpe;
1370         desc.its_vmapti_cmd.dev = dev;
1371         desc.its_vmapti_cmd.virt_id = map->vintid;
1372         desc.its_vmapti_cmd.event_id = id;
1373         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1374
1375         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1376 }
1377
1378 static void its_send_vmovi(struct its_device *dev, u32 id)
1379 {
1380         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1381         struct its_cmd_desc desc;
1382
1383         desc.its_vmovi_cmd.vpe = map->vpe;
1384         desc.its_vmovi_cmd.dev = dev;
1385         desc.its_vmovi_cmd.event_id = id;
1386         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1387
1388         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1389 }
1390
1391 static void its_send_vmapp(struct its_node *its,
1392                            struct its_vpe *vpe, bool valid)
1393 {
1394         struct its_cmd_desc desc;
1395
1396         desc.its_vmapp_cmd.vpe = vpe;
1397         desc.its_vmapp_cmd.valid = valid;
1398         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1399
1400         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1401 }
1402
1403 static void its_send_vmovp(struct its_vpe *vpe)
1404 {
1405         struct its_cmd_desc desc = {};
1406         struct its_node *its;
1407         int col_id = vpe->col_idx;
1408
1409         desc.its_vmovp_cmd.vpe = vpe;
1410
1411         if (!its_list_map) {
1412                 its = list_first_entry(&its_nodes, struct its_node, entry);
1413                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1414                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1415                 return;
1416         }
1417
1418         /*
1419          * Yet another marvel of the architecture. If using the
1420          * its_list "feature", we need to make sure that all ITSs
1421          * receive all VMOVP commands in the same order. The only way
1422          * to guarantee this is to make vmovp a serialization point.
1423          *
1424          * Wall <-- Head.
1425          */
1426         guard(raw_spinlock)(&vmovp_lock);
1427         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1428         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1429
1430         /* Emit VMOVPs */
1431         list_for_each_entry(its, &its_nodes, entry) {
1432                 if (!is_v4(its))
1433                         continue;
1434
1435                 if (!require_its_list_vmovp(vpe->its_vm, its))
1436                         continue;
1437
1438                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1439                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1440         }
1441 }
1442
1443 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1444 {
1445         struct its_cmd_desc desc;
1446
1447         desc.its_vinvall_cmd.vpe = vpe;
1448         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1449 }
1450
1451 static void its_send_vinv(struct its_device *dev, u32 event_id)
1452 {
1453         struct its_cmd_desc desc;
1454
1455         /*
1456          * There is no real VINV command. This is just a normal INV,
1457          * with a VSYNC instead of a SYNC.
1458          */
1459         desc.its_inv_cmd.dev = dev;
1460         desc.its_inv_cmd.event_id = event_id;
1461
1462         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1463 }
1464
1465 static void its_send_vint(struct its_device *dev, u32 event_id)
1466 {
1467         struct its_cmd_desc desc;
1468
1469         /*
1470          * There is no real VINT command. This is just a normal INT,
1471          * with a VSYNC instead of a SYNC.
1472          */
1473         desc.its_int_cmd.dev = dev;
1474         desc.its_int_cmd.event_id = event_id;
1475
1476         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1477 }
1478
1479 static void its_send_vclear(struct its_device *dev, u32 event_id)
1480 {
1481         struct its_cmd_desc desc;
1482
1483         /*
1484          * There is no real VCLEAR command. This is just a normal CLEAR,
1485          * with a VSYNC instead of a SYNC.
1486          */
1487         desc.its_clear_cmd.dev = dev;
1488         desc.its_clear_cmd.event_id = event_id;
1489
1490         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1491 }
1492
1493 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1494 {
1495         struct its_cmd_desc desc;
1496
1497         desc.its_invdb_cmd.vpe = vpe;
1498         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1499 }
1500
1501 /*
1502  * irqchip functions - assumes MSI, mostly.
1503  */
1504 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1505 {
1506         struct its_vlpi_map *map = get_vlpi_map(d);
1507         irq_hw_number_t hwirq;
1508         void *va;
1509         u8 *cfg;
1510
1511         if (map) {
1512                 va = page_address(map->vm->vprop_page);
1513                 hwirq = map->vintid;
1514
1515                 /* Remember the updated property */
1516                 map->properties &= ~clr;
1517                 map->properties |= set | LPI_PROP_GROUP1;
1518         } else {
1519                 va = gic_rdists->prop_table_va;
1520                 hwirq = d->hwirq;
1521         }
1522
1523         cfg = va + hwirq - 8192;
1524         *cfg &= ~clr;
1525         *cfg |= set | LPI_PROP_GROUP1;
1526
1527         /*
1528          * Make the above write visible to the redistributors.
1529          * And yes, we're flushing exactly: One. Single. Byte.
1530          * Humpf...
1531          */
1532         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1533                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1534         else
1535                 dsb(ishst);
1536 }
1537
1538 static void wait_for_syncr(void __iomem *rdbase)
1539 {
1540         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1541                 cpu_relax();
1542 }
1543
1544 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1545 {
1546         void __iomem *rdbase;
1547         unsigned long flags;
1548         int cpu;
1549
1550         /* Target the redistributor this LPI is currently routed to */
1551         cpu = irq_to_cpuid_lock(d, &flags);
1552         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1553
1554         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1555         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1556         wait_for_syncr(rdbase);
1557
1558         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1559         irq_to_cpuid_unlock(d, flags);
1560 }
1561
1562 static void direct_lpi_inv(struct irq_data *d)
1563 {
1564         struct its_vlpi_map *map = get_vlpi_map(d);
1565         u64 val;
1566
1567         if (map) {
1568                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1569
1570                 WARN_ON(!is_v4_1(its_dev->its));
1571
1572                 val  = GICR_INVLPIR_V;
1573                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1574                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1575         } else {
1576                 val = d->hwirq;
1577         }
1578
1579         __direct_lpi_inv(d, val);
1580 }
1581
1582 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1583 {
1584         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1585
1586         lpi_write_config(d, clr, set);
1587         if (gic_rdists->has_direct_lpi &&
1588             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1589                 direct_lpi_inv(d);
1590         else if (!irqd_is_forwarded_to_vcpu(d))
1591                 its_send_inv(its_dev, its_get_event_id(d));
1592         else
1593                 its_send_vinv(its_dev, its_get_event_id(d));
1594 }
1595
1596 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1597 {
1598         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1599         u32 event = its_get_event_id(d);
1600         struct its_vlpi_map *map;
1601
1602         /*
1603          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1604          * here.
1605          */
1606         if (is_v4_1(its_dev->its))
1607                 return;
1608
1609         map = dev_event_to_vlpi_map(its_dev, event);
1610
1611         if (map->db_enabled == enable)
1612                 return;
1613
1614         map->db_enabled = enable;
1615
1616         /*
1617          * More fun with the architecture:
1618          *
1619          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1620          * value or to 1023, depending on the enable bit. But that
1621          * would be issuing a mapping for an /existing/ DevID+EventID
1622          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1623          * to the /same/ vPE, using this opportunity to adjust the
1624          * doorbell. Mouahahahaha. We loves it, Precious.
1625          */
1626         its_send_vmovi(its_dev, event);
1627 }
1628
1629 static void its_mask_irq(struct irq_data *d)
1630 {
1631         if (irqd_is_forwarded_to_vcpu(d))
1632                 its_vlpi_set_doorbell(d, false);
1633
1634         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1635 }
1636
1637 static void its_unmask_irq(struct irq_data *d)
1638 {
1639         if (irqd_is_forwarded_to_vcpu(d))
1640                 its_vlpi_set_doorbell(d, true);
1641
1642         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1643 }
1644
1645 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1646 {
1647         if (irqd_affinity_is_managed(d))
1648                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1649
1650         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1651 }
1652
1653 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1654 {
1655         if (irqd_affinity_is_managed(d))
1656                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1657         else
1658                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1659 }
1660
1661 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1662 {
1663         if (irqd_affinity_is_managed(d))
1664                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1665         else
1666                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1667 }
1668
1669 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1670                                               const struct cpumask *cpu_mask)
1671 {
1672         unsigned int cpu = nr_cpu_ids, tmp;
1673         int count = S32_MAX;
1674
1675         for_each_cpu(tmp, cpu_mask) {
1676                 int this_count = its_read_lpi_count(d, tmp);
1677                 if (this_count < count) {
1678                         cpu = tmp;
1679                         count = this_count;
1680                 }
1681         }
1682
1683         return cpu;
1684 }
1685
1686 /*
1687  * As suggested by Thomas Gleixner in:
1688  * https://lore.kernel.org/r/[email protected]
1689  */
1690 static int its_select_cpu(struct irq_data *d,
1691                           const struct cpumask *aff_mask)
1692 {
1693         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1694         static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1695         static struct cpumask __tmpmask;
1696         struct cpumask *tmpmask;
1697         unsigned long flags;
1698         int cpu, node;
1699         node = its_dev->its->numa_node;
1700         tmpmask = &__tmpmask;
1701
1702         raw_spin_lock_irqsave(&tmpmask_lock, flags);
1703
1704         if (!irqd_affinity_is_managed(d)) {
1705                 /* First try the NUMA node */
1706                 if (node != NUMA_NO_NODE) {
1707                         /*
1708                          * Try the intersection of the affinity mask and the
1709                          * node mask (and the online mask, just to be safe).
1710                          */
1711                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1712                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1713
1714                         /*
1715                          * Ideally, we would check if the mask is empty, and
1716                          * try again on the full node here.
1717                          *
1718                          * But it turns out that the way ACPI describes the
1719                          * affinity for ITSs only deals about memory, and
1720                          * not target CPUs, so it cannot describe a single
1721                          * ITS placed next to two NUMA nodes.
1722                          *
1723                          * Instead, just fallback on the online mask. This
1724                          * diverges from Thomas' suggestion above.
1725                          */
1726                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1727                         if (cpu < nr_cpu_ids)
1728                                 goto out;
1729
1730                         /* If we can't cross sockets, give up */
1731                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1732                                 goto out;
1733
1734                         /* If the above failed, expand the search */
1735                 }
1736
1737                 /* Try the intersection of the affinity and online masks */
1738                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1739
1740                 /* If that doesn't fly, the online mask is the last resort */
1741                 if (cpumask_empty(tmpmask))
1742                         cpumask_copy(tmpmask, cpu_online_mask);
1743
1744                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1745         } else {
1746                 cpumask_copy(tmpmask, aff_mask);
1747
1748                 /* If we cannot cross sockets, limit the search to that node */
1749                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1750                     node != NUMA_NO_NODE)
1751                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1752
1753                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1754         }
1755 out:
1756         raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1757
1758         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1759         return cpu;
1760 }
1761
1762 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1763                             bool force)
1764 {
1765         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1766         struct its_collection *target_col;
1767         u32 id = its_get_event_id(d);
1768         int cpu, prev_cpu;
1769
1770         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1771         if (irqd_is_forwarded_to_vcpu(d))
1772                 return -EINVAL;
1773
1774         prev_cpu = its_dev->event_map.col_map[id];
1775         its_dec_lpi_count(d, prev_cpu);
1776
1777         if (!force)
1778                 cpu = its_select_cpu(d, mask_val);
1779         else
1780                 cpu = cpumask_pick_least_loaded(d, mask_val);
1781
1782         if (cpu < 0 || cpu >= nr_cpu_ids)
1783                 goto err;
1784
1785         /* don't set the affinity when the target cpu is same as current one */
1786         if (cpu != prev_cpu) {
1787                 target_col = &its_dev->its->collections[cpu];
1788                 its_send_movi(its_dev, target_col, id);
1789                 its_dev->event_map.col_map[id] = cpu;
1790                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1791         }
1792
1793         its_inc_lpi_count(d, cpu);
1794
1795         return IRQ_SET_MASK_OK_DONE;
1796
1797 err:
1798         its_inc_lpi_count(d, prev_cpu);
1799         return -EINVAL;
1800 }
1801
1802 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1803 {
1804         struct its_node *its = its_dev->its;
1805
1806         return its->phys_base + GITS_TRANSLATER;
1807 }
1808
1809 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1810 {
1811         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1812         struct its_node *its;
1813         u64 addr;
1814
1815         its = its_dev->its;
1816         addr = its->get_msi_base(its_dev);
1817
1818         msg->address_lo         = lower_32_bits(addr);
1819         msg->address_hi         = upper_32_bits(addr);
1820         msg->data               = its_get_event_id(d);
1821
1822         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1823 }
1824
1825 static int its_irq_set_irqchip_state(struct irq_data *d,
1826                                      enum irqchip_irq_state which,
1827                                      bool state)
1828 {
1829         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1830         u32 event = its_get_event_id(d);
1831
1832         if (which != IRQCHIP_STATE_PENDING)
1833                 return -EINVAL;
1834
1835         if (irqd_is_forwarded_to_vcpu(d)) {
1836                 if (state)
1837                         its_send_vint(its_dev, event);
1838                 else
1839                         its_send_vclear(its_dev, event);
1840         } else {
1841                 if (state)
1842                         its_send_int(its_dev, event);
1843                 else
1844                         its_send_clear(its_dev, event);
1845         }
1846
1847         return 0;
1848 }
1849
1850 static int its_irq_retrigger(struct irq_data *d)
1851 {
1852         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1853 }
1854
1855 /*
1856  * Two favourable cases:
1857  *
1858  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1859  *     for vSGI delivery
1860  *
1861  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1862  *     and we're better off mapping all VPEs always
1863  *
1864  * If neither (a) nor (b) is true, then we map vPEs on demand.
1865  *
1866  */
1867 static bool gic_requires_eager_mapping(void)
1868 {
1869         if (!its_list_map || gic_rdists->has_rvpeid)
1870                 return true;
1871
1872         return false;
1873 }
1874
1875 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1876 {
1877         if (gic_requires_eager_mapping())
1878                 return;
1879
1880         guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1881
1882         /*
1883          * If the VM wasn't mapped yet, iterate over the vpes and get
1884          * them mapped now.
1885          */
1886         vm->vlpi_count[its->list_nr]++;
1887
1888         if (vm->vlpi_count[its->list_nr] == 1) {
1889                 int i;
1890
1891                 for (i = 0; i < vm->nr_vpes; i++) {
1892                         struct its_vpe *vpe = vm->vpes[i];
1893
1894                         scoped_guard(raw_spinlock, &vpe->vpe_lock)
1895                                 its_send_vmapp(its, vpe, true);
1896
1897                         its_send_vinvall(its, vpe);
1898                 }
1899         }
1900 }
1901
1902 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1903 {
1904         /* Not using the ITS list? Everything is always mapped. */
1905         if (gic_requires_eager_mapping())
1906                 return;
1907
1908         guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1909
1910         if (!--vm->vlpi_count[its->list_nr]) {
1911                 int i;
1912
1913                 for (i = 0; i < vm->nr_vpes; i++) {
1914                         guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1915                         its_send_vmapp(its, vm->vpes[i], false);
1916                 }
1917         }
1918 }
1919
1920 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1921 {
1922         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1923         u32 event = its_get_event_id(d);
1924
1925         if (!info->map)
1926                 return -EINVAL;
1927
1928         if (!its_dev->event_map.vm) {
1929                 struct its_vlpi_map *maps;
1930
1931                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1932                                GFP_ATOMIC);
1933                 if (!maps)
1934                         return -ENOMEM;
1935
1936                 its_dev->event_map.vm = info->map->vm;
1937                 its_dev->event_map.vlpi_maps = maps;
1938         } else if (its_dev->event_map.vm != info->map->vm) {
1939                 return -EINVAL;
1940         }
1941
1942         /* Get our private copy of the mapping information */
1943         its_dev->event_map.vlpi_maps[event] = *info->map;
1944
1945         if (irqd_is_forwarded_to_vcpu(d)) {
1946                 /* Already mapped, move it around */
1947                 its_send_vmovi(its_dev, event);
1948         } else {
1949                 /* Ensure all the VPEs are mapped on this ITS */
1950                 its_map_vm(its_dev->its, info->map->vm);
1951
1952                 /*
1953                  * Flag the interrupt as forwarded so that we can
1954                  * start poking the virtual property table.
1955                  */
1956                 irqd_set_forwarded_to_vcpu(d);
1957
1958                 /* Write out the property to the prop table */
1959                 lpi_write_config(d, 0xff, info->map->properties);
1960
1961                 /* Drop the physical mapping */
1962                 its_send_discard(its_dev, event);
1963
1964                 /* and install the virtual one */
1965                 its_send_vmapti(its_dev, event);
1966
1967                 /* Increment the number of VLPIs */
1968                 its_dev->event_map.nr_vlpis++;
1969         }
1970
1971         return 0;
1972 }
1973
1974 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1975 {
1976         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1977         struct its_vlpi_map *map;
1978
1979         map = get_vlpi_map(d);
1980
1981         if (!its_dev->event_map.vm || !map)
1982                 return -EINVAL;
1983
1984         /* Copy our mapping information to the incoming request */
1985         *info->map = *map;
1986
1987         return 0;
1988 }
1989
1990 static int its_vlpi_unmap(struct irq_data *d)
1991 {
1992         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1993         u32 event = its_get_event_id(d);
1994
1995         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1996                 return -EINVAL;
1997
1998         /* Drop the virtual mapping */
1999         its_send_discard(its_dev, event);
2000
2001         /* and restore the physical one */
2002         irqd_clr_forwarded_to_vcpu(d);
2003         its_send_mapti(its_dev, d->hwirq, event);
2004         lpi_update_config(d, 0xff, (lpi_prop_prio |
2005                                     LPI_PROP_ENABLED |
2006                                     LPI_PROP_GROUP1));
2007
2008         /* Potentially unmap the VM from this ITS */
2009         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
2010
2011         /*
2012          * Drop the refcount and make the device available again if
2013          * this was the last VLPI.
2014          */
2015         if (!--its_dev->event_map.nr_vlpis) {
2016                 its_dev->event_map.vm = NULL;
2017                 kfree(its_dev->event_map.vlpi_maps);
2018         }
2019
2020         return 0;
2021 }
2022
2023 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
2024 {
2025         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2026
2027         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
2028                 return -EINVAL;
2029
2030         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
2031                 lpi_update_config(d, 0xff, info->config);
2032         else
2033                 lpi_write_config(d, 0xff, info->config);
2034         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
2035
2036         return 0;
2037 }
2038
2039 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2040 {
2041         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2042         struct its_cmd_info *info = vcpu_info;
2043
2044         /* Need a v4 ITS */
2045         if (!is_v4(its_dev->its))
2046                 return -EINVAL;
2047
2048         guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock);
2049
2050         /* Unmap request? */
2051         if (!info)
2052                 return its_vlpi_unmap(d);
2053
2054         switch (info->cmd_type) {
2055         case MAP_VLPI:
2056                 return its_vlpi_map(d, info);
2057
2058         case GET_VLPI:
2059                 return its_vlpi_get(d, info);
2060
2061         case PROP_UPDATE_VLPI:
2062         case PROP_UPDATE_AND_INV_VLPI:
2063                 return its_vlpi_prop_update(d, info);
2064
2065         default:
2066                 return -EINVAL;
2067         }
2068 }
2069
2070 static struct irq_chip its_irq_chip = {
2071         .name                   = "ITS",
2072         .irq_mask               = its_mask_irq,
2073         .irq_unmask             = its_unmask_irq,
2074         .irq_eoi                = irq_chip_eoi_parent,
2075         .irq_set_affinity       = its_set_affinity,
2076         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
2077         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
2078         .irq_retrigger          = its_irq_retrigger,
2079         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
2080 };
2081
2082
2083 /*
2084  * How we allocate LPIs:
2085  *
2086  * lpi_range_list contains ranges of LPIs that are to available to
2087  * allocate from. To allocate LPIs, just pick the first range that
2088  * fits the required allocation, and reduce it by the required
2089  * amount. Once empty, remove the range from the list.
2090  *
2091  * To free a range of LPIs, add a free range to the list, sort it and
2092  * merge the result if the new range happens to be adjacent to an
2093  * already free block.
2094  *
2095  * The consequence of the above is that allocation is cost is low, but
2096  * freeing is expensive. We assumes that freeing rarely occurs.
2097  */
2098 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2099
2100 static DEFINE_MUTEX(lpi_range_lock);
2101 static LIST_HEAD(lpi_range_list);
2102
2103 struct lpi_range {
2104         struct list_head        entry;
2105         u32                     base_id;
2106         u32                     span;
2107 };
2108
2109 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2110 {
2111         struct lpi_range *range;
2112
2113         range = kmalloc(sizeof(*range), GFP_KERNEL);
2114         if (range) {
2115                 range->base_id = base;
2116                 range->span = span;
2117         }
2118
2119         return range;
2120 }
2121
2122 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2123 {
2124         struct lpi_range *range, *tmp;
2125         int err = -ENOSPC;
2126
2127         mutex_lock(&lpi_range_lock);
2128
2129         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2130                 if (range->span >= nr_lpis) {
2131                         *base = range->base_id;
2132                         range->base_id += nr_lpis;
2133                         range->span -= nr_lpis;
2134
2135                         if (range->span == 0) {
2136                                 list_del(&range->entry);
2137                                 kfree(range);
2138                         }
2139
2140                         err = 0;
2141                         break;
2142                 }
2143         }
2144
2145         mutex_unlock(&lpi_range_lock);
2146
2147         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2148         return err;
2149 }
2150
2151 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2152 {
2153         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2154                 return;
2155         if (a->base_id + a->span != b->base_id)
2156                 return;
2157         b->base_id = a->base_id;
2158         b->span += a->span;
2159         list_del(&a->entry);
2160         kfree(a);
2161 }
2162
2163 static int free_lpi_range(u32 base, u32 nr_lpis)
2164 {
2165         struct lpi_range *new, *old;
2166
2167         new = mk_lpi_range(base, nr_lpis);
2168         if (!new)
2169                 return -ENOMEM;
2170
2171         mutex_lock(&lpi_range_lock);
2172
2173         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2174                 if (old->base_id < base)
2175                         break;
2176         }
2177         /*
2178          * old is the last element with ->base_id smaller than base,
2179          * so new goes right after it. If there are no elements with
2180          * ->base_id smaller than base, &old->entry ends up pointing
2181          * at the head of the list, and inserting new it the start of
2182          * the list is the right thing to do in that case as well.
2183          */
2184         list_add(&new->entry, &old->entry);
2185         /*
2186          * Now check if we can merge with the preceding and/or
2187          * following ranges.
2188          */
2189         merge_lpi_ranges(old, new);
2190         merge_lpi_ranges(new, list_next_entry(new, entry));
2191
2192         mutex_unlock(&lpi_range_lock);
2193         return 0;
2194 }
2195
2196 static int __init its_lpi_init(u32 id_bits)
2197 {
2198         u32 lpis = (1UL << id_bits) - 8192;
2199         u32 numlpis;
2200         int err;
2201
2202         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2203
2204         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2205                 lpis = numlpis;
2206                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2207                         lpis);
2208         }
2209
2210         /*
2211          * Initializing the allocator is just the same as freeing the
2212          * full range of LPIs.
2213          */
2214         err = free_lpi_range(8192, lpis);
2215         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2216         return err;
2217 }
2218
2219 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2220 {
2221         unsigned long *bitmap = NULL;
2222         int err = 0;
2223
2224         do {
2225                 err = alloc_lpi_range(nr_irqs, base);
2226                 if (!err)
2227                         break;
2228
2229                 nr_irqs /= 2;
2230         } while (nr_irqs > 0);
2231
2232         if (!nr_irqs)
2233                 err = -ENOSPC;
2234
2235         if (err)
2236                 goto out;
2237
2238         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2239         if (!bitmap)
2240                 goto out;
2241
2242         *nr_ids = nr_irqs;
2243
2244 out:
2245         if (!bitmap)
2246                 *base = *nr_ids = 0;
2247
2248         return bitmap;
2249 }
2250
2251 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2252 {
2253         WARN_ON(free_lpi_range(base, nr_ids));
2254         bitmap_free(bitmap);
2255 }
2256
2257 static void gic_reset_prop_table(void *va)
2258 {
2259         /* Regular IRQ priority, Group-1, disabled */
2260         memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2261
2262         /* Make sure the GIC will observe the written configuration */
2263         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2264 }
2265
2266 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2267 {
2268         struct page *prop_page;
2269
2270         prop_page = its_alloc_pages(gfp_flags,
2271                                     get_order(LPI_PROPBASE_SZ));
2272         if (!prop_page)
2273                 return NULL;
2274
2275         gic_reset_prop_table(page_address(prop_page));
2276
2277         return prop_page;
2278 }
2279
2280 static void its_free_prop_table(struct page *prop_page)
2281 {
2282         its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
2283 }
2284
2285 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2286 {
2287         phys_addr_t start, end, addr_end;
2288         u64 i;
2289
2290         /*
2291          * We don't bother checking for a kdump kernel as by
2292          * construction, the LPI tables are out of this kernel's
2293          * memory map.
2294          */
2295         if (is_kdump_kernel())
2296                 return true;
2297
2298         addr_end = addr + size - 1;
2299
2300         for_each_reserved_mem_range(i, &start, &end) {
2301                 if (addr >= start && addr_end <= end)
2302                         return true;
2303         }
2304
2305         /* Not found, not a good sign... */
2306         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2307                 &addr, &addr_end);
2308         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2309         return false;
2310 }
2311
2312 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2313 {
2314         if (efi_enabled(EFI_CONFIG_TABLES))
2315                 return efi_mem_reserve_persistent(addr, size);
2316
2317         return 0;
2318 }
2319
2320 static int __init its_setup_lpi_prop_table(void)
2321 {
2322         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2323                 u64 val;
2324
2325                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2326                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2327
2328                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2329                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2330                                                      LPI_PROPBASE_SZ,
2331                                                      MEMREMAP_WB);
2332                 gic_reset_prop_table(gic_rdists->prop_table_va);
2333         } else {
2334                 struct page *page;
2335
2336                 lpi_id_bits = min_t(u32,
2337                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2338                                     ITS_MAX_LPI_NRBITS);
2339                 page = its_allocate_prop_table(GFP_NOWAIT);
2340                 if (!page) {
2341                         pr_err("Failed to allocate PROPBASE\n");
2342                         return -ENOMEM;
2343                 }
2344
2345                 gic_rdists->prop_table_pa = page_to_phys(page);
2346                 gic_rdists->prop_table_va = page_address(page);
2347                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2348                                           LPI_PROPBASE_SZ));
2349         }
2350
2351         pr_info("GICv3: using LPI property table @%pa\n",
2352                 &gic_rdists->prop_table_pa);
2353
2354         return its_lpi_init(lpi_id_bits);
2355 }
2356
2357 static const char *its_base_type_string[] = {
2358         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2359         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2360         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2361         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2362         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2363         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2364         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2365 };
2366
2367 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2368 {
2369         u32 idx = baser - its->tables;
2370
2371         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2372 }
2373
2374 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2375                             u64 val)
2376 {
2377         u32 idx = baser - its->tables;
2378
2379         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2380         baser->val = its_read_baser(its, baser);
2381 }
2382
2383 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2384                            u64 cache, u64 shr, u32 order, bool indirect)
2385 {
2386         u64 val = its_read_baser(its, baser);
2387         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2388         u64 type = GITS_BASER_TYPE(val);
2389         u64 baser_phys, tmp;
2390         u32 alloc_pages, psz;
2391         struct page *page;
2392         void *base;
2393
2394         psz = baser->psz;
2395         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2396         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2397                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2398                         &its->phys_base, its_base_type_string[type],
2399                         alloc_pages, GITS_BASER_PAGES_MAX);
2400                 alloc_pages = GITS_BASER_PAGES_MAX;
2401                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2402         }
2403
2404         page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2405         if (!page)
2406                 return -ENOMEM;
2407
2408         base = (void *)page_address(page);
2409         baser_phys = virt_to_phys(base);
2410
2411         /* Check if the physical address of the memory is above 48bits */
2412         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2413
2414                 /* 52bit PA is supported only when PageSize=64K */
2415                 if (psz != SZ_64K) {
2416                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2417                         its_free_pages(base, order);
2418                         return -ENXIO;
2419                 }
2420
2421                 /* Convert 52bit PA to 48bit field */
2422                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2423         }
2424
2425 retry_baser:
2426         val = (baser_phys                                        |
2427                 (type << GITS_BASER_TYPE_SHIFT)                  |
2428                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2429                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2430                 cache                                            |
2431                 shr                                              |
2432                 GITS_BASER_VALID);
2433
2434         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2435
2436         switch (psz) {
2437         case SZ_4K:
2438                 val |= GITS_BASER_PAGE_SIZE_4K;
2439                 break;
2440         case SZ_16K:
2441                 val |= GITS_BASER_PAGE_SIZE_16K;
2442                 break;
2443         case SZ_64K:
2444                 val |= GITS_BASER_PAGE_SIZE_64K;
2445                 break;
2446         }
2447
2448         if (!shr)
2449                 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2450
2451         its_write_baser(its, baser, val);
2452         tmp = baser->val;
2453
2454         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2455                 /*
2456                  * Shareability didn't stick. Just use
2457                  * whatever the read reported, which is likely
2458                  * to be the only thing this redistributor
2459                  * supports. If that's zero, make it
2460                  * non-cacheable as well.
2461                  */
2462                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2463                 if (!shr)
2464                         cache = GITS_BASER_nC;
2465
2466                 goto retry_baser;
2467         }
2468
2469         if (val != tmp) {
2470                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2471                        &its->phys_base, its_base_type_string[type],
2472                        val, tmp);
2473                 its_free_pages(base, order);
2474                 return -ENXIO;
2475         }
2476
2477         baser->order = order;
2478         baser->base = base;
2479         baser->psz = psz;
2480         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2481
2482         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2483                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2484                 its_base_type_string[type],
2485                 (unsigned long)virt_to_phys(base),
2486                 indirect ? "indirect" : "flat", (int)esz,
2487                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2488
2489         return 0;
2490 }
2491
2492 static bool its_parse_indirect_baser(struct its_node *its,
2493                                      struct its_baser *baser,
2494                                      u32 *order, u32 ids)
2495 {
2496         u64 tmp = its_read_baser(its, baser);
2497         u64 type = GITS_BASER_TYPE(tmp);
2498         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2499         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2500         u32 new_order = *order;
2501         u32 psz = baser->psz;
2502         bool indirect = false;
2503
2504         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2505         if ((esz << ids) > (psz * 2)) {
2506                 /*
2507                  * Find out whether hw supports a single or two-level table by
2508                  * table by reading bit at offset '62' after writing '1' to it.
2509                  */
2510                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2511                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2512
2513                 if (indirect) {
2514                         /*
2515                          * The size of the lvl2 table is equal to ITS page size
2516                          * which is 'psz'. For computing lvl1 table size,
2517                          * subtract ID bits that sparse lvl2 table from 'ids'
2518                          * which is reported by ITS hardware times lvl1 table
2519                          * entry size.
2520                          */
2521                         ids -= ilog2(psz / (int)esz);
2522                         esz = GITS_LVL1_ENTRY_SIZE;
2523                 }
2524         }
2525
2526         /*
2527          * Allocate as many entries as required to fit the
2528          * range of device IDs that the ITS can grok... The ID
2529          * space being incredibly sparse, this results in a
2530          * massive waste of memory if two-level device table
2531          * feature is not supported by hardware.
2532          */
2533         new_order = max_t(u32, get_order(esz << ids), new_order);
2534         if (new_order > MAX_PAGE_ORDER) {
2535                 new_order = MAX_PAGE_ORDER;
2536                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2537                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2538                         &its->phys_base, its_base_type_string[type],
2539                         device_ids(its), ids);
2540         }
2541
2542         *order = new_order;
2543
2544         return indirect;
2545 }
2546
2547 static u32 compute_common_aff(u64 val)
2548 {
2549         u32 aff, clpiaff;
2550
2551         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2552         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2553
2554         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2555 }
2556
2557 static u32 compute_its_aff(struct its_node *its)
2558 {
2559         u64 val;
2560         u32 svpet;
2561
2562         /*
2563          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2564          * the resulting affinity. We then use that to see if this match
2565          * our own affinity.
2566          */
2567         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2568         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2569         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2570         return compute_common_aff(val);
2571 }
2572
2573 static struct its_node *find_sibling_its(struct its_node *cur_its)
2574 {
2575         struct its_node *its;
2576         u32 aff;
2577
2578         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2579                 return NULL;
2580
2581         aff = compute_its_aff(cur_its);
2582
2583         list_for_each_entry(its, &its_nodes, entry) {
2584                 u64 baser;
2585
2586                 if (!is_v4_1(its) || its == cur_its)
2587                         continue;
2588
2589                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2590                         continue;
2591
2592                 if (aff != compute_its_aff(its))
2593                         continue;
2594
2595                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2596                 baser = its->tables[2].val;
2597                 if (!(baser & GITS_BASER_VALID))
2598                         continue;
2599
2600                 return its;
2601         }
2602
2603         return NULL;
2604 }
2605
2606 static void its_free_tables(struct its_node *its)
2607 {
2608         int i;
2609
2610         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2611                 if (its->tables[i].base) {
2612                         its_free_pages(its->tables[i].base, its->tables[i].order);
2613                         its->tables[i].base = NULL;
2614                 }
2615         }
2616 }
2617
2618 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2619 {
2620         u64 psz = SZ_64K;
2621
2622         while (psz) {
2623                 u64 val, gpsz;
2624
2625                 val = its_read_baser(its, baser);
2626                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2627
2628                 switch (psz) {
2629                 case SZ_64K:
2630                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2631                         break;
2632                 case SZ_16K:
2633                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2634                         break;
2635                 case SZ_4K:
2636                 default:
2637                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2638                         break;
2639                 }
2640
2641                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2642
2643                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2644                 its_write_baser(its, baser, val);
2645
2646                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2647                         break;
2648
2649                 switch (psz) {
2650                 case SZ_64K:
2651                         psz = SZ_16K;
2652                         break;
2653                 case SZ_16K:
2654                         psz = SZ_4K;
2655                         break;
2656                 case SZ_4K:
2657                 default:
2658                         return -1;
2659                 }
2660         }
2661
2662         baser->psz = psz;
2663         return 0;
2664 }
2665
2666 static int its_alloc_tables(struct its_node *its)
2667 {
2668         u64 shr = GITS_BASER_InnerShareable;
2669         u64 cache = GITS_BASER_RaWaWb;
2670         int err, i;
2671
2672         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2673                 /* erratum 24313: ignore memory access type */
2674                 cache = GITS_BASER_nCnB;
2675
2676         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2677                 cache = GITS_BASER_nC;
2678                 shr = 0;
2679         }
2680
2681         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2682                 struct its_baser *baser = its->tables + i;
2683                 u64 val = its_read_baser(its, baser);
2684                 u64 type = GITS_BASER_TYPE(val);
2685                 bool indirect = false;
2686                 u32 order;
2687
2688                 if (type == GITS_BASER_TYPE_NONE)
2689                         continue;
2690
2691                 if (its_probe_baser_psz(its, baser)) {
2692                         its_free_tables(its);
2693                         return -ENXIO;
2694                 }
2695
2696                 order = get_order(baser->psz);
2697
2698                 switch (type) {
2699                 case GITS_BASER_TYPE_DEVICE:
2700                         indirect = its_parse_indirect_baser(its, baser, &order,
2701                                                             device_ids(its));
2702                         break;
2703
2704                 case GITS_BASER_TYPE_VCPU:
2705                         if (is_v4_1(its)) {
2706                                 struct its_node *sibling;
2707
2708                                 WARN_ON(i != 2);
2709                                 if ((sibling = find_sibling_its(its))) {
2710                                         *baser = sibling->tables[2];
2711                                         its_write_baser(its, baser, baser->val);
2712                                         continue;
2713                                 }
2714                         }
2715
2716                         indirect = its_parse_indirect_baser(its, baser, &order,
2717                                                             ITS_MAX_VPEID_BITS);
2718                         break;
2719                 }
2720
2721                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2722                 if (err < 0) {
2723                         its_free_tables(its);
2724                         return err;
2725                 }
2726
2727                 /* Update settings which will be used for next BASERn */
2728                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2729                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2730         }
2731
2732         return 0;
2733 }
2734
2735 static u64 inherit_vpe_l1_table_from_its(void)
2736 {
2737         struct its_node *its;
2738         u64 val;
2739         u32 aff;
2740
2741         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2742         aff = compute_common_aff(val);
2743
2744         list_for_each_entry(its, &its_nodes, entry) {
2745                 u64 baser, addr;
2746
2747                 if (!is_v4_1(its))
2748                         continue;
2749
2750                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2751                         continue;
2752
2753                 if (aff != compute_its_aff(its))
2754                         continue;
2755
2756                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2757                 baser = its->tables[2].val;
2758                 if (!(baser & GITS_BASER_VALID))
2759                         continue;
2760
2761                 /* We have a winner! */
2762                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2763
2764                 val  = GICR_VPROPBASER_4_1_VALID;
2765                 if (baser & GITS_BASER_INDIRECT)
2766                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2767                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2768                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2769                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2770                 case GIC_PAGE_SIZE_64K:
2771                         addr = GITS_BASER_ADDR_48_to_52(baser);
2772                         break;
2773                 default:
2774                         addr = baser & GENMASK_ULL(47, 12);
2775                         break;
2776                 }
2777                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2778                 if (rdists_support_shareable()) {
2779                         val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2780                                           FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2781                         val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2782                                           FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2783                 }
2784                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2785
2786                 return val;
2787         }
2788
2789         return 0;
2790 }
2791
2792 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2793 {
2794         u32 aff;
2795         u64 val;
2796         int cpu;
2797
2798         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2799         aff = compute_common_aff(val);
2800
2801         for_each_possible_cpu(cpu) {
2802                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2803
2804                 if (!base || cpu == smp_processor_id())
2805                         continue;
2806
2807                 val = gic_read_typer(base + GICR_TYPER);
2808                 if (aff != compute_common_aff(val))
2809                         continue;
2810
2811                 /*
2812                  * At this point, we have a victim. This particular CPU
2813                  * has already booted, and has an affinity that matches
2814                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2815                  * Make sure we don't write the Z bit in that case.
2816                  */
2817                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2818                 val &= ~GICR_VPROPBASER_4_1_Z;
2819
2820                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2821                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2822
2823                 return val;
2824         }
2825
2826         return 0;
2827 }
2828
2829 static bool allocate_vpe_l2_table(int cpu, u32 id)
2830 {
2831         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2832         unsigned int psz, esz, idx, npg, gpsz;
2833         u64 val;
2834         struct page *page;
2835         __le64 *table;
2836
2837         if (!gic_rdists->has_rvpeid)
2838                 return true;
2839
2840         /* Skip non-present CPUs */
2841         if (!base)
2842                 return true;
2843
2844         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2845
2846         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2847         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2848         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2849
2850         switch (gpsz) {
2851         default:
2852                 WARN_ON(1);
2853                 fallthrough;
2854         case GIC_PAGE_SIZE_4K:
2855                 psz = SZ_4K;
2856                 break;
2857         case GIC_PAGE_SIZE_16K:
2858                 psz = SZ_16K;
2859                 break;
2860         case GIC_PAGE_SIZE_64K:
2861                 psz = SZ_64K;
2862                 break;
2863         }
2864
2865         /* Don't allow vpe_id that exceeds single, flat table limit */
2866         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2867                 return (id < (npg * psz / (esz * SZ_8)));
2868
2869         /* Compute 1st level table index & check if that exceeds table limit */
2870         idx = id >> ilog2(psz / (esz * SZ_8));
2871         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2872                 return false;
2873
2874         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2875
2876         /* Allocate memory for 2nd level table */
2877         if (!table[idx]) {
2878                 page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2879                 if (!page)
2880                         return false;
2881
2882                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2883                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2884                         gic_flush_dcache_to_poc(page_address(page), psz);
2885
2886                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2887
2888                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2889                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2890                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2891
2892                 /* Ensure updated table contents are visible to RD hardware */
2893                 dsb(sy);
2894         }
2895
2896         return true;
2897 }
2898
2899 static int allocate_vpe_l1_table(void)
2900 {
2901         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2902         u64 val, gpsz, npg, pa;
2903         unsigned int psz = SZ_64K;
2904         unsigned int np, epp, esz;
2905         struct page *page;
2906
2907         if (!gic_rdists->has_rvpeid)
2908                 return 0;
2909
2910         /*
2911          * if VPENDBASER.Valid is set, disable any previously programmed
2912          * VPE by setting PendingLast while clearing Valid. This has the
2913          * effect of making sure no doorbell will be generated and we can
2914          * then safely clear VPROPBASER.Valid.
2915          */
2916         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2917                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2918                                       vlpi_base + GICR_VPENDBASER);
2919
2920         /*
2921          * If we can inherit the configuration from another RD, let's do
2922          * so. Otherwise, we have to go through the allocation process. We
2923          * assume that all RDs have the exact same requirements, as
2924          * nothing will work otherwise.
2925          */
2926         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2927         if (val & GICR_VPROPBASER_4_1_VALID)
2928                 goto out;
2929
2930         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2931         if (!gic_data_rdist()->vpe_table_mask)
2932                 return -ENOMEM;
2933
2934         val = inherit_vpe_l1_table_from_its();
2935         if (val & GICR_VPROPBASER_4_1_VALID)
2936                 goto out;
2937
2938         /* First probe the page size */
2939         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2940         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2941         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2942         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2943         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2944
2945         switch (gpsz) {
2946         default:
2947                 gpsz = GIC_PAGE_SIZE_4K;
2948                 fallthrough;
2949         case GIC_PAGE_SIZE_4K:
2950                 psz = SZ_4K;
2951                 break;
2952         case GIC_PAGE_SIZE_16K:
2953                 psz = SZ_16K;
2954                 break;
2955         case GIC_PAGE_SIZE_64K:
2956                 psz = SZ_64K;
2957                 break;
2958         }
2959
2960         /*
2961          * Start populating the register from scratch, including RO fields
2962          * (which we want to print in debug cases...)
2963          */
2964         val = 0;
2965         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2966         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2967
2968         /* How many entries per GIC page? */
2969         esz++;
2970         epp = psz / (esz * SZ_8);
2971
2972         /*
2973          * If we need more than just a single L1 page, flag the table
2974          * as indirect and compute the number of required L1 pages.
2975          */
2976         if (epp < ITS_MAX_VPEID) {
2977                 int nl2;
2978
2979                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2980
2981                 /* Number of L2 pages required to cover the VPEID space */
2982                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2983
2984                 /* Number of L1 pages to point to the L2 pages */
2985                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2986         } else {
2987                 npg = 1;
2988         }
2989
2990         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2991
2992         /* Right, that's the number of CPU pages we need for L1 */
2993         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2994
2995         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2996                  np, npg, psz, epp, esz);
2997         page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2998         if (!page)
2999                 return -ENOMEM;
3000
3001         gic_data_rdist()->vpe_l1_base = page_address(page);
3002         pa = virt_to_phys(page_address(page));
3003         WARN_ON(!IS_ALIGNED(pa, psz));
3004
3005         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
3006         if (rdists_support_shareable()) {
3007                 val |= GICR_VPROPBASER_RaWb;
3008                 val |= GICR_VPROPBASER_InnerShareable;
3009         }
3010         val |= GICR_VPROPBASER_4_1_Z;
3011         val |= GICR_VPROPBASER_4_1_VALID;
3012
3013 out:
3014         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3015         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
3016
3017         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
3018                  smp_processor_id(), val,
3019                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
3020
3021         return 0;
3022 }
3023
3024 static int its_alloc_collections(struct its_node *its)
3025 {
3026         int i;
3027
3028         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
3029                                    GFP_KERNEL);
3030         if (!its->collections)
3031                 return -ENOMEM;
3032
3033         for (i = 0; i < nr_cpu_ids; i++)
3034                 its->collections[i].target_address = ~0ULL;
3035
3036         return 0;
3037 }
3038
3039 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
3040 {
3041         struct page *pend_page;
3042
3043         pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
3044         if (!pend_page)
3045                 return NULL;
3046
3047         /* Make sure the GIC will observe the zero-ed page */
3048         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
3049
3050         return pend_page;
3051 }
3052
3053 static void its_free_pending_table(struct page *pt)
3054 {
3055         its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
3056 }
3057
3058 /*
3059  * Booting with kdump and LPIs enabled is generally fine. Any other
3060  * case is wrong in the absence of firmware/EFI support.
3061  */
3062 static bool enabled_lpis_allowed(void)
3063 {
3064         phys_addr_t addr;
3065         u64 val;
3066
3067         /* Check whether the property table is in a reserved region */
3068         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3069         addr = val & GENMASK_ULL(51, 12);
3070
3071         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3072 }
3073
3074 static int __init allocate_lpi_tables(void)
3075 {
3076         u64 val;
3077         int err, cpu;
3078
3079         /*
3080          * If LPIs are enabled while we run this from the boot CPU,
3081          * flag the RD tables as pre-allocated if the stars do align.
3082          */
3083         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3084         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3085                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3086                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3087                 pr_info("GICv3: Using preallocated redistributor tables\n");
3088         }
3089
3090         err = its_setup_lpi_prop_table();
3091         if (err)
3092                 return err;
3093
3094         /*
3095          * We allocate all the pending tables anyway, as we may have a
3096          * mix of RDs that have had LPIs enabled, and some that
3097          * don't. We'll free the unused ones as each CPU comes online.
3098          */
3099         for_each_possible_cpu(cpu) {
3100                 struct page *pend_page;
3101
3102                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3103                 if (!pend_page) {
3104                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3105                         return -ENOMEM;
3106                 }
3107
3108                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3109         }
3110
3111         return 0;
3112 }
3113
3114 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3115 {
3116         u32 count = 1000000;    /* 1s! */
3117         bool clean;
3118         u64 val;
3119
3120         do {
3121                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3122                 clean = !(val & GICR_VPENDBASER_Dirty);
3123                 if (!clean) {
3124                         count--;
3125                         cpu_relax();
3126                         udelay(1);
3127                 }
3128         } while (!clean && count);
3129
3130         if (unlikely(!clean))
3131                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3132
3133         return val;
3134 }
3135
3136 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3137 {
3138         u64 val;
3139
3140         /* Make sure we wait until the RD is done with the initial scan */
3141         val = read_vpend_dirty_clear(vlpi_base);
3142         val &= ~GICR_VPENDBASER_Valid;
3143         val &= ~clr;
3144         val |= set;
3145         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3146
3147         val = read_vpend_dirty_clear(vlpi_base);
3148         if (unlikely(val & GICR_VPENDBASER_Dirty))
3149                 val |= GICR_VPENDBASER_PendingLast;
3150
3151         return val;
3152 }
3153
3154 static void its_cpu_init_lpis(void)
3155 {
3156         void __iomem *rbase = gic_data_rdist_rd_base();
3157         struct page *pend_page;
3158         phys_addr_t paddr;
3159         u64 val, tmp;
3160
3161         if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3162                 return;
3163
3164         val = readl_relaxed(rbase + GICR_CTLR);
3165         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3166             (val & GICR_CTLR_ENABLE_LPIS)) {
3167                 /*
3168                  * Check that we get the same property table on all
3169                  * RDs. If we don't, this is hopeless.
3170                  */
3171                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3172                 paddr &= GENMASK_ULL(51, 12);
3173                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3174                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3175
3176                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3177                 paddr &= GENMASK_ULL(51, 16);
3178
3179                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3180                 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3181
3182                 goto out;
3183         }
3184
3185         pend_page = gic_data_rdist()->pend_page;
3186         paddr = page_to_phys(pend_page);
3187
3188         /* set PROPBASE */
3189         val = (gic_rdists->prop_table_pa |
3190                GICR_PROPBASER_InnerShareable |
3191                GICR_PROPBASER_RaWaWb |
3192                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3193
3194         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3195         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3196
3197         if (!rdists_support_shareable())
3198                 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3199
3200         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3201                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3202                         /*
3203                          * The HW reports non-shareable, we must
3204                          * remove the cacheability attributes as
3205                          * well.
3206                          */
3207                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3208                                  GICR_PROPBASER_CACHEABILITY_MASK);
3209                         val |= GICR_PROPBASER_nC;
3210                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3211                 }
3212                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3213                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3214         }
3215
3216         /* set PENDBASE */
3217         val = (page_to_phys(pend_page) |
3218                GICR_PENDBASER_InnerShareable |
3219                GICR_PENDBASER_RaWaWb);
3220
3221         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3222         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3223
3224         if (!rdists_support_shareable())
3225                 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3226
3227         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3228                 /*
3229                  * The HW reports non-shareable, we must remove the
3230                  * cacheability attributes as well.
3231                  */
3232                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3233                          GICR_PENDBASER_CACHEABILITY_MASK);
3234                 val |= GICR_PENDBASER_nC;
3235                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3236         }
3237
3238         /* Enable LPIs */
3239         val = readl_relaxed(rbase + GICR_CTLR);
3240         val |= GICR_CTLR_ENABLE_LPIS;
3241         writel_relaxed(val, rbase + GICR_CTLR);
3242
3243 out:
3244         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3245                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3246
3247                 /*
3248                  * It's possible for CPU to receive VLPIs before it is
3249                  * scheduled as a vPE, especially for the first CPU, and the
3250                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3251                  * as out of range and dropped by GIC.
3252                  * So we initialize IDbits to known value to avoid VLPI drop.
3253                  */
3254                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3255                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3256                         smp_processor_id(), val);
3257                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3258
3259                 /*
3260                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3261                  * ancient programming gets left in and has possibility of
3262                  * corrupting memory.
3263                  */
3264                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3265         }
3266
3267         if (allocate_vpe_l1_table()) {
3268                 /*
3269                  * If the allocation has failed, we're in massive trouble.
3270                  * Disable direct injection, and pray that no VM was
3271                  * already running...
3272                  */
3273                 gic_rdists->has_rvpeid = false;
3274                 gic_rdists->has_vlpis = false;
3275         }
3276
3277         /* Make sure the GIC has seen the above */
3278         dsb(sy);
3279         gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3280         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3281                 smp_processor_id(),
3282                 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3283                 "reserved" : "allocated",
3284                 &paddr);
3285 }
3286
3287 static void its_cpu_init_collection(struct its_node *its)
3288 {
3289         int cpu = smp_processor_id();
3290         u64 target;
3291
3292         /* avoid cross node collections and its mapping */
3293         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3294                 struct device_node *cpu_node;
3295
3296                 cpu_node = of_get_cpu_node(cpu, NULL);
3297                 if (its->numa_node != NUMA_NO_NODE &&
3298                         its->numa_node != of_node_to_nid(cpu_node))
3299                         return;
3300         }
3301
3302         /*
3303          * We now have to bind each collection to its target
3304          * redistributor.
3305          */
3306         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3307                 /*
3308                  * This ITS wants the physical address of the
3309                  * redistributor.
3310                  */
3311                 target = gic_data_rdist()->phys_base;
3312         } else {
3313                 /* This ITS wants a linear CPU number. */
3314                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3315                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3316         }
3317
3318         /* Perform collection mapping */
3319         its->collections[cpu].target_address = target;
3320         its->collections[cpu].col_id = cpu;
3321
3322         its_send_mapc(its, &its->collections[cpu], 1);
3323         its_send_invall(its, &its->collections[cpu]);
3324 }
3325
3326 static void its_cpu_init_collections(void)
3327 {
3328         struct its_node *its;
3329
3330         raw_spin_lock(&its_lock);
3331
3332         list_for_each_entry(its, &its_nodes, entry)
3333                 its_cpu_init_collection(its);
3334
3335         raw_spin_unlock(&its_lock);
3336 }
3337
3338 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3339 {
3340         struct its_device *its_dev = NULL, *tmp;
3341         unsigned long flags;
3342
3343         raw_spin_lock_irqsave(&its->lock, flags);
3344
3345         list_for_each_entry(tmp, &its->its_device_list, entry) {
3346                 if (tmp->device_id == dev_id) {
3347                         its_dev = tmp;
3348                         break;
3349                 }
3350         }
3351
3352         raw_spin_unlock_irqrestore(&its->lock, flags);
3353
3354         return its_dev;
3355 }
3356
3357 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3358 {
3359         int i;
3360
3361         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3362                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3363                         return &its->tables[i];
3364         }
3365
3366         return NULL;
3367 }
3368
3369 static bool its_alloc_table_entry(struct its_node *its,
3370                                   struct its_baser *baser, u32 id)
3371 {
3372         struct page *page;
3373         u32 esz, idx;
3374         __le64 *table;
3375
3376         /* Don't allow device id that exceeds single, flat table limit */
3377         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3378         if (!(baser->val & GITS_BASER_INDIRECT))
3379                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3380
3381         /* Compute 1st level table index & check if that exceeds table limit */
3382         idx = id >> ilog2(baser->psz / esz);
3383         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3384                 return false;
3385
3386         table = baser->base;
3387
3388         /* Allocate memory for 2nd level table */
3389         if (!table[idx]) {
3390                 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3391                                             get_order(baser->psz));
3392                 if (!page)
3393                         return false;
3394
3395                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3396                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3397                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3398
3399                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3400
3401                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3402                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3403                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3404
3405                 /* Ensure updated table contents are visible to ITS hardware */
3406                 dsb(sy);
3407         }
3408
3409         return true;
3410 }
3411
3412 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3413 {
3414         struct its_baser *baser;
3415
3416         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3417
3418         /* Don't allow device id that exceeds ITS hardware limit */
3419         if (!baser)
3420                 return (ilog2(dev_id) < device_ids(its));
3421
3422         return its_alloc_table_entry(its, baser, dev_id);
3423 }
3424
3425 static bool its_alloc_vpe_table(u32 vpe_id)
3426 {
3427         struct its_node *its;
3428         int cpu;
3429
3430         /*
3431          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3432          * could try and only do it on ITSs corresponding to devices
3433          * that have interrupts targeted at this VPE, but the
3434          * complexity becomes crazy (and you have tons of memory
3435          * anyway, right?).
3436          */
3437         list_for_each_entry(its, &its_nodes, entry) {
3438                 struct its_baser *baser;
3439
3440                 if (!is_v4(its))
3441                         continue;
3442
3443                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3444                 if (!baser)
3445                         return false;
3446
3447                 if (!its_alloc_table_entry(its, baser, vpe_id))
3448                         return false;
3449         }
3450
3451         /* Non v4.1? No need to iterate RDs and go back early. */
3452         if (!gic_rdists->has_rvpeid)
3453                 return true;
3454
3455         /*
3456          * Make sure the L2 tables are allocated for all copies of
3457          * the L1 table on *all* v4.1 RDs.
3458          */
3459         for_each_possible_cpu(cpu) {
3460                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3461                         return false;
3462         }
3463
3464         return true;
3465 }
3466
3467 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3468                                             int nvecs, bool alloc_lpis)
3469 {
3470         struct its_device *dev;
3471         unsigned long *lpi_map = NULL;
3472         unsigned long flags;
3473         u16 *col_map = NULL;
3474         void *itt;
3475         int lpi_base;
3476         int nr_lpis;
3477         int nr_ites;
3478         int sz;
3479
3480         if (!its_alloc_device_table(its, dev_id))
3481                 return NULL;
3482
3483         if (WARN_ON(!is_power_of_2(nvecs)))
3484                 nvecs = roundup_pow_of_two(nvecs);
3485
3486         /*
3487          * Even if the device wants a single LPI, the ITT must be
3488          * sized as a power of two (and you need at least one bit...).
3489          */
3490         nr_ites = max(2, nvecs);
3491         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3492         sz = max(sz, ITS_ITT_ALIGN);
3493
3494         itt = itt_alloc_pool(its->numa_node, sz);
3495
3496         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3497
3498         if (alloc_lpis) {
3499                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3500                 if (lpi_map)
3501                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3502                                           GFP_KERNEL);
3503         } else {
3504                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3505                 nr_lpis = 0;
3506                 lpi_base = 0;
3507         }
3508
3509         if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3510                 kfree(dev);
3511                 itt_free_pool(itt, sz);
3512                 bitmap_free(lpi_map);
3513                 kfree(col_map);
3514                 return NULL;
3515         }
3516
3517         gic_flush_dcache_to_poc(itt, sz);
3518
3519         dev->its = its;
3520         dev->itt = itt;
3521         dev->itt_sz = sz;
3522         dev->nr_ites = nr_ites;
3523         dev->event_map.lpi_map = lpi_map;
3524         dev->event_map.col_map = col_map;
3525         dev->event_map.lpi_base = lpi_base;
3526         dev->event_map.nr_lpis = nr_lpis;
3527         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3528         dev->device_id = dev_id;
3529         INIT_LIST_HEAD(&dev->entry);
3530
3531         raw_spin_lock_irqsave(&its->lock, flags);
3532         list_add(&dev->entry, &its->its_device_list);
3533         raw_spin_unlock_irqrestore(&its->lock, flags);
3534
3535         /* Map device to its ITT */
3536         its_send_mapd(dev, 1);
3537
3538         return dev;
3539 }
3540
3541 static void its_free_device(struct its_device *its_dev)
3542 {
3543         unsigned long flags;
3544
3545         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3546         list_del(&its_dev->entry);
3547         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3548         kfree(its_dev->event_map.col_map);
3549         itt_free_pool(its_dev->itt, its_dev->itt_sz);
3550         kfree(its_dev);
3551 }
3552
3553 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3554 {
3555         int idx;
3556
3557         /* Find a free LPI region in lpi_map and allocate them. */
3558         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3559                                       dev->event_map.nr_lpis,
3560                                       get_count_order(nvecs));
3561         if (idx < 0)
3562                 return -ENOSPC;
3563
3564         *hwirq = dev->event_map.lpi_base + idx;
3565
3566         return 0;
3567 }
3568
3569 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3570                            int nvec, msi_alloc_info_t *info)
3571 {
3572         struct its_node *its;
3573         struct its_device *its_dev;
3574         struct msi_domain_info *msi_info;
3575         u32 dev_id;
3576         int err = 0;
3577
3578         /*
3579          * We ignore "dev" entirely, and rely on the dev_id that has
3580          * been passed via the scratchpad. This limits this domain's
3581          * usefulness to upper layers that definitely know that they
3582          * are built on top of the ITS.
3583          */
3584         dev_id = info->scratchpad[0].ul;
3585
3586         msi_info = msi_get_domain_info(domain);
3587         its = msi_info->data;
3588
3589         if (!gic_rdists->has_direct_lpi &&
3590             vpe_proxy.dev &&
3591             vpe_proxy.dev->its == its &&
3592             dev_id == vpe_proxy.dev->device_id) {
3593                 /* Bad luck. Get yourself a better implementation */
3594                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3595                           dev_id);
3596                 return -EINVAL;
3597         }
3598
3599         mutex_lock(&its->dev_alloc_lock);
3600         its_dev = its_find_device(its, dev_id);
3601         if (its_dev) {
3602                 /*
3603                  * We already have seen this ID, probably through
3604                  * another alias (PCI bridge of some sort). No need to
3605                  * create the device.
3606                  */
3607                 its_dev->shared = true;
3608                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3609                 goto out;
3610         }
3611
3612         its_dev = its_create_device(its, dev_id, nvec, true);
3613         if (!its_dev) {
3614                 err = -ENOMEM;
3615                 goto out;
3616         }
3617
3618         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3619                 its_dev->shared = true;
3620
3621         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3622 out:
3623         mutex_unlock(&its->dev_alloc_lock);
3624         info->scratchpad[0].ptr = its_dev;
3625         return err;
3626 }
3627
3628 static struct msi_domain_ops its_msi_domain_ops = {
3629         .msi_prepare    = its_msi_prepare,
3630 };
3631
3632 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3633                                     unsigned int virq,
3634                                     irq_hw_number_t hwirq)
3635 {
3636         struct irq_fwspec fwspec;
3637
3638         if (irq_domain_get_of_node(domain->parent)) {
3639                 fwspec.fwnode = domain->parent->fwnode;
3640                 fwspec.param_count = 3;
3641                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3642                 fwspec.param[1] = hwirq;
3643                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3644         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3645                 fwspec.fwnode = domain->parent->fwnode;
3646                 fwspec.param_count = 2;
3647                 fwspec.param[0] = hwirq;
3648                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3649         } else {
3650                 return -EINVAL;
3651         }
3652
3653         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3654 }
3655
3656 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3657                                 unsigned int nr_irqs, void *args)
3658 {
3659         msi_alloc_info_t *info = args;
3660         struct its_device *its_dev = info->scratchpad[0].ptr;
3661         struct its_node *its = its_dev->its;
3662         struct irq_data *irqd;
3663         irq_hw_number_t hwirq;
3664         int err;
3665         int i;
3666
3667         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3668         if (err)
3669                 return err;
3670
3671         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3672         if (err)
3673                 return err;
3674
3675         for (i = 0; i < nr_irqs; i++) {
3676                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3677                 if (err)
3678                         return err;
3679
3680                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3681                                               hwirq + i, &its_irq_chip, its_dev);
3682                 irqd = irq_get_irq_data(virq + i);
3683                 irqd_set_single_target(irqd);
3684                 irqd_set_affinity_on_activate(irqd);
3685                 irqd_set_resend_when_in_progress(irqd);
3686                 pr_debug("ID:%d pID:%d vID:%d\n",
3687                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3688                          (int)(hwirq + i), virq + i);
3689         }
3690
3691         return 0;
3692 }
3693
3694 static int its_irq_domain_activate(struct irq_domain *domain,
3695                                    struct irq_data *d, bool reserve)
3696 {
3697         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3698         u32 event = its_get_event_id(d);
3699         int cpu;
3700
3701         cpu = its_select_cpu(d, cpu_online_mask);
3702         if (cpu < 0 || cpu >= nr_cpu_ids)
3703                 return -EINVAL;
3704
3705         its_inc_lpi_count(d, cpu);
3706         its_dev->event_map.col_map[event] = cpu;
3707         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3708
3709         /* Map the GIC IRQ and event to the device */
3710         its_send_mapti(its_dev, d->hwirq, event);
3711         return 0;
3712 }
3713
3714 static void its_irq_domain_deactivate(struct irq_domain *domain,
3715                                       struct irq_data *d)
3716 {
3717         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3718         u32 event = its_get_event_id(d);
3719
3720         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3721         /* Stop the delivery of interrupts */
3722         its_send_discard(its_dev, event);
3723 }
3724
3725 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3726                                 unsigned int nr_irqs)
3727 {
3728         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3729         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3730         struct its_node *its = its_dev->its;
3731         int i;
3732
3733         bitmap_release_region(its_dev->event_map.lpi_map,
3734                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3735                               get_count_order(nr_irqs));
3736
3737         for (i = 0; i < nr_irqs; i++) {
3738                 struct irq_data *data = irq_domain_get_irq_data(domain,
3739                                                                 virq + i);
3740                 /* Nuke the entry in the domain */
3741                 irq_domain_reset_irq_data(data);
3742         }
3743
3744         mutex_lock(&its->dev_alloc_lock);
3745
3746         /*
3747          * If all interrupts have been freed, start mopping the
3748          * floor. This is conditioned on the device not being shared.
3749          */
3750         if (!its_dev->shared &&
3751             bitmap_empty(its_dev->event_map.lpi_map,
3752                          its_dev->event_map.nr_lpis)) {
3753                 its_lpi_free(its_dev->event_map.lpi_map,
3754                              its_dev->event_map.lpi_base,
3755                              its_dev->event_map.nr_lpis);
3756
3757                 /* Unmap device/itt */
3758                 its_send_mapd(its_dev, 0);
3759                 its_free_device(its_dev);
3760         }
3761
3762         mutex_unlock(&its->dev_alloc_lock);
3763
3764         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3765 }
3766
3767 static const struct irq_domain_ops its_domain_ops = {
3768         .select                 = msi_lib_irq_domain_select,
3769         .alloc                  = its_irq_domain_alloc,
3770         .free                   = its_irq_domain_free,
3771         .activate               = its_irq_domain_activate,
3772         .deactivate             = its_irq_domain_deactivate,
3773 };
3774
3775 /*
3776  * This is insane.
3777  *
3778  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3779  * likely), the only way to perform an invalidate is to use a fake
3780  * device to issue an INV command, implying that the LPI has first
3781  * been mapped to some event on that device. Since this is not exactly
3782  * cheap, we try to keep that mapping around as long as possible, and
3783  * only issue an UNMAP if we're short on available slots.
3784  *
3785  * Broken by design(tm).
3786  *
3787  * GICv4.1, on the other hand, mandates that we're able to invalidate
3788  * by writing to a MMIO register. It doesn't implement the whole of
3789  * DirectLPI, but that's good enough. And most of the time, we don't
3790  * even have to invalidate anything, as the redistributor can be told
3791  * whether to generate a doorbell or not (we thus leave it enabled,
3792  * always).
3793  */
3794 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3795 {
3796         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3797         if (gic_rdists->has_rvpeid)
3798                 return;
3799
3800         /* Already unmapped? */
3801         if (vpe->vpe_proxy_event == -1)
3802                 return;
3803
3804         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3805         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3806
3807         /*
3808          * We don't track empty slots at all, so let's move the
3809          * next_victim pointer if we can quickly reuse that slot
3810          * instead of nuking an existing entry. Not clear that this is
3811          * always a win though, and this might just generate a ripple
3812          * effect... Let's just hope VPEs don't migrate too often.
3813          */
3814         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3815                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3816
3817         vpe->vpe_proxy_event = -1;
3818 }
3819
3820 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3821 {
3822         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3823         if (gic_rdists->has_rvpeid)
3824                 return;
3825
3826         if (!gic_rdists->has_direct_lpi) {
3827                 unsigned long flags;
3828
3829                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3830                 its_vpe_db_proxy_unmap_locked(vpe);
3831                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3832         }
3833 }
3834
3835 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3836 {
3837         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3838         if (gic_rdists->has_rvpeid)
3839                 return;
3840
3841         /* Already mapped? */
3842         if (vpe->vpe_proxy_event != -1)
3843                 return;
3844
3845         /* This slot was already allocated. Kick the other VPE out. */
3846         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3847                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3848
3849         /* Map the new VPE instead */
3850         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3851         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3852         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3853
3854         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3855         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3856 }
3857
3858 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3859 {
3860         unsigned long flags;
3861         struct its_collection *target_col;
3862
3863         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3864         if (gic_rdists->has_rvpeid)
3865                 return;
3866
3867         if (gic_rdists->has_direct_lpi) {
3868                 void __iomem *rdbase;
3869
3870                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3871                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3872                 wait_for_syncr(rdbase);
3873
3874                 return;
3875         }
3876
3877         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3878
3879         its_vpe_db_proxy_map_locked(vpe);
3880
3881         target_col = &vpe_proxy.dev->its->collections[to];
3882         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3883         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3884
3885         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3886 }
3887
3888 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
3889 {
3890         void __iomem *rdbase;
3891         u64 val;
3892
3893         val  = GICR_INVALLR_V;
3894         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3895
3896         guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
3897         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
3898         gic_write_lpir(val, rdbase + GICR_INVALLR);
3899         wait_for_syncr(rdbase);
3900 }
3901
3902 static int its_vpe_set_affinity(struct irq_data *d,
3903                                 const struct cpumask *mask_val,
3904                                 bool force)
3905 {
3906         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3907         unsigned int from, cpu = nr_cpu_ids;
3908         struct cpumask *table_mask;
3909         struct its_node *its;
3910         unsigned long flags;
3911
3912         /*
3913          * Check if we're racing against a VPE being destroyed, for
3914          * which we don't want to allow a VMOVP.
3915          */
3916         if (!atomic_read(&vpe->vmapp_count)) {
3917                 if (gic_requires_eager_mapping())
3918                         return -EINVAL;
3919
3920                 /*
3921                  * If we lazily map the VPEs, this isn't an error and
3922                  * we can exit cleanly.
3923                  */
3924                 cpu = cpumask_first(mask_val);
3925                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3926                 return IRQ_SET_MASK_OK_DONE;
3927         }
3928
3929         /*
3930          * Changing affinity is mega expensive, so let's be as lazy as
3931          * we can and only do it if we really have to. Also, if mapped
3932          * into the proxy device, we need to move the doorbell
3933          * interrupt to its new location.
3934          *
3935          * Another thing is that changing the affinity of a vPE affects
3936          * *other interrupts* such as all the vLPIs that are routed to
3937          * this vPE. This means that the irq_desc lock is not enough to
3938          * protect us, and that we must ensure nobody samples vpe->col_idx
3939          * during the update, hence the lock below which must also be
3940          * taken on any vLPI handling path that evaluates vpe->col_idx.
3941          *
3942          * Finally, we must protect ourselves against concurrent updates of
3943          * the mapping state on this VM should the ITS list be in use (see
3944          * the shortcut in its_send_vmovp() otherewise).
3945          */
3946         if (its_list_map)
3947                 raw_spin_lock(&vpe->its_vm->vmapp_lock);
3948
3949         from = vpe_to_cpuid_lock(vpe, &flags);
3950         table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3951
3952         /*
3953          * If we are offered another CPU in the same GICv4.1 ITS
3954          * affinity, pick this one. Otherwise, any CPU will do.
3955          */
3956         if (table_mask)
3957                 cpu = cpumask_any_and(mask_val, table_mask);
3958         if (cpu < nr_cpu_ids) {
3959                 if (cpumask_test_cpu(from, mask_val) &&
3960                     cpumask_test_cpu(from, table_mask))
3961                         cpu = from;
3962         } else {
3963                 cpu = cpumask_first(mask_val);
3964         }
3965
3966         if (from == cpu)
3967                 goto out;
3968
3969         vpe->col_idx = cpu;
3970
3971         its_send_vmovp(vpe);
3972
3973         its = find_4_1_its();
3974         if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
3975                 its_vpe_4_1_invall_locked(cpu, vpe);
3976
3977         its_vpe_db_proxy_move(vpe, from, cpu);
3978
3979 out:
3980         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3981         vpe_to_cpuid_unlock(vpe, flags);
3982
3983         if (its_list_map)
3984                 raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3985
3986         return IRQ_SET_MASK_OK_DONE;
3987 }
3988
3989 static void its_wait_vpt_parse_complete(void)
3990 {
3991         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3992         u64 val;
3993
3994         if (!gic_rdists->has_vpend_valid_dirty)
3995                 return;
3996
3997         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3998                                                        val,
3999                                                        !(val & GICR_VPENDBASER_Dirty),
4000                                                        1, 500));
4001 }
4002
4003 static void its_vpe_schedule(struct its_vpe *vpe)
4004 {
4005         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4006         u64 val;
4007
4008         /* Schedule the VPE */
4009         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
4010                 GENMASK_ULL(51, 12);
4011         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
4012         if (rdists_support_shareable()) {
4013                 val |= GICR_VPROPBASER_RaWb;
4014                 val |= GICR_VPROPBASER_InnerShareable;
4015         }
4016         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
4017
4018         val  = virt_to_phys(page_address(vpe->vpt_page)) &
4019                 GENMASK_ULL(51, 16);
4020         if (rdists_support_shareable()) {
4021                 val |= GICR_VPENDBASER_RaWaWb;
4022                 val |= GICR_VPENDBASER_InnerShareable;
4023         }
4024         /*
4025          * There is no good way of finding out if the pending table is
4026          * empty as we can race against the doorbell interrupt very
4027          * easily. So in the end, vpe->pending_last is only an
4028          * indication that the vcpu has something pending, not one
4029          * that the pending table is empty. A good implementation
4030          * would be able to read its coarse map pretty quickly anyway,
4031          * making this a tolerable issue.
4032          */
4033         val |= GICR_VPENDBASER_PendingLast;
4034         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
4035         val |= GICR_VPENDBASER_Valid;
4036         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4037 }
4038
4039 static void its_vpe_deschedule(struct its_vpe *vpe)
4040 {
4041         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4042         u64 val;
4043
4044         val = its_clear_vpend_valid(vlpi_base, 0, 0);
4045
4046         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
4047         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4048 }
4049
4050 static void its_vpe_invall(struct its_vpe *vpe)
4051 {
4052         struct its_node *its;
4053
4054         guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
4055
4056         list_for_each_entry(its, &its_nodes, entry) {
4057                 if (!is_v4(its))
4058                         continue;
4059
4060                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
4061                         continue;
4062
4063                 /*
4064                  * Sending a VINVALL to a single ITS is enough, as all
4065                  * we need is to reach the redistributors.
4066                  */
4067                 its_send_vinvall(its, vpe);
4068                 return;
4069         }
4070 }
4071
4072 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4073 {
4074         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4075         struct its_cmd_info *info = vcpu_info;
4076
4077         switch (info->cmd_type) {
4078         case SCHEDULE_VPE:
4079                 its_vpe_schedule(vpe);
4080                 return 0;
4081
4082         case DESCHEDULE_VPE:
4083                 its_vpe_deschedule(vpe);
4084                 return 0;
4085
4086         case COMMIT_VPE:
4087                 its_wait_vpt_parse_complete();
4088                 return 0;
4089
4090         case INVALL_VPE:
4091                 its_vpe_invall(vpe);
4092                 return 0;
4093
4094         default:
4095                 return -EINVAL;
4096         }
4097 }
4098
4099 static void its_vpe_send_cmd(struct its_vpe *vpe,
4100                              void (*cmd)(struct its_device *, u32))
4101 {
4102         unsigned long flags;
4103
4104         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
4105
4106         its_vpe_db_proxy_map_locked(vpe);
4107         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4108
4109         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4110 }
4111
4112 static void its_vpe_send_inv(struct irq_data *d)
4113 {
4114         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4115
4116         if (gic_rdists->has_direct_lpi)
4117                 __direct_lpi_inv(d, d->parent_data->hwirq);
4118         else
4119                 its_vpe_send_cmd(vpe, its_send_inv);
4120 }
4121
4122 static void its_vpe_mask_irq(struct irq_data *d)
4123 {
4124         /*
4125          * We need to unmask the LPI, which is described by the parent
4126          * irq_data. Instead of calling into the parent (which won't
4127          * exactly do the right thing, let's simply use the
4128          * parent_data pointer. Yes, I'm naughty.
4129          */
4130         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4131         its_vpe_send_inv(d);
4132 }
4133
4134 static void its_vpe_unmask_irq(struct irq_data *d)
4135 {
4136         /* Same hack as above... */
4137         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4138         its_vpe_send_inv(d);
4139 }
4140
4141 static int its_vpe_set_irqchip_state(struct irq_data *d,
4142                                      enum irqchip_irq_state which,
4143                                      bool state)
4144 {
4145         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4146
4147         if (which != IRQCHIP_STATE_PENDING)
4148                 return -EINVAL;
4149
4150         if (gic_rdists->has_direct_lpi) {
4151                 void __iomem *rdbase;
4152
4153                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4154                 if (state) {
4155                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4156                 } else {
4157                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4158                         wait_for_syncr(rdbase);
4159                 }
4160         } else {
4161                 if (state)
4162                         its_vpe_send_cmd(vpe, its_send_int);
4163                 else
4164                         its_vpe_send_cmd(vpe, its_send_clear);
4165         }
4166
4167         return 0;
4168 }
4169
4170 static int its_vpe_retrigger(struct irq_data *d)
4171 {
4172         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4173 }
4174
4175 static struct irq_chip its_vpe_irq_chip = {
4176         .name                   = "GICv4-vpe",
4177         .irq_mask               = its_vpe_mask_irq,
4178         .irq_unmask             = its_vpe_unmask_irq,
4179         .irq_eoi                = irq_chip_eoi_parent,
4180         .irq_set_affinity       = its_vpe_set_affinity,
4181         .irq_retrigger          = its_vpe_retrigger,
4182         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4183         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4184 };
4185
4186 static struct its_node *find_4_1_its(void)
4187 {
4188         static struct its_node *its = NULL;
4189
4190         if (!its) {
4191                 list_for_each_entry(its, &its_nodes, entry) {
4192                         if (is_v4_1(its))
4193                                 return its;
4194                 }
4195
4196                 /* Oops? */
4197                 its = NULL;
4198         }
4199
4200         return its;
4201 }
4202
4203 static void its_vpe_4_1_send_inv(struct irq_data *d)
4204 {
4205         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4206         struct its_node *its;
4207
4208         /*
4209          * GICv4.1 wants doorbells to be invalidated using the
4210          * INVDB command in order to be broadcast to all RDs. Send
4211          * it to the first valid ITS, and let the HW do its magic.
4212          */
4213         its = find_4_1_its();
4214         if (its)
4215                 its_send_invdb(its, vpe);
4216 }
4217
4218 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4219 {
4220         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4221         its_vpe_4_1_send_inv(d);
4222 }
4223
4224 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4225 {
4226         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4227         its_vpe_4_1_send_inv(d);
4228 }
4229
4230 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4231                                  struct its_cmd_info *info)
4232 {
4233         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4234         u64 val = 0;
4235
4236         /* Schedule the VPE */
4237         val |= GICR_VPENDBASER_Valid;
4238         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4239         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4240         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4241
4242         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4243 }
4244
4245 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4246                                    struct its_cmd_info *info)
4247 {
4248         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4249         u64 val;
4250
4251         if (info->req_db) {
4252                 unsigned long flags;
4253
4254                 /*
4255                  * vPE is going to block: make the vPE non-resident with
4256                  * PendingLast clear and DB set. The GIC guarantees that if
4257                  * we read-back PendingLast clear, then a doorbell will be
4258                  * delivered when an interrupt comes.
4259                  *
4260                  * Note the locking to deal with the concurrent update of
4261                  * pending_last from the doorbell interrupt handler that can
4262                  * run concurrently.
4263                  */
4264                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4265                 val = its_clear_vpend_valid(vlpi_base,
4266                                             GICR_VPENDBASER_PendingLast,
4267                                             GICR_VPENDBASER_4_1_DB);
4268                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4269                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4270         } else {
4271                 /*
4272                  * We're not blocking, so just make the vPE non-resident
4273                  * with PendingLast set, indicating that we'll be back.
4274                  */
4275                 val = its_clear_vpend_valid(vlpi_base,
4276                                             0,
4277                                             GICR_VPENDBASER_PendingLast);
4278                 vpe->pending_last = true;
4279         }
4280 }
4281
4282 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4283 {
4284         unsigned long flags;
4285         int cpu;
4286
4287         /* Target the redistributor this vPE is currently known on */
4288         cpu = vpe_to_cpuid_lock(vpe, &flags);
4289         its_vpe_4_1_invall_locked(cpu, vpe);
4290         vpe_to_cpuid_unlock(vpe, flags);
4291 }
4292
4293 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4294 {
4295         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4296         struct its_cmd_info *info = vcpu_info;
4297
4298         switch (info->cmd_type) {
4299         case SCHEDULE_VPE:
4300                 its_vpe_4_1_schedule(vpe, info);
4301                 return 0;
4302
4303         case DESCHEDULE_VPE:
4304                 its_vpe_4_1_deschedule(vpe, info);
4305                 return 0;
4306
4307         case COMMIT_VPE:
4308                 its_wait_vpt_parse_complete();
4309                 return 0;
4310
4311         case INVALL_VPE:
4312                 its_vpe_4_1_invall(vpe);
4313                 return 0;
4314
4315         default:
4316                 return -EINVAL;
4317         }
4318 }
4319
4320 static struct irq_chip its_vpe_4_1_irq_chip = {
4321         .name                   = "GICv4.1-vpe",
4322         .irq_mask               = its_vpe_4_1_mask_irq,
4323         .irq_unmask             = its_vpe_4_1_unmask_irq,
4324         .irq_eoi                = irq_chip_eoi_parent,
4325         .irq_set_affinity       = its_vpe_set_affinity,
4326         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4327 };
4328
4329 static void its_configure_sgi(struct irq_data *d, bool clear)
4330 {
4331         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4332         struct its_cmd_desc desc;
4333
4334         desc.its_vsgi_cmd.vpe = vpe;
4335         desc.its_vsgi_cmd.sgi = d->hwirq;
4336         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4337         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4338         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4339         desc.its_vsgi_cmd.clear = clear;
4340
4341         /*
4342          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4343          * destination VPE is mapped there. Since we map them eagerly at
4344          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4345          */
4346         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4347 }
4348
4349 static void its_sgi_mask_irq(struct irq_data *d)
4350 {
4351         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4352
4353         vpe->sgi_config[d->hwirq].enabled = false;
4354         its_configure_sgi(d, false);
4355 }
4356
4357 static void its_sgi_unmask_irq(struct irq_data *d)
4358 {
4359         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4360
4361         vpe->sgi_config[d->hwirq].enabled = true;
4362         its_configure_sgi(d, false);
4363 }
4364
4365 static int its_sgi_set_affinity(struct irq_data *d,
4366                                 const struct cpumask *mask_val,
4367                                 bool force)
4368 {
4369         /*
4370          * There is no notion of affinity for virtual SGIs, at least
4371          * not on the host (since they can only be targeting a vPE).
4372          * Tell the kernel we've done whatever it asked for.
4373          */
4374         irq_data_update_effective_affinity(d, mask_val);
4375         return IRQ_SET_MASK_OK;
4376 }
4377
4378 static int its_sgi_set_irqchip_state(struct irq_data *d,
4379                                      enum irqchip_irq_state which,
4380                                      bool state)
4381 {
4382         if (which != IRQCHIP_STATE_PENDING)
4383                 return -EINVAL;
4384
4385         if (state) {
4386                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4387                 struct its_node *its = find_4_1_its();
4388                 u64 val;
4389
4390                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4391                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4392                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4393         } else {
4394                 its_configure_sgi(d, true);
4395         }
4396
4397         return 0;
4398 }
4399
4400 static int its_sgi_get_irqchip_state(struct irq_data *d,
4401                                      enum irqchip_irq_state which, bool *val)
4402 {
4403         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4404         void __iomem *base;
4405         unsigned long flags;
4406         u32 count = 1000000;    /* 1s! */
4407         u32 status;
4408         int cpu;
4409
4410         if (which != IRQCHIP_STATE_PENDING)
4411                 return -EINVAL;
4412
4413         /*
4414          * Locking galore! We can race against two different events:
4415          *
4416          * - Concurrent vPE affinity change: we must make sure it cannot
4417          *   happen, or we'll talk to the wrong redistributor. This is
4418          *   identical to what happens with vLPIs.
4419          *
4420          * - Concurrent VSGIPENDR access: As it involves accessing two
4421          *   MMIO registers, this must be made atomic one way or another.
4422          */
4423         cpu = vpe_to_cpuid_lock(vpe, &flags);
4424         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4425         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4426         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4427         do {
4428                 status = readl_relaxed(base + GICR_VSGIPENDR);
4429                 if (!(status & GICR_VSGIPENDR_BUSY))
4430                         goto out;
4431
4432                 count--;
4433                 if (!count) {
4434                         pr_err_ratelimited("Unable to get SGI status\n");
4435                         goto out;
4436                 }
4437                 cpu_relax();
4438                 udelay(1);
4439         } while (count);
4440
4441 out:
4442         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4443         vpe_to_cpuid_unlock(vpe, flags);
4444
4445         if (!count)
4446                 return -ENXIO;
4447
4448         *val = !!(status & (1 << d->hwirq));
4449
4450         return 0;
4451 }
4452
4453 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4454 {
4455         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4456         struct its_cmd_info *info = vcpu_info;
4457
4458         switch (info->cmd_type) {
4459         case PROP_UPDATE_VSGI:
4460                 vpe->sgi_config[d->hwirq].priority = info->priority;
4461                 vpe->sgi_config[d->hwirq].group = info->group;
4462                 its_configure_sgi(d, false);
4463                 return 0;
4464
4465         default:
4466                 return -EINVAL;
4467         }
4468 }
4469
4470 static struct irq_chip its_sgi_irq_chip = {
4471         .name                   = "GICv4.1-sgi",
4472         .irq_mask               = its_sgi_mask_irq,
4473         .irq_unmask             = its_sgi_unmask_irq,
4474         .irq_set_affinity       = its_sgi_set_affinity,
4475         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4476         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4477         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4478 };
4479
4480 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4481                                     unsigned int virq, unsigned int nr_irqs,
4482                                     void *args)
4483 {
4484         struct its_vpe *vpe = args;
4485         int i;
4486
4487         /* Yes, we do want 16 SGIs */
4488         WARN_ON(nr_irqs != 16);
4489
4490         for (i = 0; i < 16; i++) {
4491                 vpe->sgi_config[i].priority = 0;
4492                 vpe->sgi_config[i].enabled = false;
4493                 vpe->sgi_config[i].group = false;
4494
4495                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4496                                               &its_sgi_irq_chip, vpe);
4497                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4498         }
4499
4500         return 0;
4501 }
4502
4503 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4504                                     unsigned int virq,
4505                                     unsigned int nr_irqs)
4506 {
4507         /* Nothing to do */
4508 }
4509
4510 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4511                                        struct irq_data *d, bool reserve)
4512 {
4513         /* Write out the initial SGI configuration */
4514         its_configure_sgi(d, false);
4515         return 0;
4516 }
4517
4518 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4519                                           struct irq_data *d)
4520 {
4521         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4522
4523         /*
4524          * The VSGI command is awkward:
4525          *
4526          * - To change the configuration, CLEAR must be set to false,
4527          *   leaving the pending bit unchanged.
4528          * - To clear the pending bit, CLEAR must be set to true, leaving
4529          *   the configuration unchanged.
4530          *
4531          * You just can't do both at once, hence the two commands below.
4532          */
4533         vpe->sgi_config[d->hwirq].enabled = false;
4534         its_configure_sgi(d, false);
4535         its_configure_sgi(d, true);
4536 }
4537
4538 static const struct irq_domain_ops its_sgi_domain_ops = {
4539         .alloc          = its_sgi_irq_domain_alloc,
4540         .free           = its_sgi_irq_domain_free,
4541         .activate       = its_sgi_irq_domain_activate,
4542         .deactivate     = its_sgi_irq_domain_deactivate,
4543 };
4544
4545 static int its_vpe_id_alloc(void)
4546 {
4547         return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4548 }
4549
4550 static void its_vpe_id_free(u16 id)
4551 {
4552         ida_free(&its_vpeid_ida, id);
4553 }
4554
4555 static int its_vpe_init(struct its_vpe *vpe)
4556 {
4557         struct page *vpt_page;
4558         int vpe_id;
4559
4560         /* Allocate vpe_id */
4561         vpe_id = its_vpe_id_alloc();
4562         if (vpe_id < 0)
4563                 return vpe_id;
4564
4565         /* Allocate VPT */
4566         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4567         if (!vpt_page) {
4568                 its_vpe_id_free(vpe_id);
4569                 return -ENOMEM;
4570         }
4571
4572         if (!its_alloc_vpe_table(vpe_id)) {
4573                 its_vpe_id_free(vpe_id);
4574                 its_free_pending_table(vpt_page);
4575                 return -ENOMEM;
4576         }
4577
4578         raw_spin_lock_init(&vpe->vpe_lock);
4579         vpe->vpe_id = vpe_id;
4580         vpe->vpt_page = vpt_page;
4581         atomic_set(&vpe->vmapp_count, 0);
4582         if (!gic_rdists->has_rvpeid)
4583                 vpe->vpe_proxy_event = -1;
4584
4585         return 0;
4586 }
4587
4588 static void its_vpe_teardown(struct its_vpe *vpe)
4589 {
4590         its_vpe_db_proxy_unmap(vpe);
4591         its_vpe_id_free(vpe->vpe_id);
4592         its_free_pending_table(vpe->vpt_page);
4593 }
4594
4595 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4596                                     unsigned int virq,
4597                                     unsigned int nr_irqs)
4598 {
4599         struct its_vm *vm = domain->host_data;
4600         int i;
4601
4602         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4603
4604         for (i = 0; i < nr_irqs; i++) {
4605                 struct irq_data *data = irq_domain_get_irq_data(domain,
4606                                                                 virq + i);
4607                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4608
4609                 BUG_ON(vm != vpe->its_vm);
4610
4611                 clear_bit(data->hwirq, vm->db_bitmap);
4612                 its_vpe_teardown(vpe);
4613                 irq_domain_reset_irq_data(data);
4614         }
4615
4616         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4617                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4618                 its_free_prop_table(vm->vprop_page);
4619         }
4620 }
4621
4622 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4623                                     unsigned int nr_irqs, void *args)
4624 {
4625         struct irq_chip *irqchip = &its_vpe_irq_chip;
4626         struct its_vm *vm = args;
4627         unsigned long *bitmap;
4628         struct page *vprop_page;
4629         int base, nr_ids, i, err = 0;
4630
4631         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4632         if (!bitmap)
4633                 return -ENOMEM;
4634
4635         if (nr_ids < nr_irqs) {
4636                 its_lpi_free(bitmap, base, nr_ids);
4637                 return -ENOMEM;
4638         }
4639
4640         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4641         if (!vprop_page) {
4642                 its_lpi_free(bitmap, base, nr_ids);
4643                 return -ENOMEM;
4644         }
4645
4646         vm->db_bitmap = bitmap;
4647         vm->db_lpi_base = base;
4648         vm->nr_db_lpis = nr_ids;
4649         vm->vprop_page = vprop_page;
4650         raw_spin_lock_init(&vm->vmapp_lock);
4651
4652         if (gic_rdists->has_rvpeid)
4653                 irqchip = &its_vpe_4_1_irq_chip;
4654
4655         for (i = 0; i < nr_irqs; i++) {
4656                 vm->vpes[i]->vpe_db_lpi = base + i;
4657                 err = its_vpe_init(vm->vpes[i]);
4658                 if (err)
4659                         break;
4660                 err = its_irq_gic_domain_alloc(domain, virq + i,
4661                                                vm->vpes[i]->vpe_db_lpi);
4662                 if (err)
4663                         break;
4664                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4665                                               irqchip, vm->vpes[i]);
4666                 set_bit(i, bitmap);
4667                 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4668         }
4669
4670         if (err)
4671                 its_vpe_irq_domain_free(domain, virq, i);
4672
4673         return err;
4674 }
4675
4676 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4677                                        struct irq_data *d, bool reserve)
4678 {
4679         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4680         struct its_node *its;
4681
4682         /* Map the VPE to the first possible CPU */
4683         vpe->col_idx = cpumask_first(cpu_online_mask);
4684         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4685
4686         /*
4687          * If we use the list map, we issue VMAPP on demand... Unless
4688          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4689          * so that VSGIs can work.
4690          */
4691         if (!gic_requires_eager_mapping())
4692                 return 0;
4693
4694         list_for_each_entry(its, &its_nodes, entry) {
4695                 if (!is_v4(its))
4696                         continue;
4697
4698                 its_send_vmapp(its, vpe, true);
4699                 its_send_vinvall(its, vpe);
4700         }
4701
4702         return 0;
4703 }
4704
4705 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4706                                           struct irq_data *d)
4707 {
4708         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4709         struct its_node *its;
4710
4711         /*
4712          * If we use the list map on GICv4.0, we unmap the VPE once no
4713          * VLPIs are associated with the VM.
4714          */
4715         if (!gic_requires_eager_mapping())
4716                 return;
4717
4718         list_for_each_entry(its, &its_nodes, entry) {
4719                 if (!is_v4(its))
4720                         continue;
4721
4722                 its_send_vmapp(its, vpe, false);
4723         }
4724
4725         /*
4726          * There may be a direct read to the VPT after unmapping the
4727          * vPE, to guarantee the validity of this, we make the VPT
4728          * memory coherent with the CPU caches here.
4729          */
4730         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4731                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4732                                         LPI_PENDBASE_SZ);
4733 }
4734
4735 static const struct irq_domain_ops its_vpe_domain_ops = {
4736         .alloc                  = its_vpe_irq_domain_alloc,
4737         .free                   = its_vpe_irq_domain_free,
4738         .activate               = its_vpe_irq_domain_activate,
4739         .deactivate             = its_vpe_irq_domain_deactivate,
4740 };
4741
4742 static int its_force_quiescent(void __iomem *base)
4743 {
4744         u32 count = 1000000;    /* 1s */
4745         u32 val;
4746
4747         val = readl_relaxed(base + GITS_CTLR);
4748         /*
4749          * GIC architecture specification requires the ITS to be both
4750          * disabled and quiescent for writes to GITS_BASER<n> or
4751          * GITS_CBASER to not have UNPREDICTABLE results.
4752          */
4753         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4754                 return 0;
4755
4756         /* Disable the generation of all interrupts to this ITS */
4757         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4758         writel_relaxed(val, base + GITS_CTLR);
4759
4760         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4761         while (1) {
4762                 val = readl_relaxed(base + GITS_CTLR);
4763                 if (val & GITS_CTLR_QUIESCENT)
4764                         return 0;
4765
4766                 count--;
4767                 if (!count)
4768                         return -EBUSY;
4769
4770                 cpu_relax();
4771                 udelay(1);
4772         }
4773 }
4774
4775 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4776 {
4777         struct its_node *its = data;
4778
4779         /* erratum 22375: only alloc 8MB table size (20 bits) */
4780         its->typer &= ~GITS_TYPER_DEVBITS;
4781         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4782         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4783
4784         return true;
4785 }
4786
4787 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4788 {
4789         struct its_node *its = data;
4790
4791         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4792
4793         return true;
4794 }
4795
4796 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4797 {
4798         struct its_node *its = data;
4799
4800         /* On QDF2400, the size of the ITE is 16Bytes */
4801         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4802         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4803
4804         return true;
4805 }
4806
4807 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4808 {
4809         struct its_node *its = its_dev->its;
4810
4811         /*
4812          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4813          * which maps 32-bit writes targeted at a separate window of
4814          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4815          * with device ID taken from bits [device_id_bits + 1:2] of
4816          * the window offset.
4817          */
4818         return its->pre_its_base + (its_dev->device_id << 2);
4819 }
4820
4821 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4822 {
4823         struct its_node *its = data;
4824         u32 pre_its_window[2];
4825         u32 ids;
4826
4827         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4828                                            "socionext,synquacer-pre-its",
4829                                            pre_its_window,
4830                                            ARRAY_SIZE(pre_its_window))) {
4831
4832                 its->pre_its_base = pre_its_window[0];
4833                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4834
4835                 ids = ilog2(pre_its_window[1]) - 2;
4836                 if (device_ids(its) > ids) {
4837                         its->typer &= ~GITS_TYPER_DEVBITS;
4838                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4839                 }
4840
4841                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4842                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4843                 return true;
4844         }
4845         return false;
4846 }
4847
4848 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4849 {
4850         struct its_node *its = data;
4851
4852         /*
4853          * Hip07 insists on using the wrong address for the VLPI
4854          * page. Trick it into doing the right thing...
4855          */
4856         its->vlpi_redist_offset = SZ_128K;
4857         return true;
4858 }
4859
4860 static bool __maybe_unused its_enable_rk3588001(void *data)
4861 {
4862         struct its_node *its = data;
4863
4864         if (!of_machine_is_compatible("rockchip,rk3588") &&
4865             !of_machine_is_compatible("rockchip,rk3588s"))
4866                 return false;
4867
4868         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4869         gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4870
4871         return true;
4872 }
4873
4874 static bool its_set_non_coherent(void *data)
4875 {
4876         struct its_node *its = data;
4877
4878         its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4879         return true;
4880 }
4881
4882 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
4883 {
4884         struct its_node *its = data;
4885
4886         its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
4887         return true;
4888 }
4889
4890 static const struct gic_quirk its_quirks[] = {
4891 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4892         {
4893                 .desc   = "ITS: Cavium errata 22375, 24313",
4894                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4895                 .mask   = 0xffff0fff,
4896                 .init   = its_enable_quirk_cavium_22375,
4897         },
4898 #endif
4899 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4900         {
4901                 .desc   = "ITS: Cavium erratum 23144",
4902                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4903                 .mask   = 0xffff0fff,
4904                 .init   = its_enable_quirk_cavium_23144,
4905         },
4906 #endif
4907 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4908         {
4909                 .desc   = "ITS: QDF2400 erratum 0065",
4910                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4911                 .mask   = 0xffffffff,
4912                 .init   = its_enable_quirk_qdf2400_e0065,
4913         },
4914 #endif
4915 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4916         {
4917                 /*
4918                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4919                  * implementation, but with a 'pre-ITS' added that requires
4920                  * special handling in software.
4921                  */
4922                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4923                 .iidr   = 0x0001143b,
4924                 .mask   = 0xffffffff,
4925                 .init   = its_enable_quirk_socionext_synquacer,
4926         },
4927 #endif
4928 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4929         {
4930                 .desc   = "ITS: Hip07 erratum 161600802",
4931                 .iidr   = 0x00000004,
4932                 .mask   = 0xffffffff,
4933                 .init   = its_enable_quirk_hip07_161600802,
4934         },
4935 #endif
4936 #ifdef CONFIG_HISILICON_ERRATUM_162100801
4937         {
4938                 .desc   = "ITS: Hip09 erratum 162100801",
4939                 .iidr   = 0x00051736,
4940                 .mask   = 0xffffffff,
4941                 .init   = its_enable_quirk_hip09_162100801,
4942         },
4943 #endif
4944 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4945         {
4946                 .desc   = "ITS: Rockchip erratum RK3588001",
4947                 .iidr   = 0x0201743b,
4948                 .mask   = 0xffffffff,
4949                 .init   = its_enable_rk3588001,
4950         },
4951 #endif
4952         {
4953                 .desc   = "ITS: non-coherent attribute",
4954                 .property = "dma-noncoherent",
4955                 .init   = its_set_non_coherent,
4956         },
4957         {
4958         }
4959 };
4960
4961 static void its_enable_quirks(struct its_node *its)
4962 {
4963         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4964
4965         gic_enable_quirks(iidr, its_quirks, its);
4966
4967         if (is_of_node(its->fwnode_handle))
4968                 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4969                                      its_quirks, its);
4970 }
4971
4972 static int its_save_disable(void)
4973 {
4974         struct its_node *its;
4975         int err = 0;
4976
4977         raw_spin_lock(&its_lock);
4978         list_for_each_entry(its, &its_nodes, entry) {
4979                 void __iomem *base;
4980
4981                 base = its->base;
4982                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4983                 err = its_force_quiescent(base);
4984                 if (err) {
4985                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4986                                &its->phys_base, err);
4987                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4988                         goto err;
4989                 }
4990
4991                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4992         }
4993
4994 err:
4995         if (err) {
4996                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4997                         void __iomem *base;
4998
4999                         base = its->base;
5000                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5001                 }
5002         }
5003         raw_spin_unlock(&its_lock);
5004
5005         return err;
5006 }
5007
5008 static void its_restore_enable(void)
5009 {
5010         struct its_node *its;
5011         int ret;
5012
5013         raw_spin_lock(&its_lock);
5014         list_for_each_entry(its, &its_nodes, entry) {
5015                 void __iomem *base;
5016                 int i;
5017
5018                 base = its->base;
5019
5020                 /*
5021                  * Make sure that the ITS is disabled. If it fails to quiesce,
5022                  * don't restore it since writing to CBASER or BASER<n>
5023                  * registers is undefined according to the GIC v3 ITS
5024                  * Specification.
5025                  *
5026                  * Firmware resuming with the ITS enabled is terminally broken.
5027                  */
5028                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
5029                 ret = its_force_quiescent(base);
5030                 if (ret) {
5031                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
5032                                &its->phys_base, ret);
5033                         continue;
5034                 }
5035
5036                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
5037
5038                 /*
5039                  * Writing CBASER resets CREADR to 0, so make CWRITER and
5040                  * cmd_write line up with it.
5041                  */
5042                 its->cmd_write = its->cmd_base;
5043                 gits_write_cwriter(0, base + GITS_CWRITER);
5044
5045                 /* Restore GITS_BASER from the value cache. */
5046                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
5047                         struct its_baser *baser = &its->tables[i];
5048
5049                         if (!(baser->val & GITS_BASER_VALID))
5050                                 continue;
5051
5052                         its_write_baser(its, baser, baser->val);
5053                 }
5054                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5055
5056                 /*
5057                  * Reinit the collection if it's stored in the ITS. This is
5058                  * indicated by the col_id being less than the HCC field.
5059                  * CID < HCC as specified in the GIC v3 Documentation.
5060                  */
5061                 if (its->collections[smp_processor_id()].col_id <
5062                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
5063                         its_cpu_init_collection(its);
5064         }
5065         raw_spin_unlock(&its_lock);
5066 }
5067
5068 static struct syscore_ops its_syscore_ops = {
5069         .suspend = its_save_disable,
5070         .resume = its_restore_enable,
5071 };
5072
5073 static void __init __iomem *its_map_one(struct resource *res, int *err)
5074 {
5075         void __iomem *its_base;
5076         u32 val;
5077
5078         its_base = ioremap(res->start, SZ_64K);
5079         if (!its_base) {
5080                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5081                 *err = -ENOMEM;
5082                 return NULL;
5083         }
5084
5085         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5086         if (val != 0x30 && val != 0x40) {
5087                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5088                 *err = -ENODEV;
5089                 goto out_unmap;
5090         }
5091
5092         *err = its_force_quiescent(its_base);
5093         if (*err) {
5094                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5095                 goto out_unmap;
5096         }
5097
5098         return its_base;
5099
5100 out_unmap:
5101         iounmap(its_base);
5102         return NULL;
5103 }
5104
5105 static int its_init_domain(struct its_node *its)
5106 {
5107         struct irq_domain *inner_domain;
5108         struct msi_domain_info *info;
5109
5110         info = kzalloc(sizeof(*info), GFP_KERNEL);
5111         if (!info)
5112                 return -ENOMEM;
5113
5114         info->ops = &its_msi_domain_ops;
5115         info->data = its;
5116
5117         inner_domain = irq_domain_create_hierarchy(its_parent,
5118                                                    its->msi_domain_flags, 0,
5119                                                    its->fwnode_handle, &its_domain_ops,
5120                                                    info);
5121         if (!inner_domain) {
5122                 kfree(info);
5123                 return -ENOMEM;
5124         }
5125
5126         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
5127
5128         inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops;
5129         inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
5130
5131         return 0;
5132 }
5133
5134 static int its_init_vpe_domain(void)
5135 {
5136         struct its_node *its;
5137         u32 devid;
5138         int entries;
5139
5140         if (gic_rdists->has_direct_lpi) {
5141                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5142                 return 0;
5143         }
5144
5145         /* Any ITS will do, even if not v4 */
5146         its = list_first_entry(&its_nodes, struct its_node, entry);
5147
5148         entries = roundup_pow_of_two(nr_cpu_ids);
5149         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5150                                  GFP_KERNEL);
5151         if (!vpe_proxy.vpes)
5152                 return -ENOMEM;
5153
5154         /* Use the last possible DevID */
5155         devid = GENMASK(device_ids(its) - 1, 0);
5156         vpe_proxy.dev = its_create_device(its, devid, entries, false);
5157         if (!vpe_proxy.dev) {
5158                 kfree(vpe_proxy.vpes);
5159                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5160                 return -ENOMEM;
5161         }
5162
5163         BUG_ON(entries > vpe_proxy.dev->nr_ites);
5164
5165         raw_spin_lock_init(&vpe_proxy.lock);
5166         vpe_proxy.next_victim = 0;
5167         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5168                 devid, vpe_proxy.dev->nr_ites);
5169
5170         return 0;
5171 }
5172
5173 static int __init its_compute_its_list_map(struct its_node *its)
5174 {
5175         int its_number;
5176         u32 ctlr;
5177
5178         /*
5179          * This is assumed to be done early enough that we're
5180          * guaranteed to be single-threaded, hence no
5181          * locking. Should this change, we should address
5182          * this.
5183          */
5184         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5185         if (its_number >= GICv4_ITS_LIST_MAX) {
5186                 pr_err("ITS@%pa: No ITSList entry available!\n",
5187                        &its->phys_base);
5188                 return -EINVAL;
5189         }
5190
5191         ctlr = readl_relaxed(its->base + GITS_CTLR);
5192         ctlr &= ~GITS_CTLR_ITS_NUMBER;
5193         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5194         writel_relaxed(ctlr, its->base + GITS_CTLR);
5195         ctlr = readl_relaxed(its->base + GITS_CTLR);
5196         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5197                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5198                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5199         }
5200
5201         if (test_and_set_bit(its_number, &its_list_map)) {
5202                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5203                        &its->phys_base, its_number);
5204                 return -EINVAL;
5205         }
5206
5207         return its_number;
5208 }
5209
5210 static int __init its_probe_one(struct its_node *its)
5211 {
5212         u64 baser, tmp;
5213         struct page *page;
5214         u32 ctlr;
5215         int err;
5216
5217         its_enable_quirks(its);
5218
5219         if (is_v4(its)) {
5220                 if (!(its->typer & GITS_TYPER_VMOVP)) {
5221                         err = its_compute_its_list_map(its);
5222                         if (err < 0)
5223                                 goto out;
5224
5225                         its->list_nr = err;
5226
5227                         pr_info("ITS@%pa: Using ITS number %d\n",
5228                                 &its->phys_base, err);
5229                 } else {
5230                         pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5231                 }
5232
5233                 if (is_v4_1(its)) {
5234                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5235
5236                         its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5237                         if (!its->sgir_base) {
5238                                 err = -ENOMEM;
5239                                 goto out;
5240                         }
5241
5242                         its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5243
5244                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5245                                 &its->phys_base, its->mpidr, svpet);
5246                 }
5247         }
5248
5249         page = its_alloc_pages_node(its->numa_node,
5250                                     GFP_KERNEL | __GFP_ZERO,
5251                                     get_order(ITS_CMD_QUEUE_SZ));
5252         if (!page) {
5253                 err = -ENOMEM;
5254                 goto out_unmap_sgir;
5255         }
5256         its->cmd_base = (void *)page_address(page);
5257         its->cmd_write = its->cmd_base;
5258
5259         err = its_alloc_tables(its);
5260         if (err)
5261                 goto out_free_cmd;
5262
5263         err = its_alloc_collections(its);
5264         if (err)
5265                 goto out_free_tables;
5266
5267         baser = (virt_to_phys(its->cmd_base)    |
5268                  GITS_CBASER_RaWaWb             |
5269                  GITS_CBASER_InnerShareable     |
5270                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5271                  GITS_CBASER_VALID);
5272
5273         gits_write_cbaser(baser, its->base + GITS_CBASER);
5274         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5275
5276         if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5277                 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5278
5279         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5280                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5281                         /*
5282                          * The HW reports non-shareable, we must
5283                          * remove the cacheability attributes as
5284                          * well.
5285                          */
5286                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5287                                    GITS_CBASER_CACHEABILITY_MASK);
5288                         baser |= GITS_CBASER_nC;
5289                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5290                 }
5291                 pr_info("ITS: using cache flushing for cmd queue\n");
5292                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5293         }
5294
5295         gits_write_cwriter(0, its->base + GITS_CWRITER);
5296         ctlr = readl_relaxed(its->base + GITS_CTLR);
5297         ctlr |= GITS_CTLR_ENABLE;
5298         if (is_v4(its))
5299                 ctlr |= GITS_CTLR_ImDe;
5300         writel_relaxed(ctlr, its->base + GITS_CTLR);
5301
5302         err = its_init_domain(its);
5303         if (err)
5304                 goto out_free_tables;
5305
5306         raw_spin_lock(&its_lock);
5307         list_add(&its->entry, &its_nodes);
5308         raw_spin_unlock(&its_lock);
5309
5310         return 0;
5311
5312 out_free_tables:
5313         its_free_tables(its);
5314 out_free_cmd:
5315         its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5316 out_unmap_sgir:
5317         if (its->sgir_base)
5318                 iounmap(its->sgir_base);
5319 out:
5320         pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5321         return err;
5322 }
5323
5324 static bool gic_rdists_supports_plpis(void)
5325 {
5326         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5327 }
5328
5329 static int redist_disable_lpis(void)
5330 {
5331         void __iomem *rbase = gic_data_rdist_rd_base();
5332         u64 timeout = USEC_PER_SEC;
5333         u64 val;
5334
5335         if (!gic_rdists_supports_plpis()) {
5336                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5337                 return -ENXIO;
5338         }
5339
5340         val = readl_relaxed(rbase + GICR_CTLR);
5341         if (!(val & GICR_CTLR_ENABLE_LPIS))
5342                 return 0;
5343
5344         /*
5345          * If coming via a CPU hotplug event, we don't need to disable
5346          * LPIs before trying to re-enable them. They are already
5347          * configured and all is well in the world.
5348          *
5349          * If running with preallocated tables, there is nothing to do.
5350          */
5351         if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5352             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5353                 return 0;
5354
5355         /*
5356          * From that point on, we only try to do some damage control.
5357          */
5358         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5359                 smp_processor_id());
5360         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5361
5362         /* Disable LPIs */
5363         val &= ~GICR_CTLR_ENABLE_LPIS;
5364         writel_relaxed(val, rbase + GICR_CTLR);
5365
5366         /* Make sure any change to GICR_CTLR is observable by the GIC */
5367         dsb(sy);
5368
5369         /*
5370          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5371          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5372          * Error out if we time out waiting for RWP to clear.
5373          */
5374         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5375                 if (!timeout) {
5376                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5377                                smp_processor_id());
5378                         return -ETIMEDOUT;
5379                 }
5380                 udelay(1);
5381                 timeout--;
5382         }
5383
5384         /*
5385          * After it has been written to 1, it is IMPLEMENTATION
5386          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5387          * cleared to 0. Error out if clearing the bit failed.
5388          */
5389         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5390                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5391                 return -EBUSY;
5392         }
5393
5394         return 0;
5395 }
5396
5397 int its_cpu_init(void)
5398 {
5399         if (!list_empty(&its_nodes)) {
5400                 int ret;
5401
5402                 ret = redist_disable_lpis();
5403                 if (ret)
5404                         return ret;
5405
5406                 its_cpu_init_lpis();
5407                 its_cpu_init_collections();
5408         }
5409
5410         return 0;
5411 }
5412
5413 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5414 {
5415         cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5416         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5417 }
5418
5419 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5420                     rdist_memreserve_cpuhp_cleanup_workfn);
5421
5422 static int its_cpu_memreserve_lpi(unsigned int cpu)
5423 {
5424         struct page *pend_page;
5425         int ret = 0;
5426
5427         /* This gets to run exactly once per CPU */
5428         if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5429                 return 0;
5430
5431         pend_page = gic_data_rdist()->pend_page;
5432         if (WARN_ON(!pend_page)) {
5433                 ret = -ENOMEM;
5434                 goto out;
5435         }
5436         /*
5437          * If the pending table was pre-programmed, free the memory we
5438          * preemptively allocated. Otherwise, reserve that memory for
5439          * later kexecs.
5440          */
5441         if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5442                 its_free_pending_table(pend_page);
5443                 gic_data_rdist()->pend_page = NULL;
5444         } else {
5445                 phys_addr_t paddr = page_to_phys(pend_page);
5446                 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5447         }
5448
5449 out:
5450         /* Last CPU being brought up gets to issue the cleanup */
5451         if (!IS_ENABLED(CONFIG_SMP) ||
5452             cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5453                 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5454
5455         gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5456         return ret;
5457 }
5458
5459 /* Mark all the BASER registers as invalid before they get reprogrammed */
5460 static int __init its_reset_one(struct resource *res)
5461 {
5462         void __iomem *its_base;
5463         int err, i;
5464
5465         its_base = its_map_one(res, &err);
5466         if (!its_base)
5467                 return err;
5468
5469         for (i = 0; i < GITS_BASER_NR_REGS; i++)
5470                 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5471
5472         iounmap(its_base);
5473         return 0;
5474 }
5475
5476 static const struct of_device_id its_device_id[] = {
5477         {       .compatible     = "arm,gic-v3-its",     },
5478         {},
5479 };
5480
5481 static struct its_node __init *its_node_init(struct resource *res,
5482                                              struct fwnode_handle *handle, int numa_node)
5483 {
5484         void __iomem *its_base;
5485         struct its_node *its;
5486         int err;
5487
5488         its_base = its_map_one(res, &err);
5489         if (!its_base)
5490                 return NULL;
5491
5492         pr_info("ITS %pR\n", res);
5493
5494         its = kzalloc(sizeof(*its), GFP_KERNEL);
5495         if (!its)
5496                 goto out_unmap;
5497
5498         raw_spin_lock_init(&its->lock);
5499         mutex_init(&its->dev_alloc_lock);
5500         INIT_LIST_HEAD(&its->entry);
5501         INIT_LIST_HEAD(&its->its_device_list);
5502
5503         its->typer = gic_read_typer(its_base + GITS_TYPER);
5504         its->base = its_base;
5505         its->phys_base = res->start;
5506         its->get_msi_base = its_irq_get_msi_base;
5507         its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI;
5508
5509         its->numa_node = numa_node;
5510         its->fwnode_handle = handle;
5511
5512         return its;
5513
5514 out_unmap:
5515         iounmap(its_base);
5516         return NULL;
5517 }
5518
5519 static void its_node_destroy(struct its_node *its)
5520 {
5521         iounmap(its->base);
5522         kfree(its);
5523 }
5524
5525 static int __init its_of_probe(struct device_node *node)
5526 {
5527         struct device_node *np;
5528         struct resource res;
5529         int err;
5530
5531         /*
5532          * Make sure *all* the ITS are reset before we probe any, as
5533          * they may be sharing memory. If any of the ITS fails to
5534          * reset, don't even try to go any further, as this could
5535          * result in something even worse.
5536          */
5537         for (np = of_find_matching_node(node, its_device_id); np;
5538              np = of_find_matching_node(np, its_device_id)) {
5539                 if (!of_device_is_available(np) ||
5540                     !of_property_read_bool(np, "msi-controller") ||
5541                     of_address_to_resource(np, 0, &res))
5542                         continue;
5543
5544                 err = its_reset_one(&res);
5545                 if (err)
5546                         return err;
5547         }
5548
5549         for (np = of_find_matching_node(node, its_device_id); np;
5550              np = of_find_matching_node(np, its_device_id)) {
5551                 struct its_node *its;
5552
5553                 if (!of_device_is_available(np))
5554                         continue;
5555                 if (!of_property_read_bool(np, "msi-controller")) {
5556                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5557                                 np);
5558                         continue;
5559                 }
5560
5561                 if (of_address_to_resource(np, 0, &res)) {
5562                         pr_warn("%pOF: no regs?\n", np);
5563                         continue;
5564                 }
5565
5566
5567                 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5568                 if (!its)
5569                         return -ENOMEM;
5570
5571                 err = its_probe_one(its);
5572                 if (err)  {
5573                         its_node_destroy(its);
5574                         return err;
5575                 }
5576         }
5577         return 0;
5578 }
5579
5580 #ifdef CONFIG_ACPI
5581
5582 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5583
5584 #ifdef CONFIG_ACPI_NUMA
5585 struct its_srat_map {
5586         /* numa node id */
5587         u32     numa_node;
5588         /* GIC ITS ID */
5589         u32     its_id;
5590 };
5591
5592 static struct its_srat_map *its_srat_maps __initdata;
5593 static int its_in_srat __initdata;
5594
5595 static int __init acpi_get_its_numa_node(u32 its_id)
5596 {
5597         int i;
5598
5599         for (i = 0; i < its_in_srat; i++) {
5600                 if (its_id == its_srat_maps[i].its_id)
5601                         return its_srat_maps[i].numa_node;
5602         }
5603         return NUMA_NO_NODE;
5604 }
5605
5606 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5607                                           const unsigned long end)
5608 {
5609         return 0;
5610 }
5611
5612 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5613                          const unsigned long end)
5614 {
5615         int node;
5616         struct acpi_srat_gic_its_affinity *its_affinity;
5617
5618         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5619         if (!its_affinity)
5620                 return -EINVAL;
5621
5622         if (its_affinity->header.length < sizeof(*its_affinity)) {
5623                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5624                         its_affinity->header.length);
5625                 return -EINVAL;
5626         }
5627
5628         /*
5629          * Note that in theory a new proximity node could be created by this
5630          * entry as it is an SRAT resource allocation structure.
5631          * We do not currently support doing so.
5632          */
5633         node = pxm_to_node(its_affinity->proximity_domain);
5634
5635         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5636                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5637                 return 0;
5638         }
5639
5640         its_srat_maps[its_in_srat].numa_node = node;
5641         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5642         its_in_srat++;
5643         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5644                 its_affinity->proximity_domain, its_affinity->its_id, node);
5645
5646         return 0;
5647 }
5648
5649 static void __init acpi_table_parse_srat_its(void)
5650 {
5651         int count;
5652
5653         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5654                         sizeof(struct acpi_table_srat),
5655                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5656                         gic_acpi_match_srat_its, 0);
5657         if (count <= 0)
5658                 return;
5659
5660         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5661                                       GFP_KERNEL);
5662         if (!its_srat_maps)
5663                 return;
5664
5665         acpi_table_parse_entries(ACPI_SIG_SRAT,
5666                         sizeof(struct acpi_table_srat),
5667                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5668                         gic_acpi_parse_srat_its, 0);
5669 }
5670
5671 /* free the its_srat_maps after ITS probing */
5672 static void __init acpi_its_srat_maps_free(void)
5673 {
5674         kfree(its_srat_maps);
5675 }
5676 #else
5677 static void __init acpi_table_parse_srat_its(void)      { }
5678 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5679 static void __init acpi_its_srat_maps_free(void) { }
5680 #endif
5681
5682 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5683                                           const unsigned long end)
5684 {
5685         struct acpi_madt_generic_translator *its_entry;
5686         struct fwnode_handle *dom_handle;
5687         struct its_node *its;
5688         struct resource res;
5689         int err;
5690
5691         its_entry = (struct acpi_madt_generic_translator *)header;
5692         memset(&res, 0, sizeof(res));
5693         res.start = its_entry->base_address;
5694         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5695         res.flags = IORESOURCE_MEM;
5696
5697         dom_handle = irq_domain_alloc_fwnode(&res.start);
5698         if (!dom_handle) {
5699                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5700                        &res.start);
5701                 return -ENOMEM;
5702         }
5703
5704         err = iort_register_domain_token(its_entry->translation_id, res.start,
5705                                          dom_handle);
5706         if (err) {
5707                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5708                        &res.start, its_entry->translation_id);
5709                 goto dom_err;
5710         }
5711
5712         its = its_node_init(&res, dom_handle,
5713                             acpi_get_its_numa_node(its_entry->translation_id));
5714         if (!its) {
5715                 err = -ENOMEM;
5716                 goto node_err;
5717         }
5718
5719         if (acpi_get_madt_revision() >= 7 &&
5720             (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5721                 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5722
5723         err = its_probe_one(its);
5724         if (!err)
5725                 return 0;
5726
5727 node_err:
5728         iort_deregister_domain_token(its_entry->translation_id);
5729 dom_err:
5730         irq_domain_free_fwnode(dom_handle);
5731         return err;
5732 }
5733
5734 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5735                                  const unsigned long end)
5736 {
5737         struct acpi_madt_generic_translator *its_entry;
5738         struct resource res;
5739
5740         its_entry = (struct acpi_madt_generic_translator *)header;
5741         res = (struct resource) {
5742                 .start  = its_entry->base_address,
5743                 .end    = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5744                 .flags  = IORESOURCE_MEM,
5745         };
5746
5747         return its_reset_one(&res);
5748 }
5749
5750 static void __init its_acpi_probe(void)
5751 {
5752         acpi_table_parse_srat_its();
5753         /*
5754          * Make sure *all* the ITS are reset before we probe any, as
5755          * they may be sharing memory. If any of the ITS fails to
5756          * reset, don't even try to go any further, as this could
5757          * result in something even worse.
5758          */
5759         if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5760                                   its_acpi_reset, 0) > 0)
5761                 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5762                                       gic_acpi_parse_madt_its, 0);
5763         acpi_its_srat_maps_free();
5764 }
5765 #else
5766 static void __init its_acpi_probe(void) { }
5767 #endif
5768
5769 int __init its_lpi_memreserve_init(void)
5770 {
5771         int state;
5772
5773         if (!efi_enabled(EFI_CONFIG_TABLES))
5774                 return 0;
5775
5776         if (list_empty(&its_nodes))
5777                 return 0;
5778
5779         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5780         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5781                                   "irqchip/arm/gicv3/memreserve:online",
5782                                   its_cpu_memreserve_lpi,
5783                                   NULL);
5784         if (state < 0)
5785                 return state;
5786
5787         gic_rdists->cpuhp_memreserve_state = state;
5788
5789         return 0;
5790 }
5791
5792 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5793                     struct irq_domain *parent_domain, u8 irq_prio)
5794 {
5795         struct device_node *of_node;
5796         struct its_node *its;
5797         bool has_v4 = false;
5798         bool has_v4_1 = false;
5799         int err;
5800
5801         itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
5802         if (!itt_pool)
5803                 return -ENOMEM;
5804
5805         gic_rdists = rdists;
5806
5807         lpi_prop_prio = irq_prio;
5808         its_parent = parent_domain;
5809         of_node = to_of_node(handle);
5810         if (of_node)
5811                 its_of_probe(of_node);
5812         else
5813                 its_acpi_probe();
5814
5815         if (list_empty(&its_nodes)) {
5816                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5817                 return -ENXIO;
5818         }
5819
5820         err = allocate_lpi_tables();
5821         if (err)
5822                 return err;
5823
5824         list_for_each_entry(its, &its_nodes, entry) {
5825                 has_v4 |= is_v4(its);
5826                 has_v4_1 |= is_v4_1(its);
5827         }
5828
5829         /* Don't bother with inconsistent systems */
5830         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5831                 rdists->has_rvpeid = false;
5832
5833         if (has_v4 & rdists->has_vlpis) {
5834                 const struct irq_domain_ops *sgi_ops;
5835
5836                 if (has_v4_1)
5837                         sgi_ops = &its_sgi_domain_ops;
5838                 else
5839                         sgi_ops = NULL;
5840
5841                 if (its_init_vpe_domain() ||
5842                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5843                         rdists->has_vlpis = false;
5844                         pr_err("ITS: Disabling GICv4 support\n");
5845                 }
5846         }
5847
5848         register_syscore_ops(&its_syscore_ops);
5849
5850         return 0;
5851 }
This page took 0.351115 seconds and 4 git commands to generate.