]> Git Repo - J-linux.git/blob - drivers/infiniband/hw/mlx5/odp.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37
38 #include "mlx5_ib.h"
39 #include "cmd.h"
40 #include "umr.h"
41 #include "qp.h"
42
43 #include <linux/mlx5/eq.h>
44
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47         u32                     bytes_committed;
48         u64                     token;
49         u8                      event_subtype;
50         u8                      type;
51         union {
52                 /* Initiator or send message responder pagefault details. */
53                 struct {
54                         /* Received packet size, only valid for responders. */
55                         u32     packet_size;
56                         /*
57                          * Number of resource holding WQE, depends on type.
58                          */
59                         u32     wq_num;
60                         /*
61                          * WQE index. Refers to either the send queue or
62                          * receive queue, according to event_subtype.
63                          */
64                         u16     wqe_index;
65                 } wqe;
66                 /* RDMA responder pagefault details */
67                 struct {
68                         u32     r_key;
69                         /*
70                          * Received packet size, minimal size page fault
71                          * resolution required for forward progress.
72                          */
73                         u32     packet_size;
74                         u32     rdma_op_len;
75                         u64     rdma_va;
76                 } rdma;
77                 struct {
78                         u64     va;
79                         u32     mkey;
80                         u32     fault_byte_count;
81                         u32     prefetch_before_byte_count;
82                         u32     prefetch_after_byte_count;
83                         u8      flags;
84                 } memory;
85         };
86
87         struct mlx5_ib_pf_eq    *eq;
88         struct work_struct      work;
89 };
90
91 #define MAX_PREFETCH_LEN (4*1024*1024U)
92
93 /* Timeout in ms to wait for an active mmu notifier to complete when handling
94  * a pagefault. */
95 #define MMU_NOTIFIER_TIMEOUT 1000
96
97 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
98 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
99 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
100 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
101 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
102
103 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
104
105 static u64 mlx5_imr_ksm_entries;
106
107 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
108                         struct mlx5_ib_mr *imr, int flags)
109 {
110         struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev;
111         struct mlx5_klm *end = pklm + nentries;
112         int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0;
113         __be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ?
114                              cpu_to_be32(imr->null_mmkey.key) :
115                              mr_to_mdev(imr)->mkeys.null_mkey;
116         u64 va =
117                 MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0;
118
119         if (flags & MLX5_IB_UPD_XLT_ZAP) {
120                 for (; pklm != end; pklm++, idx++, va += step) {
121                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
122                         pklm->key = key;
123                         pklm->va = cpu_to_be64(va);
124                 }
125                 return;
126         }
127
128         /*
129          * The locking here is pretty subtle. Ideally the implicit_children
130          * xarray would be protected by the umem_mutex, however that is not
131          * possible. Instead this uses a weaker update-then-lock pattern:
132          *
133          *    xa_store()
134          *    mutex_lock(umem_mutex)
135          *     mlx5r_umr_update_xlt()
136          *    mutex_unlock(umem_mutex)
137          *    destroy lkey
138          *
139          * ie any change the xarray must be followed by the locked update_xlt
140          * before destroying.
141          *
142          * The umem_mutex provides the acquire/release semantic needed to make
143          * the xa_store() visible to a racing thread.
144          */
145         lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
146
147         for (; pklm != end; pklm++, idx++, va += step) {
148                 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
149
150                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
151                 if (mtt) {
152                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
153                         pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
154                 } else {
155                         pklm->key = key;
156                         pklm->va = cpu_to_be64(va);
157                 }
158         }
159 }
160
161 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
162 {
163         u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
164
165         if (umem_dma & ODP_READ_ALLOWED_BIT)
166                 mtt_entry |= MLX5_IB_MTT_READ;
167         if (umem_dma & ODP_WRITE_ALLOWED_BIT)
168                 mtt_entry |= MLX5_IB_MTT_WRITE;
169
170         return mtt_entry;
171 }
172
173 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
174                          struct mlx5_ib_mr *mr, int flags)
175 {
176         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
177         dma_addr_t pa;
178         size_t i;
179
180         if (flags & MLX5_IB_UPD_XLT_ZAP)
181                 return;
182
183         for (i = 0; i < nentries; i++) {
184                 pa = odp->dma_list[idx + i];
185                 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
186         }
187 }
188
189 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
190                            struct mlx5_ib_mr *mr, int flags)
191 {
192         if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
193                 populate_klm(xlt, idx, nentries, mr, flags);
194         } else {
195                 populate_mtt(xlt, idx, nentries, mr, flags);
196         }
197 }
198
199 /*
200  * This must be called after the mr has been removed from implicit_children.
201  * NOTE: The MR does not necessarily have to be
202  * empty here, parallel page faults could have raced with the free process and
203  * added pages to it.
204  */
205 static void free_implicit_child_mr_work(struct work_struct *work)
206 {
207         struct mlx5_ib_mr *mr =
208                 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
209         struct mlx5_ib_mr *imr = mr->parent;
210         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
211         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
212
213         mlx5r_deref_wait_odp_mkey(&mr->mmkey);
214
215         mutex_lock(&odp_imr->umem_mutex);
216         mlx5r_umr_update_xlt(mr->parent,
217                              ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
218                              MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
219         mutex_unlock(&odp_imr->umem_mutex);
220         mlx5_ib_dereg_mr(&mr->ibmr, NULL);
221
222         mlx5r_deref_odp_mkey(&imr->mmkey);
223 }
224
225 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
226 {
227         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
228         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
229         struct mlx5_ib_mr *imr = mr->parent;
230
231         if (!refcount_inc_not_zero(&imr->mmkey.usecount))
232                 return;
233
234         xa_erase(&imr->implicit_children, idx);
235         if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault))
236                 xa_erase(&mr_to_mdev(mr)->odp_mkeys,
237                          mlx5_base_mkey(mr->mmkey.key));
238
239         /* Freeing a MR is a sleeping operation, so bounce to a work queue */
240         INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
241         queue_work(system_unbound_wq, &mr->odp_destroy.work);
242 }
243
244 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
245                                      const struct mmu_notifier_range *range,
246                                      unsigned long cur_seq)
247 {
248         struct ib_umem_odp *umem_odp =
249                 container_of(mni, struct ib_umem_odp, notifier);
250         struct mlx5_ib_mr *mr;
251         const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
252         u64 idx = 0, blk_start_idx = 0;
253         u64 invalidations = 0;
254         unsigned long start;
255         unsigned long end;
256         int in_block = 0;
257         u64 addr;
258
259         if (!mmu_notifier_range_blockable(range))
260                 return false;
261
262         mutex_lock(&umem_odp->umem_mutex);
263         mmu_interval_set_seq(mni, cur_seq);
264         /*
265          * If npages is zero then umem_odp->private may not be setup yet. This
266          * does not complete until after the first page is mapped for DMA.
267          */
268         if (!umem_odp->npages)
269                 goto out;
270         mr = umem_odp->private;
271
272         start = max_t(u64, ib_umem_start(umem_odp), range->start);
273         end = min_t(u64, ib_umem_end(umem_odp), range->end);
274
275         /*
276          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
277          * while we are doing the invalidation, no page fault will attempt to
278          * overwrite the same MTTs.  Concurent invalidations might race us,
279          * but they will write 0s as well, so no difference in the end result.
280          */
281         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
282                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
283                 /*
284                  * Strive to write the MTTs in chunks, but avoid overwriting
285                  * non-existing MTTs. The huristic here can be improved to
286                  * estimate the cost of another UMR vs. the cost of bigger
287                  * UMR.
288                  */
289                 if (umem_odp->dma_list[idx] &
290                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
291                         if (!in_block) {
292                                 blk_start_idx = idx;
293                                 in_block = 1;
294                         }
295
296                         /* Count page invalidations */
297                         invalidations += idx - blk_start_idx + 1;
298                 } else {
299                         u64 umr_offset = idx & umr_block_mask;
300
301                         if (in_block && umr_offset == 0) {
302                                 mlx5r_umr_update_xlt(mr, blk_start_idx,
303                                                      idx - blk_start_idx, 0,
304                                                      MLX5_IB_UPD_XLT_ZAP |
305                                                      MLX5_IB_UPD_XLT_ATOMIC);
306                                 in_block = 0;
307                         }
308                 }
309         }
310         if (in_block)
311                 mlx5r_umr_update_xlt(mr, blk_start_idx,
312                                      idx - blk_start_idx + 1, 0,
313                                      MLX5_IB_UPD_XLT_ZAP |
314                                      MLX5_IB_UPD_XLT_ATOMIC);
315
316         mlx5_update_odp_stats(mr, invalidations, invalidations);
317
318         /*
319          * We are now sure that the device will not access the
320          * memory. We can safely unmap it, and mark it as dirty if
321          * needed.
322          */
323
324         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
325
326         if (unlikely(!umem_odp->npages && mr->parent))
327                 destroy_unused_implicit_child_mr(mr);
328 out:
329         mutex_unlock(&umem_odp->umem_mutex);
330         return true;
331 }
332
333 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
334         .invalidate = mlx5_ib_invalidate_range,
335 };
336
337 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
338 {
339         struct ib_odp_caps *caps = &dev->odp_caps;
340
341         memset(caps, 0, sizeof(*caps));
342
343         if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
344                 return;
345
346         caps->general_caps = IB_ODP_SUPPORT;
347
348         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
349                 dev->odp_max_size = U64_MAX;
350         else
351                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
352
353         if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send))
354                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
355
356         if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive))
357                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
358
359         if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send))
360                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
361
362         if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive))
363                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
364
365         if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write))
366                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
367
368         if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read))
369                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
370
371         if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic))
372                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
373
374         if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive))
375                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
376
377         if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send))
378                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
379
380         if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive))
381                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
382
383         if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write))
384                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
385
386         if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read))
387                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
388
389         if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic))
390                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
391
392         if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive))
393                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
394
395         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
396             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
397             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
398             !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
399                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
400 }
401
402 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
403                                       struct mlx5_pagefault *pfault,
404                                       int error)
405 {
406         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
407                      pfault->wqe.wq_num : pfault->token;
408         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
409         void *info;
410         int err;
411
412         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
413
414         if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) {
415                 info = MLX5_ADDR_OF(page_fault_resume_in, in,
416                                     page_fault_info.mem_page_fault_info);
417                 MLX5_SET(mem_page_fault_info, info, fault_token_31_0,
418                          pfault->token & 0xffffffff);
419                 MLX5_SET(mem_page_fault_info, info, fault_token_47_32,
420                          (pfault->token >> 32) & 0xffff);
421                 MLX5_SET(mem_page_fault_info, info, error, !!error);
422         } else {
423                 info = MLX5_ADDR_OF(page_fault_resume_in, in,
424                                     page_fault_info.trans_page_fault_info);
425                 MLX5_SET(trans_page_fault_info, info, page_fault_type,
426                          pfault->type);
427                 MLX5_SET(trans_page_fault_info, info, fault_token,
428                          pfault->token);
429                 MLX5_SET(trans_page_fault_info, info, wq_number, wq_num);
430                 MLX5_SET(trans_page_fault_info, info, error, !!error);
431         }
432
433         err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
434         if (err)
435                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
436                             wq_num, err);
437 }
438
439 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
440                                                 unsigned long idx)
441 {
442         struct mlx5_ib_dev *dev = mr_to_mdev(imr);
443         struct ib_umem_odp *odp;
444         struct mlx5_ib_mr *mr;
445         struct mlx5_ib_mr *ret;
446         int err;
447
448         odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
449                                       idx * MLX5_IMR_MTT_SIZE,
450                                       MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
451         if (IS_ERR(odp))
452                 return ERR_CAST(odp);
453
454         mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
455                                  MLX5_MKC_ACCESS_MODE_MTT,
456                                  MLX5_IMR_MTT_ENTRIES);
457         if (IS_ERR(mr)) {
458                 ib_umem_odp_release(odp);
459                 return mr;
460         }
461
462         mr->access_flags = imr->access_flags;
463         mr->ibmr.pd = imr->ibmr.pd;
464         mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
465         mr->umem = &odp->umem;
466         mr->ibmr.lkey = mr->mmkey.key;
467         mr->ibmr.rkey = mr->mmkey.key;
468         mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
469         mr->parent = imr;
470         odp->private = mr;
471
472         /*
473          * First refcount is owned by the xarray and second refconut
474          * is returned to the caller.
475          */
476         refcount_set(&mr->mmkey.usecount, 2);
477
478         err = mlx5r_umr_update_xlt(mr, 0,
479                                    MLX5_IMR_MTT_ENTRIES,
480                                    PAGE_SHIFT,
481                                    MLX5_IB_UPD_XLT_ZAP |
482                                    MLX5_IB_UPD_XLT_ENABLE);
483         if (err) {
484                 ret = ERR_PTR(err);
485                 goto out_mr;
486         }
487
488         xa_lock(&imr->implicit_children);
489         ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
490                            GFP_KERNEL);
491         if (unlikely(ret)) {
492                 if (xa_is_err(ret)) {
493                         ret = ERR_PTR(xa_err(ret));
494                         goto out_lock;
495                 }
496                 /*
497                  * Another thread beat us to creating the child mr, use
498                  * theirs.
499                  */
500                 refcount_inc(&ret->mmkey.usecount);
501                 goto out_lock;
502         }
503         xa_unlock(&imr->implicit_children);
504
505         if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
506                 ret = xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
507                                &mr->mmkey, GFP_KERNEL);
508                 if (xa_is_err(ret)) {
509                         ret = ERR_PTR(xa_err(ret));
510                         xa_erase(&imr->implicit_children, idx);
511                         goto out_mr;
512                 }
513                 mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD;
514         }
515         mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
516         return mr;
517
518 out_lock:
519         xa_unlock(&imr->implicit_children);
520 out_mr:
521         mlx5_ib_dereg_mr(&mr->ibmr, NULL);
522         return ret;
523 }
524
525 /*
526  * When using memory scheme ODP, implicit MRs can't use the reserved null mkey
527  * and each implicit MR needs to assign a private null mkey to get the page
528  * faults on.
529  * The null mkey is created with the properties to enable getting the page
530  * fault for every time it is accessed and having all relevant access flags.
531  */
532 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev,
533                                        struct mlx5_ib_mr *imr,
534                                        struct mlx5_ib_pd *pd)
535 {
536         size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64;
537         void *mkc;
538         u32 *in;
539         int err;
540
541         in = kzalloc(inlen, GFP_KERNEL);
542         if (!in)
543                 return -ENOMEM;
544
545         MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4);
546         MLX5_SET(create_mkey_in, in, pg_access, 1);
547
548         mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
549         MLX5_SET(mkc, mkc, a, 1);
550         MLX5_SET(mkc, mkc, rw, 1);
551         MLX5_SET(mkc, mkc, rr, 1);
552         MLX5_SET(mkc, mkc, lw, 1);
553         MLX5_SET(mkc, mkc, lr, 1);
554         MLX5_SET(mkc, mkc, free, 0);
555         MLX5_SET(mkc, mkc, umr_en, 0);
556         MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
557
558         MLX5_SET(mkc, mkc, translations_octword_size, 4);
559         MLX5_SET(mkc, mkc, log_page_size, 61);
560         MLX5_SET(mkc, mkc, length64, 1);
561         MLX5_SET(mkc, mkc, pd, pd->pdn);
562         MLX5_SET64(mkc, mkc, start_addr, 0);
563         MLX5_SET(mkc, mkc, qpn, 0xffffff);
564
565         err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen);
566         if (err)
567                 goto free_in;
568
569         imr->null_mmkey.type = MLX5_MKEY_NULL;
570
571 free_in:
572         kfree(in);
573         return err;
574 }
575
576 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
577                                              int access_flags)
578 {
579         struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
580         struct ib_umem_odp *umem_odp;
581         struct mlx5_ib_mr *imr;
582         int err;
583
584         if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
585                 return ERR_PTR(-EOPNOTSUPP);
586
587         umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
588         if (IS_ERR(umem_odp))
589                 return ERR_CAST(umem_odp);
590
591         imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
592                                   mlx5_imr_ksm_entries);
593         if (IS_ERR(imr)) {
594                 ib_umem_odp_release(umem_odp);
595                 return imr;
596         }
597
598         imr->access_flags = access_flags;
599         imr->ibmr.pd = &pd->ibpd;
600         imr->ibmr.iova = 0;
601         imr->umem = &umem_odp->umem;
602         imr->ibmr.lkey = imr->mmkey.key;
603         imr->ibmr.rkey = imr->mmkey.key;
604         imr->ibmr.device = &dev->ib_dev;
605         imr->is_odp_implicit = true;
606         xa_init(&imr->implicit_children);
607
608         if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
609                 err = alloc_implicit_mr_null_mkey(dev, imr, pd);
610                 if (err)
611                         goto out_mr;
612
613                 err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey);
614                 if (err)
615                         goto out_mr;
616         }
617
618         err = mlx5r_umr_update_xlt(imr, 0,
619                                    mlx5_imr_ksm_entries,
620                                    MLX5_KSM_PAGE_SHIFT,
621                                    MLX5_IB_UPD_XLT_INDIRECT |
622                                    MLX5_IB_UPD_XLT_ZAP |
623                                    MLX5_IB_UPD_XLT_ENABLE);
624         if (err)
625                 goto out_mr;
626
627         err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
628         if (err)
629                 goto out_mr;
630
631         mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
632         return imr;
633 out_mr:
634         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
635         mlx5_ib_dereg_mr(&imr->ibmr, NULL);
636         return ERR_PTR(err);
637 }
638
639 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
640 {
641         struct mlx5_ib_mr *mtt;
642         unsigned long idx;
643
644         /*
645          * If this is an implicit MR it is already invalidated so we can just
646          * delete the children mkeys.
647          */
648         xa_for_each(&mr->implicit_children, idx, mtt) {
649                 xa_erase(&mr->implicit_children, idx);
650                 mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
651         }
652
653         if (mr->null_mmkey.key) {
654                 xa_erase(&mr_to_mdev(mr)->odp_mkeys,
655                          mlx5_base_mkey(mr->null_mmkey.key));
656
657                 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev,
658                                        mr->null_mmkey.key);
659         }
660 }
661
662 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
663 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
664 #define MLX5_PF_FLAGS_ENABLE BIT(3)
665 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
666                              u64 user_va, size_t bcnt, u32 *bytes_mapped,
667                              u32 flags)
668 {
669         int page_shift, ret, np;
670         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
671         u64 access_mask;
672         u64 start_idx;
673         bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
674         u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
675
676         if (flags & MLX5_PF_FLAGS_ENABLE)
677                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
678
679         page_shift = odp->page_shift;
680         start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
681         access_mask = ODP_READ_ALLOWED_BIT;
682
683         if (odp->umem.writable && !downgrade)
684                 access_mask |= ODP_WRITE_ALLOWED_BIT;
685
686         np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
687         if (np < 0)
688                 return np;
689
690         /*
691          * No need to check whether the MTTs really belong to this MR, since
692          * ib_umem_odp_map_dma_and_lock already checks this.
693          */
694         ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
695         mutex_unlock(&odp->umem_mutex);
696
697         if (ret < 0) {
698                 if (ret != -EAGAIN)
699                         mlx5_ib_err(mr_to_mdev(mr),
700                                     "Failed to update mkey page tables\n");
701                 goto out;
702         }
703
704         if (bytes_mapped) {
705                 u32 new_mappings = (np << page_shift) -
706                         (user_va - round_down(user_va, 1 << page_shift));
707
708                 *bytes_mapped += min_t(u32, new_mappings, bcnt);
709         }
710
711         return np << (page_shift - PAGE_SHIFT);
712
713 out:
714         return ret;
715 }
716
717 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
718                                  struct ib_umem_odp *odp_imr, u64 user_va,
719                                  size_t bcnt, u32 *bytes_mapped, u32 flags)
720 {
721         unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
722         unsigned long upd_start_idx = end_idx + 1;
723         unsigned long upd_len = 0;
724         unsigned long npages = 0;
725         int err;
726         int ret;
727
728         if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
729                      mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
730                 return -EFAULT;
731
732         /* Fault each child mr that intersects with our interval. */
733         while (bcnt) {
734                 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
735                 struct ib_umem_odp *umem_odp;
736                 struct mlx5_ib_mr *mtt;
737                 u64 len;
738
739                 xa_lock(&imr->implicit_children);
740                 mtt = xa_load(&imr->implicit_children, idx);
741                 if (unlikely(!mtt)) {
742                         xa_unlock(&imr->implicit_children);
743                         mtt = implicit_get_child_mr(imr, idx);
744                         if (IS_ERR(mtt)) {
745                                 ret = PTR_ERR(mtt);
746                                 goto out;
747                         }
748                         upd_start_idx = min(upd_start_idx, idx);
749                         upd_len = idx - upd_start_idx + 1;
750                 } else {
751                         refcount_inc(&mtt->mmkey.usecount);
752                         xa_unlock(&imr->implicit_children);
753                 }
754
755                 umem_odp = to_ib_umem_odp(mtt->umem);
756                 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
757                       user_va;
758
759                 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
760                                         bytes_mapped, flags);
761
762                 mlx5r_deref_odp_mkey(&mtt->mmkey);
763
764                 if (ret < 0)
765                         goto out;
766                 user_va += len;
767                 bcnt -= len;
768                 npages += ret;
769         }
770
771         ret = npages;
772
773         /*
774          * Any time the implicit_children are changed we must perform an
775          * update of the xlt before exiting to ensure the HW and the
776          * implicit_children remains synchronized.
777          */
778 out:
779         if (likely(!upd_len))
780                 return ret;
781
782         /*
783          * Notice this is not strictly ordered right, the KSM is updated after
784          * the implicit_children is updated, so a parallel page fault could
785          * see a MR that is not yet visible in the KSM.  This is similar to a
786          * parallel page fault seeing a MR that is being concurrently removed
787          * from the KSM. Both of these improbable situations are resolved
788          * safely by resuming the HW and then taking another page fault. The
789          * next pagefault handler will see the new information.
790          */
791         mutex_lock(&odp_imr->umem_mutex);
792         err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
793                                    MLX5_IB_UPD_XLT_INDIRECT |
794                                           MLX5_IB_UPD_XLT_ATOMIC);
795         mutex_unlock(&odp_imr->umem_mutex);
796         if (err) {
797                 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
798                 return err;
799         }
800         return ret;
801 }
802
803 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
804                                u32 *bytes_mapped, u32 flags)
805 {
806         struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
807         u32 xlt_flags = 0;
808         int err;
809         unsigned long page_size;
810
811         if (flags & MLX5_PF_FLAGS_ENABLE)
812                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
813
814         dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
815         err = ib_umem_dmabuf_map_pages(umem_dmabuf);
816         if (err) {
817                 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
818                 return err;
819         }
820
821         page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf);
822         if (!page_size) {
823                 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
824                 err = -EINVAL;
825         } else {
826                 if (mr->data_direct)
827                         err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags);
828                 else
829                         err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
830         }
831         dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
832
833         if (err)
834                 return err;
835
836         if (bytes_mapped)
837                 *bytes_mapped += bcnt;
838
839         return ib_umem_num_pages(mr->umem);
840 }
841
842 /*
843  * Returns:
844  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
845  *           not accessible, or the MR is no longer valid.
846  *  -EAGAIN/-ENOMEM: The operation should be retried
847  *
848  *  -EINVAL/others: General internal malfunction
849  *  >0: Number of pages mapped
850  */
851 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
852                         u32 *bytes_mapped, u32 flags, bool permissive_fault)
853 {
854         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
855
856         if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault)
857                 return -EFAULT;
858
859         if (mr->umem->is_dmabuf)
860                 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
861
862         if (!odp->is_implicit_odp) {
863                 u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova;
864                 u64 user_va;
865
866                 if (check_add_overflow(offset, (u64)odp->umem.address,
867                                        &user_va))
868                         return -EFAULT;
869
870                 if (permissive_fault) {
871                         if (user_va < ib_umem_start(odp))
872                                 user_va = ib_umem_start(odp);
873                         if ((user_va + bcnt) > ib_umem_end(odp))
874                                 bcnt = ib_umem_end(odp) - user_va;
875                 } else if (unlikely(user_va >= ib_umem_end(odp) ||
876                                     ib_umem_end(odp) - user_va < bcnt))
877                         return -EFAULT;
878                 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
879                                          flags);
880         }
881         return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
882                                      flags);
883 }
884
885 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
886 {
887         int ret;
888
889         ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
890                                 mr->umem->length, NULL,
891                                 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
892         return ret >= 0 ? 0 : ret;
893 }
894
895 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
896 {
897         int ret;
898
899         ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
900                                   MLX5_PF_FLAGS_ENABLE);
901
902         return ret >= 0 ? 0 : ret;
903 }
904
905 struct pf_frame {
906         struct pf_frame *next;
907         u32 key;
908         u64 io_virt;
909         size_t bcnt;
910         int depth;
911 };
912
913 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
914 {
915         if (!mmkey)
916                 return false;
917         if (mmkey->type == MLX5_MKEY_MW ||
918             mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
919                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
920         return mmkey->key == key;
921 }
922
923 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key)
924 {
925         struct mlx5_ib_mkey *mmkey;
926
927         xa_lock(&dev->odp_mkeys);
928         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
929         if (!mmkey) {
930                 mmkey = ERR_PTR(-ENOENT);
931                 goto out;
932         }
933         if (!mkey_is_eq(mmkey, key)) {
934                 mmkey = ERR_PTR(-EFAULT);
935                 goto out;
936         }
937         refcount_inc(&mmkey->usecount);
938 out:
939         xa_unlock(&dev->odp_mkeys);
940
941         return mmkey;
942 }
943
944 /*
945  * Handle a single data segment in a page-fault WQE or RDMA region.
946  *
947  * Returns number of OS pages retrieved on success. The caller may continue to
948  * the next data segment.
949  * Can return the following error codes:
950  * -EAGAIN to designate a temporary error. The caller will abort handling the
951  *  page fault and resolve it.
952  * -EFAULT when there's an error mapping the requested pages. The caller will
953  *  abort the page fault handling.
954  */
955 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
956                                          struct ib_pd *pd, u32 key,
957                                          u64 io_virt, size_t bcnt,
958                                          u32 *bytes_committed,
959                                          u32 *bytes_mapped)
960 {
961         int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
962         struct pf_frame *head = NULL, *frame;
963         struct mlx5_ib_mkey *mmkey;
964         struct mlx5_ib_mr *mr;
965         struct mlx5_klm *pklm;
966         u32 *out = NULL;
967         size_t offset;
968
969         io_virt += *bytes_committed;
970         bcnt -= *bytes_committed;
971 next_mr:
972         mmkey = find_odp_mkey(dev, key);
973         if (IS_ERR(mmkey)) {
974                 ret = PTR_ERR(mmkey);
975                 if (ret == -ENOENT) {
976                         mlx5_ib_dbg(
977                                 dev,
978                                 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
979                                 key);
980                         if (bytes_mapped)
981                                 *bytes_mapped += bcnt;
982                         /*
983                          * The user could specify a SGL with multiple lkeys and
984                          * only some of them are ODP. Treat the non-ODP ones as
985                          * fully faulted.
986                          */
987                         ret = 0;
988                 }
989                 goto end;
990         }
991
992         switch (mmkey->type) {
993         case MLX5_MKEY_MR:
994                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
995
996                 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false);
997                 if (ret < 0)
998                         goto end;
999
1000                 mlx5_update_odp_stats(mr, faults, ret);
1001
1002                 npages += ret;
1003                 ret = 0;
1004                 break;
1005
1006         case MLX5_MKEY_MW:
1007         case MLX5_MKEY_INDIRECT_DEVX:
1008                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
1009                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
1010                         ret = -EFAULT;
1011                         goto end;
1012                 }
1013
1014                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1015                         sizeof(*pklm) * (mmkey->ndescs - 2);
1016
1017                 if (outlen > cur_outlen) {
1018                         kfree(out);
1019                         out = kzalloc(outlen, GFP_KERNEL);
1020                         if (!out) {
1021                                 ret = -ENOMEM;
1022                                 goto end;
1023                         }
1024                         cur_outlen = outlen;
1025                 }
1026
1027                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1028                                                        bsf0_klm0_pas_mtt0_1);
1029
1030                 ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
1031                 if (ret)
1032                         goto end;
1033
1034                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
1035                                               memory_key_mkey_entry.start_addr);
1036
1037                 for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
1038                         if (offset >= be32_to_cpu(pklm->bcount)) {
1039                                 offset -= be32_to_cpu(pklm->bcount);
1040                                 continue;
1041                         }
1042
1043                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1044                         if (!frame) {
1045                                 ret = -ENOMEM;
1046                                 goto end;
1047                         }
1048
1049                         frame->key = be32_to_cpu(pklm->key);
1050                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
1051                         frame->bcnt = min_t(size_t, bcnt,
1052                                             be32_to_cpu(pklm->bcount) - offset);
1053                         frame->depth = depth + 1;
1054                         frame->next = head;
1055                         head = frame;
1056
1057                         bcnt -= frame->bcnt;
1058                         offset = 0;
1059                 }
1060                 break;
1061
1062         default:
1063                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1064                 ret = -EFAULT;
1065                 goto end;
1066         }
1067
1068         if (head) {
1069                 frame = head;
1070                 head = frame->next;
1071
1072                 key = frame->key;
1073                 io_virt = frame->io_virt;
1074                 bcnt = frame->bcnt;
1075                 depth = frame->depth;
1076                 kfree(frame);
1077
1078                 mlx5r_deref_odp_mkey(mmkey);
1079                 goto next_mr;
1080         }
1081
1082 end:
1083         if (!IS_ERR(mmkey))
1084                 mlx5r_deref_odp_mkey(mmkey);
1085         while (head) {
1086                 frame = head;
1087                 head = frame->next;
1088                 kfree(frame);
1089         }
1090         kfree(out);
1091
1092         *bytes_committed = 0;
1093         return ret ? ret : npages;
1094 }
1095
1096 /*
1097  * Parse a series of data segments for page fault handling.
1098  *
1099  * @dev:  Pointer to mlx5 IB device
1100  * @pfault: contains page fault information.
1101  * @wqe: points at the first data segment in the WQE.
1102  * @wqe_end: points after the end of the WQE.
1103  * @bytes_mapped: receives the number of bytes that the function was able to
1104  *                map. This allows the caller to decide intelligently whether
1105  *                enough memory was mapped to resolve the page fault
1106  *                successfully (e.g. enough for the next MTU, or the entire
1107  *                WQE).
1108  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1109  *                   the committed bytes).
1110  * @receive_queue: receive WQE end of sg list
1111  *
1112  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1113  * negative error code.
1114  */
1115 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1116                                    struct mlx5_pagefault *pfault,
1117                                    void *wqe,
1118                                    void *wqe_end, u32 *bytes_mapped,
1119                                    u32 *total_wqe_bytes, bool receive_queue)
1120 {
1121         int ret = 0, npages = 0;
1122         u64 io_virt;
1123         __be32 key;
1124         u32 byte_count;
1125         size_t bcnt;
1126         int inline_segment;
1127
1128         if (bytes_mapped)
1129                 *bytes_mapped = 0;
1130         if (total_wqe_bytes)
1131                 *total_wqe_bytes = 0;
1132
1133         while (wqe < wqe_end) {
1134                 struct mlx5_wqe_data_seg *dseg = wqe;
1135
1136                 io_virt = be64_to_cpu(dseg->addr);
1137                 key = dseg->lkey;
1138                 byte_count = be32_to_cpu(dseg->byte_count);
1139                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1140                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
1141
1142                 if (inline_segment) {
1143                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1144                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1145                                      16);
1146                 } else {
1147                         wqe += sizeof(*dseg);
1148                 }
1149
1150                 /* receive WQE end of sg list. */
1151                 if (receive_queue && bcnt == 0 &&
1152                     key == dev->mkeys.terminate_scatter_list_mkey &&
1153                     io_virt == 0)
1154                         break;
1155
1156                 if (!inline_segment && total_wqe_bytes) {
1157                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1158                                         pfault->bytes_committed);
1159                 }
1160
1161                 /* A zero length data segment designates a length of 2GB. */
1162                 if (bcnt == 0)
1163                         bcnt = 1U << 31;
1164
1165                 if (inline_segment || bcnt <= pfault->bytes_committed) {
1166                         pfault->bytes_committed -=
1167                                 min_t(size_t, bcnt,
1168                                       pfault->bytes_committed);
1169                         continue;
1170                 }
1171
1172                 ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1173                                                     io_virt, bcnt,
1174                                                     &pfault->bytes_committed,
1175                                                     bytes_mapped);
1176                 if (ret < 0)
1177                         break;
1178                 npages += ret;
1179         }
1180
1181         return ret < 0 ? ret : npages;
1182 }
1183
1184 /*
1185  * Parse initiator WQE. Advances the wqe pointer to point at the
1186  * scatter-gather list, and set wqe_end to the end of the WQE.
1187  */
1188 static int mlx5_ib_mr_initiator_pfault_handler(
1189         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1190         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1191 {
1192         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1193         u16 wqe_index = pfault->wqe.wqe_index;
1194         struct mlx5_base_av *av;
1195         unsigned ds, opcode;
1196         u32 qpn = qp->trans_qp.base.mqp.qpn;
1197
1198         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1199         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1200                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1201                             ds, wqe_length);
1202                 return -EFAULT;
1203         }
1204
1205         if (ds == 0) {
1206                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1207                             wqe_index, qpn);
1208                 return -EFAULT;
1209         }
1210
1211         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1212         *wqe += sizeof(*ctrl);
1213
1214         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1215                  MLX5_WQE_CTRL_OPCODE_MASK;
1216
1217         if (qp->type == IB_QPT_XRC_INI)
1218                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1219
1220         if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1221                 av = *wqe;
1222                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1223                         *wqe += sizeof(struct mlx5_av);
1224                 else
1225                         *wqe += sizeof(struct mlx5_base_av);
1226         }
1227
1228         switch (opcode) {
1229         case MLX5_OPCODE_RDMA_WRITE:
1230         case MLX5_OPCODE_RDMA_WRITE_IMM:
1231         case MLX5_OPCODE_RDMA_READ:
1232                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1233                 break;
1234         case MLX5_OPCODE_ATOMIC_CS:
1235         case MLX5_OPCODE_ATOMIC_FA:
1236                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1237                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1238                 break;
1239         }
1240
1241         return 0;
1242 }
1243
1244 /*
1245  * Parse responder WQE and set wqe_end to the end of the WQE.
1246  */
1247 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1248                                                    struct mlx5_ib_srq *srq,
1249                                                    void **wqe, void **wqe_end,
1250                                                    int wqe_length)
1251 {
1252         int wqe_size = 1 << srq->msrq.wqe_shift;
1253
1254         if (wqe_size > wqe_length) {
1255                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1256                 return -EFAULT;
1257         }
1258
1259         *wqe_end = *wqe + wqe_size;
1260         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1261
1262         return 0;
1263 }
1264
1265 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1266                                                   struct mlx5_ib_qp *qp,
1267                                                   void *wqe, void **wqe_end,
1268                                                   int wqe_length)
1269 {
1270         struct mlx5_ib_wq *wq = &qp->rq;
1271         int wqe_size = 1 << wq->wqe_shift;
1272
1273         if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1274                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1275                 return -EFAULT;
1276         }
1277
1278         if (wqe_size > wqe_length) {
1279                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1280                 return -EFAULT;
1281         }
1282
1283         *wqe_end = wqe + wqe_size;
1284
1285         return 0;
1286 }
1287
1288 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1289                                                        u32 wq_num, int pf_type)
1290 {
1291         struct mlx5_core_rsc_common *common = NULL;
1292         struct mlx5_core_srq *srq;
1293
1294         switch (pf_type) {
1295         case MLX5_WQE_PF_TYPE_RMP:
1296                 srq = mlx5_cmd_get_srq(dev, wq_num);
1297                 if (srq)
1298                         common = &srq->common;
1299                 break;
1300         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1301         case MLX5_WQE_PF_TYPE_RESP:
1302         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1303                 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1304                 break;
1305         default:
1306                 break;
1307         }
1308
1309         return common;
1310 }
1311
1312 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1313 {
1314         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1315
1316         return to_mibqp(mqp);
1317 }
1318
1319 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1320 {
1321         struct mlx5_core_srq *msrq =
1322                 container_of(res, struct mlx5_core_srq, common);
1323
1324         return to_mibsrq(msrq);
1325 }
1326
1327 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1328                                           struct mlx5_pagefault *pfault)
1329 {
1330         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1331         u16 wqe_index = pfault->wqe.wqe_index;
1332         void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1333         u32 bytes_mapped, total_wqe_bytes;
1334         struct mlx5_core_rsc_common *res;
1335         int resume_with_error = 1;
1336         struct mlx5_ib_qp *qp;
1337         size_t bytes_copied;
1338         int ret = 0;
1339
1340         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1341         if (!res) {
1342                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1343                 return;
1344         }
1345
1346         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1347             res->res != MLX5_RES_XSRQ) {
1348                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1349                             pfault->type);
1350                 goto resolve_page_fault;
1351         }
1352
1353         wqe_start = (void *)__get_free_page(GFP_KERNEL);
1354         if (!wqe_start) {
1355                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1356                 goto resolve_page_fault;
1357         }
1358
1359         wqe = wqe_start;
1360         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1361         if (qp && sq) {
1362                 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1363                                           &bytes_copied);
1364                 if (ret)
1365                         goto read_user;
1366                 ret = mlx5_ib_mr_initiator_pfault_handler(
1367                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1368         } else if (qp && !sq) {
1369                 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1370                                           &bytes_copied);
1371                 if (ret)
1372                         goto read_user;
1373                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1374                         dev, qp, wqe, &wqe_end, bytes_copied);
1375         } else if (!qp) {
1376                 struct mlx5_ib_srq *srq = res_to_srq(res);
1377
1378                 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1379                                            &bytes_copied);
1380                 if (ret)
1381                         goto read_user;
1382                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1383                         dev, srq, &wqe, &wqe_end, bytes_copied);
1384         }
1385
1386         if (ret < 0 || wqe >= wqe_end)
1387                 goto resolve_page_fault;
1388
1389         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1390                                       &total_wqe_bytes, !sq);
1391         if (ret == -EAGAIN)
1392                 goto out;
1393
1394         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1395                 goto resolve_page_fault;
1396
1397 out:
1398         ret = 0;
1399         resume_with_error = 0;
1400
1401 read_user:
1402         if (ret)
1403                 mlx5_ib_err(
1404                         dev,
1405                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n",
1406                         ret, wqe_index, pfault->token);
1407
1408 resolve_page_fault:
1409         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1410         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1411                     pfault->wqe.wq_num, resume_with_error,
1412                     pfault->type);
1413         mlx5_core_res_put(res);
1414         free_page((unsigned long)wqe_start);
1415 }
1416
1417 static int pages_in_range(u64 address, u32 length)
1418 {
1419         return (ALIGN(address + length, PAGE_SIZE) -
1420                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1421 }
1422
1423 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1424                                            struct mlx5_pagefault *pfault)
1425 {
1426         u64 address;
1427         u32 length;
1428         u32 prefetch_len = pfault->bytes_committed;
1429         int prefetch_activated = 0;
1430         u32 rkey = pfault->rdma.r_key;
1431         int ret;
1432
1433         /* The RDMA responder handler handles the page fault in two parts.
1434          * First it brings the necessary pages for the current packet
1435          * (and uses the pfault context), and then (after resuming the QP)
1436          * prefetches more pages. The second operation cannot use the pfault
1437          * context and therefore uses the dummy_pfault context allocated on
1438          * the stack */
1439         pfault->rdma.rdma_va += pfault->bytes_committed;
1440         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1441                                          pfault->rdma.rdma_op_len);
1442         pfault->bytes_committed = 0;
1443
1444         address = pfault->rdma.rdma_va;
1445         length  = pfault->rdma.rdma_op_len;
1446
1447         /* For some operations, the hardware cannot tell the exact message
1448          * length, and in those cases it reports zero. Use prefetch
1449          * logic. */
1450         if (length == 0) {
1451                 prefetch_activated = 1;
1452                 length = pfault->rdma.packet_size;
1453                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1454         }
1455
1456         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1457                                             &pfault->bytes_committed, NULL);
1458         if (ret == -EAGAIN) {
1459                 /* We're racing with an invalidation, don't prefetch */
1460                 prefetch_activated = 0;
1461         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1462                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1463                 if (ret != -ENOENT)
1464                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n",
1465                                     ret, pfault->token, pfault->type);
1466                 return;
1467         }
1468
1469         mlx5_ib_page_fault_resume(dev, pfault, 0);
1470         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n",
1471                     pfault->token, pfault->type,
1472                     prefetch_activated);
1473
1474         /* At this point, there might be a new pagefault already arriving in
1475          * the eq, switch to the dummy pagefault for the rest of the
1476          * processing. We're still OK with the objects being alive as the
1477          * work-queue is being fenced. */
1478
1479         if (prefetch_activated) {
1480                 u32 bytes_committed = 0;
1481
1482                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1483                                                     prefetch_len,
1484                                                     &bytes_committed, NULL);
1485                 if (ret < 0 && ret != -EAGAIN) {
1486                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n",
1487                                     ret, pfault->token, address, prefetch_len);
1488                 }
1489         }
1490 }
1491
1492 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7)
1493 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev,
1494                                              struct mlx5_pagefault *pfault)
1495 {
1496         u64 prefetch_va =
1497                 pfault->memory.va - pfault->memory.prefetch_before_byte_count;
1498         size_t prefetch_size = pfault->memory.prefetch_before_byte_count +
1499                                pfault->memory.fault_byte_count +
1500                                pfault->memory.prefetch_after_byte_count;
1501         struct mlx5_ib_mkey *mmkey;
1502         struct mlx5_ib_mr *mr, *child_mr;
1503         int ret = 0;
1504
1505         mmkey = find_odp_mkey(dev, pfault->memory.mkey);
1506         if (IS_ERR(mmkey))
1507                 goto err;
1508
1509         switch (mmkey->type) {
1510         case MLX5_MKEY_IMPLICIT_CHILD:
1511                 child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1512                 mr = child_mr->parent;
1513                 break;
1514         case MLX5_MKEY_NULL:
1515                 mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey);
1516                 break;
1517         default:
1518                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1519                 break;
1520         }
1521
1522         /* If prefetch fails, handle only demanded page fault */
1523         ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true);
1524         if (ret < 0) {
1525                 ret = pagefault_mr(mr, pfault->memory.va,
1526                                    pfault->memory.fault_byte_count, NULL, 0,
1527                                    true);
1528                 if (ret < 0)
1529                         goto err;
1530         }
1531
1532         mlx5_update_odp_stats(mr, faults, ret);
1533         mlx5r_deref_odp_mkey(mmkey);
1534
1535         if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST)
1536                 mlx5_ib_page_fault_resume(dev, pfault, 0);
1537
1538         mlx5_ib_dbg(
1539                 dev,
1540                 "PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n",
1541                 pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ?
1542                         "" :
1543                         "without resume cmd",
1544                 pfault->token, pfault->memory.mkey, pfault->memory.va,
1545                 pfault->memory.fault_byte_count);
1546
1547         return;
1548
1549 err:
1550         if (!IS_ERR(mmkey))
1551                 mlx5r_deref_odp_mkey(mmkey);
1552         mlx5_ib_page_fault_resume(dev, pfault, 1);
1553         mlx5_ib_dbg(
1554                 dev,
1555                 "PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n",
1556                 pfault->token, pfault->memory.mkey, pfault->memory.va,
1557                 pfault->memory.fault_byte_count, ret);
1558 }
1559
1560 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1561 {
1562         u8 event_subtype = pfault->event_subtype;
1563
1564         switch (event_subtype) {
1565         case MLX5_PFAULT_SUBTYPE_WQE:
1566                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1567                 break;
1568         case MLX5_PFAULT_SUBTYPE_RDMA:
1569                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1570                 break;
1571         case MLX5_PFAULT_SUBTYPE_MEMORY:
1572                 mlx5_ib_mr_memory_pfault_handler(dev, pfault);
1573                 break;
1574         default:
1575                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1576                             event_subtype);
1577                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1578         }
1579 }
1580
1581 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1582 {
1583         struct mlx5_pagefault *pfault = container_of(work,
1584                                                      struct mlx5_pagefault,
1585                                                      work);
1586         struct mlx5_ib_pf_eq *eq = pfault->eq;
1587
1588         mlx5_ib_pfault(eq->dev, pfault);
1589         mempool_free(pfault, eq->pool);
1590 }
1591
1592 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096
1593 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1594 {
1595         struct mlx5_eqe_page_fault *pf_eqe;
1596         struct mlx5_pagefault *pfault;
1597         struct mlx5_eqe *eqe;
1598         int cc = 0;
1599
1600         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1601                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1602                 if (!pfault) {
1603                         schedule_work(&eq->work);
1604                         break;
1605                 }
1606
1607                 pf_eqe = &eqe->data.page_fault;
1608                 pfault->event_subtype = eqe->sub_type;
1609
1610                 switch (eqe->sub_type) {
1611                 case MLX5_PFAULT_SUBTYPE_RDMA:
1612                         /* RDMA based event */
1613                         pfault->bytes_committed =
1614                                 be32_to_cpu(pf_eqe->rdma.bytes_committed);
1615                         pfault->type =
1616                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1617                         pfault->token =
1618                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1619                                 MLX5_24BIT_MASK;
1620                         pfault->rdma.r_key =
1621                                 be32_to_cpu(pf_eqe->rdma.r_key);
1622                         pfault->rdma.packet_size =
1623                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1624                         pfault->rdma.rdma_op_len =
1625                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1626                         pfault->rdma.rdma_va =
1627                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1628                         mlx5_ib_dbg(
1629                                 eq->dev,
1630                                 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n",
1631                                 eqe->sub_type, pfault->bytes_committed,
1632                                 pfault->type, pfault->token,
1633                                 pfault->rdma.r_key);
1634                         mlx5_ib_dbg(eq->dev,
1635                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1636                                     pfault->rdma.rdma_op_len,
1637                                     pfault->rdma.rdma_va);
1638                         break;
1639
1640                 case MLX5_PFAULT_SUBTYPE_WQE:
1641                         /* WQE based event */
1642                         pfault->bytes_committed =
1643                                 be32_to_cpu(pf_eqe->wqe.bytes_committed);
1644                         pfault->type =
1645                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1646                         pfault->token =
1647                                 be32_to_cpu(pf_eqe->wqe.token);
1648                         pfault->wqe.wq_num =
1649                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1650                                 MLX5_24BIT_MASK;
1651                         pfault->wqe.wqe_index =
1652                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1653                         pfault->wqe.packet_size =
1654                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1655                         mlx5_ib_dbg(
1656                                 eq->dev,
1657                                 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1658                                 eqe->sub_type, pfault->bytes_committed,
1659                                 pfault->type, pfault->token, pfault->wqe.wq_num,
1660                                 pfault->wqe.wqe_index);
1661                         break;
1662
1663                 case MLX5_PFAULT_SUBTYPE_MEMORY:
1664                         /* Memory based event */
1665                         pfault->bytes_committed = 0;
1666                         pfault->token =
1667                                 be32_to_cpu(pf_eqe->memory.token31_0) |
1668                                 ((u64)be16_to_cpu(pf_eqe->memory.token47_32)
1669                                  << 32);
1670                         pfault->memory.va = be64_to_cpu(pf_eqe->memory.va);
1671                         pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey);
1672                         pfault->memory.fault_byte_count = (be32_to_cpu(
1673                                 pf_eqe->memory.demand_fault_pages) >> 12) *
1674                                 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1675                         pfault->memory.prefetch_before_byte_count =
1676                                 be16_to_cpu(
1677                                         pf_eqe->memory.pre_demand_fault_pages) *
1678                                 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1679                         pfault->memory.prefetch_after_byte_count =
1680                                 be16_to_cpu(
1681                                         pf_eqe->memory.post_demand_fault_pages) *
1682                                 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1683                         pfault->memory.flags = pf_eqe->memory.flags;
1684                         mlx5_ib_dbg(
1685                                 eq->dev,
1686                                 "PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n",
1687                                 eqe->sub_type, pfault->token,
1688                                 pfault->memory.mkey,
1689                                 pfault->memory.fault_byte_count,
1690                                 pfault->memory.va, pfault->memory.flags);
1691                         mlx5_ib_dbg(
1692                                 eq->dev,
1693                                 "PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n",
1694                                 pfault->memory.prefetch_before_byte_count,
1695                                 pfault->memory.prefetch_after_byte_count);
1696                         break;
1697
1698                 default:
1699                         mlx5_ib_warn(eq->dev,
1700                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1701                                      eqe->sub_type);
1702                         /* Unsupported page faults should still be
1703                          * resolved by the page fault handler
1704                          */
1705                 }
1706
1707                 pfault->eq = eq;
1708                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1709                 queue_work(eq->wq, &pfault->work);
1710
1711                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1712         }
1713
1714         mlx5_eq_update_ci(eq->core, cc, 1);
1715 }
1716
1717 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1718                              void *data)
1719 {
1720         struct mlx5_ib_pf_eq *eq =
1721                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1722         unsigned long flags;
1723
1724         if (spin_trylock_irqsave(&eq->lock, flags)) {
1725                 mlx5_ib_eq_pf_process(eq);
1726                 spin_unlock_irqrestore(&eq->lock, flags);
1727         } else {
1728                 schedule_work(&eq->work);
1729         }
1730
1731         return IRQ_HANDLED;
1732 }
1733
1734 /* mempool_refill() was proposed but unfortunately wasn't accepted
1735  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1736  * Cheap workaround.
1737  */
1738 static void mempool_refill(mempool_t *pool)
1739 {
1740         while (pool->curr_nr < pool->min_nr)
1741                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1742 }
1743
1744 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1745 {
1746         struct mlx5_ib_pf_eq *eq =
1747                 container_of(work, struct mlx5_ib_pf_eq, work);
1748
1749         mempool_refill(eq->pool);
1750
1751         spin_lock_irq(&eq->lock);
1752         mlx5_ib_eq_pf_process(eq);
1753         spin_unlock_irq(&eq->lock);
1754 }
1755
1756 enum {
1757         MLX5_IB_NUM_PF_EQE      = 0x1000,
1758         MLX5_IB_NUM_PF_DRAIN    = 64,
1759 };
1760
1761 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1762 {
1763         struct mlx5_eq_param param = {};
1764         int err = 0;
1765
1766         mutex_lock(&dev->odp_eq_mutex);
1767         if (eq->core)
1768                 goto unlock;
1769         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1770         spin_lock_init(&eq->lock);
1771         eq->dev = dev;
1772
1773         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1774                                                sizeof(struct mlx5_pagefault));
1775         if (!eq->pool) {
1776                 err = -ENOMEM;
1777                 goto unlock;
1778         }
1779
1780         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1781                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1782                                  MLX5_NUM_CMD_EQE);
1783         if (!eq->wq) {
1784                 err = -ENOMEM;
1785                 goto err_mempool;
1786         }
1787
1788         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1789         param = (struct mlx5_eq_param) {
1790                 .nent = MLX5_IB_NUM_PF_EQE,
1791         };
1792         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1793         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1794         if (IS_ERR(eq->core)) {
1795                 err = PTR_ERR(eq->core);
1796                 goto err_wq;
1797         }
1798         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1799         if (err) {
1800                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1801                 goto err_eq;
1802         }
1803
1804         mutex_unlock(&dev->odp_eq_mutex);
1805         return 0;
1806 err_eq:
1807         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1808 err_wq:
1809         eq->core = NULL;
1810         destroy_workqueue(eq->wq);
1811 err_mempool:
1812         mempool_destroy(eq->pool);
1813 unlock:
1814         mutex_unlock(&dev->odp_eq_mutex);
1815         return err;
1816 }
1817
1818 static int
1819 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1820 {
1821         int err;
1822
1823         if (!eq->core)
1824                 return 0;
1825         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1826         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1827         cancel_work_sync(&eq->work);
1828         destroy_workqueue(eq->wq);
1829         mempool_destroy(eq->pool);
1830
1831         return err;
1832 }
1833
1834 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1835 {
1836         struct mlx5r_cache_rb_key rb_key = {
1837                 .access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1838                 .ndescs = mlx5_imr_ksm_entries,
1839         };
1840         struct mlx5_cache_ent *ent;
1841
1842         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1843                 return 0;
1844
1845         ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1846         if (IS_ERR(ent))
1847                 return PTR_ERR(ent);
1848
1849         return 0;
1850 }
1851
1852 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1853         .advise_mr = mlx5_ib_advise_mr,
1854 };
1855
1856 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1857 {
1858         internal_fill_odp_caps(dev);
1859
1860         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1861                 return 0;
1862
1863         ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1864
1865         mutex_init(&dev->odp_eq_mutex);
1866         return 0;
1867 }
1868
1869 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1870 {
1871         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1872                 return;
1873
1874         mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1875 }
1876
1877 int mlx5_ib_odp_init(void)
1878 {
1879         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1880                                        MLX5_IMR_MTT_BITS);
1881
1882         return 0;
1883 }
1884
1885 struct prefetch_mr_work {
1886         struct work_struct work;
1887         u32 pf_flags;
1888         u32 num_sge;
1889         struct {
1890                 u64 io_virt;
1891                 struct mlx5_ib_mr *mr;
1892                 size_t length;
1893         } frags[];
1894 };
1895
1896 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1897 {
1898         u32 i;
1899
1900         for (i = 0; i < work->num_sge; ++i)
1901                 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1902
1903         kvfree(work);
1904 }
1905
1906 static struct mlx5_ib_mr *
1907 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1908                     u32 lkey)
1909 {
1910         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1911         struct mlx5_ib_mr *mr = NULL;
1912         struct mlx5_ib_mkey *mmkey;
1913
1914         xa_lock(&dev->odp_mkeys);
1915         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1916         if (!mmkey || mmkey->key != lkey) {
1917                 mr = ERR_PTR(-ENOENT);
1918                 goto end;
1919         }
1920         if (mmkey->type != MLX5_MKEY_MR) {
1921                 mr = ERR_PTR(-EINVAL);
1922                 goto end;
1923         }
1924
1925         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1926
1927         if (mr->ibmr.pd != pd) {
1928                 mr = ERR_PTR(-EPERM);
1929                 goto end;
1930         }
1931
1932         /* prefetch with write-access must be supported by the MR */
1933         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1934             !mr->umem->writable) {
1935                 mr = ERR_PTR(-EPERM);
1936                 goto end;
1937         }
1938
1939         refcount_inc(&mmkey->usecount);
1940 end:
1941         xa_unlock(&dev->odp_mkeys);
1942         return mr;
1943 }
1944
1945 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1946 {
1947         struct prefetch_mr_work *work =
1948                 container_of(w, struct prefetch_mr_work, work);
1949         u32 bytes_mapped = 0;
1950         int ret;
1951         u32 i;
1952
1953         /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1954         WARN_ON(!work->num_sge);
1955         for (i = 0; i < work->num_sge; ++i) {
1956                 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1957                                    work->frags[i].length, &bytes_mapped,
1958                                    work->pf_flags, false);
1959                 if (ret <= 0)
1960                         continue;
1961                 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1962         }
1963
1964         destroy_prefetch_work(work);
1965 }
1966
1967 static int init_prefetch_work(struct ib_pd *pd,
1968                                enum ib_uverbs_advise_mr_advice advice,
1969                                u32 pf_flags, struct prefetch_mr_work *work,
1970                                struct ib_sge *sg_list, u32 num_sge)
1971 {
1972         u32 i;
1973
1974         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1975         work->pf_flags = pf_flags;
1976
1977         for (i = 0; i < num_sge; ++i) {
1978                 struct mlx5_ib_mr *mr;
1979
1980                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1981                 if (IS_ERR(mr)) {
1982                         work->num_sge = i;
1983                         return PTR_ERR(mr);
1984                 }
1985                 work->frags[i].io_virt = sg_list[i].addr;
1986                 work->frags[i].length = sg_list[i].length;
1987                 work->frags[i].mr = mr;
1988         }
1989         work->num_sge = num_sge;
1990         return 0;
1991 }
1992
1993 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1994                                     enum ib_uverbs_advise_mr_advice advice,
1995                                     u32 pf_flags, struct ib_sge *sg_list,
1996                                     u32 num_sge)
1997 {
1998         u32 bytes_mapped = 0;
1999         int ret = 0;
2000         u32 i;
2001
2002         for (i = 0; i < num_sge; ++i) {
2003                 struct mlx5_ib_mr *mr;
2004
2005                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2006                 if (IS_ERR(mr))
2007                         return PTR_ERR(mr);
2008                 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
2009                                    &bytes_mapped, pf_flags, false);
2010                 if (ret < 0) {
2011                         mlx5r_deref_odp_mkey(&mr->mmkey);
2012                         return ret;
2013                 }
2014                 mlx5_update_odp_stats(mr, prefetch, ret);
2015                 mlx5r_deref_odp_mkey(&mr->mmkey);
2016         }
2017
2018         return 0;
2019 }
2020
2021 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
2022                                enum ib_uverbs_advise_mr_advice advice,
2023                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
2024 {
2025         u32 pf_flags = 0;
2026         struct prefetch_mr_work *work;
2027         int rc;
2028
2029         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
2030                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
2031
2032         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
2033                 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
2034
2035         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
2036                 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
2037                                                 num_sge);
2038
2039         work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
2040         if (!work)
2041                 return -ENOMEM;
2042
2043         rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
2044         if (rc) {
2045                 destroy_prefetch_work(work);
2046                 return rc;
2047         }
2048         queue_work(system_unbound_wq, &work->work);
2049         return 0;
2050 }
This page took 0.144052 seconds and 4 git commands to generate.