]> Git Repo - J-linux.git/blob - drivers/infiniband/hw/hfi1/chip.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / infiniband / hw / hfi1 / chip.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  * Copyright(c) 2021 Cornelis Networks.
5  */
6
7 /*
8  * This file contains all of the code that is specific to the HFI chip
9  */
10
11 #include <linux/pci.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15
16 #include "hfi.h"
17 #include "trace.h"
18 #include "mad.h"
19 #include "pio.h"
20 #include "sdma.h"
21 #include "eprom.h"
22 #include "efivar.h"
23 #include "platform.h"
24 #include "aspm.h"
25 #include "affinity.h"
26 #include "debugfs.h"
27 #include "fault.h"
28 #include "netdev.h"
29
30 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
31 module_param(num_vls, uint, S_IRUGO);
32 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
33
34 /*
35  * Default time to aggregate two 10K packets from the idle state
36  * (timer not running). The timer starts at the end of the first packet,
37  * so only the time for one 10K packet and header plus a bit extra is needed.
38  * 10 * 1024 + 64 header byte = 10304 byte
39  * 10304 byte / 12.5 GB/s = 824.32ns
40  */
41 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
42 module_param(rcv_intr_timeout, uint, S_IRUGO);
43 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
44
45 uint rcv_intr_count = 16; /* same as qib */
46 module_param(rcv_intr_count, uint, S_IRUGO);
47 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
48
49 ushort link_crc_mask = SUPPORTED_CRCS;
50 module_param(link_crc_mask, ushort, S_IRUGO);
51 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
52
53 uint loopback;
54 module_param_named(loopback, loopback, uint, S_IRUGO);
55 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
56
57 /* Other driver tunables */
58 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
59 static ushort crc_14b_sideband = 1;
60 static uint use_flr = 1;
61 uint quick_linkup; /* skip LNI */
62
63 struct flag_table {
64         u64 flag;       /* the flag */
65         char *str;      /* description string */
66         u16 extra;      /* extra information */
67         u16 unused0;
68         u32 unused1;
69 };
70
71 /* str must be a string constant */
72 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
73 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
74
75 /* Send Error Consequences */
76 #define SEC_WRITE_DROPPED       0x1
77 #define SEC_PACKET_DROPPED      0x2
78 #define SEC_SC_HALTED           0x4     /* per-context only */
79 #define SEC_SPC_FREEZE          0x8     /* per-HFI only */
80
81 #define DEFAULT_KRCVQS            2
82 #define MIN_KERNEL_KCTXTS         2
83 #define FIRST_KERNEL_KCTXT        1
84
85 /*
86  * RSM instance allocation
87  *   0 - User Fecn Handling
88  *   1 - Vnic
89  *   2 - AIP
90  *   3 - Verbs
91  */
92 #define RSM_INS_FECN              0
93 #define RSM_INS_VNIC              1
94 #define RSM_INS_AIP               2
95 #define RSM_INS_VERBS             3
96
97 /* Bit offset into the GUID which carries HFI id information */
98 #define GUID_HFI_INDEX_SHIFT     39
99
100 /* extract the emulation revision */
101 #define emulator_rev(dd) ((dd)->irev >> 8)
102 /* parallel and serial emulation versions are 3 and 4 respectively */
103 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
104 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
105
106 /* RSM fields for Verbs */
107 /* packet type */
108 #define IB_PACKET_TYPE         2ull
109 #define QW_SHIFT               6ull
110 /* QPN[7..1] */
111 #define QPN_WIDTH              7ull
112
113 /* LRH.BTH: QW 0, OFFSET 48 - for match */
114 #define LRH_BTH_QW             0ull
115 #define LRH_BTH_BIT_OFFSET     48ull
116 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
117 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
118 #define LRH_BTH_SELECT
119 #define LRH_BTH_MASK           3ull
120 #define LRH_BTH_VALUE          2ull
121
122 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
123 #define LRH_SC_QW              0ull
124 #define LRH_SC_BIT_OFFSET      56ull
125 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
126 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
127 #define LRH_SC_MASK            128ull
128 #define LRH_SC_VALUE           0ull
129
130 /* SC[n..0] QW 0, OFFSET 60 - for select */
131 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
132
133 /* QPN[m+n:1] QW 1, OFFSET 1 */
134 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
135
136 /* RSM fields for AIP */
137 /* LRH.BTH above is reused for this rule */
138
139 /* BTH.DESTQP: QW 1, OFFSET 16 for match */
140 #define BTH_DESTQP_QW           1ull
141 #define BTH_DESTQP_BIT_OFFSET   16ull
142 #define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
143 #define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
144 #define BTH_DESTQP_MASK         0xFFull
145 #define BTH_DESTQP_VALUE        0x81ull
146
147 /* DETH.SQPN: QW 1 Offset 56 for select */
148 /* We use 8 most significant Soure QPN bits as entropy fpr AIP */
149 #define DETH_AIP_SQPN_QW 3ull
150 #define DETH_AIP_SQPN_BIT_OFFSET 56ull
151 #define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
152 #define DETH_AIP_SQPN_SELECT_OFFSET \
153         DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
154
155 /* RSM fields for Vnic */
156 /* L2_TYPE: QW 0, OFFSET 61 - for match */
157 #define L2_TYPE_QW             0ull
158 #define L2_TYPE_BIT_OFFSET     61ull
159 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
160 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
161 #define L2_TYPE_MASK           3ull
162 #define L2_16B_VALUE           2ull
163
164 /* L4_TYPE QW 1, OFFSET 0 - for match */
165 #define L4_TYPE_QW              1ull
166 #define L4_TYPE_BIT_OFFSET      0ull
167 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
168 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
169 #define L4_16B_TYPE_MASK        0xFFull
170 #define L4_16B_ETH_VALUE        0x78ull
171
172 /* 16B VESWID - for select */
173 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
174 /* 16B ENTROPY - for select */
175 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
176
177 /* defines to build power on SC2VL table */
178 #define SC2VL_VAL( \
179         num, \
180         sc0, sc0val, \
181         sc1, sc1val, \
182         sc2, sc2val, \
183         sc3, sc3val, \
184         sc4, sc4val, \
185         sc5, sc5val, \
186         sc6, sc6val, \
187         sc7, sc7val) \
188 ( \
189         ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
190         ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
191         ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
192         ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
193         ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
194         ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
195         ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
196         ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
197 )
198
199 #define DC_SC_VL_VAL( \
200         range, \
201         e0, e0val, \
202         e1, e1val, \
203         e2, e2val, \
204         e3, e3val, \
205         e4, e4val, \
206         e5, e5val, \
207         e6, e6val, \
208         e7, e7val, \
209         e8, e8val, \
210         e9, e9val, \
211         e10, e10val, \
212         e11, e11val, \
213         e12, e12val, \
214         e13, e13val, \
215         e14, e14val, \
216         e15, e15val) \
217 ( \
218         ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
219         ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
220         ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
221         ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
222         ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
223         ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
224         ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
225         ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
226         ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
227         ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
228         ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
229         ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
230         ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
231         ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
232         ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
233         ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
234 )
235
236 /* all CceStatus sub-block freeze bits */
237 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
238                         | CCE_STATUS_RXE_FROZE_SMASK \
239                         | CCE_STATUS_TXE_FROZE_SMASK \
240                         | CCE_STATUS_TXE_PIO_FROZE_SMASK)
241 /* all CceStatus sub-block TXE pause bits */
242 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
243                         | CCE_STATUS_TXE_PAUSED_SMASK \
244                         | CCE_STATUS_SDMA_PAUSED_SMASK)
245 /* all CceStatus sub-block RXE pause bits */
246 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
247
248 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
249 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
250
251 /*
252  * CCE Error flags.
253  */
254 static const struct flag_table cce_err_status_flags[] = {
255 /* 0*/  FLAG_ENTRY0("CceCsrParityErr",
256                 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
257 /* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
258                 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
259 /* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
260                 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
261 /* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
262                 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
263 /* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
264                 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
265 /* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
266                 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
267 /* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
268                 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
269 /* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
270                 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
271 /* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
272                 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
273 /* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
274             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
275 /*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
276             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
277 /*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
278             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
279 /*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
280                 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
281 /*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
282                 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
283 /*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
284                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
285 /*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
286                 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
287 /*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
288                 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
289 /*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
290                 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
291 /*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
292                 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
293 /*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
294                 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
295 /*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
296                 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
297 /*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
298                 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
299 /*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
300                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
301 /*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
302                 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
303 /*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
304                 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
305 /*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
306                 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
307 /*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
308                 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
309 /*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
310                 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
311 /*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
312                 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
313 /*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
314                 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
315 /*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
316                 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
317 /*31*/  FLAG_ENTRY0("LATriggered",
318                 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
319 /*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
320                 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
321 /*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
322                 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
323 /*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
324                 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
325 /*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
326                 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
327 /*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
328                 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
329 /*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
330                 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
331 /*38*/  FLAG_ENTRY0("CceIntMapCorErr",
332                 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
333 /*39*/  FLAG_ENTRY0("CceIntMapUncErr",
334                 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
335 /*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
336                 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
337 /*41-63 reserved*/
338 };
339
340 /*
341  * Misc Error flags
342  */
343 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
344 static const struct flag_table misc_err_status_flags[] = {
345 /* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
346 /* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
347 /* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
348 /* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
349 /* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
350 /* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
351 /* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
352 /* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
353 /* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
354 /* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
355 /*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
356 /*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
357 /*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
358 };
359
360 /*
361  * TXE PIO Error flags and consequences
362  */
363 static const struct flag_table pio_err_status_flags[] = {
364 /* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
365         SEC_WRITE_DROPPED,
366         SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
367 /* 1*/  FLAG_ENTRY("PioWriteAddrParity",
368         SEC_SPC_FREEZE,
369         SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
370 /* 2*/  FLAG_ENTRY("PioCsrParity",
371         SEC_SPC_FREEZE,
372         SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
373 /* 3*/  FLAG_ENTRY("PioSbMemFifo0",
374         SEC_SPC_FREEZE,
375         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
376 /* 4*/  FLAG_ENTRY("PioSbMemFifo1",
377         SEC_SPC_FREEZE,
378         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
379 /* 5*/  FLAG_ENTRY("PioPccFifoParity",
380         SEC_SPC_FREEZE,
381         SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
382 /* 6*/  FLAG_ENTRY("PioPecFifoParity",
383         SEC_SPC_FREEZE,
384         SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
385 /* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
386         SEC_SPC_FREEZE,
387         SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
388 /* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
389         SEC_SPC_FREEZE,
390         SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
391 /* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
392         SEC_SPC_FREEZE,
393         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
394 /*10*/  FLAG_ENTRY("PioSmPktResetParity",
395         SEC_SPC_FREEZE,
396         SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
397 /*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
398         SEC_SPC_FREEZE,
399         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
400 /*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
401         SEC_SPC_FREEZE,
402         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
403 /*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
404         0,
405         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
406 /*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
407         0,
408         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
409 /*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
410         SEC_SPC_FREEZE,
411         SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
412 /*16*/  FLAG_ENTRY("PioPpmcPblFifo",
413         SEC_SPC_FREEZE,
414         SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
415 /*17*/  FLAG_ENTRY("PioInitSmIn",
416         0,
417         SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
418 /*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
419         SEC_SPC_FREEZE,
420         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
421 /*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
422         SEC_SPC_FREEZE,
423         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
424 /*20*/  FLAG_ENTRY("PioHostAddrMemCor",
425         0,
426         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
427 /*21*/  FLAG_ENTRY("PioWriteDataParity",
428         SEC_SPC_FREEZE,
429         SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
430 /*22*/  FLAG_ENTRY("PioStateMachine",
431         SEC_SPC_FREEZE,
432         SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
433 /*23*/  FLAG_ENTRY("PioWriteQwValidParity",
434         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
435         SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
436 /*24*/  FLAG_ENTRY("PioBlockQwCountParity",
437         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
438         SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
439 /*25*/  FLAG_ENTRY("PioVlfVlLenParity",
440         SEC_SPC_FREEZE,
441         SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
442 /*26*/  FLAG_ENTRY("PioVlfSopParity",
443         SEC_SPC_FREEZE,
444         SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
445 /*27*/  FLAG_ENTRY("PioVlFifoParity",
446         SEC_SPC_FREEZE,
447         SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
448 /*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
449         SEC_SPC_FREEZE,
450         SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
451 /*29*/  FLAG_ENTRY("PioPpmcSopLen",
452         SEC_SPC_FREEZE,
453         SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
454 /*30-31 reserved*/
455 /*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
456         SEC_SPC_FREEZE,
457         SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
458 /*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
459         SEC_SPC_FREEZE,
460         SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
461 /*34*/  FLAG_ENTRY("PioPccSopHeadParity",
462         SEC_SPC_FREEZE,
463         SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
464 /*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
465         SEC_SPC_FREEZE,
466         SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
467 /*36-63 reserved*/
468 };
469
470 /* TXE PIO errors that cause an SPC freeze */
471 #define ALL_PIO_FREEZE_ERR \
472         (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
473         | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
474         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
475         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
476         | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
477         | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
478         | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
479         | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
480         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
481         | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
482         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
483         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
484         | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
485         | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
486         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
487         | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
488         | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
489         | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
490         | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
491         | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
492         | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
493         | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
494         | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
495         | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
496         | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
497         | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
498         | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
499         | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
500         | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
501
502 /*
503  * TXE SDMA Error flags
504  */
505 static const struct flag_table sdma_err_status_flags[] = {
506 /* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
507                 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
508 /* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
509                 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
510 /* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
511                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
512 /* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
513                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
514 /*04-63 reserved*/
515 };
516
517 /* TXE SDMA errors that cause an SPC freeze */
518 #define ALL_SDMA_FREEZE_ERR  \
519                 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
520                 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
521                 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
522
523 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
524 #define PORT_DISCARD_EGRESS_ERRS \
525         (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
526         | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
527         | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
528
529 /*
530  * TXE Egress Error flags
531  */
532 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
533 static const struct flag_table egress_err_status_flags[] = {
534 /* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
535 /* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
536 /* 2 reserved */
537 /* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
538                 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
539 /* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
540 /* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
541 /* 6 reserved */
542 /* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
543                 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
544 /* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
545                 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
546 /* 9-10 reserved */
547 /*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
548                 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
549 /*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
550 /*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
551 /*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
552 /*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
553 /*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
554                 SEES(TX_SDMA0_DISALLOWED_PACKET)),
555 /*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
556                 SEES(TX_SDMA1_DISALLOWED_PACKET)),
557 /*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
558                 SEES(TX_SDMA2_DISALLOWED_PACKET)),
559 /*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
560                 SEES(TX_SDMA3_DISALLOWED_PACKET)),
561 /*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
562                 SEES(TX_SDMA4_DISALLOWED_PACKET)),
563 /*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
564                 SEES(TX_SDMA5_DISALLOWED_PACKET)),
565 /*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
566                 SEES(TX_SDMA6_DISALLOWED_PACKET)),
567 /*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
568                 SEES(TX_SDMA7_DISALLOWED_PACKET)),
569 /*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
570                 SEES(TX_SDMA8_DISALLOWED_PACKET)),
571 /*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
572                 SEES(TX_SDMA9_DISALLOWED_PACKET)),
573 /*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
574                 SEES(TX_SDMA10_DISALLOWED_PACKET)),
575 /*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
576                 SEES(TX_SDMA11_DISALLOWED_PACKET)),
577 /*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
578                 SEES(TX_SDMA12_DISALLOWED_PACKET)),
579 /*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
580                 SEES(TX_SDMA13_DISALLOWED_PACKET)),
581 /*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
582                 SEES(TX_SDMA14_DISALLOWED_PACKET)),
583 /*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
584                 SEES(TX_SDMA15_DISALLOWED_PACKET)),
585 /*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
586                 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
587 /*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
588                 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
589 /*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
590                 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
591 /*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
592                 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
593 /*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
594                 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
595 /*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
596                 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
597 /*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
598                 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
599 /*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
600                 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
601 /*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
602                 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
603 /*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
604 /*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
605 /*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
606 /*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
607 /*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
608 /*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
609 /*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
610 /*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
611 /*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
612 /*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
613 /*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
614 /*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
615 /*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
616 /*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
617 /*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
618 /*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
619 /*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
620 /*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
621 /*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
622 /*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
623 /*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
624 /*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
625                 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
626 /*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
627                 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
628 };
629
630 /*
631  * TXE Egress Error Info flags
632  */
633 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
634 static const struct flag_table egress_err_info_flags[] = {
635 /* 0*/  FLAG_ENTRY0("Reserved", 0ull),
636 /* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
637 /* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
638 /* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
639 /* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
640 /* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
641 /* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
642 /* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
643 /* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
644 /* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
645 /*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
646 /*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
647 /*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
648 /*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
649 /*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
650 /*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
651 /*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
652 /*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
653 /*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
654 /*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
655 /*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
656 /*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
657 };
658
659 /* TXE Egress errors that cause an SPC freeze */
660 #define ALL_TXE_EGRESS_FREEZE_ERR \
661         (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
662         | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
663         | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
664         | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
665         | SEES(TX_LAUNCH_CSR_PARITY) \
666         | SEES(TX_SBRD_CTL_CSR_PARITY) \
667         | SEES(TX_CONFIG_PARITY) \
668         | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
669         | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
670         | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
671         | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
672         | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
673         | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
674         | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
675         | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
676         | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
677         | SEES(TX_CREDIT_RETURN_PARITY))
678
679 /*
680  * TXE Send error flags
681  */
682 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
683 static const struct flag_table send_err_status_flags[] = {
684 /* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
685 /* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
686 /* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
687 };
688
689 /*
690  * TXE Send Context Error flags and consequences
691  */
692 static const struct flag_table sc_err_status_flags[] = {
693 /* 0*/  FLAG_ENTRY("InconsistentSop",
694                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
695                 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
696 /* 1*/  FLAG_ENTRY("DisallowedPacket",
697                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
698                 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
699 /* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
700                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
701                 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
702 /* 3*/  FLAG_ENTRY("WriteOverflow",
703                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
704                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
705 /* 4*/  FLAG_ENTRY("WriteOutOfBounds",
706                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
707                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
708 /* 5-63 reserved*/
709 };
710
711 /*
712  * RXE Receive Error flags
713  */
714 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
715 static const struct flag_table rxe_err_status_flags[] = {
716 /* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
717 /* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
718 /* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
719 /* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
720 /* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
721 /* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
722 /* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
723 /* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
724 /* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
725 /* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
726 /*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
727 /*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
728 /*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
729 /*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
730 /*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
731 /*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
732 /*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
733                 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
734 /*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
735 /*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
736 /*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
737                 RXES(RBUF_BLOCK_LIST_READ_UNC)),
738 /*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
739                 RXES(RBUF_BLOCK_LIST_READ_COR)),
740 /*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
741                 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
742 /*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
743                 RXES(RBUF_CSR_QENT_CNT_PARITY)),
744 /*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
745                 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
746 /*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
747                 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
748 /*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
749 /*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
750 /*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
751                 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
752 /*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
753 /*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
754 /*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
755 /*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
756 /*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
757 /*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
758 /*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
759 /*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
760                 RXES(RBUF_FL_INITDONE_PARITY)),
761 /*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
762                 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
763 /*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
764 /*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
765 /*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
766 /*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
767                 RXES(LOOKUP_DES_PART1_UNC_COR)),
768 /*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
769                 RXES(LOOKUP_DES_PART2_PARITY)),
770 /*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
771 /*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
772 /*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
773 /*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
774 /*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
775 /*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
776 /*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
777 /*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
778 /*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
779 /*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
780 /*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
781 /*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
782 /*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
783 /*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
784 /*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
785 /*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
786 /*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
787 /*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
788 /*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
789 /*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
790 /*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
791 /*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
792 };
793
794 /* RXE errors that will trigger an SPC freeze */
795 #define ALL_RXE_FREEZE_ERR  \
796         (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
797         | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
798         | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
799         | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
800         | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
801         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
802         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
803         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
804         | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
805         | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
806         | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
807         | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
808         | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
809         | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
810         | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
811         | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
812         | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
813         | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
814         | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
815         | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
816         | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
817         | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
818         | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
819         | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
820         | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
821         | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
822         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
823         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
824         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
825         | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
826         | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
827         | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
828         | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
829         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
830         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
831         | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
832         | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
833         | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
834         | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
835         | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
836         | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
837         | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
838         | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
839         | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
840
841 #define RXE_FREEZE_ABORT_MASK \
842         (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
843         RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
844         RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
845
846 /*
847  * DCC Error Flags
848  */
849 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
850 static const struct flag_table dcc_err_flags[] = {
851         FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
852         FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
853         FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
854         FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
855         FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
856         FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
857         FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
858         FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
859         FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
860         FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
861         FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
862         FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
863         FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
864         FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
865         FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
866         FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
867         FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
868         FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
869         FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
870         FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
871         FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
872         FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
873         FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
874         FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
875         FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
876         FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
877         FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
878         FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
879         FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
880         FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
881         FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
882         FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
883         FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
884         FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
885         FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
886         FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
887         FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
888         FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
889         FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
890         FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
891         FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
892         FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
893         FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
894         FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
895         FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
896         FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
897 };
898
899 /*
900  * LCB error flags
901  */
902 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
903 static const struct flag_table lcb_err_flags[] = {
904 /* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
905 /* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
906 /* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
907 /* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
908                 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
909 /* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
910 /* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
911 /* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
912 /* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
913 /* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
914 /* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
915 /*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
916 /*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
917 /*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
918 /*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
919                 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
920 /*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
921 /*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
922 /*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
923 /*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
924 /*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
925 /*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
926                 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
927 /*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
928 /*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
929 /*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
930 /*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
931 /*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
932 /*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
933 /*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
934                 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
935 /*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
936 /*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
937                 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
938 /*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
939                 LCBE(REDUNDANT_FLIT_PARITY_ERR))
940 };
941
942 /*
943  * DC8051 Error Flags
944  */
945 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
946 static const struct flag_table dc8051_err_flags[] = {
947         FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
948         FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
949         FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
950         FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
951         FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
952         FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
953         FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
954         FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
955         FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
956                     D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
957         FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
958 };
959
960 /*
961  * DC8051 Information Error flags
962  *
963  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
964  */
965 static const struct flag_table dc8051_info_err_flags[] = {
966         FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
967         FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
968         FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
969         FLAG_ENTRY0("Serdes internal loopback failure",
970                     FAILED_SERDES_INTERNAL_LOOPBACK),
971         FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
972         FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
973         FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
974         FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
975         FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
976         FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
977         FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
978         FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
979         FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
980         FLAG_ENTRY0("External Device Request Timeout",
981                     EXTERNAL_DEVICE_REQ_TIMEOUT),
982 };
983
984 /*
985  * DC8051 Information Host Information flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
988  */
989 static const struct flag_table dc8051_info_host_msg_flags[] = {
990         FLAG_ENTRY0("Host request done", 0x0001),
991         FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
992         FLAG_ENTRY0("BC SMA message", 0x0004),
993         FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
994         FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
995         FLAG_ENTRY0("External device config request", 0x0020),
996         FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
997         FLAG_ENTRY0("LinkUp achieved", 0x0080),
998         FLAG_ENTRY0("Link going down", 0x0100),
999         FLAG_ENTRY0("Link width downgraded", 0x0200),
1000 };
1001
1002 static u32 encoded_size(u32 size);
1003 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1004 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1005 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1006                                u8 *continuous);
1007 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1008                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1009 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1010                                       u8 *remote_tx_rate, u16 *link_widths);
1011 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1012                                     u8 *flag_bits, u16 *link_widths);
1013 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1014                                   u8 *device_rev);
1015 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1016 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1017                             u8 *tx_polarity_inversion,
1018                             u8 *rx_polarity_inversion, u8 *max_rate);
1019 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1020                                 unsigned int context, u64 err_status);
1021 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1022 static void handle_dcc_err(struct hfi1_devdata *dd,
1023                            unsigned int context, u64 err_status);
1024 static void handle_lcb_err(struct hfi1_devdata *dd,
1025                            unsigned int context, u64 err_status);
1026 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1030 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1031 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1032 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1033 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1034 static void set_partition_keys(struct hfi1_pportdata *ppd);
1035 static const char *link_state_name(u32 state);
1036 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1037                                           u32 state);
1038 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1039                            u64 *out_data);
1040 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1041 static int thermal_init(struct hfi1_devdata *dd);
1042
1043 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1044 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1045                                             int msecs);
1046 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1047                                   int msecs);
1048 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1049 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1050 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1051                                    int msecs);
1052 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1053                                          int msecs);
1054 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1055 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1056 static void handle_temp_err(struct hfi1_devdata *dd);
1057 static void dc_shutdown(struct hfi1_devdata *dd);
1058 static void dc_start(struct hfi1_devdata *dd);
1059 static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
1060                            unsigned int *np);
1061 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1062 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1063 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1064 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1065
1066 /*
1067  * Error interrupt table entry.  This is used as input to the interrupt
1068  * "clear down" routine used for all second tier error interrupt register.
1069  * Second tier interrupt registers have a single bit representing them
1070  * in the top-level CceIntStatus.
1071  */
1072 struct err_reg_info {
1073         u32 status;             /* status CSR offset */
1074         u32 clear;              /* clear CSR offset */
1075         u32 mask;               /* mask CSR offset */
1076         void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1077         const char *desc;
1078 };
1079
1080 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1081 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1082 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1083
1084 /*
1085  * Helpers for building HFI and DC error interrupt table entries.  Different
1086  * helpers are needed because of inconsistent register names.
1087  */
1088 #define EE(reg, handler, desc) \
1089         { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1090                 handler, desc }
1091 #define DC_EE1(reg, handler, desc) \
1092         { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1093 #define DC_EE2(reg, handler, desc) \
1094         { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1095
1096 /*
1097  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1098  * another register containing more information.
1099  */
1100 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1101 /* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1102 /* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1103 /* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1104 /* 3*/  { 0, 0, 0, NULL }, /* reserved */
1105 /* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1106 /* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1107 /* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1108 /* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1109         /* the rest are reserved */
1110 };
1111
1112 /*
1113  * Index into the Various section of the interrupt sources
1114  * corresponding to the Critical Temperature interrupt.
1115  */
1116 #define TCRIT_INT_SOURCE 4
1117
1118 /*
1119  * SDMA error interrupt entry - refers to another register containing more
1120  * information.
1121  */
1122 static const struct err_reg_info sdma_eng_err =
1123         EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1124
1125 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1126 /* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1127 /* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1128 /* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1129 /* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1130 /* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1131         /* rest are reserved */
1132 };
1133
1134 /*
1135  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1136  * register can not be derived from the MTU value because 10K is not
1137  * a power of 2. Therefore, we need a constant. Everything else can
1138  * be calculated.
1139  */
1140 #define DCC_CFG_PORT_MTU_CAP_10240 7
1141
1142 /*
1143  * Table of the DC grouping of error interrupts.  Each entry refers to
1144  * another register containing more information.
1145  */
1146 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1147 /* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1148 /* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1149 /* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1150 /* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1151         /* the rest are reserved */
1152 };
1153
1154 struct cntr_entry {
1155         /*
1156          * counter name
1157          */
1158         char *name;
1159
1160         /*
1161          * csr to read for name (if applicable)
1162          */
1163         u64 csr;
1164
1165         /*
1166          * offset into dd or ppd to store the counter's value
1167          */
1168         int offset;
1169
1170         /*
1171          * flags
1172          */
1173         u8 flags;
1174
1175         /*
1176          * accessor for stat element, context either dd or ppd
1177          */
1178         u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1179                        int mode, u64 data);
1180 };
1181
1182 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1183 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1184
1185 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1186 { \
1187         name, \
1188         csr, \
1189         offset, \
1190         flags, \
1191         accessor \
1192 }
1193
1194 /* 32bit RXE */
1195 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1196 CNTR_ELEM(#name, \
1197           (counter * 8 + RCV_COUNTER_ARRAY32), \
1198           0, flags | CNTR_32BIT, \
1199           port_access_u32_csr)
1200
1201 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1202 CNTR_ELEM(#name, \
1203           (counter * 8 + RCV_COUNTER_ARRAY32), \
1204           0, flags | CNTR_32BIT, \
1205           dev_access_u32_csr)
1206
1207 /* 64bit RXE */
1208 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1209 CNTR_ELEM(#name, \
1210           (counter * 8 + RCV_COUNTER_ARRAY64), \
1211           0, flags, \
1212           port_access_u64_csr)
1213
1214 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1215 CNTR_ELEM(#name, \
1216           (counter * 8 + RCV_COUNTER_ARRAY64), \
1217           0, flags, \
1218           dev_access_u64_csr)
1219
1220 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1221 #define OVR_ELM(ctx) \
1222 CNTR_ELEM("RcvHdrOvr" #ctx, \
1223           (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1224           0, CNTR_NORMAL, port_access_u64_csr)
1225
1226 /* 32bit TXE */
1227 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1228 CNTR_ELEM(#name, \
1229           (counter * 8 + SEND_COUNTER_ARRAY32), \
1230           0, flags | CNTR_32BIT, \
1231           port_access_u32_csr)
1232
1233 /* 64bit TXE */
1234 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1235 CNTR_ELEM(#name, \
1236           (counter * 8 + SEND_COUNTER_ARRAY64), \
1237           0, flags, \
1238           port_access_u64_csr)
1239
1240 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1241 CNTR_ELEM(#name,\
1242           counter * 8 + SEND_COUNTER_ARRAY64, \
1243           0, \
1244           flags, \
1245           dev_access_u64_csr)
1246
1247 /* CCE */
1248 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250           (counter * 8 + CCE_COUNTER_ARRAY32), \
1251           0, flags | CNTR_32BIT, \
1252           dev_access_u32_csr)
1253
1254 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1255 CNTR_ELEM(#name, \
1256           (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1257           0, flags | CNTR_32BIT, \
1258           dev_access_u32_csr)
1259
1260 /* DC */
1261 #define DC_PERF_CNTR(name, counter, flags) \
1262 CNTR_ELEM(#name, \
1263           counter, \
1264           0, \
1265           flags, \
1266           dev_access_u64_csr)
1267
1268 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270           counter, \
1271           0, \
1272           flags, \
1273           dc_access_lcb_cntr)
1274
1275 /* ibp counters */
1276 #define SW_IBP_CNTR(name, cntr) \
1277 CNTR_ELEM(#name, \
1278           0, \
1279           0, \
1280           CNTR_SYNTH, \
1281           access_ibp_##cntr)
1282
1283 /**
1284  * hfi1_addr_from_offset - return addr for readq/writeq
1285  * @dd: the dd device
1286  * @offset: the offset of the CSR within bar0
1287  *
1288  * This routine selects the appropriate base address
1289  * based on the indicated offset.
1290  */
1291 static inline void __iomem *hfi1_addr_from_offset(
1292         const struct hfi1_devdata *dd,
1293         u32 offset)
1294 {
1295         if (offset >= dd->base2_start)
1296                 return dd->kregbase2 + (offset - dd->base2_start);
1297         return dd->kregbase1 + offset;
1298 }
1299
1300 /**
1301  * read_csr - read CSR at the indicated offset
1302  * @dd: the dd device
1303  * @offset: the offset of the CSR within bar0
1304  *
1305  * Return: the value read or all FF's if there
1306  * is no mapping
1307  */
1308 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1309 {
1310         if (dd->flags & HFI1_PRESENT)
1311                 return readq(hfi1_addr_from_offset(dd, offset));
1312         return -1;
1313 }
1314
1315 /**
1316  * write_csr - write CSR at the indicated offset
1317  * @dd: the dd device
1318  * @offset: the offset of the CSR within bar0
1319  * @value: value to write
1320  */
1321 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1322 {
1323         if (dd->flags & HFI1_PRESENT) {
1324                 void __iomem *base = hfi1_addr_from_offset(dd, offset);
1325
1326                 /* avoid write to RcvArray */
1327                 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1328                         return;
1329                 writeq(value, base);
1330         }
1331 }
1332
1333 /**
1334  * get_csr_addr - return te iomem address for offset
1335  * @dd: the dd device
1336  * @offset: the offset of the CSR within bar0
1337  *
1338  * Return: The iomem address to use in subsequent
1339  * writeq/readq operations.
1340  */
1341 void __iomem *get_csr_addr(
1342         const struct hfi1_devdata *dd,
1343         u32 offset)
1344 {
1345         if (dd->flags & HFI1_PRESENT)
1346                 return hfi1_addr_from_offset(dd, offset);
1347         return NULL;
1348 }
1349
1350 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1351                                  int mode, u64 value)
1352 {
1353         u64 ret;
1354
1355         if (mode == CNTR_MODE_R) {
1356                 ret = read_csr(dd, csr);
1357         } else if (mode == CNTR_MODE_W) {
1358                 write_csr(dd, csr, value);
1359                 ret = value;
1360         } else {
1361                 dd_dev_err(dd, "Invalid cntr register access mode");
1362                 return 0;
1363         }
1364
1365         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1366         return ret;
1367 }
1368
1369 /* Dev Access */
1370 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1371                               void *context, int vl, int mode, u64 data)
1372 {
1373         struct hfi1_devdata *dd = context;
1374         u64 csr = entry->csr;
1375
1376         if (entry->flags & CNTR_SDMA) {
1377                 if (vl == CNTR_INVALID_VL)
1378                         return 0;
1379                 csr += 0x100 * vl;
1380         } else {
1381                 if (vl != CNTR_INVALID_VL)
1382                         return 0;
1383         }
1384         return read_write_csr(dd, csr, mode, data);
1385 }
1386
1387 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1388                               void *context, int idx, int mode, u64 data)
1389 {
1390         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1391
1392         if (dd->per_sdma && idx < dd->num_sdma)
1393                 return dd->per_sdma[idx].err_cnt;
1394         return 0;
1395 }
1396
1397 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1398                               void *context, int idx, int mode, u64 data)
1399 {
1400         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1401
1402         if (dd->per_sdma && idx < dd->num_sdma)
1403                 return dd->per_sdma[idx].sdma_int_cnt;
1404         return 0;
1405 }
1406
1407 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1408                                    void *context, int idx, int mode, u64 data)
1409 {
1410         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1411
1412         if (dd->per_sdma && idx < dd->num_sdma)
1413                 return dd->per_sdma[idx].idle_int_cnt;
1414         return 0;
1415 }
1416
1417 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1418                                        void *context, int idx, int mode,
1419                                        u64 data)
1420 {
1421         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1422
1423         if (dd->per_sdma && idx < dd->num_sdma)
1424                 return dd->per_sdma[idx].progress_int_cnt;
1425         return 0;
1426 }
1427
1428 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1429                               int vl, int mode, u64 data)
1430 {
1431         struct hfi1_devdata *dd = context;
1432
1433         u64 val = 0;
1434         u64 csr = entry->csr;
1435
1436         if (entry->flags & CNTR_VL) {
1437                 if (vl == CNTR_INVALID_VL)
1438                         return 0;
1439                 csr += 8 * vl;
1440         } else {
1441                 if (vl != CNTR_INVALID_VL)
1442                         return 0;
1443         }
1444
1445         val = read_write_csr(dd, csr, mode, data);
1446         return val;
1447 }
1448
1449 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1450                               int vl, int mode, u64 data)
1451 {
1452         struct hfi1_devdata *dd = context;
1453         u32 csr = entry->csr;
1454         int ret = 0;
1455
1456         if (vl != CNTR_INVALID_VL)
1457                 return 0;
1458         if (mode == CNTR_MODE_R)
1459                 ret = read_lcb_csr(dd, csr, &data);
1460         else if (mode == CNTR_MODE_W)
1461                 ret = write_lcb_csr(dd, csr, data);
1462
1463         if (ret) {
1464                 if (!(dd->flags & HFI1_SHUTDOWN))
1465                         dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1466                 return 0;
1467         }
1468
1469         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1470         return data;
1471 }
1472
1473 /* Port Access */
1474 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1475                                int vl, int mode, u64 data)
1476 {
1477         struct hfi1_pportdata *ppd = context;
1478
1479         if (vl != CNTR_INVALID_VL)
1480                 return 0;
1481         return read_write_csr(ppd->dd, entry->csr, mode, data);
1482 }
1483
1484 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1485                                void *context, int vl, int mode, u64 data)
1486 {
1487         struct hfi1_pportdata *ppd = context;
1488         u64 val;
1489         u64 csr = entry->csr;
1490
1491         if (entry->flags & CNTR_VL) {
1492                 if (vl == CNTR_INVALID_VL)
1493                         return 0;
1494                 csr += 8 * vl;
1495         } else {
1496                 if (vl != CNTR_INVALID_VL)
1497                         return 0;
1498         }
1499         val = read_write_csr(ppd->dd, csr, mode, data);
1500         return val;
1501 }
1502
1503 /* Software defined */
1504 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1505                                 u64 data)
1506 {
1507         u64 ret;
1508
1509         if (mode == CNTR_MODE_R) {
1510                 ret = *cntr;
1511         } else if (mode == CNTR_MODE_W) {
1512                 *cntr = data;
1513                 ret = data;
1514         } else {
1515                 dd_dev_err(dd, "Invalid cntr sw access mode");
1516                 return 0;
1517         }
1518
1519         hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1520
1521         return ret;
1522 }
1523
1524 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1525                                  int vl, int mode, u64 data)
1526 {
1527         struct hfi1_pportdata *ppd = context;
1528
1529         if (vl != CNTR_INVALID_VL)
1530                 return 0;
1531         return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1532 }
1533
1534 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1535                                  int vl, int mode, u64 data)
1536 {
1537         struct hfi1_pportdata *ppd = context;
1538
1539         if (vl != CNTR_INVALID_VL)
1540                 return 0;
1541         return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1542 }
1543
1544 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1545                                        void *context, int vl, int mode,
1546                                        u64 data)
1547 {
1548         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1549
1550         if (vl != CNTR_INVALID_VL)
1551                 return 0;
1552         return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1553 }
1554
1555 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1556                                    void *context, int vl, int mode, u64 data)
1557 {
1558         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1559         u64 zero = 0;
1560         u64 *counter;
1561
1562         if (vl == CNTR_INVALID_VL)
1563                 counter = &ppd->port_xmit_discards;
1564         else if (vl >= 0 && vl < C_VL_COUNT)
1565                 counter = &ppd->port_xmit_discards_vl[vl];
1566         else
1567                 counter = &zero;
1568
1569         return read_write_sw(ppd->dd, counter, mode, data);
1570 }
1571
1572 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1573                                        void *context, int vl, int mode,
1574                                        u64 data)
1575 {
1576         struct hfi1_pportdata *ppd = context;
1577
1578         if (vl != CNTR_INVALID_VL)
1579                 return 0;
1580
1581         return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1582                              mode, data);
1583 }
1584
1585 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1586                                       void *context, int vl, int mode, u64 data)
1587 {
1588         struct hfi1_pportdata *ppd = context;
1589
1590         if (vl != CNTR_INVALID_VL)
1591                 return 0;
1592
1593         return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1594                              mode, data);
1595 }
1596
1597 u64 get_all_cpu_total(u64 __percpu *cntr)
1598 {
1599         int cpu;
1600         u64 counter = 0;
1601
1602         for_each_possible_cpu(cpu)
1603                 counter += *per_cpu_ptr(cntr, cpu);
1604         return counter;
1605 }
1606
1607 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1608                           u64 __percpu *cntr,
1609                           int vl, int mode, u64 data)
1610 {
1611         u64 ret = 0;
1612
1613         if (vl != CNTR_INVALID_VL)
1614                 return 0;
1615
1616         if (mode == CNTR_MODE_R) {
1617                 ret = get_all_cpu_total(cntr) - *z_val;
1618         } else if (mode == CNTR_MODE_W) {
1619                 /* A write can only zero the counter */
1620                 if (data == 0)
1621                         *z_val = get_all_cpu_total(cntr);
1622                 else
1623                         dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1624         } else {
1625                 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1626                 return 0;
1627         }
1628
1629         return ret;
1630 }
1631
1632 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1633                               void *context, int vl, int mode, u64 data)
1634 {
1635         struct hfi1_devdata *dd = context;
1636
1637         return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1638                               mode, data);
1639 }
1640
1641 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1642                                    void *context, int vl, int mode, u64 data)
1643 {
1644         struct hfi1_devdata *dd = context;
1645
1646         return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1647                               mode, data);
1648 }
1649
1650 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1651                               void *context, int vl, int mode, u64 data)
1652 {
1653         struct hfi1_devdata *dd = context;
1654
1655         return dd->verbs_dev.n_piowait;
1656 }
1657
1658 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1659                                void *context, int vl, int mode, u64 data)
1660 {
1661         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1662
1663         return dd->verbs_dev.n_piodrain;
1664 }
1665
1666 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1667                                    void *context, int vl, int mode, u64 data)
1668 {
1669         struct hfi1_devdata *dd = context;
1670
1671         return dd->ctx0_seq_drop;
1672 }
1673
1674 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1675                               void *context, int vl, int mode, u64 data)
1676 {
1677         struct hfi1_devdata *dd = context;
1678
1679         return dd->verbs_dev.n_txwait;
1680 }
1681
1682 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1683                                void *context, int vl, int mode, u64 data)
1684 {
1685         struct hfi1_devdata *dd = context;
1686
1687         return dd->verbs_dev.n_kmem_wait;
1688 }
1689
1690 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1691                                    void *context, int vl, int mode, u64 data)
1692 {
1693         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694
1695         return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1696                               mode, data);
1697 }
1698
1699 /* Software counters for the error status bits within MISC_ERR_STATUS */
1700 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1701                                              void *context, int vl, int mode,
1702                                              u64 data)
1703 {
1704         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1705
1706         return dd->misc_err_status_cnt[12];
1707 }
1708
1709 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1710                                           void *context, int vl, int mode,
1711                                           u64 data)
1712 {
1713         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1714
1715         return dd->misc_err_status_cnt[11];
1716 }
1717
1718 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1719                                                void *context, int vl, int mode,
1720                                                u64 data)
1721 {
1722         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1723
1724         return dd->misc_err_status_cnt[10];
1725 }
1726
1727 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1728                                                  void *context, int vl,
1729                                                  int mode, u64 data)
1730 {
1731         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1732
1733         return dd->misc_err_status_cnt[9];
1734 }
1735
1736 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1737                                            void *context, int vl, int mode,
1738                                            u64 data)
1739 {
1740         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1741
1742         return dd->misc_err_status_cnt[8];
1743 }
1744
1745 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1746                                 const struct cntr_entry *entry,
1747                                 void *context, int vl, int mode, u64 data)
1748 {
1749         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1750
1751         return dd->misc_err_status_cnt[7];
1752 }
1753
1754 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1755                                                 void *context, int vl,
1756                                                 int mode, u64 data)
1757 {
1758         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1759
1760         return dd->misc_err_status_cnt[6];
1761 }
1762
1763 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1764                                               void *context, int vl, int mode,
1765                                               u64 data)
1766 {
1767         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1768
1769         return dd->misc_err_status_cnt[5];
1770 }
1771
1772 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1773                                             void *context, int vl, int mode,
1774                                             u64 data)
1775 {
1776         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1777
1778         return dd->misc_err_status_cnt[4];
1779 }
1780
1781 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1782                                                  void *context, int vl,
1783                                                  int mode, u64 data)
1784 {
1785         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1786
1787         return dd->misc_err_status_cnt[3];
1788 }
1789
1790 static u64 access_misc_csr_write_bad_addr_err_cnt(
1791                                 const struct cntr_entry *entry,
1792                                 void *context, int vl, int mode, u64 data)
1793 {
1794         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1795
1796         return dd->misc_err_status_cnt[2];
1797 }
1798
1799 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1800                                                  void *context, int vl,
1801                                                  int mode, u64 data)
1802 {
1803         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1804
1805         return dd->misc_err_status_cnt[1];
1806 }
1807
1808 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1809                                           void *context, int vl, int mode,
1810                                           u64 data)
1811 {
1812         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1813
1814         return dd->misc_err_status_cnt[0];
1815 }
1816
1817 /*
1818  * Software counter for the aggregate of
1819  * individual CceErrStatus counters
1820  */
1821 static u64 access_sw_cce_err_status_aggregated_cnt(
1822                                 const struct cntr_entry *entry,
1823                                 void *context, int vl, int mode, u64 data)
1824 {
1825         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826
1827         return dd->sw_cce_err_status_aggregate;
1828 }
1829
1830 /*
1831  * Software counters corresponding to each of the
1832  * error status bits within CceErrStatus
1833  */
1834 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1835                                               void *context, int vl, int mode,
1836                                               u64 data)
1837 {
1838         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839
1840         return dd->cce_err_status_cnt[40];
1841 }
1842
1843 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1844                                           void *context, int vl, int mode,
1845                                           u64 data)
1846 {
1847         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1848
1849         return dd->cce_err_status_cnt[39];
1850 }
1851
1852 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1853                                           void *context, int vl, int mode,
1854                                           u64 data)
1855 {
1856         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1857
1858         return dd->cce_err_status_cnt[38];
1859 }
1860
1861 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1862                                              void *context, int vl, int mode,
1863                                              u64 data)
1864 {
1865         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1866
1867         return dd->cce_err_status_cnt[37];
1868 }
1869
1870 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1871                                              void *context, int vl, int mode,
1872                                              u64 data)
1873 {
1874         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1875
1876         return dd->cce_err_status_cnt[36];
1877 }
1878
1879 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1880                                 const struct cntr_entry *entry,
1881                                 void *context, int vl, int mode, u64 data)
1882 {
1883         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1884
1885         return dd->cce_err_status_cnt[35];
1886 }
1887
1888 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1889                                 const struct cntr_entry *entry,
1890                                 void *context, int vl, int mode, u64 data)
1891 {
1892         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1893
1894         return dd->cce_err_status_cnt[34];
1895 }
1896
1897 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1898                                                  void *context, int vl,
1899                                                  int mode, u64 data)
1900 {
1901         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1902
1903         return dd->cce_err_status_cnt[33];
1904 }
1905
1906 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1907                                                 void *context, int vl, int mode,
1908                                                 u64 data)
1909 {
1910         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1911
1912         return dd->cce_err_status_cnt[32];
1913 }
1914
1915 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1916                                    void *context, int vl, int mode, u64 data)
1917 {
1918         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1919
1920         return dd->cce_err_status_cnt[31];
1921 }
1922
1923 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1924                                                void *context, int vl, int mode,
1925                                                u64 data)
1926 {
1927         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1928
1929         return dd->cce_err_status_cnt[30];
1930 }
1931
1932 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1933                                               void *context, int vl, int mode,
1934                                               u64 data)
1935 {
1936         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1937
1938         return dd->cce_err_status_cnt[29];
1939 }
1940
1941 static u64 access_pcic_transmit_back_parity_err_cnt(
1942                                 const struct cntr_entry *entry,
1943                                 void *context, int vl, int mode, u64 data)
1944 {
1945         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1946
1947         return dd->cce_err_status_cnt[28];
1948 }
1949
1950 static u64 access_pcic_transmit_front_parity_err_cnt(
1951                                 const struct cntr_entry *entry,
1952                                 void *context, int vl, int mode, u64 data)
1953 {
1954         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1955
1956         return dd->cce_err_status_cnt[27];
1957 }
1958
1959 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1960                                              void *context, int vl, int mode,
1961                                              u64 data)
1962 {
1963         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1964
1965         return dd->cce_err_status_cnt[26];
1966 }
1967
1968 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1969                                             void *context, int vl, int mode,
1970                                             u64 data)
1971 {
1972         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1973
1974         return dd->cce_err_status_cnt[25];
1975 }
1976
1977 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1978                                               void *context, int vl, int mode,
1979                                               u64 data)
1980 {
1981         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1982
1983         return dd->cce_err_status_cnt[24];
1984 }
1985
1986 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1987                                              void *context, int vl, int mode,
1988                                              u64 data)
1989 {
1990         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1991
1992         return dd->cce_err_status_cnt[23];
1993 }
1994
1995 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1996                                                  void *context, int vl,
1997                                                  int mode, u64 data)
1998 {
1999         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2000
2001         return dd->cce_err_status_cnt[22];
2002 }
2003
2004 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2005                                          void *context, int vl, int mode,
2006                                          u64 data)
2007 {
2008         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2009
2010         return dd->cce_err_status_cnt[21];
2011 }
2012
2013 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2014                                 const struct cntr_entry *entry,
2015                                 void *context, int vl, int mode, u64 data)
2016 {
2017         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2018
2019         return dd->cce_err_status_cnt[20];
2020 }
2021
2022 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2023                                                  void *context, int vl,
2024                                                  int mode, u64 data)
2025 {
2026         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2027
2028         return dd->cce_err_status_cnt[19];
2029 }
2030
2031 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2032                                              void *context, int vl, int mode,
2033                                              u64 data)
2034 {
2035         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2036
2037         return dd->cce_err_status_cnt[18];
2038 }
2039
2040 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2041                                             void *context, int vl, int mode,
2042                                             u64 data)
2043 {
2044         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2045
2046         return dd->cce_err_status_cnt[17];
2047 }
2048
2049 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2050                                               void *context, int vl, int mode,
2051                                               u64 data)
2052 {
2053         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2054
2055         return dd->cce_err_status_cnt[16];
2056 }
2057
2058 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2059                                              void *context, int vl, int mode,
2060                                              u64 data)
2061 {
2062         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2063
2064         return dd->cce_err_status_cnt[15];
2065 }
2066
2067 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2068                                                  void *context, int vl,
2069                                                  int mode, u64 data)
2070 {
2071         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2072
2073         return dd->cce_err_status_cnt[14];
2074 }
2075
2076 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2077                                              void *context, int vl, int mode,
2078                                              u64 data)
2079 {
2080         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2081
2082         return dd->cce_err_status_cnt[13];
2083 }
2084
2085 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2086                                 const struct cntr_entry *entry,
2087                                 void *context, int vl, int mode, u64 data)
2088 {
2089         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2090
2091         return dd->cce_err_status_cnt[12];
2092 }
2093
2094 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2095                                 const struct cntr_entry *entry,
2096                                 void *context, int vl, int mode, u64 data)
2097 {
2098         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2099
2100         return dd->cce_err_status_cnt[11];
2101 }
2102
2103 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2104                                 const struct cntr_entry *entry,
2105                                 void *context, int vl, int mode, u64 data)
2106 {
2107         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2108
2109         return dd->cce_err_status_cnt[10];
2110 }
2111
2112 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2113                                 const struct cntr_entry *entry,
2114                                 void *context, int vl, int mode, u64 data)
2115 {
2116         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2117
2118         return dd->cce_err_status_cnt[9];
2119 }
2120
2121 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2122                                 const struct cntr_entry *entry,
2123                                 void *context, int vl, int mode, u64 data)
2124 {
2125         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2126
2127         return dd->cce_err_status_cnt[8];
2128 }
2129
2130 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2131                                                  void *context, int vl,
2132                                                  int mode, u64 data)
2133 {
2134         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2135
2136         return dd->cce_err_status_cnt[7];
2137 }
2138
2139 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2140                                 const struct cntr_entry *entry,
2141                                 void *context, int vl, int mode, u64 data)
2142 {
2143         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2144
2145         return dd->cce_err_status_cnt[6];
2146 }
2147
2148 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2149                                                void *context, int vl, int mode,
2150                                                u64 data)
2151 {
2152         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2153
2154         return dd->cce_err_status_cnt[5];
2155 }
2156
2157 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2158                                           void *context, int vl, int mode,
2159                                           u64 data)
2160 {
2161         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2162
2163         return dd->cce_err_status_cnt[4];
2164 }
2165
2166 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2167                                 const struct cntr_entry *entry,
2168                                 void *context, int vl, int mode, u64 data)
2169 {
2170         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2171
2172         return dd->cce_err_status_cnt[3];
2173 }
2174
2175 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2176                                                  void *context, int vl,
2177                                                  int mode, u64 data)
2178 {
2179         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2180
2181         return dd->cce_err_status_cnt[2];
2182 }
2183
2184 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2185                                                 void *context, int vl,
2186                                                 int mode, u64 data)
2187 {
2188         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2189
2190         return dd->cce_err_status_cnt[1];
2191 }
2192
2193 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2194                                          void *context, int vl, int mode,
2195                                          u64 data)
2196 {
2197         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2198
2199         return dd->cce_err_status_cnt[0];
2200 }
2201
2202 /*
2203  * Software counters corresponding to each of the
2204  * error status bits within RcvErrStatus
2205  */
2206 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2207                                         void *context, int vl, int mode,
2208                                         u64 data)
2209 {
2210         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211
2212         return dd->rcv_err_status_cnt[63];
2213 }
2214
2215 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2216                                                 void *context, int vl,
2217                                                 int mode, u64 data)
2218 {
2219         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220
2221         return dd->rcv_err_status_cnt[62];
2222 }
2223
2224 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2225                                                void *context, int vl, int mode,
2226                                                u64 data)
2227 {
2228         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229
2230         return dd->rcv_err_status_cnt[61];
2231 }
2232
2233 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2234                                          void *context, int vl, int mode,
2235                                          u64 data)
2236 {
2237         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238
2239         return dd->rcv_err_status_cnt[60];
2240 }
2241
2242 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2243                                                  void *context, int vl,
2244                                                  int mode, u64 data)
2245 {
2246         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2247
2248         return dd->rcv_err_status_cnt[59];
2249 }
2250
2251 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2252                                                  void *context, int vl,
2253                                                  int mode, u64 data)
2254 {
2255         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2256
2257         return dd->rcv_err_status_cnt[58];
2258 }
2259
2260 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2261                                             void *context, int vl, int mode,
2262                                             u64 data)
2263 {
2264         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2265
2266         return dd->rcv_err_status_cnt[57];
2267 }
2268
2269 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2270                                            void *context, int vl, int mode,
2271                                            u64 data)
2272 {
2273         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2274
2275         return dd->rcv_err_status_cnt[56];
2276 }
2277
2278 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2279                                            void *context, int vl, int mode,
2280                                            u64 data)
2281 {
2282         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2283
2284         return dd->rcv_err_status_cnt[55];
2285 }
2286
2287 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2288                                 const struct cntr_entry *entry,
2289                                 void *context, int vl, int mode, u64 data)
2290 {
2291         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2292
2293         return dd->rcv_err_status_cnt[54];
2294 }
2295
2296 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2297                                 const struct cntr_entry *entry,
2298                                 void *context, int vl, int mode, u64 data)
2299 {
2300         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2301
2302         return dd->rcv_err_status_cnt[53];
2303 }
2304
2305 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2306                                                  void *context, int vl,
2307                                                  int mode, u64 data)
2308 {
2309         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2310
2311         return dd->rcv_err_status_cnt[52];
2312 }
2313
2314 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2315                                                  void *context, int vl,
2316                                                  int mode, u64 data)
2317 {
2318         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2319
2320         return dd->rcv_err_status_cnt[51];
2321 }
2322
2323 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2324                                                  void *context, int vl,
2325                                                  int mode, u64 data)
2326 {
2327         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2328
2329         return dd->rcv_err_status_cnt[50];
2330 }
2331
2332 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2333                                                  void *context, int vl,
2334                                                  int mode, u64 data)
2335 {
2336         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2337
2338         return dd->rcv_err_status_cnt[49];
2339 }
2340
2341 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2342                                                  void *context, int vl,
2343                                                  int mode, u64 data)
2344 {
2345         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2346
2347         return dd->rcv_err_status_cnt[48];
2348 }
2349
2350 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2351                                                  void *context, int vl,
2352                                                  int mode, u64 data)
2353 {
2354         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2355
2356         return dd->rcv_err_status_cnt[47];
2357 }
2358
2359 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2360                                          void *context, int vl, int mode,
2361                                          u64 data)
2362 {
2363         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2364
2365         return dd->rcv_err_status_cnt[46];
2366 }
2367
2368 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2369                                 const struct cntr_entry *entry,
2370                                 void *context, int vl, int mode, u64 data)
2371 {
2372         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2373
2374         return dd->rcv_err_status_cnt[45];
2375 }
2376
2377 static u64 access_rx_lookup_csr_parity_err_cnt(
2378                                 const struct cntr_entry *entry,
2379                                 void *context, int vl, int mode, u64 data)
2380 {
2381         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2382
2383         return dd->rcv_err_status_cnt[44];
2384 }
2385
2386 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2387                                 const struct cntr_entry *entry,
2388                                 void *context, int vl, int mode, u64 data)
2389 {
2390         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2391
2392         return dd->rcv_err_status_cnt[43];
2393 }
2394
2395 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2396                                 const struct cntr_entry *entry,
2397                                 void *context, int vl, int mode, u64 data)
2398 {
2399         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2400
2401         return dd->rcv_err_status_cnt[42];
2402 }
2403
2404 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2405                                 const struct cntr_entry *entry,
2406                                 void *context, int vl, int mode, u64 data)
2407 {
2408         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2409
2410         return dd->rcv_err_status_cnt[41];
2411 }
2412
2413 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2414                                 const struct cntr_entry *entry,
2415                                 void *context, int vl, int mode, u64 data)
2416 {
2417         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2418
2419         return dd->rcv_err_status_cnt[40];
2420 }
2421
2422 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2423                                 const struct cntr_entry *entry,
2424                                 void *context, int vl, int mode, u64 data)
2425 {
2426         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2427
2428         return dd->rcv_err_status_cnt[39];
2429 }
2430
2431 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2432                                 const struct cntr_entry *entry,
2433                                 void *context, int vl, int mode, u64 data)
2434 {
2435         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2436
2437         return dd->rcv_err_status_cnt[38];
2438 }
2439
2440 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2441                                 const struct cntr_entry *entry,
2442                                 void *context, int vl, int mode, u64 data)
2443 {
2444         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2445
2446         return dd->rcv_err_status_cnt[37];
2447 }
2448
2449 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2450                                 const struct cntr_entry *entry,
2451                                 void *context, int vl, int mode, u64 data)
2452 {
2453         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2454
2455         return dd->rcv_err_status_cnt[36];
2456 }
2457
2458 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2459                                 const struct cntr_entry *entry,
2460                                 void *context, int vl, int mode, u64 data)
2461 {
2462         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2463
2464         return dd->rcv_err_status_cnt[35];
2465 }
2466
2467 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2468                                 const struct cntr_entry *entry,
2469                                 void *context, int vl, int mode, u64 data)
2470 {
2471         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2472
2473         return dd->rcv_err_status_cnt[34];
2474 }
2475
2476 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2477                                 const struct cntr_entry *entry,
2478                                 void *context, int vl, int mode, u64 data)
2479 {
2480         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2481
2482         return dd->rcv_err_status_cnt[33];
2483 }
2484
2485 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2486                                         void *context, int vl, int mode,
2487                                         u64 data)
2488 {
2489         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2490
2491         return dd->rcv_err_status_cnt[32];
2492 }
2493
2494 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2495                                        void *context, int vl, int mode,
2496                                        u64 data)
2497 {
2498         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2499
2500         return dd->rcv_err_status_cnt[31];
2501 }
2502
2503 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2504                                           void *context, int vl, int mode,
2505                                           u64 data)
2506 {
2507         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2508
2509         return dd->rcv_err_status_cnt[30];
2510 }
2511
2512 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2513                                              void *context, int vl, int mode,
2514                                              u64 data)
2515 {
2516         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2517
2518         return dd->rcv_err_status_cnt[29];
2519 }
2520
2521 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2522                                                  void *context, int vl,
2523                                                  int mode, u64 data)
2524 {
2525         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2526
2527         return dd->rcv_err_status_cnt[28];
2528 }
2529
2530 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2531                                 const struct cntr_entry *entry,
2532                                 void *context, int vl, int mode, u64 data)
2533 {
2534         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2535
2536         return dd->rcv_err_status_cnt[27];
2537 }
2538
2539 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2540                                 const struct cntr_entry *entry,
2541                                 void *context, int vl, int mode, u64 data)
2542 {
2543         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2544
2545         return dd->rcv_err_status_cnt[26];
2546 }
2547
2548 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2549                                 const struct cntr_entry *entry,
2550                                 void *context, int vl, int mode, u64 data)
2551 {
2552         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2553
2554         return dd->rcv_err_status_cnt[25];
2555 }
2556
2557 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2558                                 const struct cntr_entry *entry,
2559                                 void *context, int vl, int mode, u64 data)
2560 {
2561         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2562
2563         return dd->rcv_err_status_cnt[24];
2564 }
2565
2566 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2567                                 const struct cntr_entry *entry,
2568                                 void *context, int vl, int mode, u64 data)
2569 {
2570         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2571
2572         return dd->rcv_err_status_cnt[23];
2573 }
2574
2575 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2576                                 const struct cntr_entry *entry,
2577                                 void *context, int vl, int mode, u64 data)
2578 {
2579         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2580
2581         return dd->rcv_err_status_cnt[22];
2582 }
2583
2584 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2585                                 const struct cntr_entry *entry,
2586                                 void *context, int vl, int mode, u64 data)
2587 {
2588         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2589
2590         return dd->rcv_err_status_cnt[21];
2591 }
2592
2593 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2594                                 const struct cntr_entry *entry,
2595                                 void *context, int vl, int mode, u64 data)
2596 {
2597         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2598
2599         return dd->rcv_err_status_cnt[20];
2600 }
2601
2602 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2603                                 const struct cntr_entry *entry,
2604                                 void *context, int vl, int mode, u64 data)
2605 {
2606         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2607
2608         return dd->rcv_err_status_cnt[19];
2609 }
2610
2611 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2612                                                  void *context, int vl,
2613                                                  int mode, u64 data)
2614 {
2615         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2616
2617         return dd->rcv_err_status_cnt[18];
2618 }
2619
2620 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2621                                                  void *context, int vl,
2622                                                  int mode, u64 data)
2623 {
2624         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2625
2626         return dd->rcv_err_status_cnt[17];
2627 }
2628
2629 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2630                                 const struct cntr_entry *entry,
2631                                 void *context, int vl, int mode, u64 data)
2632 {
2633         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2634
2635         return dd->rcv_err_status_cnt[16];
2636 }
2637
2638 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2639                                 const struct cntr_entry *entry,
2640                                 void *context, int vl, int mode, u64 data)
2641 {
2642         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2643
2644         return dd->rcv_err_status_cnt[15];
2645 }
2646
2647 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2648                                                 void *context, int vl,
2649                                                 int mode, u64 data)
2650 {
2651         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2652
2653         return dd->rcv_err_status_cnt[14];
2654 }
2655
2656 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2657                                                 void *context, int vl,
2658                                                 int mode, u64 data)
2659 {
2660         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2661
2662         return dd->rcv_err_status_cnt[13];
2663 }
2664
2665 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2666                                               void *context, int vl, int mode,
2667                                               u64 data)
2668 {
2669         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2670
2671         return dd->rcv_err_status_cnt[12];
2672 }
2673
2674 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2675                                           void *context, int vl, int mode,
2676                                           u64 data)
2677 {
2678         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2679
2680         return dd->rcv_err_status_cnt[11];
2681 }
2682
2683 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2684                                           void *context, int vl, int mode,
2685                                           u64 data)
2686 {
2687         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2688
2689         return dd->rcv_err_status_cnt[10];
2690 }
2691
2692 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2693                                                void *context, int vl, int mode,
2694                                                u64 data)
2695 {
2696         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2697
2698         return dd->rcv_err_status_cnt[9];
2699 }
2700
2701 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2702                                             void *context, int vl, int mode,
2703                                             u64 data)
2704 {
2705         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2706
2707         return dd->rcv_err_status_cnt[8];
2708 }
2709
2710 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2711                                 const struct cntr_entry *entry,
2712                                 void *context, int vl, int mode, u64 data)
2713 {
2714         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2715
2716         return dd->rcv_err_status_cnt[7];
2717 }
2718
2719 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2720                                 const struct cntr_entry *entry,
2721                                 void *context, int vl, int mode, u64 data)
2722 {
2723         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2724
2725         return dd->rcv_err_status_cnt[6];
2726 }
2727
2728 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2729                                           void *context, int vl, int mode,
2730                                           u64 data)
2731 {
2732         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2733
2734         return dd->rcv_err_status_cnt[5];
2735 }
2736
2737 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2738                                           void *context, int vl, int mode,
2739                                           u64 data)
2740 {
2741         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2742
2743         return dd->rcv_err_status_cnt[4];
2744 }
2745
2746 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2747                                          void *context, int vl, int mode,
2748                                          u64 data)
2749 {
2750         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2751
2752         return dd->rcv_err_status_cnt[3];
2753 }
2754
2755 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2756                                          void *context, int vl, int mode,
2757                                          u64 data)
2758 {
2759         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2760
2761         return dd->rcv_err_status_cnt[2];
2762 }
2763
2764 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2765                                             void *context, int vl, int mode,
2766                                             u64 data)
2767 {
2768         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2769
2770         return dd->rcv_err_status_cnt[1];
2771 }
2772
2773 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2774                                          void *context, int vl, int mode,
2775                                          u64 data)
2776 {
2777         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2778
2779         return dd->rcv_err_status_cnt[0];
2780 }
2781
2782 /*
2783  * Software counters corresponding to each of the
2784  * error status bits within SendPioErrStatus
2785  */
2786 static u64 access_pio_pec_sop_head_parity_err_cnt(
2787                                 const struct cntr_entry *entry,
2788                                 void *context, int vl, int mode, u64 data)
2789 {
2790         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791
2792         return dd->send_pio_err_status_cnt[35];
2793 }
2794
2795 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2796                                 const struct cntr_entry *entry,
2797                                 void *context, int vl, int mode, u64 data)
2798 {
2799         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800
2801         return dd->send_pio_err_status_cnt[34];
2802 }
2803
2804 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2805                                 const struct cntr_entry *entry,
2806                                 void *context, int vl, int mode, u64 data)
2807 {
2808         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809
2810         return dd->send_pio_err_status_cnt[33];
2811 }
2812
2813 static u64 access_pio_current_free_cnt_parity_err_cnt(
2814                                 const struct cntr_entry *entry,
2815                                 void *context, int vl, int mode, u64 data)
2816 {
2817         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818
2819         return dd->send_pio_err_status_cnt[32];
2820 }
2821
2822 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2823                                           void *context, int vl, int mode,
2824                                           u64 data)
2825 {
2826         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2827
2828         return dd->send_pio_err_status_cnt[31];
2829 }
2830
2831 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2832                                           void *context, int vl, int mode,
2833                                           u64 data)
2834 {
2835         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2836
2837         return dd->send_pio_err_status_cnt[30];
2838 }
2839
2840 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2841                                            void *context, int vl, int mode,
2842                                            u64 data)
2843 {
2844         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2845
2846         return dd->send_pio_err_status_cnt[29];
2847 }
2848
2849 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2850                                 const struct cntr_entry *entry,
2851                                 void *context, int vl, int mode, u64 data)
2852 {
2853         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2854
2855         return dd->send_pio_err_status_cnt[28];
2856 }
2857
2858 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2859                                              void *context, int vl, int mode,
2860                                              u64 data)
2861 {
2862         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2863
2864         return dd->send_pio_err_status_cnt[27];
2865 }
2866
2867 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2868                                              void *context, int vl, int mode,
2869                                              u64 data)
2870 {
2871         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2872
2873         return dd->send_pio_err_status_cnt[26];
2874 }
2875
2876 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2877                                                 void *context, int vl,
2878                                                 int mode, u64 data)
2879 {
2880         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2881
2882         return dd->send_pio_err_status_cnt[25];
2883 }
2884
2885 static u64 access_pio_block_qw_count_parity_err_cnt(
2886                                 const struct cntr_entry *entry,
2887                                 void *context, int vl, int mode, u64 data)
2888 {
2889         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2890
2891         return dd->send_pio_err_status_cnt[24];
2892 }
2893
2894 static u64 access_pio_write_qw_valid_parity_err_cnt(
2895                                 const struct cntr_entry *entry,
2896                                 void *context, int vl, int mode, u64 data)
2897 {
2898         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2899
2900         return dd->send_pio_err_status_cnt[23];
2901 }
2902
2903 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2904                                             void *context, int vl, int mode,
2905                                             u64 data)
2906 {
2907         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2908
2909         return dd->send_pio_err_status_cnt[22];
2910 }
2911
2912 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2913                                                 void *context, int vl,
2914                                                 int mode, u64 data)
2915 {
2916         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2917
2918         return dd->send_pio_err_status_cnt[21];
2919 }
2920
2921 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2922                                                 void *context, int vl,
2923                                                 int mode, u64 data)
2924 {
2925         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2926
2927         return dd->send_pio_err_status_cnt[20];
2928 }
2929
2930 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2931                                                 void *context, int vl,
2932                                                 int mode, u64 data)
2933 {
2934         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2935
2936         return dd->send_pio_err_status_cnt[19];
2937 }
2938
2939 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2940                                 const struct cntr_entry *entry,
2941                                 void *context, int vl, int mode, u64 data)
2942 {
2943         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2944
2945         return dd->send_pio_err_status_cnt[18];
2946 }
2947
2948 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2949                                          void *context, int vl, int mode,
2950                                          u64 data)
2951 {
2952         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2953
2954         return dd->send_pio_err_status_cnt[17];
2955 }
2956
2957 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2958                                             void *context, int vl, int mode,
2959                                             u64 data)
2960 {
2961         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2962
2963         return dd->send_pio_err_status_cnt[16];
2964 }
2965
2966 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2967                                 const struct cntr_entry *entry,
2968                                 void *context, int vl, int mode, u64 data)
2969 {
2970         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2971
2972         return dd->send_pio_err_status_cnt[15];
2973 }
2974
2975 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2976                                 const struct cntr_entry *entry,
2977                                 void *context, int vl, int mode, u64 data)
2978 {
2979         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2980
2981         return dd->send_pio_err_status_cnt[14];
2982 }
2983
2984 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2985                                 const struct cntr_entry *entry,
2986                                 void *context, int vl, int mode, u64 data)
2987 {
2988         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2989
2990         return dd->send_pio_err_status_cnt[13];
2991 }
2992
2993 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2994                                 const struct cntr_entry *entry,
2995                                 void *context, int vl, int mode, u64 data)
2996 {
2997         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2998
2999         return dd->send_pio_err_status_cnt[12];
3000 }
3001
3002 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3003                                 const struct cntr_entry *entry,
3004                                 void *context, int vl, int mode, u64 data)
3005 {
3006         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3007
3008         return dd->send_pio_err_status_cnt[11];
3009 }
3010
3011 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3012                                 const struct cntr_entry *entry,
3013                                 void *context, int vl, int mode, u64 data)
3014 {
3015         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3016
3017         return dd->send_pio_err_status_cnt[10];
3018 }
3019
3020 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3021                                 const struct cntr_entry *entry,
3022                                 void *context, int vl, int mode, u64 data)
3023 {
3024         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3025
3026         return dd->send_pio_err_status_cnt[9];
3027 }
3028
3029 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3030                                 const struct cntr_entry *entry,
3031                                 void *context, int vl, int mode, u64 data)
3032 {
3033         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3034
3035         return dd->send_pio_err_status_cnt[8];
3036 }
3037
3038 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3039                                 const struct cntr_entry *entry,
3040                                 void *context, int vl, int mode, u64 data)
3041 {
3042         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3043
3044         return dd->send_pio_err_status_cnt[7];
3045 }
3046
3047 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3048                                               void *context, int vl, int mode,
3049                                               u64 data)
3050 {
3051         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3052
3053         return dd->send_pio_err_status_cnt[6];
3054 }
3055
3056 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3057                                               void *context, int vl, int mode,
3058                                               u64 data)
3059 {
3060         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3061
3062         return dd->send_pio_err_status_cnt[5];
3063 }
3064
3065 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3066                                            void *context, int vl, int mode,
3067                                            u64 data)
3068 {
3069         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3070
3071         return dd->send_pio_err_status_cnt[4];
3072 }
3073
3074 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3075                                            void *context, int vl, int mode,
3076                                            u64 data)
3077 {
3078         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3079
3080         return dd->send_pio_err_status_cnt[3];
3081 }
3082
3083 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3084                                          void *context, int vl, int mode,
3085                                          u64 data)
3086 {
3087         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3088
3089         return dd->send_pio_err_status_cnt[2];
3090 }
3091
3092 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3093                                                 void *context, int vl,
3094                                                 int mode, u64 data)
3095 {
3096         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3097
3098         return dd->send_pio_err_status_cnt[1];
3099 }
3100
3101 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3102                                              void *context, int vl, int mode,
3103                                              u64 data)
3104 {
3105         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3106
3107         return dd->send_pio_err_status_cnt[0];
3108 }
3109
3110 /*
3111  * Software counters corresponding to each of the
3112  * error status bits within SendDmaErrStatus
3113  */
3114 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3115                                 const struct cntr_entry *entry,
3116                                 void *context, int vl, int mode, u64 data)
3117 {
3118         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119
3120         return dd->send_dma_err_status_cnt[3];
3121 }
3122
3123 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3124                                 const struct cntr_entry *entry,
3125                                 void *context, int vl, int mode, u64 data)
3126 {
3127         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128
3129         return dd->send_dma_err_status_cnt[2];
3130 }
3131
3132 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3133                                           void *context, int vl, int mode,
3134                                           u64 data)
3135 {
3136         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3137
3138         return dd->send_dma_err_status_cnt[1];
3139 }
3140
3141 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3142                                        void *context, int vl, int mode,
3143                                        u64 data)
3144 {
3145         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3146
3147         return dd->send_dma_err_status_cnt[0];
3148 }
3149
3150 /*
3151  * Software counters corresponding to each of the
3152  * error status bits within SendEgressErrStatus
3153  */
3154 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3155                                 const struct cntr_entry *entry,
3156                                 void *context, int vl, int mode, u64 data)
3157 {
3158         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159
3160         return dd->send_egress_err_status_cnt[63];
3161 }
3162
3163 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3164                                 const struct cntr_entry *entry,
3165                                 void *context, int vl, int mode, u64 data)
3166 {
3167         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168
3169         return dd->send_egress_err_status_cnt[62];
3170 }
3171
3172 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3173                                              void *context, int vl, int mode,
3174                                              u64 data)
3175 {
3176         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177
3178         return dd->send_egress_err_status_cnt[61];
3179 }
3180
3181 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3182                                                  void *context, int vl,
3183                                                  int mode, u64 data)
3184 {
3185         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186
3187         return dd->send_egress_err_status_cnt[60];
3188 }
3189
3190 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3191                                 const struct cntr_entry *entry,
3192                                 void *context, int vl, int mode, u64 data)
3193 {
3194         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3195
3196         return dd->send_egress_err_status_cnt[59];
3197 }
3198
3199 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3200                                         void *context, int vl, int mode,
3201                                         u64 data)
3202 {
3203         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3204
3205         return dd->send_egress_err_status_cnt[58];
3206 }
3207
3208 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3209                                             void *context, int vl, int mode,
3210                                             u64 data)
3211 {
3212         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3213
3214         return dd->send_egress_err_status_cnt[57];
3215 }
3216
3217 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3218                                               void *context, int vl, int mode,
3219                                               u64 data)
3220 {
3221         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3222
3223         return dd->send_egress_err_status_cnt[56];
3224 }
3225
3226 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3227                                               void *context, int vl, int mode,
3228                                               u64 data)
3229 {
3230         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3231
3232         return dd->send_egress_err_status_cnt[55];
3233 }
3234
3235 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3236                                               void *context, int vl, int mode,
3237                                               u64 data)
3238 {
3239         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3240
3241         return dd->send_egress_err_status_cnt[54];
3242 }
3243
3244 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3245                                               void *context, int vl, int mode,
3246                                               u64 data)
3247 {
3248         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3249
3250         return dd->send_egress_err_status_cnt[53];
3251 }
3252
3253 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3254                                               void *context, int vl, int mode,
3255                                               u64 data)
3256 {
3257         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3258
3259         return dd->send_egress_err_status_cnt[52];
3260 }
3261
3262 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3263                                               void *context, int vl, int mode,
3264                                               u64 data)
3265 {
3266         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3267
3268         return dd->send_egress_err_status_cnt[51];
3269 }
3270
3271 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3272                                               void *context, int vl, int mode,
3273                                               u64 data)
3274 {
3275         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3276
3277         return dd->send_egress_err_status_cnt[50];
3278 }
3279
3280 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3281                                               void *context, int vl, int mode,
3282                                               u64 data)
3283 {
3284         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3285
3286         return dd->send_egress_err_status_cnt[49];
3287 }
3288
3289 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3290                                               void *context, int vl, int mode,
3291                                               u64 data)
3292 {
3293         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3294
3295         return dd->send_egress_err_status_cnt[48];
3296 }
3297
3298 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3299                                               void *context, int vl, int mode,
3300                                               u64 data)
3301 {
3302         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3303
3304         return dd->send_egress_err_status_cnt[47];
3305 }
3306
3307 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3308                                             void *context, int vl, int mode,
3309                                             u64 data)
3310 {
3311         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3312
3313         return dd->send_egress_err_status_cnt[46];
3314 }
3315
3316 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3317                                              void *context, int vl, int mode,
3318                                              u64 data)
3319 {
3320         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3321
3322         return dd->send_egress_err_status_cnt[45];
3323 }
3324
3325 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3326                                                  void *context, int vl,
3327                                                  int mode, u64 data)
3328 {
3329         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3330
3331         return dd->send_egress_err_status_cnt[44];
3332 }
3333
3334 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3335                                 const struct cntr_entry *entry,
3336                                 void *context, int vl, int mode, u64 data)
3337 {
3338         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3339
3340         return dd->send_egress_err_status_cnt[43];
3341 }
3342
3343 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3344                                         void *context, int vl, int mode,
3345                                         u64 data)
3346 {
3347         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3348
3349         return dd->send_egress_err_status_cnt[42];
3350 }
3351
3352 static u64 access_tx_credit_return_partiy_err_cnt(
3353                                 const struct cntr_entry *entry,
3354                                 void *context, int vl, int mode, u64 data)
3355 {
3356         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3357
3358         return dd->send_egress_err_status_cnt[41];
3359 }
3360
3361 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3362                                 const struct cntr_entry *entry,
3363                                 void *context, int vl, int mode, u64 data)
3364 {
3365         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3366
3367         return dd->send_egress_err_status_cnt[40];
3368 }
3369
3370 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3371                                 const struct cntr_entry *entry,
3372                                 void *context, int vl, int mode, u64 data)
3373 {
3374         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3375
3376         return dd->send_egress_err_status_cnt[39];
3377 }
3378
3379 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3380                                 const struct cntr_entry *entry,
3381                                 void *context, int vl, int mode, u64 data)
3382 {
3383         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3384
3385         return dd->send_egress_err_status_cnt[38];
3386 }
3387
3388 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3389                                 const struct cntr_entry *entry,
3390                                 void *context, int vl, int mode, u64 data)
3391 {
3392         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3393
3394         return dd->send_egress_err_status_cnt[37];
3395 }
3396
3397 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3398                                 const struct cntr_entry *entry,
3399                                 void *context, int vl, int mode, u64 data)
3400 {
3401         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3402
3403         return dd->send_egress_err_status_cnt[36];
3404 }
3405
3406 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3407                                 const struct cntr_entry *entry,
3408                                 void *context, int vl, int mode, u64 data)
3409 {
3410         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3411
3412         return dd->send_egress_err_status_cnt[35];
3413 }
3414
3415 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3416                                 const struct cntr_entry *entry,
3417                                 void *context, int vl, int mode, u64 data)
3418 {
3419         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3420
3421         return dd->send_egress_err_status_cnt[34];
3422 }
3423
3424 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3425                                 const struct cntr_entry *entry,
3426                                 void *context, int vl, int mode, u64 data)
3427 {
3428         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3429
3430         return dd->send_egress_err_status_cnt[33];
3431 }
3432
3433 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3434                                 const struct cntr_entry *entry,
3435                                 void *context, int vl, int mode, u64 data)
3436 {
3437         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3438
3439         return dd->send_egress_err_status_cnt[32];
3440 }
3441
3442 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3443                                 const struct cntr_entry *entry,
3444                                 void *context, int vl, int mode, u64 data)
3445 {
3446         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3447
3448         return dd->send_egress_err_status_cnt[31];
3449 }
3450
3451 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3452                                 const struct cntr_entry *entry,
3453                                 void *context, int vl, int mode, u64 data)
3454 {
3455         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3456
3457         return dd->send_egress_err_status_cnt[30];
3458 }
3459
3460 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3461                                 const struct cntr_entry *entry,
3462                                 void *context, int vl, int mode, u64 data)
3463 {
3464         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3465
3466         return dd->send_egress_err_status_cnt[29];
3467 }
3468
3469 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3470                                 const struct cntr_entry *entry,
3471                                 void *context, int vl, int mode, u64 data)
3472 {
3473         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3474
3475         return dd->send_egress_err_status_cnt[28];
3476 }
3477
3478 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3479                                 const struct cntr_entry *entry,
3480                                 void *context, int vl, int mode, u64 data)
3481 {
3482         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3483
3484         return dd->send_egress_err_status_cnt[27];
3485 }
3486
3487 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3488                                 const struct cntr_entry *entry,
3489                                 void *context, int vl, int mode, u64 data)
3490 {
3491         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3492
3493         return dd->send_egress_err_status_cnt[26];
3494 }
3495
3496 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3497                                 const struct cntr_entry *entry,
3498                                 void *context, int vl, int mode, u64 data)
3499 {
3500         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3501
3502         return dd->send_egress_err_status_cnt[25];
3503 }
3504
3505 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3506                                 const struct cntr_entry *entry,
3507                                 void *context, int vl, int mode, u64 data)
3508 {
3509         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3510
3511         return dd->send_egress_err_status_cnt[24];
3512 }
3513
3514 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3515                                 const struct cntr_entry *entry,
3516                                 void *context, int vl, int mode, u64 data)
3517 {
3518         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3519
3520         return dd->send_egress_err_status_cnt[23];
3521 }
3522
3523 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3524                                 const struct cntr_entry *entry,
3525                                 void *context, int vl, int mode, u64 data)
3526 {
3527         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3528
3529         return dd->send_egress_err_status_cnt[22];
3530 }
3531
3532 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3533                                 const struct cntr_entry *entry,
3534                                 void *context, int vl, int mode, u64 data)
3535 {
3536         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3537
3538         return dd->send_egress_err_status_cnt[21];
3539 }
3540
3541 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3542                                 const struct cntr_entry *entry,
3543                                 void *context, int vl, int mode, u64 data)
3544 {
3545         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3546
3547         return dd->send_egress_err_status_cnt[20];
3548 }
3549
3550 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3551                                 const struct cntr_entry *entry,
3552                                 void *context, int vl, int mode, u64 data)
3553 {
3554         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3555
3556         return dd->send_egress_err_status_cnt[19];
3557 }
3558
3559 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3560                                 const struct cntr_entry *entry,
3561                                 void *context, int vl, int mode, u64 data)
3562 {
3563         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3564
3565         return dd->send_egress_err_status_cnt[18];
3566 }
3567
3568 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3569                                 const struct cntr_entry *entry,
3570                                 void *context, int vl, int mode, u64 data)
3571 {
3572         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3573
3574         return dd->send_egress_err_status_cnt[17];
3575 }
3576
3577 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3578                                 const struct cntr_entry *entry,
3579                                 void *context, int vl, int mode, u64 data)
3580 {
3581         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3582
3583         return dd->send_egress_err_status_cnt[16];
3584 }
3585
3586 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3587                                            void *context, int vl, int mode,
3588                                            u64 data)
3589 {
3590         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3591
3592         return dd->send_egress_err_status_cnt[15];
3593 }
3594
3595 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3596                                                  void *context, int vl,
3597                                                  int mode, u64 data)
3598 {
3599         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3600
3601         return dd->send_egress_err_status_cnt[14];
3602 }
3603
3604 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3605                                                void *context, int vl, int mode,
3606                                                u64 data)
3607 {
3608         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3609
3610         return dd->send_egress_err_status_cnt[13];
3611 }
3612
3613 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3614                                         void *context, int vl, int mode,
3615                                         u64 data)
3616 {
3617         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3618
3619         return dd->send_egress_err_status_cnt[12];
3620 }
3621
3622 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3623                                 const struct cntr_entry *entry,
3624                                 void *context, int vl, int mode, u64 data)
3625 {
3626         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3627
3628         return dd->send_egress_err_status_cnt[11];
3629 }
3630
3631 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3632                                              void *context, int vl, int mode,
3633                                              u64 data)
3634 {
3635         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3636
3637         return dd->send_egress_err_status_cnt[10];
3638 }
3639
3640 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3641                                             void *context, int vl, int mode,
3642                                             u64 data)
3643 {
3644         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3645
3646         return dd->send_egress_err_status_cnt[9];
3647 }
3648
3649 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3650                                 const struct cntr_entry *entry,
3651                                 void *context, int vl, int mode, u64 data)
3652 {
3653         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3654
3655         return dd->send_egress_err_status_cnt[8];
3656 }
3657
3658 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3659                                 const struct cntr_entry *entry,
3660                                 void *context, int vl, int mode, u64 data)
3661 {
3662         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3663
3664         return dd->send_egress_err_status_cnt[7];
3665 }
3666
3667 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3668                                             void *context, int vl, int mode,
3669                                             u64 data)
3670 {
3671         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3672
3673         return dd->send_egress_err_status_cnt[6];
3674 }
3675
3676 static u64 access_tx_incorrect_link_state_err_cnt(
3677                                 const struct cntr_entry *entry,
3678                                 void *context, int vl, int mode, u64 data)
3679 {
3680         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3681
3682         return dd->send_egress_err_status_cnt[5];
3683 }
3684
3685 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3686                                       void *context, int vl, int mode,
3687                                       u64 data)
3688 {
3689         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3690
3691         return dd->send_egress_err_status_cnt[4];
3692 }
3693
3694 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3695                                 const struct cntr_entry *entry,
3696                                 void *context, int vl, int mode, u64 data)
3697 {
3698         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3699
3700         return dd->send_egress_err_status_cnt[3];
3701 }
3702
3703 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3704                                             void *context, int vl, int mode,
3705                                             u64 data)
3706 {
3707         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3708
3709         return dd->send_egress_err_status_cnt[2];
3710 }
3711
3712 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3713                                 const struct cntr_entry *entry,
3714                                 void *context, int vl, int mode, u64 data)
3715 {
3716         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3717
3718         return dd->send_egress_err_status_cnt[1];
3719 }
3720
3721 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3722                                 const struct cntr_entry *entry,
3723                                 void *context, int vl, int mode, u64 data)
3724 {
3725         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3726
3727         return dd->send_egress_err_status_cnt[0];
3728 }
3729
3730 /*
3731  * Software counters corresponding to each of the
3732  * error status bits within SendErrStatus
3733  */
3734 static u64 access_send_csr_write_bad_addr_err_cnt(
3735                                 const struct cntr_entry *entry,
3736                                 void *context, int vl, int mode, u64 data)
3737 {
3738         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739
3740         return dd->send_err_status_cnt[2];
3741 }
3742
3743 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3744                                                  void *context, int vl,
3745                                                  int mode, u64 data)
3746 {
3747         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748
3749         return dd->send_err_status_cnt[1];
3750 }
3751
3752 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3753                                       void *context, int vl, int mode,
3754                                       u64 data)
3755 {
3756         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3757
3758         return dd->send_err_status_cnt[0];
3759 }
3760
3761 /*
3762  * Software counters corresponding to each of the
3763  * error status bits within SendCtxtErrStatus
3764  */
3765 static u64 access_pio_write_out_of_bounds_err_cnt(
3766                                 const struct cntr_entry *entry,
3767                                 void *context, int vl, int mode, u64 data)
3768 {
3769         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770
3771         return dd->sw_ctxt_err_status_cnt[4];
3772 }
3773
3774 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3775                                              void *context, int vl, int mode,
3776                                              u64 data)
3777 {
3778         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779
3780         return dd->sw_ctxt_err_status_cnt[3];
3781 }
3782
3783 static u64 access_pio_write_crosses_boundary_err_cnt(
3784                                 const struct cntr_entry *entry,
3785                                 void *context, int vl, int mode, u64 data)
3786 {
3787         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3788
3789         return dd->sw_ctxt_err_status_cnt[2];
3790 }
3791
3792 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3793                                                 void *context, int vl,
3794                                                 int mode, u64 data)
3795 {
3796         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3797
3798         return dd->sw_ctxt_err_status_cnt[1];
3799 }
3800
3801 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3802                                                void *context, int vl, int mode,
3803                                                u64 data)
3804 {
3805         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3806
3807         return dd->sw_ctxt_err_status_cnt[0];
3808 }
3809
3810 /*
3811  * Software counters corresponding to each of the
3812  * error status bits within SendDmaEngErrStatus
3813  */
3814 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3815                                 const struct cntr_entry *entry,
3816                                 void *context, int vl, int mode, u64 data)
3817 {
3818         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819
3820         return dd->sw_send_dma_eng_err_status_cnt[23];
3821 }
3822
3823 static u64 access_sdma_header_storage_cor_err_cnt(
3824                                 const struct cntr_entry *entry,
3825                                 void *context, int vl, int mode, u64 data)
3826 {
3827         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828
3829         return dd->sw_send_dma_eng_err_status_cnt[22];
3830 }
3831
3832 static u64 access_sdma_packet_tracking_cor_err_cnt(
3833                                 const struct cntr_entry *entry,
3834                                 void *context, int vl, int mode, u64 data)
3835 {
3836         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837
3838         return dd->sw_send_dma_eng_err_status_cnt[21];
3839 }
3840
3841 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3842                                             void *context, int vl, int mode,
3843                                             u64 data)
3844 {
3845         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846
3847         return dd->sw_send_dma_eng_err_status_cnt[20];
3848 }
3849
3850 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3851                                               void *context, int vl, int mode,
3852                                               u64 data)
3853 {
3854         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3855
3856         return dd->sw_send_dma_eng_err_status_cnt[19];
3857 }
3858
3859 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3860                                 const struct cntr_entry *entry,
3861                                 void *context, int vl, int mode, u64 data)
3862 {
3863         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3864
3865         return dd->sw_send_dma_eng_err_status_cnt[18];
3866 }
3867
3868 static u64 access_sdma_header_storage_unc_err_cnt(
3869                                 const struct cntr_entry *entry,
3870                                 void *context, int vl, int mode, u64 data)
3871 {
3872         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3873
3874         return dd->sw_send_dma_eng_err_status_cnt[17];
3875 }
3876
3877 static u64 access_sdma_packet_tracking_unc_err_cnt(
3878                                 const struct cntr_entry *entry,
3879                                 void *context, int vl, int mode, u64 data)
3880 {
3881         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3882
3883         return dd->sw_send_dma_eng_err_status_cnt[16];
3884 }
3885
3886 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3887                                             void *context, int vl, int mode,
3888                                             u64 data)
3889 {
3890         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3891
3892         return dd->sw_send_dma_eng_err_status_cnt[15];
3893 }
3894
3895 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3896                                               void *context, int vl, int mode,
3897                                               u64 data)
3898 {
3899         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3900
3901         return dd->sw_send_dma_eng_err_status_cnt[14];
3902 }
3903
3904 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3905                                        void *context, int vl, int mode,
3906                                        u64 data)
3907 {
3908         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3909
3910         return dd->sw_send_dma_eng_err_status_cnt[13];
3911 }
3912
3913 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3914                                              void *context, int vl, int mode,
3915                                              u64 data)
3916 {
3917         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3918
3919         return dd->sw_send_dma_eng_err_status_cnt[12];
3920 }
3921
3922 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3923                                               void *context, int vl, int mode,
3924                                               u64 data)
3925 {
3926         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3927
3928         return dd->sw_send_dma_eng_err_status_cnt[11];
3929 }
3930
3931 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3932                                              void *context, int vl, int mode,
3933                                              u64 data)
3934 {
3935         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3936
3937         return dd->sw_send_dma_eng_err_status_cnt[10];
3938 }
3939
3940 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3941                                           void *context, int vl, int mode,
3942                                           u64 data)
3943 {
3944         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3945
3946         return dd->sw_send_dma_eng_err_status_cnt[9];
3947 }
3948
3949 static u64 access_sdma_packet_desc_overflow_err_cnt(
3950                                 const struct cntr_entry *entry,
3951                                 void *context, int vl, int mode, u64 data)
3952 {
3953         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3954
3955         return dd->sw_send_dma_eng_err_status_cnt[8];
3956 }
3957
3958 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3959                                                void *context, int vl,
3960                                                int mode, u64 data)
3961 {
3962         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3963
3964         return dd->sw_send_dma_eng_err_status_cnt[7];
3965 }
3966
3967 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3968                                     void *context, int vl, int mode, u64 data)
3969 {
3970         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3971
3972         return dd->sw_send_dma_eng_err_status_cnt[6];
3973 }
3974
3975 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3976                                         void *context, int vl, int mode,
3977                                         u64 data)
3978 {
3979         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3980
3981         return dd->sw_send_dma_eng_err_status_cnt[5];
3982 }
3983
3984 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3985                                           void *context, int vl, int mode,
3986                                           u64 data)
3987 {
3988         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3989
3990         return dd->sw_send_dma_eng_err_status_cnt[4];
3991 }
3992
3993 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3994                                 const struct cntr_entry *entry,
3995                                 void *context, int vl, int mode, u64 data)
3996 {
3997         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3998
3999         return dd->sw_send_dma_eng_err_status_cnt[3];
4000 }
4001
4002 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4003                                         void *context, int vl, int mode,
4004                                         u64 data)
4005 {
4006         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4007
4008         return dd->sw_send_dma_eng_err_status_cnt[2];
4009 }
4010
4011 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4012                                             void *context, int vl, int mode,
4013                                             u64 data)
4014 {
4015         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4016
4017         return dd->sw_send_dma_eng_err_status_cnt[1];
4018 }
4019
4020 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4021                                         void *context, int vl, int mode,
4022                                         u64 data)
4023 {
4024         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4025
4026         return dd->sw_send_dma_eng_err_status_cnt[0];
4027 }
4028
4029 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4030                                  void *context, int vl, int mode,
4031                                  u64 data)
4032 {
4033         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4034
4035         u64 val = 0;
4036         u64 csr = entry->csr;
4037
4038         val = read_write_csr(dd, csr, mode, data);
4039         if (mode == CNTR_MODE_R) {
4040                 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4041                         CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4042         } else if (mode == CNTR_MODE_W) {
4043                 dd->sw_rcv_bypass_packet_errors = 0;
4044         } else {
4045                 dd_dev_err(dd, "Invalid cntr register access mode");
4046                 return 0;
4047         }
4048         return val;
4049 }
4050
4051 #define def_access_sw_cpu(cntr) \
4052 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
4053                               void *context, int vl, int mode, u64 data)      \
4054 {                                                                             \
4055         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4056         return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
4057                               ppd->ibport_data.rvp.cntr, vl,                  \
4058                               mode, data);                                    \
4059 }
4060
4061 def_access_sw_cpu(rc_acks);
4062 def_access_sw_cpu(rc_qacks);
4063 def_access_sw_cpu(rc_delayed_comp);
4064
4065 #define def_access_ibp_counter(cntr) \
4066 static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
4067                                 void *context, int vl, int mode, u64 data)    \
4068 {                                                                             \
4069         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4070                                                                               \
4071         if (vl != CNTR_INVALID_VL)                                            \
4072                 return 0;                                                     \
4073                                                                               \
4074         return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4075                              mode, data);                                     \
4076 }
4077
4078 def_access_ibp_counter(loop_pkts);
4079 def_access_ibp_counter(rc_resends);
4080 def_access_ibp_counter(rnr_naks);
4081 def_access_ibp_counter(other_naks);
4082 def_access_ibp_counter(rc_timeouts);
4083 def_access_ibp_counter(pkt_drops);
4084 def_access_ibp_counter(dmawait);
4085 def_access_ibp_counter(rc_seqnak);
4086 def_access_ibp_counter(rc_dupreq);
4087 def_access_ibp_counter(rdma_seq);
4088 def_access_ibp_counter(unaligned);
4089 def_access_ibp_counter(seq_naks);
4090 def_access_ibp_counter(rc_crwaits);
4091
4092 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4093 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4094 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4095 [C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4096 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4097 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4098 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4099                         CNTR_NORMAL),
4100 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4101                         CNTR_NORMAL),
4102 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4103                         RCV_TID_FLOW_GEN_MISMATCH_CNT,
4104                         CNTR_NORMAL),
4105 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4106                         CNTR_NORMAL),
4107 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4108                         RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4109 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4110                         CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4111 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4112                         CNTR_NORMAL),
4113 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4114                         CNTR_NORMAL),
4115 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4116                         CNTR_NORMAL),
4117 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4118                         CNTR_NORMAL),
4119 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4120                         CNTR_NORMAL),
4121 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4122                         CNTR_NORMAL),
4123 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4124                         CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4125 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4126                         CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4127 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4128                               CNTR_SYNTH),
4129 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4130                             access_dc_rcv_err_cnt),
4131 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4132                                  CNTR_SYNTH),
4133 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4134                                   CNTR_SYNTH),
4135 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4136                                   CNTR_SYNTH),
4137 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4138                                    DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4139 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4140                                   DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4141                                   CNTR_SYNTH),
4142 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4143                                 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4144 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4145                                CNTR_SYNTH),
4146 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4147                               CNTR_SYNTH),
4148 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4149                                CNTR_SYNTH),
4150 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4151                                  CNTR_SYNTH),
4152 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4153                                 CNTR_SYNTH),
4154 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4155                                 CNTR_SYNTH),
4156 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4157                                CNTR_SYNTH),
4158 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4159                                  CNTR_SYNTH | CNTR_VL),
4160 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4161                                 CNTR_SYNTH | CNTR_VL),
4162 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4163 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4164                                  CNTR_SYNTH | CNTR_VL),
4165 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4166 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4167                                  CNTR_SYNTH | CNTR_VL),
4168 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4169                               CNTR_SYNTH),
4170 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4171                                  CNTR_SYNTH | CNTR_VL),
4172 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4173                                 CNTR_SYNTH),
4174 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4175                                    CNTR_SYNTH | CNTR_VL),
4176 [C_DC_TOTAL_CRC] =
4177         DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4178                          CNTR_SYNTH),
4179 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4180                                   CNTR_SYNTH),
4181 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4182                                   CNTR_SYNTH),
4183 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4184                                   CNTR_SYNTH),
4185 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4186                                   CNTR_SYNTH),
4187 [C_DC_CRC_MULT_LN] =
4188         DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4189                          CNTR_SYNTH),
4190 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4191                                     CNTR_SYNTH),
4192 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4193                                     CNTR_SYNTH),
4194 [C_DC_SEQ_CRC_CNT] =
4195         DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4196                          CNTR_SYNTH),
4197 [C_DC_ESC0_ONLY_CNT] =
4198         DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4199                          CNTR_SYNTH),
4200 [C_DC_ESC0_PLUS1_CNT] =
4201         DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4202                          CNTR_SYNTH),
4203 [C_DC_ESC0_PLUS2_CNT] =
4204         DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4205                          CNTR_SYNTH),
4206 [C_DC_REINIT_FROM_PEER_CNT] =
4207         DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4208                          CNTR_SYNTH),
4209 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4210                                   CNTR_SYNTH),
4211 [C_DC_MISC_FLG_CNT] =
4212         DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4213                          CNTR_SYNTH),
4214 [C_DC_PRF_GOOD_LTP_CNT] =
4215         DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4216 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4217         DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4218                          CNTR_SYNTH),
4219 [C_DC_PRF_RX_FLIT_CNT] =
4220         DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4221 [C_DC_PRF_TX_FLIT_CNT] =
4222         DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4223 [C_DC_PRF_CLK_CNTR] =
4224         DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4225 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4226         DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4227 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4228         DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4229                          CNTR_SYNTH),
4230 [C_DC_PG_STS_TX_SBE_CNT] =
4231         DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4232 [C_DC_PG_STS_TX_MBE_CNT] =
4233         DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4234                          CNTR_SYNTH),
4235 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4236                             access_sw_cpu_intr),
4237 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4238                             access_sw_cpu_rcv_limit),
4239 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4240                             access_sw_ctx0_seq_drop),
4241 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4242                             access_sw_vtx_wait),
4243 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4244                             access_sw_pio_wait),
4245 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4246                             access_sw_pio_drain),
4247 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4248                             access_sw_kmem_wait),
4249 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4250                             hfi1_access_sw_tid_wait),
4251 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4252                             access_sw_send_schedule),
4253 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4254                                       SEND_DMA_DESC_FETCHED_CNT, 0,
4255                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4256                                       dev_access_u32_csr),
4257 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4258                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4259                              access_sde_int_cnt),
4260 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4261                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4262                              access_sde_err_cnt),
4263 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4264                                   CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4265                                   access_sde_idle_int_cnt),
4266 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4267                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4268                                       access_sde_progress_int_cnt),
4269 /* MISC_ERR_STATUS */
4270 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4271                                 CNTR_NORMAL,
4272                                 access_misc_pll_lock_fail_err_cnt),
4273 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4274                                 CNTR_NORMAL,
4275                                 access_misc_mbist_fail_err_cnt),
4276 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4277                                 CNTR_NORMAL,
4278                                 access_misc_invalid_eep_cmd_err_cnt),
4279 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4280                                 CNTR_NORMAL,
4281                                 access_misc_efuse_done_parity_err_cnt),
4282 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4283                                 CNTR_NORMAL,
4284                                 access_misc_efuse_write_err_cnt),
4285 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4286                                 0, CNTR_NORMAL,
4287                                 access_misc_efuse_read_bad_addr_err_cnt),
4288 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4289                                 CNTR_NORMAL,
4290                                 access_misc_efuse_csr_parity_err_cnt),
4291 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4292                                 CNTR_NORMAL,
4293                                 access_misc_fw_auth_failed_err_cnt),
4294 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4295                                 CNTR_NORMAL,
4296                                 access_misc_key_mismatch_err_cnt),
4297 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4298                                 CNTR_NORMAL,
4299                                 access_misc_sbus_write_failed_err_cnt),
4300 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4301                                 CNTR_NORMAL,
4302                                 access_misc_csr_write_bad_addr_err_cnt),
4303 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4304                                 CNTR_NORMAL,
4305                                 access_misc_csr_read_bad_addr_err_cnt),
4306 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4307                                 CNTR_NORMAL,
4308                                 access_misc_csr_parity_err_cnt),
4309 /* CceErrStatus */
4310 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4311                                 CNTR_NORMAL,
4312                                 access_sw_cce_err_status_aggregated_cnt),
4313 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4314                                 CNTR_NORMAL,
4315                                 access_cce_msix_csr_parity_err_cnt),
4316 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4317                                 CNTR_NORMAL,
4318                                 access_cce_int_map_unc_err_cnt),
4319 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4320                                 CNTR_NORMAL,
4321                                 access_cce_int_map_cor_err_cnt),
4322 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4323                                 CNTR_NORMAL,
4324                                 access_cce_msix_table_unc_err_cnt),
4325 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4326                                 CNTR_NORMAL,
4327                                 access_cce_msix_table_cor_err_cnt),
4328 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4329                                 0, CNTR_NORMAL,
4330                                 access_cce_rxdma_conv_fifo_parity_err_cnt),
4331 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4332                                 0, CNTR_NORMAL,
4333                                 access_cce_rcpl_async_fifo_parity_err_cnt),
4334 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4335                                 CNTR_NORMAL,
4336                                 access_cce_seg_write_bad_addr_err_cnt),
4337 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4338                                 CNTR_NORMAL,
4339                                 access_cce_seg_read_bad_addr_err_cnt),
4340 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4341                                 CNTR_NORMAL,
4342                                 access_la_triggered_cnt),
4343 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4344                                 CNTR_NORMAL,
4345                                 access_cce_trgt_cpl_timeout_err_cnt),
4346 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4347                                 CNTR_NORMAL,
4348                                 access_pcic_receive_parity_err_cnt),
4349 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4350                                 CNTR_NORMAL,
4351                                 access_pcic_transmit_back_parity_err_cnt),
4352 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4353                                 0, CNTR_NORMAL,
4354                                 access_pcic_transmit_front_parity_err_cnt),
4355 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4356                                 CNTR_NORMAL,
4357                                 access_pcic_cpl_dat_q_unc_err_cnt),
4358 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4359                                 CNTR_NORMAL,
4360                                 access_pcic_cpl_hd_q_unc_err_cnt),
4361 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4362                                 CNTR_NORMAL,
4363                                 access_pcic_post_dat_q_unc_err_cnt),
4364 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4365                                 CNTR_NORMAL,
4366                                 access_pcic_post_hd_q_unc_err_cnt),
4367 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4368                                 CNTR_NORMAL,
4369                                 access_pcic_retry_sot_mem_unc_err_cnt),
4370 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4371                                 CNTR_NORMAL,
4372                                 access_pcic_retry_mem_unc_err),
4373 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4374                                 CNTR_NORMAL,
4375                                 access_pcic_n_post_dat_q_parity_err_cnt),
4376 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4377                                 CNTR_NORMAL,
4378                                 access_pcic_n_post_h_q_parity_err_cnt),
4379 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4380                                 CNTR_NORMAL,
4381                                 access_pcic_cpl_dat_q_cor_err_cnt),
4382 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4383                                 CNTR_NORMAL,
4384                                 access_pcic_cpl_hd_q_cor_err_cnt),
4385 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4386                                 CNTR_NORMAL,
4387                                 access_pcic_post_dat_q_cor_err_cnt),
4388 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4389                                 CNTR_NORMAL,
4390                                 access_pcic_post_hd_q_cor_err_cnt),
4391 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4392                                 CNTR_NORMAL,
4393                                 access_pcic_retry_sot_mem_cor_err_cnt),
4394 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4395                                 CNTR_NORMAL,
4396                                 access_pcic_retry_mem_cor_err_cnt),
4397 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4398                                 "CceCli1AsyncFifoDbgParityError", 0, 0,
4399                                 CNTR_NORMAL,
4400                                 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4401 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4402                                 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4403                                 CNTR_NORMAL,
4404                                 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4405                                 ),
4406 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4407                         "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4408                         CNTR_NORMAL,
4409                         access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4410 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4411                         "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4412                         CNTR_NORMAL,
4413                         access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4414 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4415                         0, CNTR_NORMAL,
4416                         access_cce_cli2_async_fifo_parity_err_cnt),
4417 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4418                         CNTR_NORMAL,
4419                         access_cce_csr_cfg_bus_parity_err_cnt),
4420 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4421                         0, CNTR_NORMAL,
4422                         access_cce_cli0_async_fifo_parity_err_cnt),
4423 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4424                         CNTR_NORMAL,
4425                         access_cce_rspd_data_parity_err_cnt),
4426 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4427                         CNTR_NORMAL,
4428                         access_cce_trgt_access_err_cnt),
4429 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4430                         0, CNTR_NORMAL,
4431                         access_cce_trgt_async_fifo_parity_err_cnt),
4432 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4433                         CNTR_NORMAL,
4434                         access_cce_csr_write_bad_addr_err_cnt),
4435 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4436                         CNTR_NORMAL,
4437                         access_cce_csr_read_bad_addr_err_cnt),
4438 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4439                         CNTR_NORMAL,
4440                         access_ccs_csr_parity_err_cnt),
4441
4442 /* RcvErrStatus */
4443 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4444                         CNTR_NORMAL,
4445                         access_rx_csr_parity_err_cnt),
4446 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4447                         CNTR_NORMAL,
4448                         access_rx_csr_write_bad_addr_err_cnt),
4449 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4450                         CNTR_NORMAL,
4451                         access_rx_csr_read_bad_addr_err_cnt),
4452 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4453                         CNTR_NORMAL,
4454                         access_rx_dma_csr_unc_err_cnt),
4455 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4456                         CNTR_NORMAL,
4457                         access_rx_dma_dq_fsm_encoding_err_cnt),
4458 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4459                         CNTR_NORMAL,
4460                         access_rx_dma_eq_fsm_encoding_err_cnt),
4461 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4462                         CNTR_NORMAL,
4463                         access_rx_dma_csr_parity_err_cnt),
4464 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4465                         CNTR_NORMAL,
4466                         access_rx_rbuf_data_cor_err_cnt),
4467 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4468                         CNTR_NORMAL,
4469                         access_rx_rbuf_data_unc_err_cnt),
4470 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4471                         CNTR_NORMAL,
4472                         access_rx_dma_data_fifo_rd_cor_err_cnt),
4473 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4474                         CNTR_NORMAL,
4475                         access_rx_dma_data_fifo_rd_unc_err_cnt),
4476 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4477                         CNTR_NORMAL,
4478                         access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4479 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4480                         CNTR_NORMAL,
4481                         access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4482 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4483                         CNTR_NORMAL,
4484                         access_rx_rbuf_desc_part2_cor_err_cnt),
4485 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4486                         CNTR_NORMAL,
4487                         access_rx_rbuf_desc_part2_unc_err_cnt),
4488 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4489                         CNTR_NORMAL,
4490                         access_rx_rbuf_desc_part1_cor_err_cnt),
4491 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4492                         CNTR_NORMAL,
4493                         access_rx_rbuf_desc_part1_unc_err_cnt),
4494 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4495                         CNTR_NORMAL,
4496                         access_rx_hq_intr_fsm_err_cnt),
4497 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4498                         CNTR_NORMAL,
4499                         access_rx_hq_intr_csr_parity_err_cnt),
4500 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4501                         CNTR_NORMAL,
4502                         access_rx_lookup_csr_parity_err_cnt),
4503 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4504                         CNTR_NORMAL,
4505                         access_rx_lookup_rcv_array_cor_err_cnt),
4506 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4507                         CNTR_NORMAL,
4508                         access_rx_lookup_rcv_array_unc_err_cnt),
4509 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4510                         0, CNTR_NORMAL,
4511                         access_rx_lookup_des_part2_parity_err_cnt),
4512 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4513                         0, CNTR_NORMAL,
4514                         access_rx_lookup_des_part1_unc_cor_err_cnt),
4515 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4516                         CNTR_NORMAL,
4517                         access_rx_lookup_des_part1_unc_err_cnt),
4518 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4519                         CNTR_NORMAL,
4520                         access_rx_rbuf_next_free_buf_cor_err_cnt),
4521 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4522                         CNTR_NORMAL,
4523                         access_rx_rbuf_next_free_buf_unc_err_cnt),
4524 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4525                         "RxRbufFlInitWrAddrParityErr", 0, 0,
4526                         CNTR_NORMAL,
4527                         access_rbuf_fl_init_wr_addr_parity_err_cnt),
4528 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4529                         0, CNTR_NORMAL,
4530                         access_rx_rbuf_fl_initdone_parity_err_cnt),
4531 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4532                         0, CNTR_NORMAL,
4533                         access_rx_rbuf_fl_write_addr_parity_err_cnt),
4534 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4535                         CNTR_NORMAL,
4536                         access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4537 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4538                         CNTR_NORMAL,
4539                         access_rx_rbuf_empty_err_cnt),
4540 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4541                         CNTR_NORMAL,
4542                         access_rx_rbuf_full_err_cnt),
4543 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4544                         CNTR_NORMAL,
4545                         access_rbuf_bad_lookup_err_cnt),
4546 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4547                         CNTR_NORMAL,
4548                         access_rbuf_ctx_id_parity_err_cnt),
4549 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4550                         CNTR_NORMAL,
4551                         access_rbuf_csr_qeopdw_parity_err_cnt),
4552 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4553                         "RxRbufCsrQNumOfPktParityErr", 0, 0,
4554                         CNTR_NORMAL,
4555                         access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4556 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4557                         "RxRbufCsrQTlPtrParityErr", 0, 0,
4558                         CNTR_NORMAL,
4559                         access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4560 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4561                         0, CNTR_NORMAL,
4562                         access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4563 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4564                         0, CNTR_NORMAL,
4565                         access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4566 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4567                         0, 0, CNTR_NORMAL,
4568                         access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4569 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4570                         0, CNTR_NORMAL,
4571                         access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4572 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4573                         "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4574                         CNTR_NORMAL,
4575                         access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4576 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4577                         0, CNTR_NORMAL,
4578                         access_rx_rbuf_block_list_read_cor_err_cnt),
4579 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4580                         0, CNTR_NORMAL,
4581                         access_rx_rbuf_block_list_read_unc_err_cnt),
4582 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4583                         CNTR_NORMAL,
4584                         access_rx_rbuf_lookup_des_cor_err_cnt),
4585 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4586                         CNTR_NORMAL,
4587                         access_rx_rbuf_lookup_des_unc_err_cnt),
4588 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4589                         "RxRbufLookupDesRegUncCorErr", 0, 0,
4590                         CNTR_NORMAL,
4591                         access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4592 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4593                         CNTR_NORMAL,
4594                         access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4595 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4596                         CNTR_NORMAL,
4597                         access_rx_rbuf_free_list_cor_err_cnt),
4598 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4599                         CNTR_NORMAL,
4600                         access_rx_rbuf_free_list_unc_err_cnt),
4601 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4602                         CNTR_NORMAL,
4603                         access_rx_rcv_fsm_encoding_err_cnt),
4604 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4605                         CNTR_NORMAL,
4606                         access_rx_dma_flag_cor_err_cnt),
4607 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4608                         CNTR_NORMAL,
4609                         access_rx_dma_flag_unc_err_cnt),
4610 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4611                         CNTR_NORMAL,
4612                         access_rx_dc_sop_eop_parity_err_cnt),
4613 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4614                         CNTR_NORMAL,
4615                         access_rx_rcv_csr_parity_err_cnt),
4616 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4617                         CNTR_NORMAL,
4618                         access_rx_rcv_qp_map_table_cor_err_cnt),
4619 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4620                         CNTR_NORMAL,
4621                         access_rx_rcv_qp_map_table_unc_err_cnt),
4622 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4623                         CNTR_NORMAL,
4624                         access_rx_rcv_data_cor_err_cnt),
4625 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4626                         CNTR_NORMAL,
4627                         access_rx_rcv_data_unc_err_cnt),
4628 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4629                         CNTR_NORMAL,
4630                         access_rx_rcv_hdr_cor_err_cnt),
4631 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4632                         CNTR_NORMAL,
4633                         access_rx_rcv_hdr_unc_err_cnt),
4634 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4635                         CNTR_NORMAL,
4636                         access_rx_dc_intf_parity_err_cnt),
4637 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4638                         CNTR_NORMAL,
4639                         access_rx_dma_csr_cor_err_cnt),
4640 /* SendPioErrStatus */
4641 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4642                         CNTR_NORMAL,
4643                         access_pio_pec_sop_head_parity_err_cnt),
4644 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4645                         CNTR_NORMAL,
4646                         access_pio_pcc_sop_head_parity_err_cnt),
4647 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4648                         0, 0, CNTR_NORMAL,
4649                         access_pio_last_returned_cnt_parity_err_cnt),
4650 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4651                         0, CNTR_NORMAL,
4652                         access_pio_current_free_cnt_parity_err_cnt),
4653 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4654                         CNTR_NORMAL,
4655                         access_pio_reserved_31_err_cnt),
4656 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4657                         CNTR_NORMAL,
4658                         access_pio_reserved_30_err_cnt),
4659 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4660                         CNTR_NORMAL,
4661                         access_pio_ppmc_sop_len_err_cnt),
4662 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4663                         CNTR_NORMAL,
4664                         access_pio_ppmc_bqc_mem_parity_err_cnt),
4665 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4666                         CNTR_NORMAL,
4667                         access_pio_vl_fifo_parity_err_cnt),
4668 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4669                         CNTR_NORMAL,
4670                         access_pio_vlf_sop_parity_err_cnt),
4671 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4672                         CNTR_NORMAL,
4673                         access_pio_vlf_v1_len_parity_err_cnt),
4674 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4675                         CNTR_NORMAL,
4676                         access_pio_block_qw_count_parity_err_cnt),
4677 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4678                         CNTR_NORMAL,
4679                         access_pio_write_qw_valid_parity_err_cnt),
4680 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4681                         CNTR_NORMAL,
4682                         access_pio_state_machine_err_cnt),
4683 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4684                         CNTR_NORMAL,
4685                         access_pio_write_data_parity_err_cnt),
4686 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4687                         CNTR_NORMAL,
4688                         access_pio_host_addr_mem_cor_err_cnt),
4689 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4690                         CNTR_NORMAL,
4691                         access_pio_host_addr_mem_unc_err_cnt),
4692 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4693                         CNTR_NORMAL,
4694                         access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4695 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4696                         CNTR_NORMAL,
4697                         access_pio_init_sm_in_err_cnt),
4698 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4699                         CNTR_NORMAL,
4700                         access_pio_ppmc_pbl_fifo_err_cnt),
4701 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4702                         0, CNTR_NORMAL,
4703                         access_pio_credit_ret_fifo_parity_err_cnt),
4704 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4705                         CNTR_NORMAL,
4706                         access_pio_v1_len_mem_bank1_cor_err_cnt),
4707 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4708                         CNTR_NORMAL,
4709                         access_pio_v1_len_mem_bank0_cor_err_cnt),
4710 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4711                         CNTR_NORMAL,
4712                         access_pio_v1_len_mem_bank1_unc_err_cnt),
4713 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4714                         CNTR_NORMAL,
4715                         access_pio_v1_len_mem_bank0_unc_err_cnt),
4716 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4717                         CNTR_NORMAL,
4718                         access_pio_sm_pkt_reset_parity_err_cnt),
4719 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4720                         CNTR_NORMAL,
4721                         access_pio_pkt_evict_fifo_parity_err_cnt),
4722 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4723                         "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4724                         CNTR_NORMAL,
4725                         access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4726 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4727                         CNTR_NORMAL,
4728                         access_pio_sbrdctl_crrel_parity_err_cnt),
4729 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4730                         CNTR_NORMAL,
4731                         access_pio_pec_fifo_parity_err_cnt),
4732 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4733                         CNTR_NORMAL,
4734                         access_pio_pcc_fifo_parity_err_cnt),
4735 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4736                         CNTR_NORMAL,
4737                         access_pio_sb_mem_fifo1_err_cnt),
4738 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4739                         CNTR_NORMAL,
4740                         access_pio_sb_mem_fifo0_err_cnt),
4741 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4742                         CNTR_NORMAL,
4743                         access_pio_csr_parity_err_cnt),
4744 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4745                         CNTR_NORMAL,
4746                         access_pio_write_addr_parity_err_cnt),
4747 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4748                         CNTR_NORMAL,
4749                         access_pio_write_bad_ctxt_err_cnt),
4750 /* SendDmaErrStatus */
4751 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4752                         0, CNTR_NORMAL,
4753                         access_sdma_pcie_req_tracking_cor_err_cnt),
4754 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4755                         0, CNTR_NORMAL,
4756                         access_sdma_pcie_req_tracking_unc_err_cnt),
4757 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4758                         CNTR_NORMAL,
4759                         access_sdma_csr_parity_err_cnt),
4760 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4761                         CNTR_NORMAL,
4762                         access_sdma_rpy_tag_err_cnt),
4763 /* SendEgressErrStatus */
4764 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4765                         CNTR_NORMAL,
4766                         access_tx_read_pio_memory_csr_unc_err_cnt),
4767 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4768                         0, CNTR_NORMAL,
4769                         access_tx_read_sdma_memory_csr_err_cnt),
4770 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4771                         CNTR_NORMAL,
4772                         access_tx_egress_fifo_cor_err_cnt),
4773 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4774                         CNTR_NORMAL,
4775                         access_tx_read_pio_memory_cor_err_cnt),
4776 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4777                         CNTR_NORMAL,
4778                         access_tx_read_sdma_memory_cor_err_cnt),
4779 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4780                         CNTR_NORMAL,
4781                         access_tx_sb_hdr_cor_err_cnt),
4782 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4783                         CNTR_NORMAL,
4784                         access_tx_credit_overrun_err_cnt),
4785 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4786                         CNTR_NORMAL,
4787                         access_tx_launch_fifo8_cor_err_cnt),
4788 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4789                         CNTR_NORMAL,
4790                         access_tx_launch_fifo7_cor_err_cnt),
4791 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4792                         CNTR_NORMAL,
4793                         access_tx_launch_fifo6_cor_err_cnt),
4794 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4795                         CNTR_NORMAL,
4796                         access_tx_launch_fifo5_cor_err_cnt),
4797 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4798                         CNTR_NORMAL,
4799                         access_tx_launch_fifo4_cor_err_cnt),
4800 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4801                         CNTR_NORMAL,
4802                         access_tx_launch_fifo3_cor_err_cnt),
4803 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4804                         CNTR_NORMAL,
4805                         access_tx_launch_fifo2_cor_err_cnt),
4806 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4807                         CNTR_NORMAL,
4808                         access_tx_launch_fifo1_cor_err_cnt),
4809 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4810                         CNTR_NORMAL,
4811                         access_tx_launch_fifo0_cor_err_cnt),
4812 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4813                         CNTR_NORMAL,
4814                         access_tx_credit_return_vl_err_cnt),
4815 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4816                         CNTR_NORMAL,
4817                         access_tx_hcrc_insertion_err_cnt),
4818 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4819                         CNTR_NORMAL,
4820                         access_tx_egress_fifo_unc_err_cnt),
4821 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4822                         CNTR_NORMAL,
4823                         access_tx_read_pio_memory_unc_err_cnt),
4824 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4825                         CNTR_NORMAL,
4826                         access_tx_read_sdma_memory_unc_err_cnt),
4827 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4828                         CNTR_NORMAL,
4829                         access_tx_sb_hdr_unc_err_cnt),
4830 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4831                         CNTR_NORMAL,
4832                         access_tx_credit_return_partiy_err_cnt),
4833 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4834                         0, 0, CNTR_NORMAL,
4835                         access_tx_launch_fifo8_unc_or_parity_err_cnt),
4836 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4837                         0, 0, CNTR_NORMAL,
4838                         access_tx_launch_fifo7_unc_or_parity_err_cnt),
4839 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4840                         0, 0, CNTR_NORMAL,
4841                         access_tx_launch_fifo6_unc_or_parity_err_cnt),
4842 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4843                         0, 0, CNTR_NORMAL,
4844                         access_tx_launch_fifo5_unc_or_parity_err_cnt),
4845 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4846                         0, 0, CNTR_NORMAL,
4847                         access_tx_launch_fifo4_unc_or_parity_err_cnt),
4848 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4849                         0, 0, CNTR_NORMAL,
4850                         access_tx_launch_fifo3_unc_or_parity_err_cnt),
4851 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4852                         0, 0, CNTR_NORMAL,
4853                         access_tx_launch_fifo2_unc_or_parity_err_cnt),
4854 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4855                         0, 0, CNTR_NORMAL,
4856                         access_tx_launch_fifo1_unc_or_parity_err_cnt),
4857 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4858                         0, 0, CNTR_NORMAL,
4859                         access_tx_launch_fifo0_unc_or_parity_err_cnt),
4860 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4861                         0, 0, CNTR_NORMAL,
4862                         access_tx_sdma15_disallowed_packet_err_cnt),
4863 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4864                         0, 0, CNTR_NORMAL,
4865                         access_tx_sdma14_disallowed_packet_err_cnt),
4866 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4867                         0, 0, CNTR_NORMAL,
4868                         access_tx_sdma13_disallowed_packet_err_cnt),
4869 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4870                         0, 0, CNTR_NORMAL,
4871                         access_tx_sdma12_disallowed_packet_err_cnt),
4872 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4873                         0, 0, CNTR_NORMAL,
4874                         access_tx_sdma11_disallowed_packet_err_cnt),
4875 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4876                         0, 0, CNTR_NORMAL,
4877                         access_tx_sdma10_disallowed_packet_err_cnt),
4878 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4879                         0, 0, CNTR_NORMAL,
4880                         access_tx_sdma9_disallowed_packet_err_cnt),
4881 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4882                         0, 0, CNTR_NORMAL,
4883                         access_tx_sdma8_disallowed_packet_err_cnt),
4884 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4885                         0, 0, CNTR_NORMAL,
4886                         access_tx_sdma7_disallowed_packet_err_cnt),
4887 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4888                         0, 0, CNTR_NORMAL,
4889                         access_tx_sdma6_disallowed_packet_err_cnt),
4890 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4891                         0, 0, CNTR_NORMAL,
4892                         access_tx_sdma5_disallowed_packet_err_cnt),
4893 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4894                         0, 0, CNTR_NORMAL,
4895                         access_tx_sdma4_disallowed_packet_err_cnt),
4896 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4897                         0, 0, CNTR_NORMAL,
4898                         access_tx_sdma3_disallowed_packet_err_cnt),
4899 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4900                         0, 0, CNTR_NORMAL,
4901                         access_tx_sdma2_disallowed_packet_err_cnt),
4902 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4903                         0, 0, CNTR_NORMAL,
4904                         access_tx_sdma1_disallowed_packet_err_cnt),
4905 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4906                         0, 0, CNTR_NORMAL,
4907                         access_tx_sdma0_disallowed_packet_err_cnt),
4908 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4909                         CNTR_NORMAL,
4910                         access_tx_config_parity_err_cnt),
4911 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4912                         CNTR_NORMAL,
4913                         access_tx_sbrd_ctl_csr_parity_err_cnt),
4914 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4915                         CNTR_NORMAL,
4916                         access_tx_launch_csr_parity_err_cnt),
4917 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4918                         CNTR_NORMAL,
4919                         access_tx_illegal_vl_err_cnt),
4920 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4921                         "TxSbrdCtlStateMachineParityErr", 0, 0,
4922                         CNTR_NORMAL,
4923                         access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4924 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4925                         CNTR_NORMAL,
4926                         access_egress_reserved_10_err_cnt),
4927 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4928                         CNTR_NORMAL,
4929                         access_egress_reserved_9_err_cnt),
4930 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4931                         0, 0, CNTR_NORMAL,
4932                         access_tx_sdma_launch_intf_parity_err_cnt),
4933 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4934                         CNTR_NORMAL,
4935                         access_tx_pio_launch_intf_parity_err_cnt),
4936 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4937                         CNTR_NORMAL,
4938                         access_egress_reserved_6_err_cnt),
4939 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4940                         CNTR_NORMAL,
4941                         access_tx_incorrect_link_state_err_cnt),
4942 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4943                         CNTR_NORMAL,
4944                         access_tx_linkdown_err_cnt),
4945 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4946                         "EgressFifoUnderrunOrParityErr", 0, 0,
4947                         CNTR_NORMAL,
4948                         access_tx_egress_fifi_underrun_or_parity_err_cnt),
4949 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4950                         CNTR_NORMAL,
4951                         access_egress_reserved_2_err_cnt),
4952 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4953                         CNTR_NORMAL,
4954                         access_tx_pkt_integrity_mem_unc_err_cnt),
4955 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4956                         CNTR_NORMAL,
4957                         access_tx_pkt_integrity_mem_cor_err_cnt),
4958 /* SendErrStatus */
4959 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4960                         CNTR_NORMAL,
4961                         access_send_csr_write_bad_addr_err_cnt),
4962 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4963                         CNTR_NORMAL,
4964                         access_send_csr_read_bad_addr_err_cnt),
4965 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4966                         CNTR_NORMAL,
4967                         access_send_csr_parity_cnt),
4968 /* SendCtxtErrStatus */
4969 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4970                         CNTR_NORMAL,
4971                         access_pio_write_out_of_bounds_err_cnt),
4972 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4973                         CNTR_NORMAL,
4974                         access_pio_write_overflow_err_cnt),
4975 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4976                         0, 0, CNTR_NORMAL,
4977                         access_pio_write_crosses_boundary_err_cnt),
4978 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4979                         CNTR_NORMAL,
4980                         access_pio_disallowed_packet_err_cnt),
4981 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4982                         CNTR_NORMAL,
4983                         access_pio_inconsistent_sop_err_cnt),
4984 /* SendDmaEngErrStatus */
4985 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4986                         0, 0, CNTR_NORMAL,
4987                         access_sdma_header_request_fifo_cor_err_cnt),
4988 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4989                         CNTR_NORMAL,
4990                         access_sdma_header_storage_cor_err_cnt),
4991 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4992                         CNTR_NORMAL,
4993                         access_sdma_packet_tracking_cor_err_cnt),
4994 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4995                         CNTR_NORMAL,
4996                         access_sdma_assembly_cor_err_cnt),
4997 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4998                         CNTR_NORMAL,
4999                         access_sdma_desc_table_cor_err_cnt),
5000 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5001                         0, 0, CNTR_NORMAL,
5002                         access_sdma_header_request_fifo_unc_err_cnt),
5003 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5004                         CNTR_NORMAL,
5005                         access_sdma_header_storage_unc_err_cnt),
5006 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5007                         CNTR_NORMAL,
5008                         access_sdma_packet_tracking_unc_err_cnt),
5009 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5010                         CNTR_NORMAL,
5011                         access_sdma_assembly_unc_err_cnt),
5012 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5013                         CNTR_NORMAL,
5014                         access_sdma_desc_table_unc_err_cnt),
5015 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5016                         CNTR_NORMAL,
5017                         access_sdma_timeout_err_cnt),
5018 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5019                         CNTR_NORMAL,
5020                         access_sdma_header_length_err_cnt),
5021 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5022                         CNTR_NORMAL,
5023                         access_sdma_header_address_err_cnt),
5024 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5025                         CNTR_NORMAL,
5026                         access_sdma_header_select_err_cnt),
5027 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5028                         CNTR_NORMAL,
5029                         access_sdma_reserved_9_err_cnt),
5030 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5031                         CNTR_NORMAL,
5032                         access_sdma_packet_desc_overflow_err_cnt),
5033 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5034                         CNTR_NORMAL,
5035                         access_sdma_length_mismatch_err_cnt),
5036 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5037                         CNTR_NORMAL,
5038                         access_sdma_halt_err_cnt),
5039 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5040                         CNTR_NORMAL,
5041                         access_sdma_mem_read_err_cnt),
5042 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5043                         CNTR_NORMAL,
5044                         access_sdma_first_desc_err_cnt),
5045 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5046                         CNTR_NORMAL,
5047                         access_sdma_tail_out_of_bounds_err_cnt),
5048 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5049                         CNTR_NORMAL,
5050                         access_sdma_too_long_err_cnt),
5051 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5052                         CNTR_NORMAL,
5053                         access_sdma_gen_mismatch_err_cnt),
5054 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5055                         CNTR_NORMAL,
5056                         access_sdma_wrong_dw_err_cnt),
5057 };
5058
5059 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5060 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5061                         CNTR_NORMAL),
5062 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5063                         CNTR_NORMAL),
5064 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5065                         CNTR_NORMAL),
5066 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5067                         CNTR_NORMAL),
5068 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5069                         CNTR_NORMAL),
5070 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5071                         CNTR_NORMAL),
5072 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5073                         CNTR_NORMAL),
5074 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5075 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5076 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5077 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5078                                       CNTR_SYNTH | CNTR_VL),
5079 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5080                                      CNTR_SYNTH | CNTR_VL),
5081 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5082                                       CNTR_SYNTH | CNTR_VL),
5083 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5084 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5085 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5086                              access_sw_link_dn_cnt),
5087 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5088                            access_sw_link_up_cnt),
5089 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5090                                  access_sw_unknown_frame_cnt),
5091 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5092                              access_sw_xmit_discards),
5093 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5094                                 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5095                                 access_sw_xmit_discards),
5096 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5097                                  access_xmit_constraint_errs),
5098 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5099                                 access_rcv_constraint_errs),
5100 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5101 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5102 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5103 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5104 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5105 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5106 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5107 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5108 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5109 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5110 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5111 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5112 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5113 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5114                                access_sw_cpu_rc_acks),
5115 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5116                                 access_sw_cpu_rc_qacks),
5117 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5118                                        access_sw_cpu_rc_delayed_comp),
5119 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5120 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5121 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5122 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5123 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5124 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5125 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5126 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5127 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5128 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5129 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5130 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5131 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5132 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5133 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5134 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5135 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5136 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5137 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5138 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5139 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5140 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5141 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5142 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5143 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5144 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5145 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5146 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5147 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5148 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5149 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5150 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5151 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5152 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5153 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5154 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5155 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5156 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5157 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5158 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5159 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5160 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5161 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5162 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5163 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5164 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5165 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5166 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5167 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5168 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5169 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5170 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5171 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5172 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5173 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5174 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5175 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5176 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5177 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5178 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5179 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5180 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5181 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5182 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5183 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5184 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5185 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5186 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5187 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5188 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5189 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5190 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5191 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5192 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5193 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5194 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5195 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5196 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5197 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5198 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5199 };
5200
5201 /* ======================================================================== */
5202
5203 /* return true if this is chip revision revision a */
5204 int is_ax(struct hfi1_devdata *dd)
5205 {
5206         u8 chip_rev_minor =
5207                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5208                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5209         return (chip_rev_minor & 0xf0) == 0;
5210 }
5211
5212 /* return true if this is chip revision revision b */
5213 int is_bx(struct hfi1_devdata *dd)
5214 {
5215         u8 chip_rev_minor =
5216                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5217                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5218         return (chip_rev_minor & 0xF0) == 0x10;
5219 }
5220
5221 /* return true is kernel urg disabled for rcd */
5222 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5223 {
5224         u64 mask;
5225         u32 is = IS_RCVURGENT_START + rcd->ctxt;
5226         u8 bit = is % 64;
5227
5228         mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5229         return !(mask & BIT_ULL(bit));
5230 }
5231
5232 /*
5233  * Append string s to buffer buf.  Arguments curp and len are the current
5234  * position and remaining length, respectively.
5235  *
5236  * return 0 on success, 1 on out of room
5237  */
5238 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5239 {
5240         char *p = *curp;
5241         int len = *lenp;
5242         int result = 0; /* success */
5243         char c;
5244
5245         /* add a comma, if first in the buffer */
5246         if (p != buf) {
5247                 if (len == 0) {
5248                         result = 1; /* out of room */
5249                         goto done;
5250                 }
5251                 *p++ = ',';
5252                 len--;
5253         }
5254
5255         /* copy the string */
5256         while ((c = *s++) != 0) {
5257                 if (len == 0) {
5258                         result = 1; /* out of room */
5259                         goto done;
5260                 }
5261                 *p++ = c;
5262                 len--;
5263         }
5264
5265 done:
5266         /* write return values */
5267         *curp = p;
5268         *lenp = len;
5269
5270         return result;
5271 }
5272
5273 /*
5274  * Using the given flag table, print a comma separated string into
5275  * the buffer.  End in '*' if the buffer is too short.
5276  */
5277 static char *flag_string(char *buf, int buf_len, u64 flags,
5278                          const struct flag_table *table, int table_size)
5279 {
5280         char extra[32];
5281         char *p = buf;
5282         int len = buf_len;
5283         int no_room = 0;
5284         int i;
5285
5286         /* make sure there is at least 2 so we can form "*" */
5287         if (len < 2)
5288                 return "";
5289
5290         len--;  /* leave room for a nul */
5291         for (i = 0; i < table_size; i++) {
5292                 if (flags & table[i].flag) {
5293                         no_room = append_str(buf, &p, &len, table[i].str);
5294                         if (no_room)
5295                                 break;
5296                         flags &= ~table[i].flag;
5297                 }
5298         }
5299
5300         /* any undocumented bits left? */
5301         if (!no_room && flags) {
5302                 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5303                 no_room = append_str(buf, &p, &len, extra);
5304         }
5305
5306         /* add * if ran out of room */
5307         if (no_room) {
5308                 /* may need to back up to add space for a '*' */
5309                 if (len == 0)
5310                         --p;
5311                 *p++ = '*';
5312         }
5313
5314         /* add final nul - space already allocated above */
5315         *p = 0;
5316         return buf;
5317 }
5318
5319 /* first 8 CCE error interrupt source names */
5320 static const char * const cce_misc_names[] = {
5321         "CceErrInt",            /* 0 */
5322         "RxeErrInt",            /* 1 */
5323         "MiscErrInt",           /* 2 */
5324         "Reserved3",            /* 3 */
5325         "PioErrInt",            /* 4 */
5326         "SDmaErrInt",           /* 5 */
5327         "EgressErrInt",         /* 6 */
5328         "TxeErrInt"             /* 7 */
5329 };
5330
5331 /*
5332  * Return the miscellaneous error interrupt name.
5333  */
5334 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5335 {
5336         if (source < ARRAY_SIZE(cce_misc_names))
5337                 strscpy_pad(buf, cce_misc_names[source], bsize);
5338         else
5339                 snprintf(buf, bsize, "Reserved%u",
5340                          source + IS_GENERAL_ERR_START);
5341
5342         return buf;
5343 }
5344
5345 /*
5346  * Return the SDMA engine error interrupt name.
5347  */
5348 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5349 {
5350         snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5351         return buf;
5352 }
5353
5354 /*
5355  * Return the send context error interrupt name.
5356  */
5357 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5358 {
5359         snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5360         return buf;
5361 }
5362
5363 static const char * const various_names[] = {
5364         "PbcInt",
5365         "GpioAssertInt",
5366         "Qsfp1Int",
5367         "Qsfp2Int",
5368         "TCritInt"
5369 };
5370
5371 /*
5372  * Return the various interrupt name.
5373  */
5374 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5375 {
5376         if (source < ARRAY_SIZE(various_names))
5377                 strscpy_pad(buf, various_names[source], bsize);
5378         else
5379                 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5380         return buf;
5381 }
5382
5383 /*
5384  * Return the DC interrupt name.
5385  */
5386 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5387 {
5388         static const char * const dc_int_names[] = {
5389                 "common",
5390                 "lcb",
5391                 "8051",
5392                 "lbm"   /* local block merge */
5393         };
5394
5395         if (source < ARRAY_SIZE(dc_int_names))
5396                 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5397         else
5398                 snprintf(buf, bsize, "DCInt%u", source);
5399         return buf;
5400 }
5401
5402 static const char * const sdma_int_names[] = {
5403         "SDmaInt",
5404         "SdmaIdleInt",
5405         "SdmaProgressInt",
5406 };
5407
5408 /*
5409  * Return the SDMA engine interrupt name.
5410  */
5411 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5412 {
5413         /* what interrupt */
5414         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5415         /* which engine */
5416         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5417
5418         if (likely(what < 3))
5419                 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5420         else
5421                 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5422         return buf;
5423 }
5424
5425 /*
5426  * Return the receive available interrupt name.
5427  */
5428 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5429 {
5430         snprintf(buf, bsize, "RcvAvailInt%u", source);
5431         return buf;
5432 }
5433
5434 /*
5435  * Return the receive urgent interrupt name.
5436  */
5437 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5438 {
5439         snprintf(buf, bsize, "RcvUrgentInt%u", source);
5440         return buf;
5441 }
5442
5443 /*
5444  * Return the send credit interrupt name.
5445  */
5446 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5447 {
5448         snprintf(buf, bsize, "SendCreditInt%u", source);
5449         return buf;
5450 }
5451
5452 /*
5453  * Return the reserved interrupt name.
5454  */
5455 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5456 {
5457         snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5458         return buf;
5459 }
5460
5461 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5462 {
5463         return flag_string(buf, buf_len, flags,
5464                            cce_err_status_flags,
5465                            ARRAY_SIZE(cce_err_status_flags));
5466 }
5467
5468 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5469 {
5470         return flag_string(buf, buf_len, flags,
5471                            rxe_err_status_flags,
5472                            ARRAY_SIZE(rxe_err_status_flags));
5473 }
5474
5475 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5476 {
5477         return flag_string(buf, buf_len, flags, misc_err_status_flags,
5478                            ARRAY_SIZE(misc_err_status_flags));
5479 }
5480
5481 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5482 {
5483         return flag_string(buf, buf_len, flags,
5484                            pio_err_status_flags,
5485                            ARRAY_SIZE(pio_err_status_flags));
5486 }
5487
5488 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5489 {
5490         return flag_string(buf, buf_len, flags,
5491                            sdma_err_status_flags,
5492                            ARRAY_SIZE(sdma_err_status_flags));
5493 }
5494
5495 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5496 {
5497         return flag_string(buf, buf_len, flags,
5498                            egress_err_status_flags,
5499                            ARRAY_SIZE(egress_err_status_flags));
5500 }
5501
5502 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5503 {
5504         return flag_string(buf, buf_len, flags,
5505                            egress_err_info_flags,
5506                            ARRAY_SIZE(egress_err_info_flags));
5507 }
5508
5509 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5510 {
5511         return flag_string(buf, buf_len, flags,
5512                            send_err_status_flags,
5513                            ARRAY_SIZE(send_err_status_flags));
5514 }
5515
5516 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5517 {
5518         char buf[96];
5519         int i = 0;
5520
5521         /*
5522          * For most these errors, there is nothing that can be done except
5523          * report or record it.
5524          */
5525         dd_dev_info(dd, "CCE Error: %s\n",
5526                     cce_err_status_string(buf, sizeof(buf), reg));
5527
5528         if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5529             is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5530                 /* this error requires a manual drop into SPC freeze mode */
5531                 /* then a fix up */
5532                 start_freeze_handling(dd->pport, FREEZE_SELF);
5533         }
5534
5535         for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5536                 if (reg & (1ull << i)) {
5537                         incr_cntr64(&dd->cce_err_status_cnt[i]);
5538                         /* maintain a counter over all cce_err_status errors */
5539                         incr_cntr64(&dd->sw_cce_err_status_aggregate);
5540                 }
5541         }
5542 }
5543
5544 /*
5545  * Check counters for receive errors that do not have an interrupt
5546  * associated with them.
5547  */
5548 #define RCVERR_CHECK_TIME 10
5549 static void update_rcverr_timer(struct timer_list *t)
5550 {
5551         struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5552         struct hfi1_pportdata *ppd = dd->pport;
5553         u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5554
5555         if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5556             ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5557                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5558                 set_link_down_reason(
5559                 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5560                 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5561                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
5562         }
5563         dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5564
5565         mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5566 }
5567
5568 static int init_rcverr(struct hfi1_devdata *dd)
5569 {
5570         timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5571         /* Assume the hardware counter has been reset */
5572         dd->rcv_ovfl_cnt = 0;
5573         return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5574 }
5575
5576 static void free_rcverr(struct hfi1_devdata *dd)
5577 {
5578         if (dd->rcverr_timer.function)
5579                 del_timer_sync(&dd->rcverr_timer);
5580 }
5581
5582 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5583 {
5584         char buf[96];
5585         int i = 0;
5586
5587         dd_dev_info(dd, "Receive Error: %s\n",
5588                     rxe_err_status_string(buf, sizeof(buf), reg));
5589
5590         if (reg & ALL_RXE_FREEZE_ERR) {
5591                 int flags = 0;
5592
5593                 /*
5594                  * Freeze mode recovery is disabled for the errors
5595                  * in RXE_FREEZE_ABORT_MASK
5596                  */
5597                 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5598                         flags = FREEZE_ABORT;
5599
5600                 start_freeze_handling(dd->pport, flags);
5601         }
5602
5603         for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5604                 if (reg & (1ull << i))
5605                         incr_cntr64(&dd->rcv_err_status_cnt[i]);
5606         }
5607 }
5608
5609 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5610 {
5611         char buf[96];
5612         int i = 0;
5613
5614         dd_dev_info(dd, "Misc Error: %s",
5615                     misc_err_status_string(buf, sizeof(buf), reg));
5616         for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5617                 if (reg & (1ull << i))
5618                         incr_cntr64(&dd->misc_err_status_cnt[i]);
5619         }
5620 }
5621
5622 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5623 {
5624         char buf[96];
5625         int i = 0;
5626
5627         dd_dev_info(dd, "PIO Error: %s\n",
5628                     pio_err_status_string(buf, sizeof(buf), reg));
5629
5630         if (reg & ALL_PIO_FREEZE_ERR)
5631                 start_freeze_handling(dd->pport, 0);
5632
5633         for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5634                 if (reg & (1ull << i))
5635                         incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5636         }
5637 }
5638
5639 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5640 {
5641         char buf[96];
5642         int i = 0;
5643
5644         dd_dev_info(dd, "SDMA Error: %s\n",
5645                     sdma_err_status_string(buf, sizeof(buf), reg));
5646
5647         if (reg & ALL_SDMA_FREEZE_ERR)
5648                 start_freeze_handling(dd->pport, 0);
5649
5650         for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5651                 if (reg & (1ull << i))
5652                         incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5653         }
5654 }
5655
5656 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5657 {
5658         incr_cntr64(&ppd->port_xmit_discards);
5659 }
5660
5661 static void count_port_inactive(struct hfi1_devdata *dd)
5662 {
5663         __count_port_discards(dd->pport);
5664 }
5665
5666 /*
5667  * We have had a "disallowed packet" error during egress. Determine the
5668  * integrity check which failed, and update relevant error counter, etc.
5669  *
5670  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5671  * bit of state per integrity check, and so we can miss the reason for an
5672  * egress error if more than one packet fails the same integrity check
5673  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5674  */
5675 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5676                                         int vl)
5677 {
5678         struct hfi1_pportdata *ppd = dd->pport;
5679         u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5680         u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5681         char buf[96];
5682
5683         /* clear down all observed info as quickly as possible after read */
5684         write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5685
5686         dd_dev_info(dd,
5687                     "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5688                     info, egress_err_info_string(buf, sizeof(buf), info), src);
5689
5690         /* Eventually add other counters for each bit */
5691         if (info & PORT_DISCARD_EGRESS_ERRS) {
5692                 int weight, i;
5693
5694                 /*
5695                  * Count all applicable bits as individual errors and
5696                  * attribute them to the packet that triggered this handler.
5697                  * This may not be completely accurate due to limitations
5698                  * on the available hardware error information.  There is
5699                  * a single information register and any number of error
5700                  * packets may have occurred and contributed to it before
5701                  * this routine is called.  This means that:
5702                  * a) If multiple packets with the same error occur before
5703                  *    this routine is called, earlier packets are missed.
5704                  *    There is only a single bit for each error type.
5705                  * b) Errors may not be attributed to the correct VL.
5706                  *    The driver is attributing all bits in the info register
5707                  *    to the packet that triggered this call, but bits
5708                  *    could be an accumulation of different packets with
5709                  *    different VLs.
5710                  * c) A single error packet may have multiple counts attached
5711                  *    to it.  There is no way for the driver to know if
5712                  *    multiple bits set in the info register are due to a
5713                  *    single packet or multiple packets.  The driver assumes
5714                  *    multiple packets.
5715                  */
5716                 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5717                 for (i = 0; i < weight; i++) {
5718                         __count_port_discards(ppd);
5719                         if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5720                                 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5721                         else if (vl == 15)
5722                                 incr_cntr64(&ppd->port_xmit_discards_vl
5723                                             [C_VL_15]);
5724                 }
5725         }
5726 }
5727
5728 /*
5729  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5730  * register. Does it represent a 'port inactive' error?
5731  */
5732 static inline int port_inactive_err(u64 posn)
5733 {
5734         return (posn >= SEES(TX_LINKDOWN) &&
5735                 posn <= SEES(TX_INCORRECT_LINK_STATE));
5736 }
5737
5738 /*
5739  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5740  * register. Does it represent a 'disallowed packet' error?
5741  */
5742 static inline int disallowed_pkt_err(int posn)
5743 {
5744         return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5745                 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5746 }
5747
5748 /*
5749  * Input value is a bit position of one of the SDMA engine disallowed
5750  * packet errors.  Return which engine.  Use of this must be guarded by
5751  * disallowed_pkt_err().
5752  */
5753 static inline int disallowed_pkt_engine(int posn)
5754 {
5755         return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5756 }
5757
5758 /*
5759  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5760  * be done.
5761  */
5762 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5763 {
5764         struct sdma_vl_map *m;
5765         int vl;
5766
5767         /* range check */
5768         if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5769                 return -1;
5770
5771         rcu_read_lock();
5772         m = rcu_dereference(dd->sdma_map);
5773         vl = m->engine_to_vl[engine];
5774         rcu_read_unlock();
5775
5776         return vl;
5777 }
5778
5779 /*
5780  * Translate the send context (sofware index) into a VL.  Return -1 if the
5781  * translation cannot be done.
5782  */
5783 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5784 {
5785         struct send_context_info *sci;
5786         struct send_context *sc;
5787         int i;
5788
5789         sci = &dd->send_contexts[sw_index];
5790
5791         /* there is no information for user (PSM) and ack contexts */
5792         if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5793                 return -1;
5794
5795         sc = sci->sc;
5796         if (!sc)
5797                 return -1;
5798         if (dd->vld[15].sc == sc)
5799                 return 15;
5800         for (i = 0; i < num_vls; i++)
5801                 if (dd->vld[i].sc == sc)
5802                         return i;
5803
5804         return -1;
5805 }
5806
5807 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5808 {
5809         u64 reg_copy = reg, handled = 0;
5810         char buf[96];
5811         int i = 0;
5812
5813         if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5814                 start_freeze_handling(dd->pport, 0);
5815         else if (is_ax(dd) &&
5816                  (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5817                  (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5818                 start_freeze_handling(dd->pport, 0);
5819
5820         while (reg_copy) {
5821                 int posn = fls64(reg_copy);
5822                 /* fls64() returns a 1-based offset, we want it zero based */
5823                 int shift = posn - 1;
5824                 u64 mask = 1ULL << shift;
5825
5826                 if (port_inactive_err(shift)) {
5827                         count_port_inactive(dd);
5828                         handled |= mask;
5829                 } else if (disallowed_pkt_err(shift)) {
5830                         int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5831
5832                         handle_send_egress_err_info(dd, vl);
5833                         handled |= mask;
5834                 }
5835                 reg_copy &= ~mask;
5836         }
5837
5838         reg &= ~handled;
5839
5840         if (reg)
5841                 dd_dev_info(dd, "Egress Error: %s\n",
5842                             egress_err_status_string(buf, sizeof(buf), reg));
5843
5844         for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5845                 if (reg & (1ull << i))
5846                         incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5847         }
5848 }
5849
5850 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5851 {
5852         char buf[96];
5853         int i = 0;
5854
5855         dd_dev_info(dd, "Send Error: %s\n",
5856                     send_err_status_string(buf, sizeof(buf), reg));
5857
5858         for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5859                 if (reg & (1ull << i))
5860                         incr_cntr64(&dd->send_err_status_cnt[i]);
5861         }
5862 }
5863
5864 /*
5865  * The maximum number of times the error clear down will loop before
5866  * blocking a repeating error.  This value is arbitrary.
5867  */
5868 #define MAX_CLEAR_COUNT 20
5869
5870 /*
5871  * Clear and handle an error register.  All error interrupts are funneled
5872  * through here to have a central location to correctly handle single-
5873  * or multi-shot errors.
5874  *
5875  * For non per-context registers, call this routine with a context value
5876  * of 0 so the per-context offset is zero.
5877  *
5878  * If the handler loops too many times, assume that something is wrong
5879  * and can't be fixed, so mask the error bits.
5880  */
5881 static void interrupt_clear_down(struct hfi1_devdata *dd,
5882                                  u32 context,
5883                                  const struct err_reg_info *eri)
5884 {
5885         u64 reg;
5886         u32 count;
5887
5888         /* read in a loop until no more errors are seen */
5889         count = 0;
5890         while (1) {
5891                 reg = read_kctxt_csr(dd, context, eri->status);
5892                 if (reg == 0)
5893                         break;
5894                 write_kctxt_csr(dd, context, eri->clear, reg);
5895                 if (likely(eri->handler))
5896                         eri->handler(dd, context, reg);
5897                 count++;
5898                 if (count > MAX_CLEAR_COUNT) {
5899                         u64 mask;
5900
5901                         dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5902                                    eri->desc, reg);
5903                         /*
5904                          * Read-modify-write so any other masked bits
5905                          * remain masked.
5906                          */
5907                         mask = read_kctxt_csr(dd, context, eri->mask);
5908                         mask &= ~reg;
5909                         write_kctxt_csr(dd, context, eri->mask, mask);
5910                         break;
5911                 }
5912         }
5913 }
5914
5915 /*
5916  * CCE block "misc" interrupt.  Source is < 16.
5917  */
5918 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5919 {
5920         const struct err_reg_info *eri = &misc_errs[source];
5921
5922         if (eri->handler) {
5923                 interrupt_clear_down(dd, 0, eri);
5924         } else {
5925                 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5926                            source);
5927         }
5928 }
5929
5930 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5931 {
5932         return flag_string(buf, buf_len, flags,
5933                            sc_err_status_flags,
5934                            ARRAY_SIZE(sc_err_status_flags));
5935 }
5936
5937 /*
5938  * Send context error interrupt.  Source (hw_context) is < 160.
5939  *
5940  * All send context errors cause the send context to halt.  The normal
5941  * clear-down mechanism cannot be used because we cannot clear the
5942  * error bits until several other long-running items are done first.
5943  * This is OK because with the context halted, nothing else is going
5944  * to happen on it anyway.
5945  */
5946 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5947                                 unsigned int hw_context)
5948 {
5949         struct send_context_info *sci;
5950         struct send_context *sc;
5951         char flags[96];
5952         u64 status;
5953         u32 sw_index;
5954         int i = 0;
5955         unsigned long irq_flags;
5956
5957         sw_index = dd->hw_to_sw[hw_context];
5958         if (sw_index >= dd->num_send_contexts) {
5959                 dd_dev_err(dd,
5960                            "out of range sw index %u for send context %u\n",
5961                            sw_index, hw_context);
5962                 return;
5963         }
5964         sci = &dd->send_contexts[sw_index];
5965         spin_lock_irqsave(&dd->sc_lock, irq_flags);
5966         sc = sci->sc;
5967         if (!sc) {
5968                 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5969                            sw_index, hw_context);
5970                 spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5971                 return;
5972         }
5973
5974         /* tell the software that a halt has begun */
5975         sc_stop(sc, SCF_HALTED);
5976
5977         status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5978
5979         dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5980                     send_context_err_status_string(flags, sizeof(flags),
5981                                                    status));
5982
5983         if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5984                 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5985
5986         /*
5987          * Automatically restart halted kernel contexts out of interrupt
5988          * context.  User contexts must ask the driver to restart the context.
5989          */
5990         if (sc->type != SC_USER)
5991                 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5992         spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5993
5994         /*
5995          * Update the counters for the corresponding status bits.
5996          * Note that these particular counters are aggregated over all
5997          * 160 contexts.
5998          */
5999         for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6000                 if (status & (1ull << i))
6001                         incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6002         }
6003 }
6004
6005 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6006                                 unsigned int source, u64 status)
6007 {
6008         struct sdma_engine *sde;
6009         int i = 0;
6010
6011         sde = &dd->per_sdma[source];
6012 #ifdef CONFIG_SDMA_VERBOSITY
6013         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6014                    slashstrip(__FILE__), __LINE__, __func__);
6015         dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6016                    sde->this_idx, source, (unsigned long long)status);
6017 #endif
6018         sde->err_cnt++;
6019         sdma_engine_error(sde, status);
6020
6021         /*
6022         * Update the counters for the corresponding status bits.
6023         * Note that these particular counters are aggregated over
6024         * all 16 DMA engines.
6025         */
6026         for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6027                 if (status & (1ull << i))
6028                         incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6029         }
6030 }
6031
6032 /*
6033  * CCE block SDMA error interrupt.  Source is < 16.
6034  */
6035 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6036 {
6037 #ifdef CONFIG_SDMA_VERBOSITY
6038         struct sdma_engine *sde = &dd->per_sdma[source];
6039
6040         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6041                    slashstrip(__FILE__), __LINE__, __func__);
6042         dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6043                    source);
6044         sdma_dumpstate(sde);
6045 #endif
6046         interrupt_clear_down(dd, source, &sdma_eng_err);
6047 }
6048
6049 /*
6050  * CCE block "various" interrupt.  Source is < 8.
6051  */
6052 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6053 {
6054         const struct err_reg_info *eri = &various_err[source];
6055
6056         /*
6057          * TCritInt cannot go through interrupt_clear_down()
6058          * because it is not a second tier interrupt. The handler
6059          * should be called directly.
6060          */
6061         if (source == TCRIT_INT_SOURCE)
6062                 handle_temp_err(dd);
6063         else if (eri->handler)
6064                 interrupt_clear_down(dd, 0, eri);
6065         else
6066                 dd_dev_info(dd,
6067                             "%s: Unimplemented/reserved interrupt %d\n",
6068                             __func__, source);
6069 }
6070
6071 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6072 {
6073         /* src_ctx is always zero */
6074         struct hfi1_pportdata *ppd = dd->pport;
6075         unsigned long flags;
6076         u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6077
6078         if (reg & QSFP_HFI0_MODPRST_N) {
6079                 if (!qsfp_mod_present(ppd)) {
6080                         dd_dev_info(dd, "%s: QSFP module removed\n",
6081                                     __func__);
6082
6083                         ppd->driver_link_ready = 0;
6084                         /*
6085                          * Cable removed, reset all our information about the
6086                          * cache and cable capabilities
6087                          */
6088
6089                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6090                         /*
6091                          * We don't set cache_refresh_required here as we expect
6092                          * an interrupt when a cable is inserted
6093                          */
6094                         ppd->qsfp_info.cache_valid = 0;
6095                         ppd->qsfp_info.reset_needed = 0;
6096                         ppd->qsfp_info.limiting_active = 0;
6097                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6098                                                flags);
6099                         /* Invert the ModPresent pin now to detect plug-in */
6100                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6101                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6102
6103                         if ((ppd->offline_disabled_reason >
6104                           HFI1_ODR_MASK(
6105                           OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6106                           (ppd->offline_disabled_reason ==
6107                           HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6108                                 ppd->offline_disabled_reason =
6109                                 HFI1_ODR_MASK(
6110                                 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6111
6112                         if (ppd->host_link_state == HLS_DN_POLL) {
6113                                 /*
6114                                  * The link is still in POLL. This means
6115                                  * that the normal link down processing
6116                                  * will not happen. We have to do it here
6117                                  * before turning the DC off.
6118                                  */
6119                                 queue_work(ppd->link_wq, &ppd->link_down_work);
6120                         }
6121                 } else {
6122                         dd_dev_info(dd, "%s: QSFP module inserted\n",
6123                                     __func__);
6124
6125                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6126                         ppd->qsfp_info.cache_valid = 0;
6127                         ppd->qsfp_info.cache_refresh_required = 1;
6128                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6129                                                flags);
6130
6131                         /*
6132                          * Stop inversion of ModPresent pin to detect
6133                          * removal of the cable
6134                          */
6135                         qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6136                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6137                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6138
6139                         ppd->offline_disabled_reason =
6140                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6141                 }
6142         }
6143
6144         if (reg & QSFP_HFI0_INT_N) {
6145                 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6146                             __func__);
6147                 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6148                 ppd->qsfp_info.check_interrupt_flags = 1;
6149                 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6150         }
6151
6152         /* Schedule the QSFP work only if there is a cable attached. */
6153         if (qsfp_mod_present(ppd))
6154                 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6155 }
6156
6157 static int request_host_lcb_access(struct hfi1_devdata *dd)
6158 {
6159         int ret;
6160
6161         ret = do_8051_command(dd, HCMD_MISC,
6162                               (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6163                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6164         if (ret != HCMD_SUCCESS && !(dd->flags & HFI1_SHUTDOWN)) {
6165                 dd_dev_err(dd, "%s: command failed with error %d\n",
6166                            __func__, ret);
6167         }
6168         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6169 }
6170
6171 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6172 {
6173         int ret;
6174
6175         ret = do_8051_command(dd, HCMD_MISC,
6176                               (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6177                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6178         if (ret != HCMD_SUCCESS) {
6179                 dd_dev_err(dd, "%s: command failed with error %d\n",
6180                            __func__, ret);
6181         }
6182         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6183 }
6184
6185 /*
6186  * Set the LCB selector - allow host access.  The DCC selector always
6187  * points to the host.
6188  */
6189 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6190 {
6191         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6192                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6193                   DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6194 }
6195
6196 /*
6197  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6198  * points to the host.
6199  */
6200 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6201 {
6202         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6203                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6204 }
6205
6206 /*
6207  * Acquire LCB access from the 8051.  If the host already has access,
6208  * just increment a counter.  Otherwise, inform the 8051 that the
6209  * host is taking access.
6210  *
6211  * Returns:
6212  *      0 on success
6213  *      -EBUSY if the 8051 has control and cannot be disturbed
6214  *      -errno if unable to acquire access from the 8051
6215  */
6216 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6217 {
6218         struct hfi1_pportdata *ppd = dd->pport;
6219         int ret = 0;
6220
6221         /*
6222          * Use the host link state lock so the operation of this routine
6223          * { link state check, selector change, count increment } can occur
6224          * as a unit against a link state change.  Otherwise there is a
6225          * race between the state change and the count increment.
6226          */
6227         if (sleep_ok) {
6228                 mutex_lock(&ppd->hls_lock);
6229         } else {
6230                 while (!mutex_trylock(&ppd->hls_lock))
6231                         udelay(1);
6232         }
6233
6234         /* this access is valid only when the link is up */
6235         if (ppd->host_link_state & HLS_DOWN) {
6236                 dd_dev_info(dd, "%s: link state %s not up\n",
6237                             __func__, link_state_name(ppd->host_link_state));
6238                 ret = -EBUSY;
6239                 goto done;
6240         }
6241
6242         if (dd->lcb_access_count == 0) {
6243                 ret = request_host_lcb_access(dd);
6244                 if (ret) {
6245                         if (!(dd->flags & HFI1_SHUTDOWN))
6246                                 dd_dev_err(dd,
6247                                    "%s: unable to acquire LCB access, err %d\n",
6248                                    __func__, ret);
6249                         goto done;
6250                 }
6251                 set_host_lcb_access(dd);
6252         }
6253         dd->lcb_access_count++;
6254 done:
6255         mutex_unlock(&ppd->hls_lock);
6256         return ret;
6257 }
6258
6259 /*
6260  * Release LCB access by decrementing the use count.  If the count is moving
6261  * from 1 to 0, inform 8051 that it has control back.
6262  *
6263  * Returns:
6264  *      0 on success
6265  *      -errno if unable to release access to the 8051
6266  */
6267 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6268 {
6269         int ret = 0;
6270
6271         /*
6272          * Use the host link state lock because the acquire needed it.
6273          * Here, we only need to keep { selector change, count decrement }
6274          * as a unit.
6275          */
6276         if (sleep_ok) {
6277                 mutex_lock(&dd->pport->hls_lock);
6278         } else {
6279                 while (!mutex_trylock(&dd->pport->hls_lock))
6280                         udelay(1);
6281         }
6282
6283         if (dd->lcb_access_count == 0) {
6284                 dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6285                            __func__);
6286                 goto done;
6287         }
6288
6289         if (dd->lcb_access_count == 1) {
6290                 set_8051_lcb_access(dd);
6291                 ret = request_8051_lcb_access(dd);
6292                 if (ret) {
6293                         dd_dev_err(dd,
6294                                    "%s: unable to release LCB access, err %d\n",
6295                                    __func__, ret);
6296                         /* restore host access if the grant didn't work */
6297                         set_host_lcb_access(dd);
6298                         goto done;
6299                 }
6300         }
6301         dd->lcb_access_count--;
6302 done:
6303         mutex_unlock(&dd->pport->hls_lock);
6304         return ret;
6305 }
6306
6307 /*
6308  * Initialize LCB access variables and state.  Called during driver load,
6309  * after most of the initialization is finished.
6310  *
6311  * The DC default is LCB access on for the host.  The driver defaults to
6312  * leaving access to the 8051.  Assign access now - this constrains the call
6313  * to this routine to be after all LCB set-up is done.  In particular, after
6314  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6315  */
6316 static void init_lcb_access(struct hfi1_devdata *dd)
6317 {
6318         dd->lcb_access_count = 0;
6319 }
6320
6321 /*
6322  * Write a response back to a 8051 request.
6323  */
6324 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6325 {
6326         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6327                   DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6328                   (u64)return_code <<
6329                   DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6330                   (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6331 }
6332
6333 /*
6334  * Handle host requests from the 8051.
6335  */
6336 static void handle_8051_request(struct hfi1_pportdata *ppd)
6337 {
6338         struct hfi1_devdata *dd = ppd->dd;
6339         u64 reg;
6340         u16 data = 0;
6341         u8 type;
6342
6343         reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6344         if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6345                 return; /* no request */
6346
6347         /* zero out COMPLETED so the response is seen */
6348         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6349
6350         /* extract request details */
6351         type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6352                         & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6353         data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6354                         & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6355
6356         switch (type) {
6357         case HREQ_LOAD_CONFIG:
6358         case HREQ_SAVE_CONFIG:
6359         case HREQ_READ_CONFIG:
6360         case HREQ_SET_TX_EQ_ABS:
6361         case HREQ_SET_TX_EQ_REL:
6362         case HREQ_ENABLE:
6363                 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6364                             type);
6365                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6366                 break;
6367         case HREQ_LCB_RESET:
6368                 /* Put the LCB, RX FPE and TX FPE into reset */
6369                 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6370                 /* Make sure the write completed */
6371                 (void)read_csr(dd, DCC_CFG_RESET);
6372                 /* Hold the reset long enough to take effect */
6373                 udelay(1);
6374                 /* Take the LCB, RX FPE and TX FPE out of reset */
6375                 write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6376                 hreq_response(dd, HREQ_SUCCESS, 0);
6377
6378                 break;
6379         case HREQ_CONFIG_DONE:
6380                 hreq_response(dd, HREQ_SUCCESS, 0);
6381                 break;
6382
6383         case HREQ_INTERFACE_TEST:
6384                 hreq_response(dd, HREQ_SUCCESS, data);
6385                 break;
6386         default:
6387                 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6388                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6389                 break;
6390         }
6391 }
6392
6393 /*
6394  * Set up allocation unit vaulue.
6395  */
6396 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6397 {
6398         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6399
6400         /* do not modify other values in the register */
6401         reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6402         reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6403         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6404 }
6405
6406 /*
6407  * Set up initial VL15 credits of the remote.  Assumes the rest of
6408  * the CM credit registers are zero from a previous global or credit reset.
6409  * Shared limit for VL15 will always be 0.
6410  */
6411 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6412 {
6413         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6414
6415         /* set initial values for total and shared credit limit */
6416         reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6417                  SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6418
6419         /*
6420          * Set total limit to be equal to VL15 credits.
6421          * Leave shared limit at 0.
6422          */
6423         reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6424         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6425
6426         write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6427                   << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6428 }
6429
6430 /*
6431  * Zero all credit details from the previous connection and
6432  * reset the CM manager's internal counters.
6433  */
6434 void reset_link_credits(struct hfi1_devdata *dd)
6435 {
6436         int i;
6437
6438         /* remove all previous VL credit limits */
6439         for (i = 0; i < TXE_NUM_DATA_VL; i++)
6440                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6441         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6442         write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6443         /* reset the CM block */
6444         pio_send_control(dd, PSC_CM_RESET);
6445         /* reset cached value */
6446         dd->vl15buf_cached = 0;
6447 }
6448
6449 /* convert a vCU to a CU */
6450 static u32 vcu_to_cu(u8 vcu)
6451 {
6452         return 1 << vcu;
6453 }
6454
6455 /* convert a CU to a vCU */
6456 static u8 cu_to_vcu(u32 cu)
6457 {
6458         return ilog2(cu);
6459 }
6460
6461 /* convert a vAU to an AU */
6462 static u32 vau_to_au(u8 vau)
6463 {
6464         return 8 * (1 << vau);
6465 }
6466
6467 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6468 {
6469         ppd->sm_trap_qp = 0x0;
6470         ppd->sa_qp = 0x1;
6471 }
6472
6473 /*
6474  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6475  */
6476 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6477 {
6478         u64 reg;
6479
6480         /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6481         write_csr(dd, DC_LCB_CFG_RUN, 0);
6482         /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6483         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6484                   1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6485         /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6486         dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6487         reg = read_csr(dd, DCC_CFG_RESET);
6488         write_csr(dd, DCC_CFG_RESET, reg |
6489                   DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6490         (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6491         if (!abort) {
6492                 udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6493                 write_csr(dd, DCC_CFG_RESET, reg);
6494                 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6495         }
6496 }
6497
6498 /*
6499  * This routine should be called after the link has been transitioned to
6500  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6501  * reset).
6502  *
6503  * The expectation is that the caller of this routine would have taken
6504  * care of properly transitioning the link into the correct state.
6505  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6506  *       before calling this function.
6507  */
6508 static void _dc_shutdown(struct hfi1_devdata *dd)
6509 {
6510         lockdep_assert_held(&dd->dc8051_lock);
6511
6512         if (dd->dc_shutdown)
6513                 return;
6514
6515         dd->dc_shutdown = 1;
6516         /* Shutdown the LCB */
6517         lcb_shutdown(dd, 1);
6518         /*
6519          * Going to OFFLINE would have causes the 8051 to put the
6520          * SerDes into reset already. Just need to shut down the 8051,
6521          * itself.
6522          */
6523         write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6524 }
6525
6526 static void dc_shutdown(struct hfi1_devdata *dd)
6527 {
6528         mutex_lock(&dd->dc8051_lock);
6529         _dc_shutdown(dd);
6530         mutex_unlock(&dd->dc8051_lock);
6531 }
6532
6533 /*
6534  * Calling this after the DC has been brought out of reset should not
6535  * do any damage.
6536  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6537  *       before calling this function.
6538  */
6539 static void _dc_start(struct hfi1_devdata *dd)
6540 {
6541         lockdep_assert_held(&dd->dc8051_lock);
6542
6543         if (!dd->dc_shutdown)
6544                 return;
6545
6546         /* Take the 8051 out of reset */
6547         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6548         /* Wait until 8051 is ready */
6549         if (wait_fm_ready(dd, TIMEOUT_8051_START))
6550                 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6551                            __func__);
6552
6553         /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6554         write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6555         /* lcb_shutdown() with abort=1 does not restore these */
6556         write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6557         dd->dc_shutdown = 0;
6558 }
6559
6560 static void dc_start(struct hfi1_devdata *dd)
6561 {
6562         mutex_lock(&dd->dc8051_lock);
6563         _dc_start(dd);
6564         mutex_unlock(&dd->dc8051_lock);
6565 }
6566
6567 /*
6568  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6569  */
6570 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6571 {
6572         u64 rx_radr, tx_radr;
6573         u32 version;
6574
6575         if (dd->icode != ICODE_FPGA_EMULATION)
6576                 return;
6577
6578         /*
6579          * These LCB defaults on emulator _s are good, nothing to do here:
6580          *      LCB_CFG_TX_FIFOS_RADR
6581          *      LCB_CFG_RX_FIFOS_RADR
6582          *      LCB_CFG_LN_DCLK
6583          *      LCB_CFG_IGNORE_LOST_RCLK
6584          */
6585         if (is_emulator_s(dd))
6586                 return;
6587         /* else this is _p */
6588
6589         version = emulator_rev(dd);
6590         if (!is_ax(dd))
6591                 version = 0x2d; /* all B0 use 0x2d or higher settings */
6592
6593         if (version <= 0x12) {
6594                 /* release 0x12 and below */
6595
6596                 /*
6597                  * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6598                  * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6599                  * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6600                  */
6601                 rx_radr =
6602                       0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6603                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6604                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6605                 /*
6606                  * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6607                  * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6608                  */
6609                 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6610         } else if (version <= 0x18) {
6611                 /* release 0x13 up to 0x18 */
6612                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6613                 rx_radr =
6614                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618         } else if (version == 0x19) {
6619                 /* release 0x19 */
6620                 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6621                 rx_radr =
6622                       0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6623                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6624                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6625                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6626         } else if (version == 0x1a) {
6627                 /* release 0x1a */
6628                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6629                 rx_radr =
6630                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6631                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6632                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6633                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6634                 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6635         } else {
6636                 /* release 0x1b and higher */
6637                 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6638                 rx_radr =
6639                       0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6640                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6641                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6642                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6643         }
6644
6645         write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6646         /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6647         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6648                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6649         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6650 }
6651
6652 /*
6653  * Handle a SMA idle message
6654  *
6655  * This is a work-queue function outside of the interrupt.
6656  */
6657 void handle_sma_message(struct work_struct *work)
6658 {
6659         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6660                                                         sma_message_work);
6661         struct hfi1_devdata *dd = ppd->dd;
6662         u64 msg;
6663         int ret;
6664
6665         /*
6666          * msg is bytes 1-4 of the 40-bit idle message - the command code
6667          * is stripped off
6668          */
6669         ret = read_idle_sma(dd, &msg);
6670         if (ret)
6671                 return;
6672         dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6673         /*
6674          * React to the SMA message.  Byte[1] (0 for us) is the command.
6675          */
6676         switch (msg & 0xff) {
6677         case SMA_IDLE_ARM:
6678                 /*
6679                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6680                  * State Transitions
6681                  *
6682                  * Only expected in INIT or ARMED, discard otherwise.
6683                  */
6684                 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6685                         ppd->neighbor_normal = 1;
6686                 break;
6687         case SMA_IDLE_ACTIVE:
6688                 /*
6689                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6690                  * State Transitions
6691                  *
6692                  * Can activate the node.  Discard otherwise.
6693                  */
6694                 if (ppd->host_link_state == HLS_UP_ARMED &&
6695                     ppd->is_active_optimize_enabled) {
6696                         ppd->neighbor_normal = 1;
6697                         ret = set_link_state(ppd, HLS_UP_ACTIVE);
6698                         if (ret)
6699                                 dd_dev_err(
6700                                         dd,
6701                                         "%s: received Active SMA idle message, couldn't set link to Active\n",
6702                                         __func__);
6703                 }
6704                 break;
6705         default:
6706                 dd_dev_err(dd,
6707                            "%s: received unexpected SMA idle message 0x%llx\n",
6708                            __func__, msg);
6709                 break;
6710         }
6711 }
6712
6713 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6714 {
6715         u64 rcvctrl;
6716         unsigned long flags;
6717
6718         spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6719         rcvctrl = read_csr(dd, RCV_CTRL);
6720         rcvctrl |= add;
6721         rcvctrl &= ~clear;
6722         write_csr(dd, RCV_CTRL, rcvctrl);
6723         spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6724 }
6725
6726 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6727 {
6728         adjust_rcvctrl(dd, add, 0);
6729 }
6730
6731 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6732 {
6733         adjust_rcvctrl(dd, 0, clear);
6734 }
6735
6736 /*
6737  * Called from all interrupt handlers to start handling an SPC freeze.
6738  */
6739 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6740 {
6741         struct hfi1_devdata *dd = ppd->dd;
6742         struct send_context *sc;
6743         int i;
6744         int sc_flags;
6745
6746         if (flags & FREEZE_SELF)
6747                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6748
6749         /* enter frozen mode */
6750         dd->flags |= HFI1_FROZEN;
6751
6752         /* notify all SDMA engines that they are going into a freeze */
6753         sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6754
6755         sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6756                                               SCF_LINK_DOWN : 0);
6757         /* do halt pre-handling on all enabled send contexts */
6758         for (i = 0; i < dd->num_send_contexts; i++) {
6759                 sc = dd->send_contexts[i].sc;
6760                 if (sc && (sc->flags & SCF_ENABLED))
6761                         sc_stop(sc, sc_flags);
6762         }
6763
6764         /* Send context are frozen. Notify user space */
6765         hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6766
6767         if (flags & FREEZE_ABORT) {
6768                 dd_dev_err(dd,
6769                            "Aborted freeze recovery. Please REBOOT system\n");
6770                 return;
6771         }
6772         /* queue non-interrupt handler */
6773         queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6774 }
6775
6776 /*
6777  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6778  * depending on the "freeze" parameter.
6779  *
6780  * No need to return an error if it times out, our only option
6781  * is to proceed anyway.
6782  */
6783 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6784 {
6785         unsigned long timeout;
6786         u64 reg;
6787
6788         timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6789         while (1) {
6790                 reg = read_csr(dd, CCE_STATUS);
6791                 if (freeze) {
6792                         /* waiting until all indicators are set */
6793                         if ((reg & ALL_FROZE) == ALL_FROZE)
6794                                 return; /* all done */
6795                 } else {
6796                         /* waiting until all indicators are clear */
6797                         if ((reg & ALL_FROZE) == 0)
6798                                 return; /* all done */
6799                 }
6800
6801                 if (time_after(jiffies, timeout)) {
6802                         dd_dev_err(dd,
6803                                    "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6804                                    freeze ? "" : "un", reg & ALL_FROZE,
6805                                    freeze ? ALL_FROZE : 0ull);
6806                         return;
6807                 }
6808                 usleep_range(80, 120);
6809         }
6810 }
6811
6812 /*
6813  * Do all freeze handling for the RXE block.
6814  */
6815 static void rxe_freeze(struct hfi1_devdata *dd)
6816 {
6817         int i;
6818         struct hfi1_ctxtdata *rcd;
6819
6820         /* disable port */
6821         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6822
6823         /* disable all receive contexts */
6824         for (i = 0; i < dd->num_rcv_contexts; i++) {
6825                 rcd = hfi1_rcd_get_by_index(dd, i);
6826                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6827                 hfi1_rcd_put(rcd);
6828         }
6829 }
6830
6831 /*
6832  * Unfreeze handling for the RXE block - kernel contexts only.
6833  * This will also enable the port.  User contexts will do unfreeze
6834  * handling on a per-context basis as they call into the driver.
6835  *
6836  */
6837 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6838 {
6839         u32 rcvmask;
6840         u16 i;
6841         struct hfi1_ctxtdata *rcd;
6842
6843         /* enable all kernel contexts */
6844         for (i = 0; i < dd->num_rcv_contexts; i++) {
6845                 rcd = hfi1_rcd_get_by_index(dd, i);
6846
6847                 /* Ensure all non-user contexts(including vnic) are enabled */
6848                 if (!rcd ||
6849                     (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6850                         hfi1_rcd_put(rcd);
6851                         continue;
6852                 }
6853                 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6854                 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6855                 rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6856                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6857                 hfi1_rcvctrl(dd, rcvmask, rcd);
6858                 hfi1_rcd_put(rcd);
6859         }
6860
6861         /* enable port */
6862         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6863 }
6864
6865 /*
6866  * Non-interrupt SPC freeze handling.
6867  *
6868  * This is a work-queue function outside of the triggering interrupt.
6869  */
6870 void handle_freeze(struct work_struct *work)
6871 {
6872         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6873                                                                 freeze_work);
6874         struct hfi1_devdata *dd = ppd->dd;
6875
6876         /* wait for freeze indicators on all affected blocks */
6877         wait_for_freeze_status(dd, 1);
6878
6879         /* SPC is now frozen */
6880
6881         /* do send PIO freeze steps */
6882         pio_freeze(dd);
6883
6884         /* do send DMA freeze steps */
6885         sdma_freeze(dd);
6886
6887         /* do send egress freeze steps - nothing to do */
6888
6889         /* do receive freeze steps */
6890         rxe_freeze(dd);
6891
6892         /*
6893          * Unfreeze the hardware - clear the freeze, wait for each
6894          * block's frozen bit to clear, then clear the frozen flag.
6895          */
6896         write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6897         wait_for_freeze_status(dd, 0);
6898
6899         if (is_ax(dd)) {
6900                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6901                 wait_for_freeze_status(dd, 1);
6902                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6903                 wait_for_freeze_status(dd, 0);
6904         }
6905
6906         /* do send PIO unfreeze steps for kernel contexts */
6907         pio_kernel_unfreeze(dd);
6908
6909         /* do send DMA unfreeze steps */
6910         sdma_unfreeze(dd);
6911
6912         /* do send egress unfreeze steps - nothing to do */
6913
6914         /* do receive unfreeze steps for kernel contexts */
6915         rxe_kernel_unfreeze(dd);
6916
6917         /*
6918          * The unfreeze procedure touches global device registers when
6919          * it disables and re-enables RXE. Mark the device unfrozen
6920          * after all that is done so other parts of the driver waiting
6921          * for the device to unfreeze don't do things out of order.
6922          *
6923          * The above implies that the meaning of HFI1_FROZEN flag is
6924          * "Device has gone into freeze mode and freeze mode handling
6925          * is still in progress."
6926          *
6927          * The flag will be removed when freeze mode processing has
6928          * completed.
6929          */
6930         dd->flags &= ~HFI1_FROZEN;
6931         wake_up(&dd->event_queue);
6932
6933         /* no longer frozen */
6934 }
6935
6936 /**
6937  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6938  * counters.
6939  * @ppd: info of physical Hfi port
6940  * @link_width: new link width after link up or downgrade
6941  *
6942  * Update the PortXmitWait and PortVlXmitWait counters after
6943  * a link up or downgrade event to reflect a link width change.
6944  */
6945 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6946 {
6947         int i;
6948         u16 tx_width;
6949         u16 link_speed;
6950
6951         tx_width = tx_link_width(link_width);
6952         link_speed = get_link_speed(ppd->link_speed_active);
6953
6954         /*
6955          * There are C_VL_COUNT number of PortVLXmitWait counters.
6956          * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6957          */
6958         for (i = 0; i < C_VL_COUNT + 1; i++)
6959                 get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6960 }
6961
6962 /*
6963  * Handle a link up interrupt from the 8051.
6964  *
6965  * This is a work-queue function outside of the interrupt.
6966  */
6967 void handle_link_up(struct work_struct *work)
6968 {
6969         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6970                                                   link_up_work);
6971         struct hfi1_devdata *dd = ppd->dd;
6972
6973         set_link_state(ppd, HLS_UP_INIT);
6974
6975         /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6976         read_ltp_rtt(dd);
6977         /*
6978          * OPA specifies that certain counters are cleared on a transition
6979          * to link up, so do that.
6980          */
6981         clear_linkup_counters(dd);
6982         /*
6983          * And (re)set link up default values.
6984          */
6985         set_linkup_defaults(ppd);
6986
6987         /*
6988          * Set VL15 credits. Use cached value from verify cap interrupt.
6989          * In case of quick linkup or simulator, vl15 value will be set by
6990          * handle_linkup_change. VerifyCap interrupt handler will not be
6991          * called in those scenarios.
6992          */
6993         if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6994                 set_up_vl15(dd, dd->vl15buf_cached);
6995
6996         /* enforce link speed enabled */
6997         if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6998                 /* oops - current speed is not enabled, bounce */
6999                 dd_dev_err(dd,
7000                            "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7001                            ppd->link_speed_active, ppd->link_speed_enabled);
7002                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7003                                      OPA_LINKDOWN_REASON_SPEED_POLICY);
7004                 set_link_state(ppd, HLS_DN_OFFLINE);
7005                 start_link(ppd);
7006         }
7007 }
7008
7009 /*
7010  * Several pieces of LNI information were cached for SMA in ppd.
7011  * Reset these on link down
7012  */
7013 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7014 {
7015         ppd->neighbor_guid = 0;
7016         ppd->neighbor_port_number = 0;
7017         ppd->neighbor_type = 0;
7018         ppd->neighbor_fm_security = 0;
7019 }
7020
7021 static const char * const link_down_reason_strs[] = {
7022         [OPA_LINKDOWN_REASON_NONE] = "None",
7023         [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7024         [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7025         [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7026         [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7027         [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7028         [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7029         [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7030         [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7031         [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7032         [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7033         [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7034         [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7035         [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7036         [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7037         [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7038         [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7039         [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7040         [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7041         [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7042         [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7043         [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7044         [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7045         [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7046         [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7047         [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7048         [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7049         [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7050         [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7051         [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7052         [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7053         [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7054         [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7055                                         "Excessive buffer overrun",
7056         [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7057         [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7058         [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7059         [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7060         [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7061         [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7062         [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7063         [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7064                                         "Local media not installed",
7065         [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7066         [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7067         [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7068                                         "End to end not installed",
7069         [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7070         [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7071         [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7072         [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7073         [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7074         [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7075 };
7076
7077 /* return the neighbor link down reason string */
7078 static const char *link_down_reason_str(u8 reason)
7079 {
7080         const char *str = NULL;
7081
7082         if (reason < ARRAY_SIZE(link_down_reason_strs))
7083                 str = link_down_reason_strs[reason];
7084         if (!str)
7085                 str = "(invalid)";
7086
7087         return str;
7088 }
7089
7090 /*
7091  * Handle a link down interrupt from the 8051.
7092  *
7093  * This is a work-queue function outside of the interrupt.
7094  */
7095 void handle_link_down(struct work_struct *work)
7096 {
7097         u8 lcl_reason, neigh_reason = 0;
7098         u8 link_down_reason;
7099         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7100                                                   link_down_work);
7101         int was_up;
7102         static const char ldr_str[] = "Link down reason: ";
7103
7104         if ((ppd->host_link_state &
7105              (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7106              ppd->port_type == PORT_TYPE_FIXED)
7107                 ppd->offline_disabled_reason =
7108                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7109
7110         /* Go offline first, then deal with reading/writing through 8051 */
7111         was_up = !!(ppd->host_link_state & HLS_UP);
7112         set_link_state(ppd, HLS_DN_OFFLINE);
7113         xchg(&ppd->is_link_down_queued, 0);
7114
7115         if (was_up) {
7116                 lcl_reason = 0;
7117                 /* link down reason is only valid if the link was up */
7118                 read_link_down_reason(ppd->dd, &link_down_reason);
7119                 switch (link_down_reason) {
7120                 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7121                         /* the link went down, no idle message reason */
7122                         dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7123                                     ldr_str);
7124                         break;
7125                 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7126                         /*
7127                          * The neighbor reason is only valid if an idle message
7128                          * was received for it.
7129                          */
7130                         read_planned_down_reason_code(ppd->dd, &neigh_reason);
7131                         dd_dev_info(ppd->dd,
7132                                     "%sNeighbor link down message %d, %s\n",
7133                                     ldr_str, neigh_reason,
7134                                     link_down_reason_str(neigh_reason));
7135                         break;
7136                 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7137                         dd_dev_info(ppd->dd,
7138                                     "%sHost requested link to go offline\n",
7139                                     ldr_str);
7140                         break;
7141                 default:
7142                         dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7143                                     ldr_str, link_down_reason);
7144                         break;
7145                 }
7146
7147                 /*
7148                  * If no reason, assume peer-initiated but missed
7149                  * LinkGoingDown idle flits.
7150                  */
7151                 if (neigh_reason == 0)
7152                         lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7153         } else {
7154                 /* went down while polling or going up */
7155                 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7156         }
7157
7158         set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7159
7160         /* inform the SMA when the link transitions from up to down */
7161         if (was_up && ppd->local_link_down_reason.sma == 0 &&
7162             ppd->neigh_link_down_reason.sma == 0) {
7163                 ppd->local_link_down_reason.sma =
7164                                         ppd->local_link_down_reason.latest;
7165                 ppd->neigh_link_down_reason.sma =
7166                                         ppd->neigh_link_down_reason.latest;
7167         }
7168
7169         reset_neighbor_info(ppd);
7170
7171         /* disable the port */
7172         clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7173
7174         /*
7175          * If there is no cable attached, turn the DC off. Otherwise,
7176          * start the link bring up.
7177          */
7178         if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7179                 dc_shutdown(ppd->dd);
7180         else
7181                 start_link(ppd);
7182 }
7183
7184 void handle_link_bounce(struct work_struct *work)
7185 {
7186         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7187                                                         link_bounce_work);
7188
7189         /*
7190          * Only do something if the link is currently up.
7191          */
7192         if (ppd->host_link_state & HLS_UP) {
7193                 set_link_state(ppd, HLS_DN_OFFLINE);
7194                 start_link(ppd);
7195         } else {
7196                 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7197                             __func__, link_state_name(ppd->host_link_state));
7198         }
7199 }
7200
7201 /*
7202  * Mask conversion: Capability exchange to Port LTP.  The capability
7203  * exchange has an implicit 16b CRC that is mandatory.
7204  */
7205 static int cap_to_port_ltp(int cap)
7206 {
7207         int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7208
7209         if (cap & CAP_CRC_14B)
7210                 port_ltp |= PORT_LTP_CRC_MODE_14;
7211         if (cap & CAP_CRC_48B)
7212                 port_ltp |= PORT_LTP_CRC_MODE_48;
7213         if (cap & CAP_CRC_12B_16B_PER_LANE)
7214                 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7215
7216         return port_ltp;
7217 }
7218
7219 /*
7220  * Convert an OPA Port LTP mask to capability mask
7221  */
7222 int port_ltp_to_cap(int port_ltp)
7223 {
7224         int cap_mask = 0;
7225
7226         if (port_ltp & PORT_LTP_CRC_MODE_14)
7227                 cap_mask |= CAP_CRC_14B;
7228         if (port_ltp & PORT_LTP_CRC_MODE_48)
7229                 cap_mask |= CAP_CRC_48B;
7230         if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7231                 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7232
7233         return cap_mask;
7234 }
7235
7236 /*
7237  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7238  */
7239 static int lcb_to_port_ltp(int lcb_crc)
7240 {
7241         int port_ltp = 0;
7242
7243         if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7244                 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7245         else if (lcb_crc == LCB_CRC_48B)
7246                 port_ltp = PORT_LTP_CRC_MODE_48;
7247         else if (lcb_crc == LCB_CRC_14B)
7248                 port_ltp = PORT_LTP_CRC_MODE_14;
7249         else
7250                 port_ltp = PORT_LTP_CRC_MODE_16;
7251
7252         return port_ltp;
7253 }
7254
7255 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7256 {
7257         if (ppd->pkeys[2] != 0) {
7258                 ppd->pkeys[2] = 0;
7259                 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7260                 hfi1_event_pkey_change(ppd->dd, ppd->port);
7261         }
7262 }
7263
7264 /*
7265  * Convert the given link width to the OPA link width bitmask.
7266  */
7267 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7268 {
7269         switch (width) {
7270         case 0:
7271                 /*
7272                  * Simulator and quick linkup do not set the width.
7273                  * Just set it to 4x without complaint.
7274                  */
7275                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7276                         return OPA_LINK_WIDTH_4X;
7277                 return 0; /* no lanes up */
7278         case 1: return OPA_LINK_WIDTH_1X;
7279         case 2: return OPA_LINK_WIDTH_2X;
7280         case 3: return OPA_LINK_WIDTH_3X;
7281         case 4: return OPA_LINK_WIDTH_4X;
7282         default:
7283                 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7284                             __func__, width);
7285                 return OPA_LINK_WIDTH_4X;
7286         }
7287 }
7288
7289 /*
7290  * Do a population count on the bottom nibble.
7291  */
7292 static const u8 bit_counts[16] = {
7293         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7294 };
7295
7296 static inline u8 nibble_to_count(u8 nibble)
7297 {
7298         return bit_counts[nibble & 0xf];
7299 }
7300
7301 /*
7302  * Read the active lane information from the 8051 registers and return
7303  * their widths.
7304  *
7305  * Active lane information is found in these 8051 registers:
7306  *      enable_lane_tx
7307  *      enable_lane_rx
7308  */
7309 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7310                             u16 *rx_width)
7311 {
7312         u16 tx, rx;
7313         u8 enable_lane_rx;
7314         u8 enable_lane_tx;
7315         u8 tx_polarity_inversion;
7316         u8 rx_polarity_inversion;
7317         u8 max_rate;
7318
7319         /* read the active lanes */
7320         read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7321                          &rx_polarity_inversion, &max_rate);
7322         read_local_lni(dd, &enable_lane_rx);
7323
7324         /* convert to counts */
7325         tx = nibble_to_count(enable_lane_tx);
7326         rx = nibble_to_count(enable_lane_rx);
7327
7328         /*
7329          * Set link_speed_active here, overriding what was set in
7330          * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7331          * set the max_rate field in handle_verify_cap until v0.19.
7332          */
7333         if ((dd->icode == ICODE_RTL_SILICON) &&
7334             (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7335                 /* max_rate: 0 = 12.5G, 1 = 25G */
7336                 switch (max_rate) {
7337                 case 0:
7338                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7339                         break;
7340                 case 1:
7341                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7342                         break;
7343                 default:
7344                         dd_dev_err(dd,
7345                                    "%s: unexpected max rate %d, using 25Gb\n",
7346                                    __func__, (int)max_rate);
7347                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7348                         break;
7349                 }
7350         }
7351
7352         dd_dev_info(dd,
7353                     "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7354                     enable_lane_tx, tx, enable_lane_rx, rx);
7355         *tx_width = link_width_to_bits(dd, tx);
7356         *rx_width = link_width_to_bits(dd, rx);
7357 }
7358
7359 /*
7360  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7361  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7362  * after link up.  I.e. look elsewhere for downgrade information.
7363  *
7364  * Bits are:
7365  *      + bits [7:4] contain the number of active transmitters
7366  *      + bits [3:0] contain the number of active receivers
7367  * These are numbers 1 through 4 and can be different values if the
7368  * link is asymmetric.
7369  *
7370  * verify_cap_local_fm_link_width[0] retains its original value.
7371  */
7372 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7373                               u16 *rx_width)
7374 {
7375         u16 widths, tx, rx;
7376         u8 misc_bits, local_flags;
7377         u16 active_tx, active_rx;
7378
7379         read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7380         tx = widths >> 12;
7381         rx = (widths >> 8) & 0xf;
7382
7383         *tx_width = link_width_to_bits(dd, tx);
7384         *rx_width = link_width_to_bits(dd, rx);
7385
7386         /* print the active widths */
7387         get_link_widths(dd, &active_tx, &active_rx);
7388 }
7389
7390 /*
7391  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7392  * hardware information when the link first comes up.
7393  *
7394  * The link width is not available until after VerifyCap.AllFramesReceived
7395  * (the trigger for handle_verify_cap), so this is outside that routine
7396  * and should be called when the 8051 signals linkup.
7397  */
7398 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7399 {
7400         u16 tx_width, rx_width;
7401
7402         /* get end-of-LNI link widths */
7403         get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7404
7405         /* use tx_width as the link is supposed to be symmetric on link up */
7406         ppd->link_width_active = tx_width;
7407         /* link width downgrade active (LWD.A) starts out matching LW.A */
7408         ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7409         ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7410         /* per OPA spec, on link up LWD.E resets to LWD.S */
7411         ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7412         /* cache the active egress rate (units {10^6 bits/sec]) */
7413         ppd->current_egress_rate = active_egress_rate(ppd);
7414 }
7415
7416 /*
7417  * Handle a verify capabilities interrupt from the 8051.
7418  *
7419  * This is a work-queue function outside of the interrupt.
7420  */
7421 void handle_verify_cap(struct work_struct *work)
7422 {
7423         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7424                                                                 link_vc_work);
7425         struct hfi1_devdata *dd = ppd->dd;
7426         u64 reg;
7427         u8 power_management;
7428         u8 continuous;
7429         u8 vcu;
7430         u8 vau;
7431         u8 z;
7432         u16 vl15buf;
7433         u16 link_widths;
7434         u16 crc_mask;
7435         u16 crc_val;
7436         u16 device_id;
7437         u16 active_tx, active_rx;
7438         u8 partner_supported_crc;
7439         u8 remote_tx_rate;
7440         u8 device_rev;
7441
7442         set_link_state(ppd, HLS_VERIFY_CAP);
7443
7444         lcb_shutdown(dd, 0);
7445         adjust_lcb_for_fpga_serdes(dd);
7446
7447         read_vc_remote_phy(dd, &power_management, &continuous);
7448         read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7449                               &partner_supported_crc);
7450         read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7451         read_remote_device_id(dd, &device_id, &device_rev);
7452
7453         /* print the active widths */
7454         get_link_widths(dd, &active_tx, &active_rx);
7455         dd_dev_info(dd,
7456                     "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7457                     (int)power_management, (int)continuous);
7458         dd_dev_info(dd,
7459                     "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7460                     (int)vau, (int)z, (int)vcu, (int)vl15buf,
7461                     (int)partner_supported_crc);
7462         dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7463                     (u32)remote_tx_rate, (u32)link_widths);
7464         dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7465                     (u32)device_id, (u32)device_rev);
7466         /*
7467          * The peer vAU value just read is the peer receiver value.  HFI does
7468          * not support a transmit vAU of 0 (AU == 8).  We advertised that
7469          * with Z=1 in the fabric capabilities sent to the peer.  The peer
7470          * will see our Z=1, and, if it advertised a vAU of 0, will move its
7471          * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7472          * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7473          * subject to the Z value exception.
7474          */
7475         if (vau == 0)
7476                 vau = 1;
7477         set_up_vau(dd, vau);
7478
7479         /*
7480          * Set VL15 credits to 0 in global credit register. Cache remote VL15
7481          * credits value and wait for link-up interrupt ot set it.
7482          */
7483         set_up_vl15(dd, 0);
7484         dd->vl15buf_cached = vl15buf;
7485
7486         /* set up the LCB CRC mode */
7487         crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7488
7489         /* order is important: use the lowest bit in common */
7490         if (crc_mask & CAP_CRC_14B)
7491                 crc_val = LCB_CRC_14B;
7492         else if (crc_mask & CAP_CRC_48B)
7493                 crc_val = LCB_CRC_48B;
7494         else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7495                 crc_val = LCB_CRC_12B_16B_PER_LANE;
7496         else
7497                 crc_val = LCB_CRC_16B;
7498
7499         dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7500         write_csr(dd, DC_LCB_CFG_CRC_MODE,
7501                   (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7502
7503         /* set (14b only) or clear sideband credit */
7504         reg = read_csr(dd, SEND_CM_CTRL);
7505         if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7506                 write_csr(dd, SEND_CM_CTRL,
7507                           reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7508         } else {
7509                 write_csr(dd, SEND_CM_CTRL,
7510                           reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7511         }
7512
7513         ppd->link_speed_active = 0;     /* invalid value */
7514         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7515                 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7516                 switch (remote_tx_rate) {
7517                 case 0:
7518                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7519                         break;
7520                 case 1:
7521                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7522                         break;
7523                 }
7524         } else {
7525                 /* actual rate is highest bit of the ANDed rates */
7526                 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7527
7528                 if (rate & 2)
7529                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7530                 else if (rate & 1)
7531                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7532         }
7533         if (ppd->link_speed_active == 0) {
7534                 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7535                            __func__, (int)remote_tx_rate);
7536                 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7537         }
7538
7539         /*
7540          * Cache the values of the supported, enabled, and active
7541          * LTP CRC modes to return in 'portinfo' queries. But the bit
7542          * flags that are returned in the portinfo query differ from
7543          * what's in the link_crc_mask, crc_sizes, and crc_val
7544          * variables. Convert these here.
7545          */
7546         ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7547                 /* supported crc modes */
7548         ppd->port_ltp_crc_mode |=
7549                 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7550                 /* enabled crc modes */
7551         ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7552                 /* active crc mode */
7553
7554         /* set up the remote credit return table */
7555         assign_remote_cm_au_table(dd, vcu);
7556
7557         /*
7558          * The LCB is reset on entry to handle_verify_cap(), so this must
7559          * be applied on every link up.
7560          *
7561          * Adjust LCB error kill enable to kill the link if
7562          * these RBUF errors are seen:
7563          *      REPLAY_BUF_MBE_SMASK
7564          *      FLIT_INPUT_BUF_MBE_SMASK
7565          */
7566         if (is_ax(dd)) {                        /* fixed in B0 */
7567                 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7568                 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7569                         | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7570                 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7571         }
7572
7573         /* pull LCB fifos out of reset - all fifo clocks must be stable */
7574         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7575
7576         /* give 8051 access to the LCB CSRs */
7577         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7578         set_8051_lcb_access(dd);
7579
7580         /* tell the 8051 to go to LinkUp */
7581         set_link_state(ppd, HLS_GOING_UP);
7582 }
7583
7584 /**
7585  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7586  * policy against the current active link widths.
7587  * @ppd: info of physical Hfi port
7588  * @refresh_widths: True indicates link downgrade event
7589  * @return: True indicates a successful link downgrade. False indicates
7590  *          link downgrade event failed and the link will bounce back to
7591  *          default link width.
7592  *
7593  * Called when the enabled policy changes or the active link widths
7594  * change.
7595  * Refresh_widths indicates that a link downgrade occurred. The
7596  * link_downgraded variable is set by refresh_widths and
7597  * determines the success/failure of the policy application.
7598  */
7599 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7600                                  bool refresh_widths)
7601 {
7602         int do_bounce = 0;
7603         int tries;
7604         u16 lwde;
7605         u16 tx, rx;
7606         bool link_downgraded = refresh_widths;
7607
7608         /* use the hls lock to avoid a race with actual link up */
7609         tries = 0;
7610 retry:
7611         mutex_lock(&ppd->hls_lock);
7612         /* only apply if the link is up */
7613         if (ppd->host_link_state & HLS_DOWN) {
7614                 /* still going up..wait and retry */
7615                 if (ppd->host_link_state & HLS_GOING_UP) {
7616                         if (++tries < 1000) {
7617                                 mutex_unlock(&ppd->hls_lock);
7618                                 usleep_range(100, 120); /* arbitrary */
7619                                 goto retry;
7620                         }
7621                         dd_dev_err(ppd->dd,
7622                                    "%s: giving up waiting for link state change\n",
7623                                    __func__);
7624                 }
7625                 goto done;
7626         }
7627
7628         lwde = ppd->link_width_downgrade_enabled;
7629
7630         if (refresh_widths) {
7631                 get_link_widths(ppd->dd, &tx, &rx);
7632                 ppd->link_width_downgrade_tx_active = tx;
7633                 ppd->link_width_downgrade_rx_active = rx;
7634         }
7635
7636         if (ppd->link_width_downgrade_tx_active == 0 ||
7637             ppd->link_width_downgrade_rx_active == 0) {
7638                 /* the 8051 reported a dead link as a downgrade */
7639                 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7640                 link_downgraded = false;
7641         } else if (lwde == 0) {
7642                 /* downgrade is disabled */
7643
7644                 /* bounce if not at starting active width */
7645                 if ((ppd->link_width_active !=
7646                      ppd->link_width_downgrade_tx_active) ||
7647                     (ppd->link_width_active !=
7648                      ppd->link_width_downgrade_rx_active)) {
7649                         dd_dev_err(ppd->dd,
7650                                    "Link downgrade is disabled and link has downgraded, downing link\n");
7651                         dd_dev_err(ppd->dd,
7652                                    "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7653                                    ppd->link_width_active,
7654                                    ppd->link_width_downgrade_tx_active,
7655                                    ppd->link_width_downgrade_rx_active);
7656                         do_bounce = 1;
7657                         link_downgraded = false;
7658                 }
7659         } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7660                    (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7661                 /* Tx or Rx is outside the enabled policy */
7662                 dd_dev_err(ppd->dd,
7663                            "Link is outside of downgrade allowed, downing link\n");
7664                 dd_dev_err(ppd->dd,
7665                            "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7666                            lwde, ppd->link_width_downgrade_tx_active,
7667                            ppd->link_width_downgrade_rx_active);
7668                 do_bounce = 1;
7669                 link_downgraded = false;
7670         }
7671
7672 done:
7673         mutex_unlock(&ppd->hls_lock);
7674
7675         if (do_bounce) {
7676                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7677                                      OPA_LINKDOWN_REASON_WIDTH_POLICY);
7678                 set_link_state(ppd, HLS_DN_OFFLINE);
7679                 start_link(ppd);
7680         }
7681
7682         return link_downgraded;
7683 }
7684
7685 /*
7686  * Handle a link downgrade interrupt from the 8051.
7687  *
7688  * This is a work-queue function outside of the interrupt.
7689  */
7690 void handle_link_downgrade(struct work_struct *work)
7691 {
7692         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7693                                                         link_downgrade_work);
7694
7695         dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7696         if (apply_link_downgrade_policy(ppd, true))
7697                 update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7698 }
7699
7700 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7701 {
7702         return flag_string(buf, buf_len, flags, dcc_err_flags,
7703                 ARRAY_SIZE(dcc_err_flags));
7704 }
7705
7706 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7707 {
7708         return flag_string(buf, buf_len, flags, lcb_err_flags,
7709                 ARRAY_SIZE(lcb_err_flags));
7710 }
7711
7712 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7713 {
7714         return flag_string(buf, buf_len, flags, dc8051_err_flags,
7715                 ARRAY_SIZE(dc8051_err_flags));
7716 }
7717
7718 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7719 {
7720         return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7721                 ARRAY_SIZE(dc8051_info_err_flags));
7722 }
7723
7724 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7725 {
7726         return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7727                 ARRAY_SIZE(dc8051_info_host_msg_flags));
7728 }
7729
7730 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7731 {
7732         struct hfi1_pportdata *ppd = dd->pport;
7733         u64 info, err, host_msg;
7734         int queue_link_down = 0;
7735         char buf[96];
7736
7737         /* look at the flags */
7738         if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7739                 /* 8051 information set by firmware */
7740                 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7741                 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7742                 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7743                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7744                 host_msg = (info >>
7745                         DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7746                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7747
7748                 /*
7749                  * Handle error flags.
7750                  */
7751                 if (err & FAILED_LNI) {
7752                         /*
7753                          * LNI error indications are cleared by the 8051
7754                          * only when starting polling.  Only pay attention
7755                          * to them when in the states that occur during
7756                          * LNI.
7757                          */
7758                         if (ppd->host_link_state
7759                             & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7760                                 queue_link_down = 1;
7761                                 dd_dev_info(dd, "Link error: %s\n",
7762                                             dc8051_info_err_string(buf,
7763                                                                    sizeof(buf),
7764                                                                    err &
7765                                                                    FAILED_LNI));
7766                         }
7767                         err &= ~(u64)FAILED_LNI;
7768                 }
7769                 /* unknown frames can happen durning LNI, just count */
7770                 if (err & UNKNOWN_FRAME) {
7771                         ppd->unknown_frame_count++;
7772                         err &= ~(u64)UNKNOWN_FRAME;
7773                 }
7774                 if (err) {
7775                         /* report remaining errors, but do not do anything */
7776                         dd_dev_err(dd, "8051 info error: %s\n",
7777                                    dc8051_info_err_string(buf, sizeof(buf),
7778                                                           err));
7779                 }
7780
7781                 /*
7782                  * Handle host message flags.
7783                  */
7784                 if (host_msg & HOST_REQ_DONE) {
7785                         /*
7786                          * Presently, the driver does a busy wait for
7787                          * host requests to complete.  This is only an
7788                          * informational message.
7789                          * NOTE: The 8051 clears the host message
7790                          * information *on the next 8051 command*.
7791                          * Therefore, when linkup is achieved,
7792                          * this flag will still be set.
7793                          */
7794                         host_msg &= ~(u64)HOST_REQ_DONE;
7795                 }
7796                 if (host_msg & BC_SMA_MSG) {
7797                         queue_work(ppd->link_wq, &ppd->sma_message_work);
7798                         host_msg &= ~(u64)BC_SMA_MSG;
7799                 }
7800                 if (host_msg & LINKUP_ACHIEVED) {
7801                         dd_dev_info(dd, "8051: Link up\n");
7802                         queue_work(ppd->link_wq, &ppd->link_up_work);
7803                         host_msg &= ~(u64)LINKUP_ACHIEVED;
7804                 }
7805                 if (host_msg & EXT_DEVICE_CFG_REQ) {
7806                         handle_8051_request(ppd);
7807                         host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7808                 }
7809                 if (host_msg & VERIFY_CAP_FRAME) {
7810                         queue_work(ppd->link_wq, &ppd->link_vc_work);
7811                         host_msg &= ~(u64)VERIFY_CAP_FRAME;
7812                 }
7813                 if (host_msg & LINK_GOING_DOWN) {
7814                         const char *extra = "";
7815                         /* no downgrade action needed if going down */
7816                         if (host_msg & LINK_WIDTH_DOWNGRADED) {
7817                                 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7818                                 extra = " (ignoring downgrade)";
7819                         }
7820                         dd_dev_info(dd, "8051: Link down%s\n", extra);
7821                         queue_link_down = 1;
7822                         host_msg &= ~(u64)LINK_GOING_DOWN;
7823                 }
7824                 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7825                         queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7826                         host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7827                 }
7828                 if (host_msg) {
7829                         /* report remaining messages, but do not do anything */
7830                         dd_dev_info(dd, "8051 info host message: %s\n",
7831                                     dc8051_info_host_msg_string(buf,
7832                                                                 sizeof(buf),
7833                                                                 host_msg));
7834                 }
7835
7836                 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7837         }
7838         if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7839                 /*
7840                  * Lost the 8051 heartbeat.  If this happens, we
7841                  * receive constant interrupts about it.  Disable
7842                  * the interrupt after the first.
7843                  */
7844                 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7845                 write_csr(dd, DC_DC8051_ERR_EN,
7846                           read_csr(dd, DC_DC8051_ERR_EN) &
7847                           ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7848
7849                 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7850         }
7851         if (reg) {
7852                 /* report the error, but do not do anything */
7853                 dd_dev_err(dd, "8051 error: %s\n",
7854                            dc8051_err_string(buf, sizeof(buf), reg));
7855         }
7856
7857         if (queue_link_down) {
7858                 /*
7859                  * if the link is already going down or disabled, do not
7860                  * queue another. If there's a link down entry already
7861                  * queued, don't queue another one.
7862                  */
7863                 if ((ppd->host_link_state &
7864                     (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7865                     ppd->link_enabled == 0) {
7866                         dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7867                                     __func__, ppd->host_link_state,
7868                                     ppd->link_enabled);
7869                 } else {
7870                         if (xchg(&ppd->is_link_down_queued, 1) == 1)
7871                                 dd_dev_info(dd,
7872                                             "%s: link down request already queued\n",
7873                                             __func__);
7874                         else
7875                                 queue_work(ppd->link_wq, &ppd->link_down_work);
7876                 }
7877         }
7878 }
7879
7880 static const char * const fm_config_txt[] = {
7881 [0] =
7882         "BadHeadDist: Distance violation between two head flits",
7883 [1] =
7884         "BadTailDist: Distance violation between two tail flits",
7885 [2] =
7886         "BadCtrlDist: Distance violation between two credit control flits",
7887 [3] =
7888         "BadCrdAck: Credits return for unsupported VL",
7889 [4] =
7890         "UnsupportedVLMarker: Received VL Marker",
7891 [5] =
7892         "BadPreempt: Exceeded the preemption nesting level",
7893 [6] =
7894         "BadControlFlit: Received unsupported control flit",
7895 /* no 7 */
7896 [8] =
7897         "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7898 };
7899
7900 static const char * const port_rcv_txt[] = {
7901 [1] =
7902         "BadPktLen: Illegal PktLen",
7903 [2] =
7904         "PktLenTooLong: Packet longer than PktLen",
7905 [3] =
7906         "PktLenTooShort: Packet shorter than PktLen",
7907 [4] =
7908         "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7909 [5] =
7910         "BadDLID: Illegal DLID (0, doesn't match HFI)",
7911 [6] =
7912         "BadL2: Illegal L2 opcode",
7913 [7] =
7914         "BadSC: Unsupported SC",
7915 [9] =
7916         "BadRC: Illegal RC",
7917 [11] =
7918         "PreemptError: Preempting with same VL",
7919 [12] =
7920         "PreemptVL15: Preempting a VL15 packet",
7921 };
7922
7923 #define OPA_LDR_FMCONFIG_OFFSET 16
7924 #define OPA_LDR_PORTRCV_OFFSET 0
7925 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7926 {
7927         u64 info, hdr0, hdr1;
7928         const char *extra;
7929         char buf[96];
7930         struct hfi1_pportdata *ppd = dd->pport;
7931         u8 lcl_reason = 0;
7932         int do_bounce = 0;
7933
7934         if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7935                 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7936                         info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7937                         dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7938                         /* set status bit */
7939                         dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7940                 }
7941                 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7942         }
7943
7944         if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7945                 struct hfi1_pportdata *ppd = dd->pport;
7946                 /* this counter saturates at (2^32) - 1 */
7947                 if (ppd->link_downed < (u32)UINT_MAX)
7948                         ppd->link_downed++;
7949                 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7950         }
7951
7952         if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7953                 u8 reason_valid = 1;
7954
7955                 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7956                 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7957                         dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7958                         /* set status bit */
7959                         dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7960                 }
7961                 switch (info) {
7962                 case 0:
7963                 case 1:
7964                 case 2:
7965                 case 3:
7966                 case 4:
7967                 case 5:
7968                 case 6:
7969                         extra = fm_config_txt[info];
7970                         break;
7971                 case 8:
7972                         extra = fm_config_txt[info];
7973                         if (ppd->port_error_action &
7974                             OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7975                                 do_bounce = 1;
7976                                 /*
7977                                  * lcl_reason cannot be derived from info
7978                                  * for this error
7979                                  */
7980                                 lcl_reason =
7981                                   OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7982                         }
7983                         break;
7984                 default:
7985                         reason_valid = 0;
7986                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7987                         extra = buf;
7988                         break;
7989                 }
7990
7991                 if (reason_valid && !do_bounce) {
7992                         do_bounce = ppd->port_error_action &
7993                                         (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7994                         lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7995                 }
7996
7997                 /* just report this */
7998                 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7999                                         extra);
8000                 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8001         }
8002
8003         if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8004                 u8 reason_valid = 1;
8005
8006                 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8007                 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8008                 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8009                 if (!(dd->err_info_rcvport.status_and_code &
8010                       OPA_EI_STATUS_SMASK)) {
8011                         dd->err_info_rcvport.status_and_code =
8012                                 info & OPA_EI_CODE_SMASK;
8013                         /* set status bit */
8014                         dd->err_info_rcvport.status_and_code |=
8015                                 OPA_EI_STATUS_SMASK;
8016                         /*
8017                          * save first 2 flits in the packet that caused
8018                          * the error
8019                          */
8020                         dd->err_info_rcvport.packet_flit1 = hdr0;
8021                         dd->err_info_rcvport.packet_flit2 = hdr1;
8022                 }
8023                 switch (info) {
8024                 case 1:
8025                 case 2:
8026                 case 3:
8027                 case 4:
8028                 case 5:
8029                 case 6:
8030                 case 7:
8031                 case 9:
8032                 case 11:
8033                 case 12:
8034                         extra = port_rcv_txt[info];
8035                         break;
8036                 default:
8037                         reason_valid = 0;
8038                         snprintf(buf, sizeof(buf), "reserved%lld", info);
8039                         extra = buf;
8040                         break;
8041                 }
8042
8043                 if (reason_valid && !do_bounce) {
8044                         do_bounce = ppd->port_error_action &
8045                                         (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8046                         lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8047                 }
8048
8049                 /* just report this */
8050                 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8051                                         "               hdr0 0x%llx, hdr1 0x%llx\n",
8052                                         extra, hdr0, hdr1);
8053
8054                 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8055         }
8056
8057         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8058                 /* informative only */
8059                 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8060                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8061         }
8062         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8063                 /* informative only */
8064                 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8065                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8066         }
8067
8068         if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8069                 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8070
8071         /* report any remaining errors */
8072         if (reg)
8073                 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8074                                         dcc_err_string(buf, sizeof(buf), reg));
8075
8076         if (lcl_reason == 0)
8077                 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8078
8079         if (do_bounce) {
8080                 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8081                                         __func__);
8082                 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8083                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
8084         }
8085 }
8086
8087 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8088 {
8089         char buf[96];
8090
8091         dd_dev_info(dd, "LCB Error: %s\n",
8092                     lcb_err_string(buf, sizeof(buf), reg));
8093 }
8094
8095 /*
8096  * CCE block DC interrupt.  Source is < 8.
8097  */
8098 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8099 {
8100         const struct err_reg_info *eri = &dc_errs[source];
8101
8102         if (eri->handler) {
8103                 interrupt_clear_down(dd, 0, eri);
8104         } else if (source == 3 /* dc_lbm_int */) {
8105                 /*
8106                  * This indicates that a parity error has occurred on the
8107                  * address/control lines presented to the LBM.  The error
8108                  * is a single pulse, there is no associated error flag,
8109                  * and it is non-maskable.  This is because if a parity
8110                  * error occurs on the request the request is dropped.
8111                  * This should never occur, but it is nice to know if it
8112                  * ever does.
8113                  */
8114                 dd_dev_err(dd, "Parity error in DC LBM block\n");
8115         } else {
8116                 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8117         }
8118 }
8119
8120 /*
8121  * TX block send credit interrupt.  Source is < 160.
8122  */
8123 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8124 {
8125         sc_group_release_update(dd, source);
8126 }
8127
8128 /*
8129  * TX block SDMA interrupt.  Source is < 48.
8130  *
8131  * SDMA interrupts are grouped by type:
8132  *
8133  *       0 -  N-1 = SDma
8134  *       N - 2N-1 = SDmaProgress
8135  *      2N - 3N-1 = SDmaIdle
8136  */
8137 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8138 {
8139         /* what interrupt */
8140         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8141         /* which engine */
8142         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8143
8144 #ifdef CONFIG_SDMA_VERBOSITY
8145         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8146                    slashstrip(__FILE__), __LINE__, __func__);
8147         sdma_dumpstate(&dd->per_sdma[which]);
8148 #endif
8149
8150         if (likely(what < 3 && which < dd->num_sdma)) {
8151                 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8152         } else {
8153                 /* should not happen */
8154                 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8155         }
8156 }
8157
8158 /**
8159  * is_rcv_avail_int() - User receive context available IRQ handler
8160  * @dd: valid dd
8161  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8162  *
8163  * RX block receive available interrupt.  Source is < 160.
8164  *
8165  * This is the general interrupt handler for user (PSM) receive contexts,
8166  * and can only be used for non-threaded IRQs.
8167  */
8168 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8169 {
8170         struct hfi1_ctxtdata *rcd;
8171         char *err_detail;
8172
8173         if (likely(source < dd->num_rcv_contexts)) {
8174                 rcd = hfi1_rcd_get_by_index(dd, source);
8175                 if (rcd) {
8176                         handle_user_interrupt(rcd);
8177                         hfi1_rcd_put(rcd);
8178                         return; /* OK */
8179                 }
8180                 /* received an interrupt, but no rcd */
8181                 err_detail = "dataless";
8182         } else {
8183                 /* received an interrupt, but are not using that context */
8184                 err_detail = "out of range";
8185         }
8186         dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8187                    err_detail, source);
8188 }
8189
8190 /**
8191  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8192  * @dd: valid dd
8193  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8194  *
8195  * RX block receive urgent interrupt.  Source is < 160.
8196  *
8197  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8198  */
8199 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8200 {
8201         struct hfi1_ctxtdata *rcd;
8202         char *err_detail;
8203
8204         if (likely(source < dd->num_rcv_contexts)) {
8205                 rcd = hfi1_rcd_get_by_index(dd, source);
8206                 if (rcd) {
8207                         handle_user_interrupt(rcd);
8208                         hfi1_rcd_put(rcd);
8209                         return; /* OK */
8210                 }
8211                 /* received an interrupt, but no rcd */
8212                 err_detail = "dataless";
8213         } else {
8214                 /* received an interrupt, but are not using that context */
8215                 err_detail = "out of range";
8216         }
8217         dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8218                    err_detail, source);
8219 }
8220
8221 /*
8222  * Reserved range interrupt.  Should not be called in normal operation.
8223  */
8224 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8225 {
8226         char name[64];
8227
8228         dd_dev_err(dd, "unexpected %s interrupt\n",
8229                    is_reserved_name(name, sizeof(name), source));
8230 }
8231
8232 static const struct is_table is_table[] = {
8233 /*
8234  * start                 end
8235  *                              name func               interrupt func
8236  */
8237 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8238                                 is_misc_err_name,       is_misc_err_int },
8239 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8240                                 is_sdma_eng_err_name,   is_sdma_eng_err_int },
8241 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8242                                 is_sendctxt_err_name,   is_sendctxt_err_int },
8243 { IS_SDMA_START,             IS_SDMA_IDLE_END,
8244                                 is_sdma_eng_name,       is_sdma_eng_int },
8245 { IS_VARIOUS_START,          IS_VARIOUS_END,
8246                                 is_various_name,        is_various_int },
8247 { IS_DC_START,       IS_DC_END,
8248                                 is_dc_name,             is_dc_int },
8249 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8250                                 is_rcv_avail_name,      is_rcv_avail_int },
8251 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8252                                 is_rcv_urgent_name,     is_rcv_urgent_int },
8253 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8254                                 is_send_credit_name,    is_send_credit_int},
8255 { IS_RESERVED_START,     IS_RESERVED_END,
8256                                 is_reserved_name,       is_reserved_int},
8257 };
8258
8259 /*
8260  * Interrupt source interrupt - called when the given source has an interrupt.
8261  * Source is a bit index into an array of 64-bit integers.
8262  */
8263 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8264 {
8265         const struct is_table *entry;
8266
8267         /* avoids a double compare by walking the table in-order */
8268         for (entry = &is_table[0]; entry->is_name; entry++) {
8269                 if (source <= entry->end) {
8270                         trace_hfi1_interrupt(dd, entry, source);
8271                         entry->is_int(dd, source - entry->start);
8272                         return;
8273                 }
8274         }
8275         /* fell off the end */
8276         dd_dev_err(dd, "invalid interrupt source %u\n", source);
8277 }
8278
8279 /**
8280  * general_interrupt -  General interrupt handler
8281  * @irq: MSIx IRQ vector
8282  * @data: hfi1 devdata
8283  *
8284  * This is able to correctly handle all non-threaded interrupts.  Receive
8285  * context DATA IRQs are threaded and are not supported by this handler.
8286  *
8287  */
8288 irqreturn_t general_interrupt(int irq, void *data)
8289 {
8290         struct hfi1_devdata *dd = data;
8291         u64 regs[CCE_NUM_INT_CSRS];
8292         u32 bit;
8293         int i;
8294         irqreturn_t handled = IRQ_NONE;
8295
8296         this_cpu_inc(*dd->int_counter);
8297
8298         /* phase 1: scan and clear all handled interrupts */
8299         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8300                 if (dd->gi_mask[i] == 0) {
8301                         regs[i] = 0;    /* used later */
8302                         continue;
8303                 }
8304                 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8305                                 dd->gi_mask[i];
8306                 /* only clear if anything is set */
8307                 if (regs[i])
8308                         write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8309         }
8310
8311         /* phase 2: call the appropriate handler */
8312         for_each_set_bit(bit, (unsigned long *)&regs[0],
8313                          CCE_NUM_INT_CSRS * 64) {
8314                 is_interrupt(dd, bit);
8315                 handled = IRQ_HANDLED;
8316         }
8317
8318         return handled;
8319 }
8320
8321 irqreturn_t sdma_interrupt(int irq, void *data)
8322 {
8323         struct sdma_engine *sde = data;
8324         struct hfi1_devdata *dd = sde->dd;
8325         u64 status;
8326
8327 #ifdef CONFIG_SDMA_VERBOSITY
8328         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8329                    slashstrip(__FILE__), __LINE__, __func__);
8330         sdma_dumpstate(sde);
8331 #endif
8332
8333         this_cpu_inc(*dd->int_counter);
8334
8335         /* This read_csr is really bad in the hot path */
8336         status = read_csr(dd,
8337                           CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8338                           & sde->imask;
8339         if (likely(status)) {
8340                 /* clear the interrupt(s) */
8341                 write_csr(dd,
8342                           CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8343                           status);
8344
8345                 /* handle the interrupt(s) */
8346                 sdma_engine_interrupt(sde, status);
8347         } else {
8348                 dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8349                                         sde->this_idx);
8350         }
8351         return IRQ_HANDLED;
8352 }
8353
8354 /*
8355  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8356  * to insure that the write completed.  This does NOT guarantee that
8357  * queued DMA writes to memory from the chip are pushed.
8358  */
8359 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8360 {
8361         struct hfi1_devdata *dd = rcd->dd;
8362         u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8363
8364         write_csr(dd, addr, rcd->imask);
8365         /* force the above write on the chip and get a value back */
8366         (void)read_csr(dd, addr);
8367 }
8368
8369 /* force the receive interrupt */
8370 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8371 {
8372         write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8373 }
8374
8375 /*
8376  * Return non-zero if a packet is present.
8377  *
8378  * This routine is called when rechecking for packets after the RcvAvail
8379  * interrupt has been cleared down.  First, do a quick check of memory for
8380  * a packet present.  If not found, use an expensive CSR read of the context
8381  * tail to determine the actual tail.  The CSR read is necessary because there
8382  * is no method to push pending DMAs to memory other than an interrupt and we
8383  * are trying to determine if we need to force an interrupt.
8384  */
8385 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8386 {
8387         u32 tail;
8388
8389         if (hfi1_packet_present(rcd))
8390                 return 1;
8391
8392         /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8393         tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8394         return hfi1_rcd_head(rcd) != tail;
8395 }
8396
8397 /*
8398  * Common code for receive contexts interrupt handlers.
8399  * Update traces, increment kernel IRQ counter and
8400  * setup ASPM when needed.
8401  */
8402 static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8403 {
8404         struct hfi1_devdata *dd = rcd->dd;
8405
8406         trace_hfi1_receive_interrupt(dd, rcd);
8407         this_cpu_inc(*dd->int_counter);
8408         aspm_ctx_disable(rcd);
8409 }
8410
8411 /*
8412  * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8413  * when there are packets present in the queue. When calling
8414  * with interrupts enabled please use hfi1_rcd_eoi_intr.
8415  *
8416  * @rcd: valid receive context
8417  */
8418 static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8419 {
8420         if (!rcd->rcvhdrq)
8421                 return;
8422         clear_recv_intr(rcd);
8423         if (check_packet_present(rcd))
8424                 force_recv_intr(rcd);
8425 }
8426
8427 /**
8428  * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8429  *
8430  * @rcd: Ptr to hfi1_ctxtdata of receive context
8431  *
8432  *  Hold IRQs so we can safely clear the interrupt and
8433  *  recheck for a packet that may have arrived after the previous
8434  *  check and the interrupt clear.  If a packet arrived, force another
8435  *  interrupt. This routine can be called at the end of receive packet
8436  *  processing in interrupt service routines, interrupt service thread
8437  *  and softirqs
8438  */
8439 static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8440 {
8441         unsigned long flags;
8442
8443         local_irq_save(flags);
8444         __hfi1_rcd_eoi_intr(rcd);
8445         local_irq_restore(flags);
8446 }
8447
8448 /**
8449  * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8450  * @napi: pointer to napi object
8451  * @budget: netdev budget
8452  */
8453 int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8454 {
8455         struct hfi1_netdev_rxq *rxq = container_of(napi,
8456                         struct hfi1_netdev_rxq, napi);
8457         struct hfi1_ctxtdata *rcd = rxq->rcd;
8458         int work_done = 0;
8459
8460         work_done = rcd->do_interrupt(rcd, budget);
8461
8462         if (work_done < budget) {
8463                 napi_complete_done(napi, work_done);
8464                 hfi1_rcd_eoi_intr(rcd);
8465         }
8466
8467         return work_done;
8468 }
8469
8470 /* Receive packet napi handler for netdevs VNIC and AIP  */
8471 irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8472 {
8473         struct hfi1_ctxtdata *rcd = data;
8474
8475         receive_interrupt_common(rcd);
8476
8477         if (likely(rcd->napi)) {
8478                 if (likely(napi_schedule_prep(rcd->napi)))
8479                         __napi_schedule_irqoff(rcd->napi);
8480                 else
8481                         __hfi1_rcd_eoi_intr(rcd);
8482         } else {
8483                 WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8484                           rcd->ctxt);
8485                 __hfi1_rcd_eoi_intr(rcd);
8486         }
8487
8488         return IRQ_HANDLED;
8489 }
8490
8491 /*
8492  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8493  * This routine will try to handle packets immediately (latency), but if
8494  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8495  * chip receive interrupt is *not* cleared down until this or the thread (if
8496  * invoked) is finished.  The intent is to avoid extra interrupts while we
8497  * are processing packets anyway.
8498  */
8499 irqreturn_t receive_context_interrupt(int irq, void *data)
8500 {
8501         struct hfi1_ctxtdata *rcd = data;
8502         int disposition;
8503
8504         receive_interrupt_common(rcd);
8505
8506         /* receive interrupt remains blocked while processing packets */
8507         disposition = rcd->do_interrupt(rcd, 0);
8508
8509         /*
8510          * Too many packets were seen while processing packets in this
8511          * IRQ handler.  Invoke the handler thread.  The receive interrupt
8512          * remains blocked.
8513          */
8514         if (disposition == RCV_PKT_LIMIT)
8515                 return IRQ_WAKE_THREAD;
8516
8517         __hfi1_rcd_eoi_intr(rcd);
8518         return IRQ_HANDLED;
8519 }
8520
8521 /*
8522  * Receive packet thread handler.  This expects to be invoked with the
8523  * receive interrupt still blocked.
8524  */
8525 irqreturn_t receive_context_thread(int irq, void *data)
8526 {
8527         struct hfi1_ctxtdata *rcd = data;
8528
8529         /* receive interrupt is still blocked from the IRQ handler */
8530         (void)rcd->do_interrupt(rcd, 1);
8531
8532         hfi1_rcd_eoi_intr(rcd);
8533
8534         return IRQ_HANDLED;
8535 }
8536
8537 /* ========================================================================= */
8538
8539 u32 read_physical_state(struct hfi1_devdata *dd)
8540 {
8541         u64 reg;
8542
8543         reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8544         return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8545                                 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8546 }
8547
8548 u32 read_logical_state(struct hfi1_devdata *dd)
8549 {
8550         u64 reg;
8551
8552         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8553         return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8554                                 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8555 }
8556
8557 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8558 {
8559         u64 reg;
8560
8561         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8562         /* clear current state, set new state */
8563         reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8564         reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8565         write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8566 }
8567
8568 /*
8569  * Use the 8051 to read a LCB CSR.
8570  */
8571 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8572 {
8573         u32 regno;
8574         int ret;
8575
8576         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8577                 if (acquire_lcb_access(dd, 0) == 0) {
8578                         *data = read_csr(dd, addr);
8579                         release_lcb_access(dd, 0);
8580                         return 0;
8581                 }
8582                 return -EBUSY;
8583         }
8584
8585         /* register is an index of LCB registers: (offset - base) / 8 */
8586         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8587         ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8588         if (ret != HCMD_SUCCESS)
8589                 return -EBUSY;
8590         return 0;
8591 }
8592
8593 /*
8594  * Provide a cache for some of the LCB registers in case the LCB is
8595  * unavailable.
8596  * (The LCB is unavailable in certain link states, for example.)
8597  */
8598 struct lcb_datum {
8599         u32 off;
8600         u64 val;
8601 };
8602
8603 static struct lcb_datum lcb_cache[] = {
8604         { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8605         { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8606         { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8607 };
8608
8609 static void update_lcb_cache(struct hfi1_devdata *dd)
8610 {
8611         int i;
8612         int ret;
8613         u64 val;
8614
8615         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8616                 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8617
8618                 /* Update if we get good data */
8619                 if (likely(ret != -EBUSY))
8620                         lcb_cache[i].val = val;
8621         }
8622 }
8623
8624 static int read_lcb_cache(u32 off, u64 *val)
8625 {
8626         int i;
8627
8628         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8629                 if (lcb_cache[i].off == off) {
8630                         *val = lcb_cache[i].val;
8631                         return 0;
8632                 }
8633         }
8634
8635         pr_warn("%s bad offset 0x%x\n", __func__, off);
8636         return -1;
8637 }
8638
8639 /*
8640  * Read an LCB CSR.  Access may not be in host control, so check.
8641  * Return 0 on success, -EBUSY on failure.
8642  */
8643 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8644 {
8645         struct hfi1_pportdata *ppd = dd->pport;
8646
8647         /* if up, go through the 8051 for the value */
8648         if (ppd->host_link_state & HLS_UP)
8649                 return read_lcb_via_8051(dd, addr, data);
8650         /* if going up or down, check the cache, otherwise, no access */
8651         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8652                 if (read_lcb_cache(addr, data))
8653                         return -EBUSY;
8654                 return 0;
8655         }
8656
8657         /* otherwise, host has access */
8658         *data = read_csr(dd, addr);
8659         return 0;
8660 }
8661
8662 /*
8663  * Use the 8051 to write a LCB CSR.
8664  */
8665 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8666 {
8667         u32 regno;
8668         int ret;
8669
8670         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8671             (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8672                 if (acquire_lcb_access(dd, 0) == 0) {
8673                         write_csr(dd, addr, data);
8674                         release_lcb_access(dd, 0);
8675                         return 0;
8676                 }
8677                 return -EBUSY;
8678         }
8679
8680         /* register is an index of LCB registers: (offset - base) / 8 */
8681         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8682         ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8683         if (ret != HCMD_SUCCESS)
8684                 return -EBUSY;
8685         return 0;
8686 }
8687
8688 /*
8689  * Write an LCB CSR.  Access may not be in host control, so check.
8690  * Return 0 on success, -EBUSY on failure.
8691  */
8692 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8693 {
8694         struct hfi1_pportdata *ppd = dd->pport;
8695
8696         /* if up, go through the 8051 for the value */
8697         if (ppd->host_link_state & HLS_UP)
8698                 return write_lcb_via_8051(dd, addr, data);
8699         /* if going up or down, no access */
8700         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8701                 return -EBUSY;
8702         /* otherwise, host has access */
8703         write_csr(dd, addr, data);
8704         return 0;
8705 }
8706
8707 /*
8708  * Returns:
8709  *      < 0 = Linux error, not able to get access
8710  *      > 0 = 8051 command RETURN_CODE
8711  */
8712 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8713                            u64 *out_data)
8714 {
8715         u64 reg, completed;
8716         int return_code;
8717         unsigned long timeout;
8718
8719         hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8720
8721         mutex_lock(&dd->dc8051_lock);
8722
8723         /* We can't send any commands to the 8051 if it's in reset */
8724         if (dd->dc_shutdown) {
8725                 return_code = -ENODEV;
8726                 goto fail;
8727         }
8728
8729         /*
8730          * If an 8051 host command timed out previously, then the 8051 is
8731          * stuck.
8732          *
8733          * On first timeout, attempt to reset and restart the entire DC
8734          * block (including 8051). (Is this too big of a hammer?)
8735          *
8736          * If the 8051 times out a second time, the reset did not bring it
8737          * back to healthy life. In that case, fail any subsequent commands.
8738          */
8739         if (dd->dc8051_timed_out) {
8740                 if (dd->dc8051_timed_out > 1) {
8741                         dd_dev_err(dd,
8742                                    "Previous 8051 host command timed out, skipping command %u\n",
8743                                    type);
8744                         return_code = -ENXIO;
8745                         goto fail;
8746                 }
8747                 _dc_shutdown(dd);
8748                 _dc_start(dd);
8749         }
8750
8751         /*
8752          * If there is no timeout, then the 8051 command interface is
8753          * waiting for a command.
8754          */
8755
8756         /*
8757          * When writing a LCB CSR, out_data contains the full value to
8758          * be written, while in_data contains the relative LCB
8759          * address in 7:0.  Do the work here, rather than the caller,
8760          * of distrubting the write data to where it needs to go:
8761          *
8762          * Write data
8763          *   39:00 -> in_data[47:8]
8764          *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8765          *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8766          */
8767         if (type == HCMD_WRITE_LCB_CSR) {
8768                 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8769                 /* must preserve COMPLETED - it is tied to hardware */
8770                 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8771                 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8772                 reg |= ((((*out_data) >> 40) & 0xff) <<
8773                                 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8774                       | ((((*out_data) >> 48) & 0xffff) <<
8775                                 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8776                 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8777         }
8778
8779         /*
8780          * Do two writes: the first to stabilize the type and req_data, the
8781          * second to activate.
8782          */
8783         reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8784                         << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8785                 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8786                         << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8787         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8788         reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8789         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8790
8791         /* wait for completion, alternate: interrupt */
8792         timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8793         while (1) {
8794                 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8795                 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8796                 if (completed)
8797                         break;
8798                 if (time_after(jiffies, timeout)) {
8799                         dd->dc8051_timed_out++;
8800                         dd_dev_err(dd, "8051 host command %u timeout\n", type);
8801                         if (out_data)
8802                                 *out_data = 0;
8803                         return_code = -ETIMEDOUT;
8804                         goto fail;
8805                 }
8806                 udelay(2);
8807         }
8808
8809         if (out_data) {
8810                 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8811                                 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8812                 if (type == HCMD_READ_LCB_CSR) {
8813                         /* top 16 bits are in a different register */
8814                         *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8815                                 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8816                                 << (48
8817                                     - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8818                 }
8819         }
8820         return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8821                                 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8822         dd->dc8051_timed_out = 0;
8823         /*
8824          * Clear command for next user.
8825          */
8826         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8827
8828 fail:
8829         mutex_unlock(&dd->dc8051_lock);
8830         return return_code;
8831 }
8832
8833 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8834 {
8835         return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8836 }
8837
8838 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8839                      u8 lane_id, u32 config_data)
8840 {
8841         u64 data;
8842         int ret;
8843
8844         data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8845                 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8846                 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8847         ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8848         if (ret != HCMD_SUCCESS) {
8849                 dd_dev_err(dd,
8850                            "load 8051 config: field id %d, lane %d, err %d\n",
8851                            (int)field_id, (int)lane_id, ret);
8852         }
8853         return ret;
8854 }
8855
8856 /*
8857  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8858  * set the result, even on error.
8859  * Return 0 on success, -errno on failure
8860  */
8861 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8862                      u32 *result)
8863 {
8864         u64 big_data;
8865         u32 addr;
8866         int ret;
8867
8868         /* address start depends on the lane_id */
8869         if (lane_id < 4)
8870                 addr = (4 * NUM_GENERAL_FIELDS)
8871                         + (lane_id * 4 * NUM_LANE_FIELDS);
8872         else
8873                 addr = 0;
8874         addr += field_id * 4;
8875
8876         /* read is in 8-byte chunks, hardware will truncate the address down */
8877         ret = read_8051_data(dd, addr, 8, &big_data);
8878
8879         if (ret == 0) {
8880                 /* extract the 4 bytes we want */
8881                 if (addr & 0x4)
8882                         *result = (u32)(big_data >> 32);
8883                 else
8884                         *result = (u32)big_data;
8885         } else {
8886                 *result = 0;
8887                 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8888                            __func__, lane_id, field_id);
8889         }
8890
8891         return ret;
8892 }
8893
8894 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8895                               u8 continuous)
8896 {
8897         u32 frame;
8898
8899         frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8900                 | power_management << POWER_MANAGEMENT_SHIFT;
8901         return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8902                                 GENERAL_CONFIG, frame);
8903 }
8904
8905 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8906                                  u16 vl15buf, u8 crc_sizes)
8907 {
8908         u32 frame;
8909
8910         frame = (u32)vau << VAU_SHIFT
8911                 | (u32)z << Z_SHIFT
8912                 | (u32)vcu << VCU_SHIFT
8913                 | (u32)vl15buf << VL15BUF_SHIFT
8914                 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8915         return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8916                                 GENERAL_CONFIG, frame);
8917 }
8918
8919 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8920                                     u8 *flag_bits, u16 *link_widths)
8921 {
8922         u32 frame;
8923
8924         read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8925                          &frame);
8926         *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8927         *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8928         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8929 }
8930
8931 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8932                                     u8 misc_bits,
8933                                     u8 flag_bits,
8934                                     u16 link_widths)
8935 {
8936         u32 frame;
8937
8938         frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8939                 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8940                 | (u32)link_widths << LINK_WIDTH_SHIFT;
8941         return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8942                      frame);
8943 }
8944
8945 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8946                                  u8 device_rev)
8947 {
8948         u32 frame;
8949
8950         frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8951                 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8952         return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8953 }
8954
8955 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8956                                   u8 *device_rev)
8957 {
8958         u32 frame;
8959
8960         read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8961         *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8962         *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8963                         & REMOTE_DEVICE_REV_MASK;
8964 }
8965
8966 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8967 {
8968         u32 frame;
8969         u32 mask;
8970
8971         mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8972         read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8973         /* Clear, then set field */
8974         frame &= ~mask;
8975         frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8976         return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8977                                 frame);
8978 }
8979
8980 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8981                       u8 *ver_patch)
8982 {
8983         u32 frame;
8984
8985         read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8986         *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8987                 STS_FM_VERSION_MAJOR_MASK;
8988         *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8989                 STS_FM_VERSION_MINOR_MASK;
8990
8991         read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8992         *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8993                 STS_FM_VERSION_PATCH_MASK;
8994 }
8995
8996 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8997                                u8 *continuous)
8998 {
8999         u32 frame;
9000
9001         read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
9002         *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
9003                                         & POWER_MANAGEMENT_MASK;
9004         *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9005                                         & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9006 }
9007
9008 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9009                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9010 {
9011         u32 frame;
9012
9013         read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9014         *vau = (frame >> VAU_SHIFT) & VAU_MASK;
9015         *z = (frame >> Z_SHIFT) & Z_MASK;
9016         *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9017         *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9018         *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9019 }
9020
9021 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9022                                       u8 *remote_tx_rate,
9023                                       u16 *link_widths)
9024 {
9025         u32 frame;
9026
9027         read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9028                          &frame);
9029         *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9030                                 & REMOTE_TX_RATE_MASK;
9031         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9032 }
9033
9034 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9035 {
9036         u32 frame;
9037
9038         read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9039         *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9040 }
9041
9042 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9043 {
9044         read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9045 }
9046
9047 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9048 {
9049         read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9050 }
9051
9052 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9053 {
9054         u32 frame;
9055         int ret;
9056
9057         *link_quality = 0;
9058         if (dd->pport->host_link_state & HLS_UP) {
9059                 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9060                                        &frame);
9061                 if (ret == 0)
9062                         *link_quality = (frame >> LINK_QUALITY_SHIFT)
9063                                                 & LINK_QUALITY_MASK;
9064         }
9065 }
9066
9067 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9068 {
9069         u32 frame;
9070
9071         read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9072         *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9073 }
9074
9075 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9076 {
9077         u32 frame;
9078
9079         read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9080         *ldr = (frame & 0xff);
9081 }
9082
9083 static int read_tx_settings(struct hfi1_devdata *dd,
9084                             u8 *enable_lane_tx,
9085                             u8 *tx_polarity_inversion,
9086                             u8 *rx_polarity_inversion,
9087                             u8 *max_rate)
9088 {
9089         u32 frame;
9090         int ret;
9091
9092         ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9093         *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9094                                 & ENABLE_LANE_TX_MASK;
9095         *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9096                                 & TX_POLARITY_INVERSION_MASK;
9097         *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9098                                 & RX_POLARITY_INVERSION_MASK;
9099         *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9100         return ret;
9101 }
9102
9103 static int write_tx_settings(struct hfi1_devdata *dd,
9104                              u8 enable_lane_tx,
9105                              u8 tx_polarity_inversion,
9106                              u8 rx_polarity_inversion,
9107                              u8 max_rate)
9108 {
9109         u32 frame;
9110
9111         /* no need to mask, all variable sizes match field widths */
9112         frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9113                 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9114                 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9115                 | max_rate << MAX_RATE_SHIFT;
9116         return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9117 }
9118
9119 /*
9120  * Read an idle LCB message.
9121  *
9122  * Returns 0 on success, -EINVAL on error
9123  */
9124 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9125 {
9126         int ret;
9127
9128         ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9129         if (ret != HCMD_SUCCESS) {
9130                 dd_dev_err(dd, "read idle message: type %d, err %d\n",
9131                            (u32)type, ret);
9132                 return -EINVAL;
9133         }
9134         dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9135         /* return only the payload as we already know the type */
9136         *data_out >>= IDLE_PAYLOAD_SHIFT;
9137         return 0;
9138 }
9139
9140 /*
9141  * Read an idle SMA message.  To be done in response to a notification from
9142  * the 8051.
9143  *
9144  * Returns 0 on success, -EINVAL on error
9145  */
9146 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9147 {
9148         return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9149                                  data);
9150 }
9151
9152 /*
9153  * Send an idle LCB message.
9154  *
9155  * Returns 0 on success, -EINVAL on error
9156  */
9157 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9158 {
9159         int ret;
9160
9161         dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9162         ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9163         if (ret != HCMD_SUCCESS) {
9164                 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9165                            data, ret);
9166                 return -EINVAL;
9167         }
9168         return 0;
9169 }
9170
9171 /*
9172  * Send an idle SMA message.
9173  *
9174  * Returns 0 on success, -EINVAL on error
9175  */
9176 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9177 {
9178         u64 data;
9179
9180         data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9181                 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9182         return send_idle_message(dd, data);
9183 }
9184
9185 /*
9186  * Initialize the LCB then do a quick link up.  This may or may not be
9187  * in loopback.
9188  *
9189  * return 0 on success, -errno on error
9190  */
9191 static int do_quick_linkup(struct hfi1_devdata *dd)
9192 {
9193         int ret;
9194
9195         lcb_shutdown(dd, 0);
9196
9197         if (loopback) {
9198                 /* LCB_CFG_LOOPBACK.VAL = 2 */
9199                 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9200                 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9201                           IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9202                 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9203         }
9204
9205         /* start the LCBs */
9206         /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9207         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9208
9209         /* simulator only loopback steps */
9210         if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9211                 /* LCB_CFG_RUN.EN = 1 */
9212                 write_csr(dd, DC_LCB_CFG_RUN,
9213                           1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9214
9215                 ret = wait_link_transfer_active(dd, 10);
9216                 if (ret)
9217                         return ret;
9218
9219                 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9220                           1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9221         }
9222
9223         if (!loopback) {
9224                 /*
9225                  * When doing quick linkup and not in loopback, both
9226                  * sides must be done with LCB set-up before either
9227                  * starts the quick linkup.  Put a delay here so that
9228                  * both sides can be started and have a chance to be
9229                  * done with LCB set up before resuming.
9230                  */
9231                 dd_dev_err(dd,
9232                            "Pausing for peer to be finished with LCB set up\n");
9233                 msleep(5000);
9234                 dd_dev_err(dd, "Continuing with quick linkup\n");
9235         }
9236
9237         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9238         set_8051_lcb_access(dd);
9239
9240         /*
9241          * State "quick" LinkUp request sets the physical link state to
9242          * LinkUp without a verify capability sequence.
9243          * This state is in simulator v37 and later.
9244          */
9245         ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9246         if (ret != HCMD_SUCCESS) {
9247                 dd_dev_err(dd,
9248                            "%s: set physical link state to quick LinkUp failed with return %d\n",
9249                            __func__, ret);
9250
9251                 set_host_lcb_access(dd);
9252                 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9253
9254                 if (ret >= 0)
9255                         ret = -EINVAL;
9256                 return ret;
9257         }
9258
9259         return 0; /* success */
9260 }
9261
9262 /*
9263  * Do all special steps to set up loopback.
9264  */
9265 static int init_loopback(struct hfi1_devdata *dd)
9266 {
9267         dd_dev_info(dd, "Entering loopback mode\n");
9268
9269         /* all loopbacks should disable self GUID check */
9270         write_csr(dd, DC_DC8051_CFG_MODE,
9271                   (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9272
9273         /*
9274          * The simulator has only one loopback option - LCB.  Switch
9275          * to that option, which includes quick link up.
9276          *
9277          * Accept all valid loopback values.
9278          */
9279         if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9280             (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9281              loopback == LOOPBACK_CABLE)) {
9282                 loopback = LOOPBACK_LCB;
9283                 quick_linkup = 1;
9284                 return 0;
9285         }
9286
9287         /*
9288          * SerDes loopback init sequence is handled in set_local_link_attributes
9289          */
9290         if (loopback == LOOPBACK_SERDES)
9291                 return 0;
9292
9293         /* LCB loopback - handled at poll time */
9294         if (loopback == LOOPBACK_LCB) {
9295                 quick_linkup = 1; /* LCB is always quick linkup */
9296
9297                 /* not supported in emulation due to emulation RTL changes */
9298                 if (dd->icode == ICODE_FPGA_EMULATION) {
9299                         dd_dev_err(dd,
9300                                    "LCB loopback not supported in emulation\n");
9301                         return -EINVAL;
9302                 }
9303                 return 0;
9304         }
9305
9306         /* external cable loopback requires no extra steps */
9307         if (loopback == LOOPBACK_CABLE)
9308                 return 0;
9309
9310         dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9311         return -EINVAL;
9312 }
9313
9314 /*
9315  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9316  * used in the Verify Capability link width attribute.
9317  */
9318 static u16 opa_to_vc_link_widths(u16 opa_widths)
9319 {
9320         int i;
9321         u16 result = 0;
9322
9323         static const struct link_bits {
9324                 u16 from;
9325                 u16 to;
9326         } opa_link_xlate[] = {
9327                 { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9328                 { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9329                 { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9330                 { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9331         };
9332
9333         for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9334                 if (opa_widths & opa_link_xlate[i].from)
9335                         result |= opa_link_xlate[i].to;
9336         }
9337         return result;
9338 }
9339
9340 /*
9341  * Set link attributes before moving to polling.
9342  */
9343 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9344 {
9345         struct hfi1_devdata *dd = ppd->dd;
9346         u8 enable_lane_tx;
9347         u8 tx_polarity_inversion;
9348         u8 rx_polarity_inversion;
9349         int ret;
9350         u32 misc_bits = 0;
9351         /* reset our fabric serdes to clear any lingering problems */
9352         fabric_serdes_reset(dd);
9353
9354         /* set the local tx rate - need to read-modify-write */
9355         ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9356                                &rx_polarity_inversion, &ppd->local_tx_rate);
9357         if (ret)
9358                 goto set_local_link_attributes_fail;
9359
9360         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9361                 /* set the tx rate to the fastest enabled */
9362                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9363                         ppd->local_tx_rate = 1;
9364                 else
9365                         ppd->local_tx_rate = 0;
9366         } else {
9367                 /* set the tx rate to all enabled */
9368                 ppd->local_tx_rate = 0;
9369                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9370                         ppd->local_tx_rate |= 2;
9371                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9372                         ppd->local_tx_rate |= 1;
9373         }
9374
9375         enable_lane_tx = 0xF; /* enable all four lanes */
9376         ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9377                                 rx_polarity_inversion, ppd->local_tx_rate);
9378         if (ret != HCMD_SUCCESS)
9379                 goto set_local_link_attributes_fail;
9380
9381         ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9382         if (ret != HCMD_SUCCESS) {
9383                 dd_dev_err(dd,
9384                            "Failed to set host interface version, return 0x%x\n",
9385                            ret);
9386                 goto set_local_link_attributes_fail;
9387         }
9388
9389         /*
9390          * DC supports continuous updates.
9391          */
9392         ret = write_vc_local_phy(dd,
9393                                  0 /* no power management */,
9394                                  1 /* continuous updates */);
9395         if (ret != HCMD_SUCCESS)
9396                 goto set_local_link_attributes_fail;
9397
9398         /* z=1 in the next call: AU of 0 is not supported by the hardware */
9399         ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9400                                     ppd->port_crc_mode_enabled);
9401         if (ret != HCMD_SUCCESS)
9402                 goto set_local_link_attributes_fail;
9403
9404         /*
9405          * SerDes loopback init sequence requires
9406          * setting bit 0 of MISC_CONFIG_BITS
9407          */
9408         if (loopback == LOOPBACK_SERDES)
9409                 misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9410
9411         /*
9412          * An external device configuration request is used to reset the LCB
9413          * to retry to obtain operational lanes when the first attempt is
9414          * unsuccesful.
9415          */
9416         if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9417                 misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9418
9419         ret = write_vc_local_link_mode(dd, misc_bits, 0,
9420                                        opa_to_vc_link_widths(
9421                                                 ppd->link_width_enabled));
9422         if (ret != HCMD_SUCCESS)
9423                 goto set_local_link_attributes_fail;
9424
9425         /* let peer know who we are */
9426         ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9427         if (ret == HCMD_SUCCESS)
9428                 return 0;
9429
9430 set_local_link_attributes_fail:
9431         dd_dev_err(dd,
9432                    "Failed to set local link attributes, return 0x%x\n",
9433                    ret);
9434         return ret;
9435 }
9436
9437 /*
9438  * Call this to start the link.
9439  * Do not do anything if the link is disabled.
9440  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9441  */
9442 int start_link(struct hfi1_pportdata *ppd)
9443 {
9444         /*
9445          * Tune the SerDes to a ballpark setting for optimal signal and bit
9446          * error rate.  Needs to be done before starting the link.
9447          */
9448         tune_serdes(ppd);
9449
9450         if (!ppd->driver_link_ready) {
9451                 dd_dev_info(ppd->dd,
9452                             "%s: stopping link start because driver is not ready\n",
9453                             __func__);
9454                 return 0;
9455         }
9456
9457         /*
9458          * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9459          * pkey table can be configured properly if the HFI unit is connected
9460          * to switch port with MgmtAllowed=NO
9461          */
9462         clear_full_mgmt_pkey(ppd);
9463
9464         return set_link_state(ppd, HLS_DN_POLL);
9465 }
9466
9467 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9468 {
9469         struct hfi1_devdata *dd = ppd->dd;
9470         u64 mask;
9471         unsigned long timeout;
9472
9473         /*
9474          * Some QSFP cables have a quirk that asserts the IntN line as a side
9475          * effect of power up on plug-in. We ignore this false positive
9476          * interrupt until the module has finished powering up by waiting for
9477          * a minimum timeout of the module inrush initialization time of
9478          * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9479          * module have stabilized.
9480          */
9481         msleep(500);
9482
9483         /*
9484          * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9485          */
9486         timeout = jiffies + msecs_to_jiffies(2000);
9487         while (1) {
9488                 mask = read_csr(dd, dd->hfi1_id ?
9489                                 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9490                 if (!(mask & QSFP_HFI0_INT_N))
9491                         break;
9492                 if (time_after(jiffies, timeout)) {
9493                         dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9494                                     __func__);
9495                         break;
9496                 }
9497                 udelay(2);
9498         }
9499 }
9500
9501 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9502 {
9503         struct hfi1_devdata *dd = ppd->dd;
9504         u64 mask;
9505
9506         mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9507         if (enable) {
9508                 /*
9509                  * Clear the status register to avoid an immediate interrupt
9510                  * when we re-enable the IntN pin
9511                  */
9512                 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9513                           QSFP_HFI0_INT_N);
9514                 mask |= (u64)QSFP_HFI0_INT_N;
9515         } else {
9516                 mask &= ~(u64)QSFP_HFI0_INT_N;
9517         }
9518         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9519 }
9520
9521 int reset_qsfp(struct hfi1_pportdata *ppd)
9522 {
9523         struct hfi1_devdata *dd = ppd->dd;
9524         u64 mask, qsfp_mask;
9525
9526         /* Disable INT_N from triggering QSFP interrupts */
9527         set_qsfp_int_n(ppd, 0);
9528
9529         /* Reset the QSFP */
9530         mask = (u64)QSFP_HFI0_RESET_N;
9531
9532         qsfp_mask = read_csr(dd,
9533                              dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9534         qsfp_mask &= ~mask;
9535         write_csr(dd,
9536                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9537
9538         udelay(10);
9539
9540         qsfp_mask |= mask;
9541         write_csr(dd,
9542                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9543
9544         wait_for_qsfp_init(ppd);
9545
9546         /*
9547          * Allow INT_N to trigger the QSFP interrupt to watch
9548          * for alarms and warnings
9549          */
9550         set_qsfp_int_n(ppd, 1);
9551
9552         /*
9553          * After the reset, AOC transmitters are enabled by default. They need
9554          * to be turned off to complete the QSFP setup before they can be
9555          * enabled again.
9556          */
9557         return set_qsfp_tx(ppd, 0);
9558 }
9559
9560 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9561                                         u8 *qsfp_interrupt_status)
9562 {
9563         struct hfi1_devdata *dd = ppd->dd;
9564
9565         if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9566             (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9567                 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9568                            __func__);
9569
9570         if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9571             (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9572                 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9573                            __func__);
9574
9575         /*
9576          * The remaining alarms/warnings don't matter if the link is down.
9577          */
9578         if (ppd->host_link_state & HLS_DOWN)
9579                 return 0;
9580
9581         if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9582             (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9583                 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9584                            __func__);
9585
9586         if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9587             (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9588                 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9589                            __func__);
9590
9591         /* Byte 2 is vendor specific */
9592
9593         if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9594             (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9595                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9596                            __func__);
9597
9598         if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9599             (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9600                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9601                            __func__);
9602
9603         if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9604             (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9605                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9606                            __func__);
9607
9608         if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9609             (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9610                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9611                            __func__);
9612
9613         if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9614             (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9615                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9616                            __func__);
9617
9618         if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9619             (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9620                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9621                            __func__);
9622
9623         if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9624             (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9625                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9626                            __func__);
9627
9628         if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9629             (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9630                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9631                            __func__);
9632
9633         if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9634             (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9635                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9636                            __func__);
9637
9638         if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9639             (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9640                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9641                            __func__);
9642
9643         if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9644             (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9645                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9646                            __func__);
9647
9648         if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9649             (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9650                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9651                            __func__);
9652
9653         /* Bytes 9-10 and 11-12 are reserved */
9654         /* Bytes 13-15 are vendor specific */
9655
9656         return 0;
9657 }
9658
9659 /* This routine will only be scheduled if the QSFP module present is asserted */
9660 void qsfp_event(struct work_struct *work)
9661 {
9662         struct qsfp_data *qd;
9663         struct hfi1_pportdata *ppd;
9664         struct hfi1_devdata *dd;
9665
9666         qd = container_of(work, struct qsfp_data, qsfp_work);
9667         ppd = qd->ppd;
9668         dd = ppd->dd;
9669
9670         /* Sanity check */
9671         if (!qsfp_mod_present(ppd))
9672                 return;
9673
9674         if (ppd->host_link_state == HLS_DN_DISABLE) {
9675                 dd_dev_info(ppd->dd,
9676                             "%s: stopping link start because link is disabled\n",
9677                             __func__);
9678                 return;
9679         }
9680
9681         /*
9682          * Turn DC back on after cable has been re-inserted. Up until
9683          * now, the DC has been in reset to save power.
9684          */
9685         dc_start(dd);
9686
9687         if (qd->cache_refresh_required) {
9688                 set_qsfp_int_n(ppd, 0);
9689
9690                 wait_for_qsfp_init(ppd);
9691
9692                 /*
9693                  * Allow INT_N to trigger the QSFP interrupt to watch
9694                  * for alarms and warnings
9695                  */
9696                 set_qsfp_int_n(ppd, 1);
9697
9698                 start_link(ppd);
9699         }
9700
9701         if (qd->check_interrupt_flags) {
9702                 u8 qsfp_interrupt_status[16] = {0,};
9703
9704                 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9705                                   &qsfp_interrupt_status[0], 16) != 16) {
9706                         dd_dev_info(dd,
9707                                     "%s: Failed to read status of QSFP module\n",
9708                                     __func__);
9709                 } else {
9710                         unsigned long flags;
9711
9712                         handle_qsfp_error_conditions(
9713                                         ppd, qsfp_interrupt_status);
9714                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9715                         ppd->qsfp_info.check_interrupt_flags = 0;
9716                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9717                                                flags);
9718                 }
9719         }
9720 }
9721
9722 void init_qsfp_int(struct hfi1_devdata *dd)
9723 {
9724         struct hfi1_pportdata *ppd = dd->pport;
9725         u64 qsfp_mask;
9726
9727         qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9728         /* Clear current status to avoid spurious interrupts */
9729         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9730                   qsfp_mask);
9731         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9732                   qsfp_mask);
9733
9734         set_qsfp_int_n(ppd, 0);
9735
9736         /* Handle active low nature of INT_N and MODPRST_N pins */
9737         if (qsfp_mod_present(ppd))
9738                 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9739         write_csr(dd,
9740                   dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9741                   qsfp_mask);
9742
9743         /* Enable the appropriate QSFP IRQ source */
9744         if (!dd->hfi1_id)
9745                 set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9746         else
9747                 set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9748 }
9749
9750 /*
9751  * Do a one-time initialize of the LCB block.
9752  */
9753 static void init_lcb(struct hfi1_devdata *dd)
9754 {
9755         /* simulator does not correctly handle LCB cclk loopback, skip */
9756         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9757                 return;
9758
9759         /* the DC has been reset earlier in the driver load */
9760
9761         /* set LCB for cclk loopback on the port */
9762         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9763         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9764         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9765         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9766         write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9767         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9768         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9769 }
9770
9771 /*
9772  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9773  * on error.
9774  */
9775 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9776 {
9777         int ret;
9778         u8 status;
9779
9780         /*
9781          * Report success if not a QSFP or, if it is a QSFP, but the cable is
9782          * not present
9783          */
9784         if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9785                 return 0;
9786
9787         /* read byte 2, the status byte */
9788         ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9789         if (ret < 0)
9790                 return ret;
9791         if (ret != 1)
9792                 return -EIO;
9793
9794         return 0; /* success */
9795 }
9796
9797 /*
9798  * Values for QSFP retry.
9799  *
9800  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9801  * arrived at from experience on a large cluster.
9802  */
9803 #define MAX_QSFP_RETRIES 20
9804 #define QSFP_RETRY_WAIT 500 /* msec */
9805
9806 /*
9807  * Try a QSFP read.  If it fails, schedule a retry for later.
9808  * Called on first link activation after driver load.
9809  */
9810 static void try_start_link(struct hfi1_pportdata *ppd)
9811 {
9812         if (test_qsfp_read(ppd)) {
9813                 /* read failed */
9814                 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9815                         dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9816                         return;
9817                 }
9818                 dd_dev_info(ppd->dd,
9819                             "QSFP not responding, waiting and retrying %d\n",
9820                             (int)ppd->qsfp_retry_count);
9821                 ppd->qsfp_retry_count++;
9822                 queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9823                                    msecs_to_jiffies(QSFP_RETRY_WAIT));
9824                 return;
9825         }
9826         ppd->qsfp_retry_count = 0;
9827
9828         start_link(ppd);
9829 }
9830
9831 /*
9832  * Workqueue function to start the link after a delay.
9833  */
9834 void handle_start_link(struct work_struct *work)
9835 {
9836         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9837                                                   start_link_work.work);
9838         try_start_link(ppd);
9839 }
9840
9841 int bringup_serdes(struct hfi1_pportdata *ppd)
9842 {
9843         struct hfi1_devdata *dd = ppd->dd;
9844         u64 guid;
9845         int ret;
9846
9847         if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9848                 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9849
9850         guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9851         if (!guid) {
9852                 if (dd->base_guid)
9853                         guid = dd->base_guid + ppd->port - 1;
9854                 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9855         }
9856
9857         /* Set linkinit_reason on power up per OPA spec */
9858         ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9859
9860         /* one-time init of the LCB */
9861         init_lcb(dd);
9862
9863         if (loopback) {
9864                 ret = init_loopback(dd);
9865                 if (ret < 0)
9866                         return ret;
9867         }
9868
9869         get_port_type(ppd);
9870         if (ppd->port_type == PORT_TYPE_QSFP) {
9871                 set_qsfp_int_n(ppd, 0);
9872                 wait_for_qsfp_init(ppd);
9873                 set_qsfp_int_n(ppd, 1);
9874         }
9875
9876         try_start_link(ppd);
9877         return 0;
9878 }
9879
9880 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9881 {
9882         struct hfi1_devdata *dd = ppd->dd;
9883
9884         /*
9885          * Shut down the link and keep it down.   First turn off that the
9886          * driver wants to allow the link to be up (driver_link_ready).
9887          * Then make sure the link is not automatically restarted
9888          * (link_enabled).  Cancel any pending restart.  And finally
9889          * go offline.
9890          */
9891         ppd->driver_link_ready = 0;
9892         ppd->link_enabled = 0;
9893
9894         ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9895         flush_delayed_work(&ppd->start_link_work);
9896         cancel_delayed_work_sync(&ppd->start_link_work);
9897
9898         ppd->offline_disabled_reason =
9899                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9900         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9901                              OPA_LINKDOWN_REASON_REBOOT);
9902         set_link_state(ppd, HLS_DN_OFFLINE);
9903
9904         /* disable the port */
9905         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9906         cancel_work_sync(&ppd->freeze_work);
9907 }
9908
9909 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9910 {
9911         struct hfi1_pportdata *ppd;
9912         int i;
9913
9914         ppd = (struct hfi1_pportdata *)(dd + 1);
9915         for (i = 0; i < dd->num_pports; i++, ppd++) {
9916                 ppd->ibport_data.rvp.rc_acks = NULL;
9917                 ppd->ibport_data.rvp.rc_qacks = NULL;
9918                 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9919                 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9920                 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9921                 if (!ppd->ibport_data.rvp.rc_acks ||
9922                     !ppd->ibport_data.rvp.rc_delayed_comp ||
9923                     !ppd->ibport_data.rvp.rc_qacks)
9924                         return -ENOMEM;
9925         }
9926
9927         return 0;
9928 }
9929
9930 /*
9931  * index is the index into the receive array
9932  */
9933 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9934                   u32 type, unsigned long pa, u16 order)
9935 {
9936         u64 reg;
9937
9938         if (!(dd->flags & HFI1_PRESENT))
9939                 goto done;
9940
9941         if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9942                 pa = 0;
9943                 order = 0;
9944         } else if (type > PT_INVALID) {
9945                 dd_dev_err(dd,
9946                            "unexpected receive array type %u for index %u, not handled\n",
9947                            type, index);
9948                 goto done;
9949         }
9950         trace_hfi1_put_tid(dd, index, type, pa, order);
9951
9952 #define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9953         reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9954                 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9955                 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9956                                         << RCV_ARRAY_RT_ADDR_SHIFT;
9957         trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9958         writeq(reg, dd->rcvarray_wc + (index * 8));
9959
9960         if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9961                 /*
9962                  * Eager entries are written and flushed
9963                  *
9964                  * Expected entries are flushed every 4 writes
9965                  */
9966                 flush_wc();
9967 done:
9968         return;
9969 }
9970
9971 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9972 {
9973         struct hfi1_devdata *dd = rcd->dd;
9974         u32 i;
9975
9976         /* this could be optimized */
9977         for (i = rcd->eager_base; i < rcd->eager_base +
9978                      rcd->egrbufs.alloced; i++)
9979                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9980
9981         for (i = rcd->expected_base;
9982                         i < rcd->expected_base + rcd->expected_count; i++)
9983                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9984 }
9985
9986 static const char * const ib_cfg_name_strings[] = {
9987         "HFI1_IB_CFG_LIDLMC",
9988         "HFI1_IB_CFG_LWID_DG_ENB",
9989         "HFI1_IB_CFG_LWID_ENB",
9990         "HFI1_IB_CFG_LWID",
9991         "HFI1_IB_CFG_SPD_ENB",
9992         "HFI1_IB_CFG_SPD",
9993         "HFI1_IB_CFG_RXPOL_ENB",
9994         "HFI1_IB_CFG_LREV_ENB",
9995         "HFI1_IB_CFG_LINKLATENCY",
9996         "HFI1_IB_CFG_HRTBT",
9997         "HFI1_IB_CFG_OP_VLS",
9998         "HFI1_IB_CFG_VL_HIGH_CAP",
9999         "HFI1_IB_CFG_VL_LOW_CAP",
10000         "HFI1_IB_CFG_OVERRUN_THRESH",
10001         "HFI1_IB_CFG_PHYERR_THRESH",
10002         "HFI1_IB_CFG_LINKDEFAULT",
10003         "HFI1_IB_CFG_PKEYS",
10004         "HFI1_IB_CFG_MTU",
10005         "HFI1_IB_CFG_LSTATE",
10006         "HFI1_IB_CFG_VL_HIGH_LIMIT",
10007         "HFI1_IB_CFG_PMA_TICKS",
10008         "HFI1_IB_CFG_PORT"
10009 };
10010
10011 static const char *ib_cfg_name(int which)
10012 {
10013         if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10014                 return "invalid";
10015         return ib_cfg_name_strings[which];
10016 }
10017
10018 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10019 {
10020         struct hfi1_devdata *dd = ppd->dd;
10021         int val = 0;
10022
10023         switch (which) {
10024         case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10025                 val = ppd->link_width_enabled;
10026                 break;
10027         case HFI1_IB_CFG_LWID: /* currently active Link-width */
10028                 val = ppd->link_width_active;
10029                 break;
10030         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10031                 val = ppd->link_speed_enabled;
10032                 break;
10033         case HFI1_IB_CFG_SPD: /* current Link speed */
10034                 val = ppd->link_speed_active;
10035                 break;
10036
10037         case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10038         case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10039         case HFI1_IB_CFG_LINKLATENCY:
10040                 goto unimplemented;
10041
10042         case HFI1_IB_CFG_OP_VLS:
10043                 val = ppd->actual_vls_operational;
10044                 break;
10045         case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10046                 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10047                 break;
10048         case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10049                 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10050                 break;
10051         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10052                 val = ppd->overrun_threshold;
10053                 break;
10054         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10055                 val = ppd->phy_error_threshold;
10056                 break;
10057         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10058                 val = HLS_DEFAULT;
10059                 break;
10060
10061         case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10062         case HFI1_IB_CFG_PMA_TICKS:
10063         default:
10064 unimplemented:
10065                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10066                         dd_dev_info(
10067                                 dd,
10068                                 "%s: which %s: not implemented\n",
10069                                 __func__,
10070                                 ib_cfg_name(which));
10071                 break;
10072         }
10073
10074         return val;
10075 }
10076
10077 /*
10078  * The largest MAD packet size.
10079  */
10080 #define MAX_MAD_PACKET 2048
10081
10082 /*
10083  * Return the maximum header bytes that can go on the _wire_
10084  * for this device. This count includes the ICRC which is
10085  * not part of the packet held in memory but it is appended
10086  * by the HW.
10087  * This is dependent on the device's receive header entry size.
10088  * HFI allows this to be set per-receive context, but the
10089  * driver presently enforces a global value.
10090  */
10091 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10092 {
10093         /*
10094          * The maximum non-payload (MTU) bytes in LRH.PktLen are
10095          * the Receive Header Entry Size minus the PBC (or RHF) size
10096          * plus one DW for the ICRC appended by HW.
10097          *
10098          * dd->rcd[0].rcvhdrqentsize is in DW.
10099          * We use rcd[0] as all context will have the same value. Also,
10100          * the first kernel context would have been allocated by now so
10101          * we are guaranteed a valid value.
10102          */
10103         return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10104 }
10105
10106 /*
10107  * Set Send Length
10108  * @ppd: per port data
10109  *
10110  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10111  * registers compare against LRH.PktLen, so use the max bytes included
10112  * in the LRH.
10113  *
10114  * This routine changes all VL values except VL15, which it maintains at
10115  * the same value.
10116  */
10117 static void set_send_length(struct hfi1_pportdata *ppd)
10118 {
10119         struct hfi1_devdata *dd = ppd->dd;
10120         u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10121         u32 maxvlmtu = dd->vld[15].mtu;
10122         u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10123                               & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10124                 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10125         int i, j;
10126         u32 thres;
10127
10128         for (i = 0; i < ppd->vls_supported; i++) {
10129                 if (dd->vld[i].mtu > maxvlmtu)
10130                         maxvlmtu = dd->vld[i].mtu;
10131                 if (i <= 3)
10132                         len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10133                                  & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10134                                 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10135                 else
10136                         len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10137                                  & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10138                                 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10139         }
10140         write_csr(dd, SEND_LEN_CHECK0, len1);
10141         write_csr(dd, SEND_LEN_CHECK1, len2);
10142         /* adjust kernel credit return thresholds based on new MTUs */
10143         /* all kernel receive contexts have the same hdrqentsize */
10144         for (i = 0; i < ppd->vls_supported; i++) {
10145                 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10146                             sc_mtu_to_threshold(dd->vld[i].sc,
10147                                                 dd->vld[i].mtu,
10148                                                 get_hdrqentsize(dd->rcd[0])));
10149                 for (j = 0; j < INIT_SC_PER_VL; j++)
10150                         sc_set_cr_threshold(
10151                                         pio_select_send_context_vl(dd, j, i),
10152                                             thres);
10153         }
10154         thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10155                     sc_mtu_to_threshold(dd->vld[15].sc,
10156                                         dd->vld[15].mtu,
10157                                         dd->rcd[0]->rcvhdrqentsize));
10158         sc_set_cr_threshold(dd->vld[15].sc, thres);
10159
10160         /* Adjust maximum MTU for the port in DC */
10161         dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10162                 (ilog2(maxvlmtu >> 8) + 1);
10163         len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10164         len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10165         len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10166                 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10167         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10168 }
10169
10170 static void set_lidlmc(struct hfi1_pportdata *ppd)
10171 {
10172         int i;
10173         u64 sreg = 0;
10174         struct hfi1_devdata *dd = ppd->dd;
10175         u32 mask = ~((1U << ppd->lmc) - 1);
10176         u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10177         u32 lid;
10178
10179         /*
10180          * Program 0 in CSR if port lid is extended. This prevents
10181          * 9B packets being sent out for large lids.
10182          */
10183         lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10184         c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10185                 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10186         c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10187                         << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10188               ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10189                         << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10190         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10191
10192         /*
10193          * Iterate over all the send contexts and set their SLID check
10194          */
10195         sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10196                         SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10197                (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10198                         SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10199
10200         for (i = 0; i < chip_send_contexts(dd); i++) {
10201                 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10202                           i, (u32)sreg);
10203                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10204         }
10205
10206         /* Now we have to do the same thing for the sdma engines */
10207         sdma_update_lmc(dd, mask, lid);
10208 }
10209
10210 static const char *state_completed_string(u32 completed)
10211 {
10212         static const char * const state_completed[] = {
10213                 "EstablishComm",
10214                 "OptimizeEQ",
10215                 "VerifyCap"
10216         };
10217
10218         if (completed < ARRAY_SIZE(state_completed))
10219                 return state_completed[completed];
10220
10221         return "unknown";
10222 }
10223
10224 static const char all_lanes_dead_timeout_expired[] =
10225         "All lanes were inactive â€“ was the interconnect media removed?";
10226 static const char tx_out_of_policy[] =
10227         "Passing lanes on local port do not meet the local link width policy";
10228 static const char no_state_complete[] =
10229         "State timeout occurred before link partner completed the state";
10230 static const char * const state_complete_reasons[] = {
10231         [0x00] = "Reason unknown",
10232         [0x01] = "Link was halted by driver, refer to LinkDownReason",
10233         [0x02] = "Link partner reported failure",
10234         [0x10] = "Unable to achieve frame sync on any lane",
10235         [0x11] =
10236           "Unable to find a common bit rate with the link partner",
10237         [0x12] =
10238           "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10239         [0x13] =
10240           "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10241         [0x14] = no_state_complete,
10242         [0x15] =
10243           "State timeout occurred before link partner identified equalization presets",
10244         [0x16] =
10245           "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10246         [0x17] = tx_out_of_policy,
10247         [0x20] = all_lanes_dead_timeout_expired,
10248         [0x21] =
10249           "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10250         [0x22] = no_state_complete,
10251         [0x23] =
10252           "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10253         [0x24] = tx_out_of_policy,
10254         [0x30] = all_lanes_dead_timeout_expired,
10255         [0x31] =
10256           "State timeout occurred waiting for host to process received frames",
10257         [0x32] = no_state_complete,
10258         [0x33] =
10259           "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10260         [0x34] = tx_out_of_policy,
10261         [0x35] = "Negotiated link width is mutually exclusive",
10262         [0x36] =
10263           "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10264         [0x37] = "Unable to resolve secure data exchange",
10265 };
10266
10267 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10268                                                      u32 code)
10269 {
10270         const char *str = NULL;
10271
10272         if (code < ARRAY_SIZE(state_complete_reasons))
10273                 str = state_complete_reasons[code];
10274
10275         if (str)
10276                 return str;
10277         return "Reserved";
10278 }
10279
10280 /* describe the given last state complete frame */
10281 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10282                                   const char *prefix)
10283 {
10284         struct hfi1_devdata *dd = ppd->dd;
10285         u32 success;
10286         u32 state;
10287         u32 reason;
10288         u32 lanes;
10289
10290         /*
10291          * Decode frame:
10292          *  [ 0: 0] - success
10293          *  [ 3: 1] - state
10294          *  [ 7: 4] - next state timeout
10295          *  [15: 8] - reason code
10296          *  [31:16] - lanes
10297          */
10298         success = frame & 0x1;
10299         state = (frame >> 1) & 0x7;
10300         reason = (frame >> 8) & 0xff;
10301         lanes = (frame >> 16) & 0xffff;
10302
10303         dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10304                    prefix, frame);
10305         dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10306                    state_completed_string(state), state);
10307         dd_dev_err(dd, "    state successfully completed: %s\n",
10308                    success ? "yes" : "no");
10309         dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10310                    reason, state_complete_reason_code_string(ppd, reason));
10311         dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10312 }
10313
10314 /*
10315  * Read the last state complete frames and explain them.  This routine
10316  * expects to be called if the link went down during link negotiation
10317  * and initialization (LNI).  That is, anywhere between polling and link up.
10318  */
10319 static void check_lni_states(struct hfi1_pportdata *ppd)
10320 {
10321         u32 last_local_state;
10322         u32 last_remote_state;
10323
10324         read_last_local_state(ppd->dd, &last_local_state);
10325         read_last_remote_state(ppd->dd, &last_remote_state);
10326
10327         /*
10328          * Don't report anything if there is nothing to report.  A value of
10329          * 0 means the link was taken down while polling and there was no
10330          * training in-process.
10331          */
10332         if (last_local_state == 0 && last_remote_state == 0)
10333                 return;
10334
10335         decode_state_complete(ppd, last_local_state, "transmitted");
10336         decode_state_complete(ppd, last_remote_state, "received");
10337 }
10338
10339 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10340 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10341 {
10342         u64 reg;
10343         unsigned long timeout;
10344
10345         /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10346         timeout = jiffies + msecs_to_jiffies(wait_ms);
10347         while (1) {
10348                 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10349                 if (reg)
10350                         break;
10351                 if (time_after(jiffies, timeout)) {
10352                         dd_dev_err(dd,
10353                                    "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10354                         return -ETIMEDOUT;
10355                 }
10356                 udelay(2);
10357         }
10358         return 0;
10359 }
10360
10361 /* called when the logical link state is not down as it should be */
10362 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10363 {
10364         struct hfi1_devdata *dd = ppd->dd;
10365
10366         /*
10367          * Bring link up in LCB loopback
10368          */
10369         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10370         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10371                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10372
10373         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10374         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10375         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10376         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10377
10378         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10379         (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10380         udelay(3);
10381         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10382         write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10383
10384         wait_link_transfer_active(dd, 100);
10385
10386         /*
10387          * Bring the link down again.
10388          */
10389         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10390         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10391         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10392
10393         dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10394 }
10395
10396 /*
10397  * Helper for set_link_state().  Do not call except from that routine.
10398  * Expects ppd->hls_mutex to be held.
10399  *
10400  * @rem_reason value to be sent to the neighbor
10401  *
10402  * LinkDownReasons only set if transition succeeds.
10403  */
10404 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10405 {
10406         struct hfi1_devdata *dd = ppd->dd;
10407         u32 previous_state;
10408         int offline_state_ret;
10409         int ret;
10410
10411         update_lcb_cache(dd);
10412
10413         previous_state = ppd->host_link_state;
10414         ppd->host_link_state = HLS_GOING_OFFLINE;
10415
10416         /* start offline transition */
10417         ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10418
10419         if (ret != HCMD_SUCCESS) {
10420                 dd_dev_err(dd,
10421                            "Failed to transition to Offline link state, return %d\n",
10422                            ret);
10423                 return -EINVAL;
10424         }
10425         if (ppd->offline_disabled_reason ==
10426                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10427                 ppd->offline_disabled_reason =
10428                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10429
10430         offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10431         if (offline_state_ret < 0)
10432                 return offline_state_ret;
10433
10434         /* Disabling AOC transmitters */
10435         if (ppd->port_type == PORT_TYPE_QSFP &&
10436             ppd->qsfp_info.limiting_active &&
10437             qsfp_mod_present(ppd)) {
10438                 int ret;
10439
10440                 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10441                 if (ret == 0) {
10442                         set_qsfp_tx(ppd, 0);
10443                         release_chip_resource(dd, qsfp_resource(dd));
10444                 } else {
10445                         /* not fatal, but should warn */
10446                         dd_dev_err(dd,
10447                                    "Unable to acquire lock to turn off QSFP TX\n");
10448                 }
10449         }
10450
10451         /*
10452          * Wait for the offline.Quiet transition if it hasn't happened yet. It
10453          * can take a while for the link to go down.
10454          */
10455         if (offline_state_ret != PLS_OFFLINE_QUIET) {
10456                 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10457                 if (ret < 0)
10458                         return ret;
10459         }
10460
10461         /*
10462          * Now in charge of LCB - must be after the physical state is
10463          * offline.quiet and before host_link_state is changed.
10464          */
10465         set_host_lcb_access(dd);
10466         write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10467
10468         /* make sure the logical state is also down */
10469         ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10470         if (ret)
10471                 force_logical_link_state_down(ppd);
10472
10473         ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10474         update_statusp(ppd, IB_PORT_DOWN);
10475
10476         /*
10477          * The LNI has a mandatory wait time after the physical state
10478          * moves to Offline.Quiet.  The wait time may be different
10479          * depending on how the link went down.  The 8051 firmware
10480          * will observe the needed wait time and only move to ready
10481          * when that is completed.  The largest of the quiet timeouts
10482          * is 6s, so wait that long and then at least 0.5s more for
10483          * other transitions, and another 0.5s for a buffer.
10484          */
10485         ret = wait_fm_ready(dd, 7000);
10486         if (ret) {
10487                 dd_dev_err(dd,
10488                            "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10489                 /* state is really offline, so make it so */
10490                 ppd->host_link_state = HLS_DN_OFFLINE;
10491                 return ret;
10492         }
10493
10494         /*
10495          * The state is now offline and the 8051 is ready to accept host
10496          * requests.
10497          *      - change our state
10498          *      - notify others if we were previously in a linkup state
10499          */
10500         ppd->host_link_state = HLS_DN_OFFLINE;
10501         if (previous_state & HLS_UP) {
10502                 /* went down while link was up */
10503                 handle_linkup_change(dd, 0);
10504         } else if (previous_state
10505                         & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10506                 /* went down while attempting link up */
10507                 check_lni_states(ppd);
10508
10509                 /* The QSFP doesn't need to be reset on LNI failure */
10510                 ppd->qsfp_info.reset_needed = 0;
10511         }
10512
10513         /* the active link width (downgrade) is 0 on link down */
10514         ppd->link_width_active = 0;
10515         ppd->link_width_downgrade_tx_active = 0;
10516         ppd->link_width_downgrade_rx_active = 0;
10517         ppd->current_egress_rate = 0;
10518         return 0;
10519 }
10520
10521 /* return the link state name */
10522 static const char *link_state_name(u32 state)
10523 {
10524         const char *name;
10525         int n = ilog2(state);
10526         static const char * const names[] = {
10527                 [__HLS_UP_INIT_BP]       = "INIT",
10528                 [__HLS_UP_ARMED_BP]      = "ARMED",
10529                 [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10530                 [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10531                 [__HLS_DN_POLL_BP]       = "POLL",
10532                 [__HLS_DN_DISABLE_BP]    = "DISABLE",
10533                 [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10534                 [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10535                 [__HLS_GOING_UP_BP]      = "GOING_UP",
10536                 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10537                 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10538         };
10539
10540         name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10541         return name ? name : "unknown";
10542 }
10543
10544 /* return the link state reason name */
10545 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10546 {
10547         if (state == HLS_UP_INIT) {
10548                 switch (ppd->linkinit_reason) {
10549                 case OPA_LINKINIT_REASON_LINKUP:
10550                         return "(LINKUP)";
10551                 case OPA_LINKINIT_REASON_FLAPPING:
10552                         return "(FLAPPING)";
10553                 case OPA_LINKINIT_OUTSIDE_POLICY:
10554                         return "(OUTSIDE_POLICY)";
10555                 case OPA_LINKINIT_QUARANTINED:
10556                         return "(QUARANTINED)";
10557                 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10558                         return "(INSUFIC_CAPABILITY)";
10559                 default:
10560                         break;
10561                 }
10562         }
10563         return "";
10564 }
10565
10566 /*
10567  * driver_pstate - convert the driver's notion of a port's
10568  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10569  * Return -1 (converted to a u32) to indicate error.
10570  */
10571 u32 driver_pstate(struct hfi1_pportdata *ppd)
10572 {
10573         switch (ppd->host_link_state) {
10574         case HLS_UP_INIT:
10575         case HLS_UP_ARMED:
10576         case HLS_UP_ACTIVE:
10577                 return IB_PORTPHYSSTATE_LINKUP;
10578         case HLS_DN_POLL:
10579                 return IB_PORTPHYSSTATE_POLLING;
10580         case HLS_DN_DISABLE:
10581                 return IB_PORTPHYSSTATE_DISABLED;
10582         case HLS_DN_OFFLINE:
10583                 return OPA_PORTPHYSSTATE_OFFLINE;
10584         case HLS_VERIFY_CAP:
10585                 return IB_PORTPHYSSTATE_TRAINING;
10586         case HLS_GOING_UP:
10587                 return IB_PORTPHYSSTATE_TRAINING;
10588         case HLS_GOING_OFFLINE:
10589                 return OPA_PORTPHYSSTATE_OFFLINE;
10590         case HLS_LINK_COOLDOWN:
10591                 return OPA_PORTPHYSSTATE_OFFLINE;
10592         case HLS_DN_DOWNDEF:
10593         default:
10594                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10595                            ppd->host_link_state);
10596                 return  -1;
10597         }
10598 }
10599
10600 /*
10601  * driver_lstate - convert the driver's notion of a port's
10602  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10603  * (converted to a u32) to indicate error.
10604  */
10605 u32 driver_lstate(struct hfi1_pportdata *ppd)
10606 {
10607         if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10608                 return IB_PORT_DOWN;
10609
10610         switch (ppd->host_link_state & HLS_UP) {
10611         case HLS_UP_INIT:
10612                 return IB_PORT_INIT;
10613         case HLS_UP_ARMED:
10614                 return IB_PORT_ARMED;
10615         case HLS_UP_ACTIVE:
10616                 return IB_PORT_ACTIVE;
10617         default:
10618                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10619                            ppd->host_link_state);
10620         return -1;
10621         }
10622 }
10623
10624 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10625                           u8 neigh_reason, u8 rem_reason)
10626 {
10627         if (ppd->local_link_down_reason.latest == 0 &&
10628             ppd->neigh_link_down_reason.latest == 0) {
10629                 ppd->local_link_down_reason.latest = lcl_reason;
10630                 ppd->neigh_link_down_reason.latest = neigh_reason;
10631                 ppd->remote_link_down_reason = rem_reason;
10632         }
10633 }
10634
10635 /**
10636  * data_vls_operational() - Verify if data VL BCT credits and MTU
10637  *                          are both set.
10638  * @ppd: pointer to hfi1_pportdata structure
10639  *
10640  * Return: true - Ok, false -otherwise.
10641  */
10642 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10643 {
10644         int i;
10645         u64 reg;
10646
10647         if (!ppd->actual_vls_operational)
10648                 return false;
10649
10650         for (i = 0; i < ppd->vls_supported; i++) {
10651                 reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10652                 if ((reg && !ppd->dd->vld[i].mtu) ||
10653                     (!reg && ppd->dd->vld[i].mtu))
10654                         return false;
10655         }
10656
10657         return true;
10658 }
10659
10660 /*
10661  * Change the physical and/or logical link state.
10662  *
10663  * Do not call this routine while inside an interrupt.  It contains
10664  * calls to routines that can take multiple seconds to finish.
10665  *
10666  * Returns 0 on success, -errno on failure.
10667  */
10668 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10669 {
10670         struct hfi1_devdata *dd = ppd->dd;
10671         struct ib_event event = {.device = NULL};
10672         int ret1, ret = 0;
10673         int orig_new_state, poll_bounce;
10674
10675         mutex_lock(&ppd->hls_lock);
10676
10677         orig_new_state = state;
10678         if (state == HLS_DN_DOWNDEF)
10679                 state = HLS_DEFAULT;
10680
10681         /* interpret poll -> poll as a link bounce */
10682         poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10683                       state == HLS_DN_POLL;
10684
10685         dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10686                     link_state_name(ppd->host_link_state),
10687                     link_state_name(orig_new_state),
10688                     poll_bounce ? "(bounce) " : "",
10689                     link_state_reason_name(ppd, state));
10690
10691         /*
10692          * If we're going to a (HLS_*) link state that implies the logical
10693          * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10694          * reset is_sm_config_started to 0.
10695          */
10696         if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10697                 ppd->is_sm_config_started = 0;
10698
10699         /*
10700          * Do nothing if the states match.  Let a poll to poll link bounce
10701          * go through.
10702          */
10703         if (ppd->host_link_state == state && !poll_bounce)
10704                 goto done;
10705
10706         switch (state) {
10707         case HLS_UP_INIT:
10708                 if (ppd->host_link_state == HLS_DN_POLL &&
10709                     (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10710                         /*
10711                          * Quick link up jumps from polling to here.
10712                          *
10713                          * Whether in normal or loopback mode, the
10714                          * simulator jumps from polling to link up.
10715                          * Accept that here.
10716                          */
10717                         /* OK */
10718                 } else if (ppd->host_link_state != HLS_GOING_UP) {
10719                         goto unexpected;
10720                 }
10721
10722                 /*
10723                  * Wait for Link_Up physical state.
10724                  * Physical and Logical states should already be
10725                  * be transitioned to LinkUp and LinkInit respectively.
10726                  */
10727                 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10728                 if (ret) {
10729                         dd_dev_err(dd,
10730                                    "%s: physical state did not change to LINK-UP\n",
10731                                    __func__);
10732                         break;
10733                 }
10734
10735                 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10736                 if (ret) {
10737                         dd_dev_err(dd,
10738                                    "%s: logical state did not change to INIT\n",
10739                                    __func__);
10740                         break;
10741                 }
10742
10743                 /* clear old transient LINKINIT_REASON code */
10744                 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10745                         ppd->linkinit_reason =
10746                                 OPA_LINKINIT_REASON_LINKUP;
10747
10748                 /* enable the port */
10749                 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10750
10751                 handle_linkup_change(dd, 1);
10752                 pio_kernel_linkup(dd);
10753
10754                 /*
10755                  * After link up, a new link width will have been set.
10756                  * Update the xmit counters with regards to the new
10757                  * link width.
10758                  */
10759                 update_xmit_counters(ppd, ppd->link_width_active);
10760
10761                 ppd->host_link_state = HLS_UP_INIT;
10762                 update_statusp(ppd, IB_PORT_INIT);
10763                 break;
10764         case HLS_UP_ARMED:
10765                 if (ppd->host_link_state != HLS_UP_INIT)
10766                         goto unexpected;
10767
10768                 if (!data_vls_operational(ppd)) {
10769                         dd_dev_err(dd,
10770                                    "%s: Invalid data VL credits or mtu\n",
10771                                    __func__);
10772                         ret = -EINVAL;
10773                         break;
10774                 }
10775
10776                 set_logical_state(dd, LSTATE_ARMED);
10777                 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10778                 if (ret) {
10779                         dd_dev_err(dd,
10780                                    "%s: logical state did not change to ARMED\n",
10781                                    __func__);
10782                         break;
10783                 }
10784                 ppd->host_link_state = HLS_UP_ARMED;
10785                 update_statusp(ppd, IB_PORT_ARMED);
10786                 /*
10787                  * The simulator does not currently implement SMA messages,
10788                  * so neighbor_normal is not set.  Set it here when we first
10789                  * move to Armed.
10790                  */
10791                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10792                         ppd->neighbor_normal = 1;
10793                 break;
10794         case HLS_UP_ACTIVE:
10795                 if (ppd->host_link_state != HLS_UP_ARMED)
10796                         goto unexpected;
10797
10798                 set_logical_state(dd, LSTATE_ACTIVE);
10799                 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10800                 if (ret) {
10801                         dd_dev_err(dd,
10802                                    "%s: logical state did not change to ACTIVE\n",
10803                                    __func__);
10804                 } else {
10805                         /* tell all engines to go running */
10806                         sdma_all_running(dd);
10807                         ppd->host_link_state = HLS_UP_ACTIVE;
10808                         update_statusp(ppd, IB_PORT_ACTIVE);
10809
10810                         /* Signal the IB layer that the port has went active */
10811                         event.device = &dd->verbs_dev.rdi.ibdev;
10812                         event.element.port_num = ppd->port;
10813                         event.event = IB_EVENT_PORT_ACTIVE;
10814                 }
10815                 break;
10816         case HLS_DN_POLL:
10817                 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10818                      ppd->host_link_state == HLS_DN_OFFLINE) &&
10819                     dd->dc_shutdown)
10820                         dc_start(dd);
10821                 /* Hand LED control to the DC */
10822                 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10823
10824                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10825                         u8 tmp = ppd->link_enabled;
10826
10827                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10828                         if (ret) {
10829                                 ppd->link_enabled = tmp;
10830                                 break;
10831                         }
10832                         ppd->remote_link_down_reason = 0;
10833
10834                         if (ppd->driver_link_ready)
10835                                 ppd->link_enabled = 1;
10836                 }
10837
10838                 set_all_slowpath(ppd->dd);
10839                 ret = set_local_link_attributes(ppd);
10840                 if (ret)
10841                         break;
10842
10843                 ppd->port_error_action = 0;
10844
10845                 if (quick_linkup) {
10846                         /* quick linkup does not go into polling */
10847                         ret = do_quick_linkup(dd);
10848                 } else {
10849                         ret1 = set_physical_link_state(dd, PLS_POLLING);
10850                         if (!ret1)
10851                                 ret1 = wait_phys_link_out_of_offline(ppd,
10852                                                                      3000);
10853                         if (ret1 != HCMD_SUCCESS) {
10854                                 dd_dev_err(dd,
10855                                            "Failed to transition to Polling link state, return 0x%x\n",
10856                                            ret1);
10857                                 ret = -EINVAL;
10858                         }
10859                 }
10860
10861                 /*
10862                  * Change the host link state after requesting DC8051 to
10863                  * change its physical state so that we can ignore any
10864                  * interrupt with stale LNI(XX) error, which will not be
10865                  * cleared until DC8051 transitions to Polling state.
10866                  */
10867                 ppd->host_link_state = HLS_DN_POLL;
10868                 ppd->offline_disabled_reason =
10869                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10870                 /*
10871                  * If an error occurred above, go back to offline.  The
10872                  * caller may reschedule another attempt.
10873                  */
10874                 if (ret)
10875                         goto_offline(ppd, 0);
10876                 else
10877                         log_physical_state(ppd, PLS_POLLING);
10878                 break;
10879         case HLS_DN_DISABLE:
10880                 /* link is disabled */
10881                 ppd->link_enabled = 0;
10882
10883                 /* allow any state to transition to disabled */
10884
10885                 /* must transition to offline first */
10886                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10887                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10888                         if (ret)
10889                                 break;
10890                         ppd->remote_link_down_reason = 0;
10891                 }
10892
10893                 if (!dd->dc_shutdown) {
10894                         ret1 = set_physical_link_state(dd, PLS_DISABLED);
10895                         if (ret1 != HCMD_SUCCESS) {
10896                                 dd_dev_err(dd,
10897                                            "Failed to transition to Disabled link state, return 0x%x\n",
10898                                            ret1);
10899                                 ret = -EINVAL;
10900                                 break;
10901                         }
10902                         ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10903                         if (ret) {
10904                                 dd_dev_err(dd,
10905                                            "%s: physical state did not change to DISABLED\n",
10906                                            __func__);
10907                                 break;
10908                         }
10909                         dc_shutdown(dd);
10910                 }
10911                 ppd->host_link_state = HLS_DN_DISABLE;
10912                 break;
10913         case HLS_DN_OFFLINE:
10914                 if (ppd->host_link_state == HLS_DN_DISABLE)
10915                         dc_start(dd);
10916
10917                 /* allow any state to transition to offline */
10918                 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10919                 if (!ret)
10920                         ppd->remote_link_down_reason = 0;
10921                 break;
10922         case HLS_VERIFY_CAP:
10923                 if (ppd->host_link_state != HLS_DN_POLL)
10924                         goto unexpected;
10925                 ppd->host_link_state = HLS_VERIFY_CAP;
10926                 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10927                 break;
10928         case HLS_GOING_UP:
10929                 if (ppd->host_link_state != HLS_VERIFY_CAP)
10930                         goto unexpected;
10931
10932                 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10933                 if (ret1 != HCMD_SUCCESS) {
10934                         dd_dev_err(dd,
10935                                    "Failed to transition to link up state, return 0x%x\n",
10936                                    ret1);
10937                         ret = -EINVAL;
10938                         break;
10939                 }
10940                 ppd->host_link_state = HLS_GOING_UP;
10941                 break;
10942
10943         case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10944         case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10945         default:
10946                 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10947                             __func__, state);
10948                 ret = -EINVAL;
10949                 break;
10950         }
10951
10952         goto done;
10953
10954 unexpected:
10955         dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10956                    __func__, link_state_name(ppd->host_link_state),
10957                    link_state_name(state));
10958         ret = -EINVAL;
10959
10960 done:
10961         mutex_unlock(&ppd->hls_lock);
10962
10963         if (event.device)
10964                 ib_dispatch_event(&event);
10965
10966         return ret;
10967 }
10968
10969 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10970 {
10971         u64 reg;
10972         int ret = 0;
10973
10974         switch (which) {
10975         case HFI1_IB_CFG_LIDLMC:
10976                 set_lidlmc(ppd);
10977                 break;
10978         case HFI1_IB_CFG_VL_HIGH_LIMIT:
10979                 /*
10980                  * The VL Arbitrator high limit is sent in units of 4k
10981                  * bytes, while HFI stores it in units of 64 bytes.
10982                  */
10983                 val *= 4096 / 64;
10984                 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10985                         << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10986                 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10987                 break;
10988         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10989                 /* HFI only supports POLL as the default link down state */
10990                 if (val != HLS_DN_POLL)
10991                         ret = -EINVAL;
10992                 break;
10993         case HFI1_IB_CFG_OP_VLS:
10994                 if (ppd->vls_operational != val) {
10995                         ppd->vls_operational = val;
10996                         if (!ppd->port)
10997                                 ret = -EINVAL;
10998                 }
10999                 break;
11000         /*
11001          * For link width, link width downgrade, and speed enable, always AND
11002          * the setting with what is actually supported.  This has two benefits.
11003          * First, enabled can't have unsupported values, no matter what the
11004          * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11005          * "fill in with your supported value" have all the bits in the
11006          * field set, so simply ANDing with supported has the desired result.
11007          */
11008         case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11009                 ppd->link_width_enabled = val & ppd->link_width_supported;
11010                 break;
11011         case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11012                 ppd->link_width_downgrade_enabled =
11013                                 val & ppd->link_width_downgrade_supported;
11014                 break;
11015         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11016                 ppd->link_speed_enabled = val & ppd->link_speed_supported;
11017                 break;
11018         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11019                 /*
11020                  * HFI does not follow IB specs, save this value
11021                  * so we can report it, if asked.
11022                  */
11023                 ppd->overrun_threshold = val;
11024                 break;
11025         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11026                 /*
11027                  * HFI does not follow IB specs, save this value
11028                  * so we can report it, if asked.
11029                  */
11030                 ppd->phy_error_threshold = val;
11031                 break;
11032
11033         case HFI1_IB_CFG_MTU:
11034                 set_send_length(ppd);
11035                 break;
11036
11037         case HFI1_IB_CFG_PKEYS:
11038                 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11039                         set_partition_keys(ppd);
11040                 break;
11041
11042         default:
11043                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11044                         dd_dev_info(ppd->dd,
11045                                     "%s: which %s, val 0x%x: not implemented\n",
11046                                     __func__, ib_cfg_name(which), val);
11047                 break;
11048         }
11049         return ret;
11050 }
11051
11052 /* begin functions related to vl arbitration table caching */
11053 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11054 {
11055         int i;
11056
11057         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11058                         VL_ARB_LOW_PRIO_TABLE_SIZE);
11059         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11060                         VL_ARB_HIGH_PRIO_TABLE_SIZE);
11061
11062         /*
11063          * Note that we always return values directly from the
11064          * 'vl_arb_cache' (and do no CSR reads) in response to a
11065          * 'Get(VLArbTable)'. This is obviously correct after a
11066          * 'Set(VLArbTable)', since the cache will then be up to
11067          * date. But it's also correct prior to any 'Set(VLArbTable)'
11068          * since then both the cache, and the relevant h/w registers
11069          * will be zeroed.
11070          */
11071
11072         for (i = 0; i < MAX_PRIO_TABLE; i++)
11073                 spin_lock_init(&ppd->vl_arb_cache[i].lock);
11074 }
11075
11076 /*
11077  * vl_arb_lock_cache
11078  *
11079  * All other vl_arb_* functions should be called only after locking
11080  * the cache.
11081  */
11082 static inline struct vl_arb_cache *
11083 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11084 {
11085         if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11086                 return NULL;
11087         spin_lock(&ppd->vl_arb_cache[idx].lock);
11088         return &ppd->vl_arb_cache[idx];
11089 }
11090
11091 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11092 {
11093         spin_unlock(&ppd->vl_arb_cache[idx].lock);
11094 }
11095
11096 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11097                              struct ib_vl_weight_elem *vl)
11098 {
11099         memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11100 }
11101
11102 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11103                              struct ib_vl_weight_elem *vl)
11104 {
11105         memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11106 }
11107
11108 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11109                               struct ib_vl_weight_elem *vl)
11110 {
11111         return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11112 }
11113
11114 /* end functions related to vl arbitration table caching */
11115
11116 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11117                           u32 size, struct ib_vl_weight_elem *vl)
11118 {
11119         struct hfi1_devdata *dd = ppd->dd;
11120         u64 reg;
11121         unsigned int i, is_up = 0;
11122         int drain, ret = 0;
11123
11124         mutex_lock(&ppd->hls_lock);
11125
11126         if (ppd->host_link_state & HLS_UP)
11127                 is_up = 1;
11128
11129         drain = !is_ax(dd) && is_up;
11130
11131         if (drain)
11132                 /*
11133                  * Before adjusting VL arbitration weights, empty per-VL
11134                  * FIFOs, otherwise a packet whose VL weight is being
11135                  * set to 0 could get stuck in a FIFO with no chance to
11136                  * egress.
11137                  */
11138                 ret = stop_drain_data_vls(dd);
11139
11140         if (ret) {
11141                 dd_dev_err(
11142                         dd,
11143                         "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11144                         __func__);
11145                 goto err;
11146         }
11147
11148         for (i = 0; i < size; i++, vl++) {
11149                 /*
11150                  * NOTE: The low priority shift and mask are used here, but
11151                  * they are the same for both the low and high registers.
11152                  */
11153                 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11154                                 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11155                       | (((u64)vl->weight
11156                                 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11157                                 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11158                 write_csr(dd, target + (i * 8), reg);
11159         }
11160         pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11161
11162         if (drain)
11163                 open_fill_data_vls(dd); /* reopen all VLs */
11164
11165 err:
11166         mutex_unlock(&ppd->hls_lock);
11167
11168         return ret;
11169 }
11170
11171 /*
11172  * Read one credit merge VL register.
11173  */
11174 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11175                            struct vl_limit *vll)
11176 {
11177         u64 reg = read_csr(dd, csr);
11178
11179         vll->dedicated = cpu_to_be16(
11180                 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11181                 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11182         vll->shared = cpu_to_be16(
11183                 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11184                 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11185 }
11186
11187 /*
11188  * Read the current credit merge limits.
11189  */
11190 static int get_buffer_control(struct hfi1_devdata *dd,
11191                               struct buffer_control *bc, u16 *overall_limit)
11192 {
11193         u64 reg;
11194         int i;
11195
11196         /* not all entries are filled in */
11197         memset(bc, 0, sizeof(*bc));
11198
11199         /* OPA and HFI have a 1-1 mapping */
11200         for (i = 0; i < TXE_NUM_DATA_VL; i++)
11201                 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11202
11203         /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11204         read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11205
11206         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11207         bc->overall_shared_limit = cpu_to_be16(
11208                 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11209                 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11210         if (overall_limit)
11211                 *overall_limit = (reg
11212                         >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11213                         & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11214         return sizeof(struct buffer_control);
11215 }
11216
11217 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11218 {
11219         u64 reg;
11220         int i;
11221
11222         /* each register contains 16 SC->VLnt mappings, 4 bits each */
11223         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11224         for (i = 0; i < sizeof(u64); i++) {
11225                 u8 byte = *(((u8 *)&reg) + i);
11226
11227                 dp->vlnt[2 * i] = byte & 0xf;
11228                 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11229         }
11230
11231         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11232         for (i = 0; i < sizeof(u64); i++) {
11233                 u8 byte = *(((u8 *)&reg) + i);
11234
11235                 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11236                 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11237         }
11238         return sizeof(struct sc2vlnt);
11239 }
11240
11241 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11242                               struct ib_vl_weight_elem *vl)
11243 {
11244         unsigned int i;
11245
11246         for (i = 0; i < nelems; i++, vl++) {
11247                 vl->vl = 0xf;
11248                 vl->weight = 0;
11249         }
11250 }
11251
11252 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11253 {
11254         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11255                   DC_SC_VL_VAL(15_0,
11256                                0, dp->vlnt[0] & 0xf,
11257                                1, dp->vlnt[1] & 0xf,
11258                                2, dp->vlnt[2] & 0xf,
11259                                3, dp->vlnt[3] & 0xf,
11260                                4, dp->vlnt[4] & 0xf,
11261                                5, dp->vlnt[5] & 0xf,
11262                                6, dp->vlnt[6] & 0xf,
11263                                7, dp->vlnt[7] & 0xf,
11264                                8, dp->vlnt[8] & 0xf,
11265                                9, dp->vlnt[9] & 0xf,
11266                                10, dp->vlnt[10] & 0xf,
11267                                11, dp->vlnt[11] & 0xf,
11268                                12, dp->vlnt[12] & 0xf,
11269                                13, dp->vlnt[13] & 0xf,
11270                                14, dp->vlnt[14] & 0xf,
11271                                15, dp->vlnt[15] & 0xf));
11272         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11273                   DC_SC_VL_VAL(31_16,
11274                                16, dp->vlnt[16] & 0xf,
11275                                17, dp->vlnt[17] & 0xf,
11276                                18, dp->vlnt[18] & 0xf,
11277                                19, dp->vlnt[19] & 0xf,
11278                                20, dp->vlnt[20] & 0xf,
11279                                21, dp->vlnt[21] & 0xf,
11280                                22, dp->vlnt[22] & 0xf,
11281                                23, dp->vlnt[23] & 0xf,
11282                                24, dp->vlnt[24] & 0xf,
11283                                25, dp->vlnt[25] & 0xf,
11284                                26, dp->vlnt[26] & 0xf,
11285                                27, dp->vlnt[27] & 0xf,
11286                                28, dp->vlnt[28] & 0xf,
11287                                29, dp->vlnt[29] & 0xf,
11288                                30, dp->vlnt[30] & 0xf,
11289                                31, dp->vlnt[31] & 0xf));
11290 }
11291
11292 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11293                         u16 limit)
11294 {
11295         if (limit != 0)
11296                 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11297                             what, (int)limit, idx);
11298 }
11299
11300 /* change only the shared limit portion of SendCmGLobalCredit */
11301 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11302 {
11303         u64 reg;
11304
11305         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11306         reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11307         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11308         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11309 }
11310
11311 /* change only the total credit limit portion of SendCmGLobalCredit */
11312 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11313 {
11314         u64 reg;
11315
11316         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11317         reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11318         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11319         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11320 }
11321
11322 /* set the given per-VL shared limit */
11323 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11324 {
11325         u64 reg;
11326         u32 addr;
11327
11328         if (vl < TXE_NUM_DATA_VL)
11329                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11330         else
11331                 addr = SEND_CM_CREDIT_VL15;
11332
11333         reg = read_csr(dd, addr);
11334         reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11335         reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11336         write_csr(dd, addr, reg);
11337 }
11338
11339 /* set the given per-VL dedicated limit */
11340 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11341 {
11342         u64 reg;
11343         u32 addr;
11344
11345         if (vl < TXE_NUM_DATA_VL)
11346                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11347         else
11348                 addr = SEND_CM_CREDIT_VL15;
11349
11350         reg = read_csr(dd, addr);
11351         reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11352         reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11353         write_csr(dd, addr, reg);
11354 }
11355
11356 /* spin until the given per-VL status mask bits clear */
11357 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11358                                      const char *which)
11359 {
11360         unsigned long timeout;
11361         u64 reg;
11362
11363         timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11364         while (1) {
11365                 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11366
11367                 if (reg == 0)
11368                         return; /* success */
11369                 if (time_after(jiffies, timeout))
11370                         break;          /* timed out */
11371                 udelay(1);
11372         }
11373
11374         dd_dev_err(dd,
11375                    "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11376                    which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11377         /*
11378          * If this occurs, it is likely there was a credit loss on the link.
11379          * The only recovery from that is a link bounce.
11380          */
11381         dd_dev_err(dd,
11382                    "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11383 }
11384
11385 /*
11386  * The number of credits on the VLs may be changed while everything
11387  * is "live", but the following algorithm must be followed due to
11388  * how the hardware is actually implemented.  In particular,
11389  * Return_Credit_Status[] is the only correct status check.
11390  *
11391  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11392  *     set Global_Shared_Credit_Limit = 0
11393  *     use_all_vl = 1
11394  * mask0 = all VLs that are changing either dedicated or shared limits
11395  * set Shared_Limit[mask0] = 0
11396  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11397  * if (changing any dedicated limit)
11398  *     mask1 = all VLs that are lowering dedicated limits
11399  *     lower Dedicated_Limit[mask1]
11400  *     spin until Return_Credit_Status[mask1] == 0
11401  *     raise Dedicated_Limits
11402  * raise Shared_Limits
11403  * raise Global_Shared_Credit_Limit
11404  *
11405  * lower = if the new limit is lower, set the limit to the new value
11406  * raise = if the new limit is higher than the current value (may be changed
11407  *      earlier in the algorithm), set the new limit to the new value
11408  */
11409 int set_buffer_control(struct hfi1_pportdata *ppd,
11410                        struct buffer_control *new_bc)
11411 {
11412         struct hfi1_devdata *dd = ppd->dd;
11413         u64 changing_mask, ld_mask, stat_mask;
11414         int change_count;
11415         int i, use_all_mask;
11416         int this_shared_changing;
11417         int vl_count = 0, ret;
11418         /*
11419          * A0: add the variable any_shared_limit_changing below and in the
11420          * algorithm above.  If removing A0 support, it can be removed.
11421          */
11422         int any_shared_limit_changing;
11423         struct buffer_control cur_bc;
11424         u8 changing[OPA_MAX_VLS];
11425         u8 lowering_dedicated[OPA_MAX_VLS];
11426         u16 cur_total;
11427         u32 new_total = 0;
11428         const u64 all_mask =
11429         SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11430          | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11431          | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11432          | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11433          | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11434          | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11435          | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11436          | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11437          | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11438
11439 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11440 #define NUM_USABLE_VLS 16       /* look at VL15 and less */
11441
11442         /* find the new total credits, do sanity check on unused VLs */
11443         for (i = 0; i < OPA_MAX_VLS; i++) {
11444                 if (valid_vl(i)) {
11445                         new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11446                         continue;
11447                 }
11448                 nonzero_msg(dd, i, "dedicated",
11449                             be16_to_cpu(new_bc->vl[i].dedicated));
11450                 nonzero_msg(dd, i, "shared",
11451                             be16_to_cpu(new_bc->vl[i].shared));
11452                 new_bc->vl[i].dedicated = 0;
11453                 new_bc->vl[i].shared = 0;
11454         }
11455         new_total += be16_to_cpu(new_bc->overall_shared_limit);
11456
11457         /* fetch the current values */
11458         get_buffer_control(dd, &cur_bc, &cur_total);
11459
11460         /*
11461          * Create the masks we will use.
11462          */
11463         memset(changing, 0, sizeof(changing));
11464         memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11465         /*
11466          * NOTE: Assumes that the individual VL bits are adjacent and in
11467          * increasing order
11468          */
11469         stat_mask =
11470                 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11471         changing_mask = 0;
11472         ld_mask = 0;
11473         change_count = 0;
11474         any_shared_limit_changing = 0;
11475         for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11476                 if (!valid_vl(i))
11477                         continue;
11478                 this_shared_changing = new_bc->vl[i].shared
11479                                                 != cur_bc.vl[i].shared;
11480                 if (this_shared_changing)
11481                         any_shared_limit_changing = 1;
11482                 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11483                     this_shared_changing) {
11484                         changing[i] = 1;
11485                         changing_mask |= stat_mask;
11486                         change_count++;
11487                 }
11488                 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11489                                         be16_to_cpu(cur_bc.vl[i].dedicated)) {
11490                         lowering_dedicated[i] = 1;
11491                         ld_mask |= stat_mask;
11492                 }
11493         }
11494
11495         /* bracket the credit change with a total adjustment */
11496         if (new_total > cur_total)
11497                 set_global_limit(dd, new_total);
11498
11499         /*
11500          * Start the credit change algorithm.
11501          */
11502         use_all_mask = 0;
11503         if ((be16_to_cpu(new_bc->overall_shared_limit) <
11504              be16_to_cpu(cur_bc.overall_shared_limit)) ||
11505             (is_ax(dd) && any_shared_limit_changing)) {
11506                 set_global_shared(dd, 0);
11507                 cur_bc.overall_shared_limit = 0;
11508                 use_all_mask = 1;
11509         }
11510
11511         for (i = 0; i < NUM_USABLE_VLS; i++) {
11512                 if (!valid_vl(i))
11513                         continue;
11514
11515                 if (changing[i]) {
11516                         set_vl_shared(dd, i, 0);
11517                         cur_bc.vl[i].shared = 0;
11518                 }
11519         }
11520
11521         wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11522                                  "shared");
11523
11524         if (change_count > 0) {
11525                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11526                         if (!valid_vl(i))
11527                                 continue;
11528
11529                         if (lowering_dedicated[i]) {
11530                                 set_vl_dedicated(dd, i,
11531                                                  be16_to_cpu(new_bc->
11532                                                              vl[i].dedicated));
11533                                 cur_bc.vl[i].dedicated =
11534                                                 new_bc->vl[i].dedicated;
11535                         }
11536                 }
11537
11538                 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11539
11540                 /* now raise all dedicated that are going up */
11541                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11542                         if (!valid_vl(i))
11543                                 continue;
11544
11545                         if (be16_to_cpu(new_bc->vl[i].dedicated) >
11546                                         be16_to_cpu(cur_bc.vl[i].dedicated))
11547                                 set_vl_dedicated(dd, i,
11548                                                  be16_to_cpu(new_bc->
11549                                                              vl[i].dedicated));
11550                 }
11551         }
11552
11553         /* next raise all shared that are going up */
11554         for (i = 0; i < NUM_USABLE_VLS; i++) {
11555                 if (!valid_vl(i))
11556                         continue;
11557
11558                 if (be16_to_cpu(new_bc->vl[i].shared) >
11559                                 be16_to_cpu(cur_bc.vl[i].shared))
11560                         set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11561         }
11562
11563         /* finally raise the global shared */
11564         if (be16_to_cpu(new_bc->overall_shared_limit) >
11565             be16_to_cpu(cur_bc.overall_shared_limit))
11566                 set_global_shared(dd,
11567                                   be16_to_cpu(new_bc->overall_shared_limit));
11568
11569         /* bracket the credit change with a total adjustment */
11570         if (new_total < cur_total)
11571                 set_global_limit(dd, new_total);
11572
11573         /*
11574          * Determine the actual number of operational VLS using the number of
11575          * dedicated and shared credits for each VL.
11576          */
11577         if (change_count > 0) {
11578                 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11579                         if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11580                             be16_to_cpu(new_bc->vl[i].shared) > 0)
11581                                 vl_count++;
11582                 ppd->actual_vls_operational = vl_count;
11583                 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11584                                     ppd->actual_vls_operational :
11585                                     ppd->vls_operational,
11586                                     NULL);
11587                 if (ret == 0)
11588                         ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11589                                            ppd->actual_vls_operational :
11590                                            ppd->vls_operational, NULL);
11591                 if (ret)
11592                         return ret;
11593         }
11594         return 0;
11595 }
11596
11597 /*
11598  * Read the given fabric manager table. Return the size of the
11599  * table (in bytes) on success, and a negative error code on
11600  * failure.
11601  */
11602 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11603
11604 {
11605         int size;
11606         struct vl_arb_cache *vlc;
11607
11608         switch (which) {
11609         case FM_TBL_VL_HIGH_ARB:
11610                 size = 256;
11611                 /*
11612                  * OPA specifies 128 elements (of 2 bytes each), though
11613                  * HFI supports only 16 elements in h/w.
11614                  */
11615                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11616                 vl_arb_get_cache(vlc, t);
11617                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11618                 break;
11619         case FM_TBL_VL_LOW_ARB:
11620                 size = 256;
11621                 /*
11622                  * OPA specifies 128 elements (of 2 bytes each), though
11623                  * HFI supports only 16 elements in h/w.
11624                  */
11625                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11626                 vl_arb_get_cache(vlc, t);
11627                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11628                 break;
11629         case FM_TBL_BUFFER_CONTROL:
11630                 size = get_buffer_control(ppd->dd, t, NULL);
11631                 break;
11632         case FM_TBL_SC2VLNT:
11633                 size = get_sc2vlnt(ppd->dd, t);
11634                 break;
11635         case FM_TBL_VL_PREEMPT_ELEMS:
11636                 size = 256;
11637                 /* OPA specifies 128 elements, of 2 bytes each */
11638                 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11639                 break;
11640         case FM_TBL_VL_PREEMPT_MATRIX:
11641                 size = 256;
11642                 /*
11643                  * OPA specifies that this is the same size as the VL
11644                  * arbitration tables (i.e., 256 bytes).
11645                  */
11646                 break;
11647         default:
11648                 return -EINVAL;
11649         }
11650         return size;
11651 }
11652
11653 /*
11654  * Write the given fabric manager table.
11655  */
11656 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11657 {
11658         int ret = 0;
11659         struct vl_arb_cache *vlc;
11660
11661         switch (which) {
11662         case FM_TBL_VL_HIGH_ARB:
11663                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11664                 if (vl_arb_match_cache(vlc, t)) {
11665                         vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11666                         break;
11667                 }
11668                 vl_arb_set_cache(vlc, t);
11669                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11670                 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11671                                      VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11672                 break;
11673         case FM_TBL_VL_LOW_ARB:
11674                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11675                 if (vl_arb_match_cache(vlc, t)) {
11676                         vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11677                         break;
11678                 }
11679                 vl_arb_set_cache(vlc, t);
11680                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11681                 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11682                                      VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11683                 break;
11684         case FM_TBL_BUFFER_CONTROL:
11685                 ret = set_buffer_control(ppd, t);
11686                 break;
11687         case FM_TBL_SC2VLNT:
11688                 set_sc2vlnt(ppd->dd, t);
11689                 break;
11690         default:
11691                 ret = -EINVAL;
11692         }
11693         return ret;
11694 }
11695
11696 /*
11697  * Disable all data VLs.
11698  *
11699  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11700  */
11701 static int disable_data_vls(struct hfi1_devdata *dd)
11702 {
11703         if (is_ax(dd))
11704                 return 1;
11705
11706         pio_send_control(dd, PSC_DATA_VL_DISABLE);
11707
11708         return 0;
11709 }
11710
11711 /*
11712  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11713  * Just re-enables all data VLs (the "fill" part happens
11714  * automatically - the name was chosen for symmetry with
11715  * stop_drain_data_vls()).
11716  *
11717  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11718  */
11719 int open_fill_data_vls(struct hfi1_devdata *dd)
11720 {
11721         if (is_ax(dd))
11722                 return 1;
11723
11724         pio_send_control(dd, PSC_DATA_VL_ENABLE);
11725
11726         return 0;
11727 }
11728
11729 /*
11730  * drain_data_vls() - assumes that disable_data_vls() has been called,
11731  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11732  * engines to drop to 0.
11733  */
11734 static void drain_data_vls(struct hfi1_devdata *dd)
11735 {
11736         sc_wait(dd);
11737         sdma_wait(dd);
11738         pause_for_credit_return(dd);
11739 }
11740
11741 /*
11742  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11743  *
11744  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11745  * meant to be used like this:
11746  *
11747  * stop_drain_data_vls(dd);
11748  * // do things with per-VL resources
11749  * open_fill_data_vls(dd);
11750  */
11751 int stop_drain_data_vls(struct hfi1_devdata *dd)
11752 {
11753         int ret;
11754
11755         ret = disable_data_vls(dd);
11756         if (ret == 0)
11757                 drain_data_vls(dd);
11758
11759         return ret;
11760 }
11761
11762 /*
11763  * Convert a nanosecond time to a cclock count.  No matter how slow
11764  * the cclock, a non-zero ns will always have a non-zero result.
11765  */
11766 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11767 {
11768         u32 cclocks;
11769
11770         if (dd->icode == ICODE_FPGA_EMULATION)
11771                 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11772         else  /* simulation pretends to be ASIC */
11773                 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11774         if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11775                 cclocks = 1;
11776         return cclocks;
11777 }
11778
11779 /*
11780  * Convert a cclock count to nanoseconds. Not matter how slow
11781  * the cclock, a non-zero cclocks will always have a non-zero result.
11782  */
11783 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11784 {
11785         u32 ns;
11786
11787         if (dd->icode == ICODE_FPGA_EMULATION)
11788                 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11789         else  /* simulation pretends to be ASIC */
11790                 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11791         if (cclocks && !ns)
11792                 ns = 1;
11793         return ns;
11794 }
11795
11796 /*
11797  * Dynamically adjust the receive interrupt timeout for a context based on
11798  * incoming packet rate.
11799  *
11800  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11801  */
11802 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11803 {
11804         struct hfi1_devdata *dd = rcd->dd;
11805         u32 timeout = rcd->rcvavail_timeout;
11806
11807         /*
11808          * This algorithm doubles or halves the timeout depending on whether
11809          * the number of packets received in this interrupt were less than or
11810          * greater equal the interrupt count.
11811          *
11812          * The calculations below do not allow a steady state to be achieved.
11813          * Only at the endpoints it is possible to have an unchanging
11814          * timeout.
11815          */
11816         if (npkts < rcv_intr_count) {
11817                 /*
11818                  * Not enough packets arrived before the timeout, adjust
11819                  * timeout downward.
11820                  */
11821                 if (timeout < 2) /* already at minimum? */
11822                         return;
11823                 timeout >>= 1;
11824         } else {
11825                 /*
11826                  * More than enough packets arrived before the timeout, adjust
11827                  * timeout upward.
11828                  */
11829                 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11830                         return;
11831                 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11832         }
11833
11834         rcd->rcvavail_timeout = timeout;
11835         /*
11836          * timeout cannot be larger than rcv_intr_timeout_csr which has already
11837          * been verified to be in range
11838          */
11839         write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11840                         (u64)timeout <<
11841                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11842 }
11843
11844 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11845                     u32 intr_adjust, u32 npkts)
11846 {
11847         struct hfi1_devdata *dd = rcd->dd;
11848         u64 reg;
11849         u32 ctxt = rcd->ctxt;
11850
11851         /*
11852          * Need to write timeout register before updating RcvHdrHead to ensure
11853          * that a new value is used when the HW decides to restart counting.
11854          */
11855         if (intr_adjust)
11856                 adjust_rcv_timeout(rcd, npkts);
11857         if (updegr) {
11858                 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11859                         << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11860                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11861         }
11862         reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11863                 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11864                         << RCV_HDR_HEAD_HEAD_SHIFT);
11865         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11866 }
11867
11868 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11869 {
11870         u32 head, tail;
11871
11872         head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11873                 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11874
11875         if (hfi1_rcvhdrtail_kvaddr(rcd))
11876                 tail = get_rcvhdrtail(rcd);
11877         else
11878                 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11879
11880         return head == tail;
11881 }
11882
11883 /*
11884  * Context Control and Receive Array encoding for buffer size:
11885  *      0x0 invalid
11886  *      0x1   4 KB
11887  *      0x2   8 KB
11888  *      0x3  16 KB
11889  *      0x4  32 KB
11890  *      0x5  64 KB
11891  *      0x6 128 KB
11892  *      0x7 256 KB
11893  *      0x8 512 KB (Receive Array only)
11894  *      0x9   1 MB (Receive Array only)
11895  *      0xa   2 MB (Receive Array only)
11896  *
11897  *      0xB-0xF - reserved (Receive Array only)
11898  *
11899  *
11900  * This routine assumes that the value has already been sanity checked.
11901  */
11902 static u32 encoded_size(u32 size)
11903 {
11904         switch (size) {
11905         case   4 * 1024: return 0x1;
11906         case   8 * 1024: return 0x2;
11907         case  16 * 1024: return 0x3;
11908         case  32 * 1024: return 0x4;
11909         case  64 * 1024: return 0x5;
11910         case 128 * 1024: return 0x6;
11911         case 256 * 1024: return 0x7;
11912         case 512 * 1024: return 0x8;
11913         case   1 * 1024 * 1024: return 0x9;
11914         case   2 * 1024 * 1024: return 0xa;
11915         }
11916         return 0x1;     /* if invalid, go with the minimum size */
11917 }
11918
11919 /**
11920  * encode_rcv_header_entry_size - return chip specific encoding for size
11921  * @size: size in dwords
11922  *
11923  * Convert a receive header entry size that to the encoding used in the CSR.
11924  *
11925  * Return a zero if the given size is invalid, otherwise the encoding.
11926  */
11927 u8 encode_rcv_header_entry_size(u8 size)
11928 {
11929         /* there are only 3 valid receive header entry sizes */
11930         if (size == 2)
11931                 return 1;
11932         if (size == 16)
11933                 return 2;
11934         if (size == 32)
11935                 return 4;
11936         return 0; /* invalid */
11937 }
11938
11939 /**
11940  * hfi1_validate_rcvhdrcnt - validate hdrcnt
11941  * @dd: the device data
11942  * @thecnt: the header count
11943  */
11944 int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11945 {
11946         if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11947                 dd_dev_err(dd, "Receive header queue count too small\n");
11948                 return -EINVAL;
11949         }
11950
11951         if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11952                 dd_dev_err(dd,
11953                            "Receive header queue count cannot be greater than %u\n",
11954                            HFI1_MAX_HDRQ_EGRBUF_CNT);
11955                 return -EINVAL;
11956         }
11957
11958         if (thecnt % HDRQ_INCREMENT) {
11959                 dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11960                            thecnt, HDRQ_INCREMENT);
11961                 return -EINVAL;
11962         }
11963
11964         return 0;
11965 }
11966
11967 /**
11968  * set_hdrq_regs - set header queue registers for context
11969  * @dd: the device data
11970  * @ctxt: the context
11971  * @entsize: the dword entry size
11972  * @hdrcnt: the number of header entries
11973  */
11974 void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
11975 {
11976         u64 reg;
11977
11978         reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
11979               RCV_HDR_CNT_CNT_SHIFT;
11980         write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
11981         reg = ((u64)encode_rcv_header_entry_size(entsize) &
11982                RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
11983               RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
11984         write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
11985         reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
11986               RCV_HDR_SIZE_HDR_SIZE_SHIFT;
11987         write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
11988
11989         /*
11990          * Program dummy tail address for every receive context
11991          * before enabling any receive context
11992          */
11993         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11994                         dd->rcvhdrtail_dummy_dma);
11995 }
11996
11997 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11998                   struct hfi1_ctxtdata *rcd)
11999 {
12000         u64 rcvctrl, reg;
12001         int did_enable = 0;
12002         u16 ctxt;
12003
12004         if (!rcd)
12005                 return;
12006
12007         ctxt = rcd->ctxt;
12008
12009         hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12010
12011         rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12012         /* if the context already enabled, don't do the extra steps */
12013         if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12014             !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12015                 /* reset the tail and hdr addresses, and sequence count */
12016                 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12017                                 rcd->rcvhdrq_dma);
12018                 if (hfi1_rcvhdrtail_kvaddr(rcd))
12019                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12020                                         rcd->rcvhdrqtailaddr_dma);
12021                 hfi1_set_seq_cnt(rcd, 1);
12022
12023                 /* reset the cached receive header queue head value */
12024                 hfi1_set_rcd_head(rcd, 0);
12025
12026                 /*
12027                  * Zero the receive header queue so we don't get false
12028                  * positives when checking the sequence number.  The
12029                  * sequence numbers could land exactly on the same spot.
12030                  * E.g. a rcd restart before the receive header wrapped.
12031                  */
12032                 memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12033
12034                 /* starting timeout */
12035                 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12036
12037                 /* enable the context */
12038                 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12039
12040                 /* clean the egr buffer size first */
12041                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12042                 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12043                                 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12044                                         << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12045
12046                 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12047                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12048                 did_enable = 1;
12049
12050                 /* zero RcvEgrIndexHead */
12051                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12052
12053                 /* set eager count and base index */
12054                 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12055                         & RCV_EGR_CTRL_EGR_CNT_MASK)
12056                        << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12057                         (((rcd->eager_base >> RCV_SHIFT)
12058                           & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12059                          << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12060                 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12061
12062                 /*
12063                  * Set TID (expected) count and base index.
12064                  * rcd->expected_count is set to individual RcvArray entries,
12065                  * not pairs, and the CSR takes a pair-count in groups of
12066                  * four, so divide by 8.
12067                  */
12068                 reg = (((rcd->expected_count >> RCV_SHIFT)
12069                                         & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12070                                 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12071                       (((rcd->expected_base >> RCV_SHIFT)
12072                                         & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12073                                 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12074                 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12075                 if (ctxt == HFI1_CTRL_CTXT)
12076                         write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12077         }
12078         if (op & HFI1_RCVCTRL_CTXT_DIS) {
12079                 write_csr(dd, RCV_VL15, 0);
12080                 /*
12081                  * When receive context is being disabled turn on tail
12082                  * update with a dummy tail address and then disable
12083                  * receive context.
12084                  */
12085                 if (dd->rcvhdrtail_dummy_dma) {
12086                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12087                                         dd->rcvhdrtail_dummy_dma);
12088                         /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12089                         rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12090                 }
12091
12092                 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12093         }
12094         if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12095                 set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12096                               IS_RCVAVAIL_START + rcd->ctxt, true);
12097                 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12098         }
12099         if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12100                 set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12101                               IS_RCVAVAIL_START + rcd->ctxt, false);
12102                 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12103         }
12104         if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12105                 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12106         if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12107                 /* See comment on RcvCtxtCtrl.TailUpd above */
12108                 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12109                         rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12110         }
12111         if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12112                 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12113         if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12114                 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12115         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12116                 /*
12117                  * In one-packet-per-eager mode, the size comes from
12118                  * the RcvArray entry.
12119                  */
12120                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12121                 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12122         }
12123         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12124                 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12125         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12126                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12127         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12128                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12129         if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12130                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12131         if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12132                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12133         if (op & HFI1_RCVCTRL_URGENT_ENB)
12134                 set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12135                               IS_RCVURGENT_START + rcd->ctxt, true);
12136         if (op & HFI1_RCVCTRL_URGENT_DIS)
12137                 set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12138                               IS_RCVURGENT_START + rcd->ctxt, false);
12139
12140         hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx", ctxt, rcvctrl);
12141         write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12142
12143         /* work around sticky RcvCtxtStatus.BlockedRHQFull */
12144         if (did_enable &&
12145             (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12146                 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12147                 if (reg != 0) {
12148                         dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12149                                     ctxt, reg);
12150                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12151                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12152                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12153                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12154                         reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12155                         dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12156                                     ctxt, reg, reg == 0 ? "not" : "still");
12157                 }
12158         }
12159
12160         if (did_enable) {
12161                 /*
12162                  * The interrupt timeout and count must be set after
12163                  * the context is enabled to take effect.
12164                  */
12165                 /* set interrupt timeout */
12166                 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12167                                 (u64)rcd->rcvavail_timeout <<
12168                                 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12169
12170                 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12171                 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12172                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12173         }
12174
12175         if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12176                 /*
12177                  * If the context has been disabled and the Tail Update has
12178                  * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12179                  * so it doesn't contain an address that is invalid.
12180                  */
12181                 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12182                                 dd->rcvhdrtail_dummy_dma);
12183 }
12184
12185 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12186 {
12187         int ret;
12188         u64 val = 0;
12189
12190         if (namep) {
12191                 ret = dd->cntrnameslen;
12192                 *namep = dd->cntrnames;
12193         } else {
12194                 const struct cntr_entry *entry;
12195                 int i, j;
12196
12197                 ret = (dd->ndevcntrs) * sizeof(u64);
12198
12199                 /* Get the start of the block of counters */
12200                 *cntrp = dd->cntrs;
12201
12202                 /*
12203                  * Now go and fill in each counter in the block.
12204                  */
12205                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12206                         entry = &dev_cntrs[i];
12207                         hfi1_cdbg(CNTR, "reading %s", entry->name);
12208                         if (entry->flags & CNTR_DISABLED) {
12209                                 /* Nothing */
12210                                 hfi1_cdbg(CNTR, "\tDisabled");
12211                         } else {
12212                                 if (entry->flags & CNTR_VL) {
12213                                         hfi1_cdbg(CNTR, "\tPer VL");
12214                                         for (j = 0; j < C_VL_COUNT; j++) {
12215                                                 val = entry->rw_cntr(entry,
12216                                                                   dd, j,
12217                                                                   CNTR_MODE_R,
12218                                                                   0);
12219                                                 hfi1_cdbg(
12220                                                    CNTR,
12221                                                    "\t\tRead 0x%llx for %d",
12222                                                    val, j);
12223                                                 dd->cntrs[entry->offset + j] =
12224                                                                             val;
12225                                         }
12226                                 } else if (entry->flags & CNTR_SDMA) {
12227                                         hfi1_cdbg(CNTR,
12228                                                   "\t Per SDMA Engine");
12229                                         for (j = 0; j < chip_sdma_engines(dd);
12230                                              j++) {
12231                                                 val =
12232                                                 entry->rw_cntr(entry, dd, j,
12233                                                                CNTR_MODE_R, 0);
12234                                                 hfi1_cdbg(CNTR,
12235                                                           "\t\tRead 0x%llx for %d",
12236                                                           val, j);
12237                                                 dd->cntrs[entry->offset + j] =
12238                                                                         val;
12239                                         }
12240                                 } else {
12241                                         val = entry->rw_cntr(entry, dd,
12242                                                         CNTR_INVALID_VL,
12243                                                         CNTR_MODE_R, 0);
12244                                         dd->cntrs[entry->offset] = val;
12245                                         hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12246                                 }
12247                         }
12248                 }
12249         }
12250         return ret;
12251 }
12252
12253 /*
12254  * Used by sysfs to create files for hfi stats to read
12255  */
12256 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12257 {
12258         int ret;
12259         u64 val = 0;
12260
12261         if (namep) {
12262                 ret = ppd->dd->portcntrnameslen;
12263                 *namep = ppd->dd->portcntrnames;
12264         } else {
12265                 const struct cntr_entry *entry;
12266                 int i, j;
12267
12268                 ret = ppd->dd->nportcntrs * sizeof(u64);
12269                 *cntrp = ppd->cntrs;
12270
12271                 for (i = 0; i < PORT_CNTR_LAST; i++) {
12272                         entry = &port_cntrs[i];
12273                         hfi1_cdbg(CNTR, "reading %s", entry->name);
12274                         if (entry->flags & CNTR_DISABLED) {
12275                                 /* Nothing */
12276                                 hfi1_cdbg(CNTR, "\tDisabled");
12277                                 continue;
12278                         }
12279
12280                         if (entry->flags & CNTR_VL) {
12281                                 hfi1_cdbg(CNTR, "\tPer VL");
12282                                 for (j = 0; j < C_VL_COUNT; j++) {
12283                                         val = entry->rw_cntr(entry, ppd, j,
12284                                                                CNTR_MODE_R,
12285                                                                0);
12286                                         hfi1_cdbg(
12287                                            CNTR,
12288                                            "\t\tRead 0x%llx for %d",
12289                                            val, j);
12290                                         ppd->cntrs[entry->offset + j] = val;
12291                                 }
12292                         } else {
12293                                 val = entry->rw_cntr(entry, ppd,
12294                                                        CNTR_INVALID_VL,
12295                                                        CNTR_MODE_R,
12296                                                        0);
12297                                 ppd->cntrs[entry->offset] = val;
12298                                 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12299                         }
12300                 }
12301         }
12302         return ret;
12303 }
12304
12305 static void free_cntrs(struct hfi1_devdata *dd)
12306 {
12307         struct hfi1_pportdata *ppd;
12308         int i;
12309
12310         if (dd->synth_stats_timer.function)
12311                 del_timer_sync(&dd->synth_stats_timer);
12312         cancel_work_sync(&dd->update_cntr_work);
12313         ppd = (struct hfi1_pportdata *)(dd + 1);
12314         for (i = 0; i < dd->num_pports; i++, ppd++) {
12315                 kfree(ppd->cntrs);
12316                 kfree(ppd->scntrs);
12317                 free_percpu(ppd->ibport_data.rvp.rc_acks);
12318                 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12319                 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12320                 ppd->cntrs = NULL;
12321                 ppd->scntrs = NULL;
12322                 ppd->ibport_data.rvp.rc_acks = NULL;
12323                 ppd->ibport_data.rvp.rc_qacks = NULL;
12324                 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12325         }
12326         kfree(dd->portcntrnames);
12327         dd->portcntrnames = NULL;
12328         kfree(dd->cntrs);
12329         dd->cntrs = NULL;
12330         kfree(dd->scntrs);
12331         dd->scntrs = NULL;
12332         kfree(dd->cntrnames);
12333         dd->cntrnames = NULL;
12334         if (dd->update_cntr_wq) {
12335                 destroy_workqueue(dd->update_cntr_wq);
12336                 dd->update_cntr_wq = NULL;
12337         }
12338 }
12339
12340 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12341                               u64 *psval, void *context, int vl)
12342 {
12343         u64 val;
12344         u64 sval = *psval;
12345
12346         if (entry->flags & CNTR_DISABLED) {
12347                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12348                 return 0;
12349         }
12350
12351         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12352
12353         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12354
12355         /* If its a synthetic counter there is more work we need to do */
12356         if (entry->flags & CNTR_SYNTH) {
12357                 if (sval == CNTR_MAX) {
12358                         /* No need to read already saturated */
12359                         return CNTR_MAX;
12360                 }
12361
12362                 if (entry->flags & CNTR_32BIT) {
12363                         /* 32bit counters can wrap multiple times */
12364                         u64 upper = sval >> 32;
12365                         u64 lower = (sval << 32) >> 32;
12366
12367                         if (lower > val) { /* hw wrapped */
12368                                 if (upper == CNTR_32BIT_MAX)
12369                                         val = CNTR_MAX;
12370                                 else
12371                                         upper++;
12372                         }
12373
12374                         if (val != CNTR_MAX)
12375                                 val = (upper << 32) | val;
12376
12377                 } else {
12378                         /* If we rolled we are saturated */
12379                         if ((val < sval) || (val > CNTR_MAX))
12380                                 val = CNTR_MAX;
12381                 }
12382         }
12383
12384         *psval = val;
12385
12386         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12387
12388         return val;
12389 }
12390
12391 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12392                                struct cntr_entry *entry,
12393                                u64 *psval, void *context, int vl, u64 data)
12394 {
12395         u64 val;
12396
12397         if (entry->flags & CNTR_DISABLED) {
12398                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12399                 return 0;
12400         }
12401
12402         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12403
12404         if (entry->flags & CNTR_SYNTH) {
12405                 *psval = data;
12406                 if (entry->flags & CNTR_32BIT) {
12407                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12408                                              (data << 32) >> 32);
12409                         val = data; /* return the full 64bit value */
12410                 } else {
12411                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12412                                              data);
12413                 }
12414         } else {
12415                 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12416         }
12417
12418         *psval = val;
12419
12420         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12421
12422         return val;
12423 }
12424
12425 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12426 {
12427         struct cntr_entry *entry;
12428         u64 *sval;
12429
12430         entry = &dev_cntrs[index];
12431         sval = dd->scntrs + entry->offset;
12432
12433         if (vl != CNTR_INVALID_VL)
12434                 sval += vl;
12435
12436         return read_dev_port_cntr(dd, entry, sval, dd, vl);
12437 }
12438
12439 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12440 {
12441         struct cntr_entry *entry;
12442         u64 *sval;
12443
12444         entry = &dev_cntrs[index];
12445         sval = dd->scntrs + entry->offset;
12446
12447         if (vl != CNTR_INVALID_VL)
12448                 sval += vl;
12449
12450         return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12451 }
12452
12453 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12454 {
12455         struct cntr_entry *entry;
12456         u64 *sval;
12457
12458         entry = &port_cntrs[index];
12459         sval = ppd->scntrs + entry->offset;
12460
12461         if (vl != CNTR_INVALID_VL)
12462                 sval += vl;
12463
12464         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12465             (index <= C_RCV_HDR_OVF_LAST)) {
12466                 /* We do not want to bother for disabled contexts */
12467                 return 0;
12468         }
12469
12470         return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12471 }
12472
12473 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12474 {
12475         struct cntr_entry *entry;
12476         u64 *sval;
12477
12478         entry = &port_cntrs[index];
12479         sval = ppd->scntrs + entry->offset;
12480
12481         if (vl != CNTR_INVALID_VL)
12482                 sval += vl;
12483
12484         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12485             (index <= C_RCV_HDR_OVF_LAST)) {
12486                 /* We do not want to bother for disabled contexts */
12487                 return 0;
12488         }
12489
12490         return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12491 }
12492
12493 static void do_update_synth_timer(struct work_struct *work)
12494 {
12495         u64 cur_tx;
12496         u64 cur_rx;
12497         u64 total_flits;
12498         u8 update = 0;
12499         int i, j, vl;
12500         struct hfi1_pportdata *ppd;
12501         struct cntr_entry *entry;
12502         struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12503                                                update_cntr_work);
12504
12505         /*
12506          * Rather than keep beating on the CSRs pick a minimal set that we can
12507          * check to watch for potential roll over. We can do this by looking at
12508          * the number of flits sent/recv. If the total flits exceeds 32bits then
12509          * we have to iterate all the counters and update.
12510          */
12511         entry = &dev_cntrs[C_DC_RCV_FLITS];
12512         cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12513
12514         entry = &dev_cntrs[C_DC_XMIT_FLITS];
12515         cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12516
12517         hfi1_cdbg(
12518             CNTR,
12519             "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx",
12520             dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12521
12522         if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12523                 /*
12524                  * May not be strictly necessary to update but it won't hurt and
12525                  * simplifies the logic here.
12526                  */
12527                 update = 1;
12528                 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12529                           dd->unit);
12530         } else {
12531                 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12532                 hfi1_cdbg(CNTR,
12533                           "[%d] total flits 0x%llx limit 0x%llx", dd->unit,
12534                           total_flits, (u64)CNTR_32BIT_MAX);
12535                 if (total_flits >= CNTR_32BIT_MAX) {
12536                         hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12537                                   dd->unit);
12538                         update = 1;
12539                 }
12540         }
12541
12542         if (update) {
12543                 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12544                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12545                         entry = &dev_cntrs[i];
12546                         if (entry->flags & CNTR_VL) {
12547                                 for (vl = 0; vl < C_VL_COUNT; vl++)
12548                                         read_dev_cntr(dd, i, vl);
12549                         } else {
12550                                 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12551                         }
12552                 }
12553                 ppd = (struct hfi1_pportdata *)(dd + 1);
12554                 for (i = 0; i < dd->num_pports; i++, ppd++) {
12555                         for (j = 0; j < PORT_CNTR_LAST; j++) {
12556                                 entry = &port_cntrs[j];
12557                                 if (entry->flags & CNTR_VL) {
12558                                         for (vl = 0; vl < C_VL_COUNT; vl++)
12559                                                 read_port_cntr(ppd, j, vl);
12560                                 } else {
12561                                         read_port_cntr(ppd, j, CNTR_INVALID_VL);
12562                                 }
12563                         }
12564                 }
12565
12566                 /*
12567                  * We want the value in the register. The goal is to keep track
12568                  * of the number of "ticks" not the counter value. In other
12569                  * words if the register rolls we want to notice it and go ahead
12570                  * and force an update.
12571                  */
12572                 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12573                 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12574                                                 CNTR_MODE_R, 0);
12575
12576                 entry = &dev_cntrs[C_DC_RCV_FLITS];
12577                 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12578                                                 CNTR_MODE_R, 0);
12579
12580                 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12581                           dd->unit, dd->last_tx, dd->last_rx);
12582
12583         } else {
12584                 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12585         }
12586 }
12587
12588 static void update_synth_timer(struct timer_list *t)
12589 {
12590         struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12591
12592         queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12593         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12594 }
12595
12596 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12597 static int init_cntrs(struct hfi1_devdata *dd)
12598 {
12599         int i, rcv_ctxts, j;
12600         size_t sz;
12601         char *p;
12602         char name[C_MAX_NAME];
12603         struct hfi1_pportdata *ppd;
12604         const char *bit_type_32 = ",32";
12605         const int bit_type_32_sz = strlen(bit_type_32);
12606         u32 sdma_engines = chip_sdma_engines(dd);
12607
12608         /* set up the stats timer; the add_timer is done at the end */
12609         timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12610
12611         /***********************/
12612         /* per device counters */
12613         /***********************/
12614
12615         /* size names and determine how many we have*/
12616         dd->ndevcntrs = 0;
12617         sz = 0;
12618
12619         for (i = 0; i < DEV_CNTR_LAST; i++) {
12620                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12621                         hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12622                         continue;
12623                 }
12624
12625                 if (dev_cntrs[i].flags & CNTR_VL) {
12626                         dev_cntrs[i].offset = dd->ndevcntrs;
12627                         for (j = 0; j < C_VL_COUNT; j++) {
12628                                 snprintf(name, C_MAX_NAME, "%s%d",
12629                                          dev_cntrs[i].name, vl_from_idx(j));
12630                                 sz += strlen(name);
12631                                 /* Add ",32" for 32-bit counters */
12632                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12633                                         sz += bit_type_32_sz;
12634                                 sz++;
12635                                 dd->ndevcntrs++;
12636                         }
12637                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12638                         dev_cntrs[i].offset = dd->ndevcntrs;
12639                         for (j = 0; j < sdma_engines; j++) {
12640                                 snprintf(name, C_MAX_NAME, "%s%d",
12641                                          dev_cntrs[i].name, j);
12642                                 sz += strlen(name);
12643                                 /* Add ",32" for 32-bit counters */
12644                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12645                                         sz += bit_type_32_sz;
12646                                 sz++;
12647                                 dd->ndevcntrs++;
12648                         }
12649                 } else {
12650                         /* +1 for newline. */
12651                         sz += strlen(dev_cntrs[i].name) + 1;
12652                         /* Add ",32" for 32-bit counters */
12653                         if (dev_cntrs[i].flags & CNTR_32BIT)
12654                                 sz += bit_type_32_sz;
12655                         dev_cntrs[i].offset = dd->ndevcntrs;
12656                         dd->ndevcntrs++;
12657                 }
12658         }
12659
12660         /* allocate space for the counter values */
12661         dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12662                             GFP_KERNEL);
12663         if (!dd->cntrs)
12664                 goto bail;
12665
12666         dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12667         if (!dd->scntrs)
12668                 goto bail;
12669
12670         /* allocate space for the counter names */
12671         dd->cntrnameslen = sz;
12672         dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12673         if (!dd->cntrnames)
12674                 goto bail;
12675
12676         /* fill in the names */
12677         for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12678                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12679                         /* Nothing */
12680                 } else if (dev_cntrs[i].flags & CNTR_VL) {
12681                         for (j = 0; j < C_VL_COUNT; j++) {
12682                                 snprintf(name, C_MAX_NAME, "%s%d",
12683                                          dev_cntrs[i].name,
12684                                          vl_from_idx(j));
12685                                 memcpy(p, name, strlen(name));
12686                                 p += strlen(name);
12687
12688                                 /* Counter is 32 bits */
12689                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12690                                         memcpy(p, bit_type_32, bit_type_32_sz);
12691                                         p += bit_type_32_sz;
12692                                 }
12693
12694                                 *p++ = '\n';
12695                         }
12696                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12697                         for (j = 0; j < sdma_engines; j++) {
12698                                 snprintf(name, C_MAX_NAME, "%s%d",
12699                                          dev_cntrs[i].name, j);
12700                                 memcpy(p, name, strlen(name));
12701                                 p += strlen(name);
12702
12703                                 /* Counter is 32 bits */
12704                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12705                                         memcpy(p, bit_type_32, bit_type_32_sz);
12706                                         p += bit_type_32_sz;
12707                                 }
12708
12709                                 *p++ = '\n';
12710                         }
12711                 } else {
12712                         memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12713                         p += strlen(dev_cntrs[i].name);
12714
12715                         /* Counter is 32 bits */
12716                         if (dev_cntrs[i].flags & CNTR_32BIT) {
12717                                 memcpy(p, bit_type_32, bit_type_32_sz);
12718                                 p += bit_type_32_sz;
12719                         }
12720
12721                         *p++ = '\n';
12722                 }
12723         }
12724
12725         /*********************/
12726         /* per port counters */
12727         /*********************/
12728
12729         /*
12730          * Go through the counters for the overflows and disable the ones we
12731          * don't need. This varies based on platform so we need to do it
12732          * dynamically here.
12733          */
12734         rcv_ctxts = dd->num_rcv_contexts;
12735         for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12736              i <= C_RCV_HDR_OVF_LAST; i++) {
12737                 port_cntrs[i].flags |= CNTR_DISABLED;
12738         }
12739
12740         /* size port counter names and determine how many we have*/
12741         sz = 0;
12742         dd->nportcntrs = 0;
12743         for (i = 0; i < PORT_CNTR_LAST; i++) {
12744                 if (port_cntrs[i].flags & CNTR_DISABLED) {
12745                         hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12746                         continue;
12747                 }
12748
12749                 if (port_cntrs[i].flags & CNTR_VL) {
12750                         port_cntrs[i].offset = dd->nportcntrs;
12751                         for (j = 0; j < C_VL_COUNT; j++) {
12752                                 snprintf(name, C_MAX_NAME, "%s%d",
12753                                          port_cntrs[i].name, vl_from_idx(j));
12754                                 sz += strlen(name);
12755                                 /* Add ",32" for 32-bit counters */
12756                                 if (port_cntrs[i].flags & CNTR_32BIT)
12757                                         sz += bit_type_32_sz;
12758                                 sz++;
12759                                 dd->nportcntrs++;
12760                         }
12761                 } else {
12762                         /* +1 for newline */
12763                         sz += strlen(port_cntrs[i].name) + 1;
12764                         /* Add ",32" for 32-bit counters */
12765                         if (port_cntrs[i].flags & CNTR_32BIT)
12766                                 sz += bit_type_32_sz;
12767                         port_cntrs[i].offset = dd->nportcntrs;
12768                         dd->nportcntrs++;
12769                 }
12770         }
12771
12772         /* allocate space for the counter names */
12773         dd->portcntrnameslen = sz;
12774         dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12775         if (!dd->portcntrnames)
12776                 goto bail;
12777
12778         /* fill in port cntr names */
12779         for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12780                 if (port_cntrs[i].flags & CNTR_DISABLED)
12781                         continue;
12782
12783                 if (port_cntrs[i].flags & CNTR_VL) {
12784                         for (j = 0; j < C_VL_COUNT; j++) {
12785                                 snprintf(name, C_MAX_NAME, "%s%d",
12786                                          port_cntrs[i].name, vl_from_idx(j));
12787                                 memcpy(p, name, strlen(name));
12788                                 p += strlen(name);
12789
12790                                 /* Counter is 32 bits */
12791                                 if (port_cntrs[i].flags & CNTR_32BIT) {
12792                                         memcpy(p, bit_type_32, bit_type_32_sz);
12793                                         p += bit_type_32_sz;
12794                                 }
12795
12796                                 *p++ = '\n';
12797                         }
12798                 } else {
12799                         memcpy(p, port_cntrs[i].name,
12800                                strlen(port_cntrs[i].name));
12801                         p += strlen(port_cntrs[i].name);
12802
12803                         /* Counter is 32 bits */
12804                         if (port_cntrs[i].flags & CNTR_32BIT) {
12805                                 memcpy(p, bit_type_32, bit_type_32_sz);
12806                                 p += bit_type_32_sz;
12807                         }
12808
12809                         *p++ = '\n';
12810                 }
12811         }
12812
12813         /* allocate per port storage for counter values */
12814         ppd = (struct hfi1_pportdata *)(dd + 1);
12815         for (i = 0; i < dd->num_pports; i++, ppd++) {
12816                 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12817                 if (!ppd->cntrs)
12818                         goto bail;
12819
12820                 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12821                 if (!ppd->scntrs)
12822                         goto bail;
12823         }
12824
12825         /* CPU counters need to be allocated and zeroed */
12826         if (init_cpu_counters(dd))
12827                 goto bail;
12828
12829         dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12830                                                      WQ_MEM_RECLAIM, dd->unit);
12831         if (!dd->update_cntr_wq)
12832                 goto bail;
12833
12834         INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12835
12836         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12837         return 0;
12838 bail:
12839         free_cntrs(dd);
12840         return -ENOMEM;
12841 }
12842
12843 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12844 {
12845         switch (chip_lstate) {
12846         case LSTATE_DOWN:
12847                 return IB_PORT_DOWN;
12848         case LSTATE_INIT:
12849                 return IB_PORT_INIT;
12850         case LSTATE_ARMED:
12851                 return IB_PORT_ARMED;
12852         case LSTATE_ACTIVE:
12853                 return IB_PORT_ACTIVE;
12854         default:
12855                 dd_dev_err(dd,
12856                            "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12857                            chip_lstate);
12858                 return IB_PORT_DOWN;
12859         }
12860 }
12861
12862 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12863 {
12864         /* look at the HFI meta-states only */
12865         switch (chip_pstate & 0xf0) {
12866         case PLS_DISABLED:
12867                 return IB_PORTPHYSSTATE_DISABLED;
12868         case PLS_OFFLINE:
12869                 return OPA_PORTPHYSSTATE_OFFLINE;
12870         case PLS_POLLING:
12871                 return IB_PORTPHYSSTATE_POLLING;
12872         case PLS_CONFIGPHY:
12873                 return IB_PORTPHYSSTATE_TRAINING;
12874         case PLS_LINKUP:
12875                 return IB_PORTPHYSSTATE_LINKUP;
12876         case PLS_PHYTEST:
12877                 return IB_PORTPHYSSTATE_PHY_TEST;
12878         default:
12879                 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12880                            chip_pstate);
12881                 return IB_PORTPHYSSTATE_DISABLED;
12882         }
12883 }
12884
12885 /* return the OPA port logical state name */
12886 const char *opa_lstate_name(u32 lstate)
12887 {
12888         static const char * const port_logical_names[] = {
12889                 "PORT_NOP",
12890                 "PORT_DOWN",
12891                 "PORT_INIT",
12892                 "PORT_ARMED",
12893                 "PORT_ACTIVE",
12894                 "PORT_ACTIVE_DEFER",
12895         };
12896         if (lstate < ARRAY_SIZE(port_logical_names))
12897                 return port_logical_names[lstate];
12898         return "unknown";
12899 }
12900
12901 /* return the OPA port physical state name */
12902 const char *opa_pstate_name(u32 pstate)
12903 {
12904         static const char * const port_physical_names[] = {
12905                 "PHYS_NOP",
12906                 "reserved1",
12907                 "PHYS_POLL",
12908                 "PHYS_DISABLED",
12909                 "PHYS_TRAINING",
12910                 "PHYS_LINKUP",
12911                 "PHYS_LINK_ERR_RECOVER",
12912                 "PHYS_PHY_TEST",
12913                 "reserved8",
12914                 "PHYS_OFFLINE",
12915                 "PHYS_GANGED",
12916                 "PHYS_TEST",
12917         };
12918         if (pstate < ARRAY_SIZE(port_physical_names))
12919                 return port_physical_names[pstate];
12920         return "unknown";
12921 }
12922
12923 /**
12924  * update_statusp - Update userspace status flag
12925  * @ppd: Port data structure
12926  * @state: port state information
12927  *
12928  * Actual port status is determined by the host_link_state value
12929  * in the ppd.
12930  *
12931  * host_link_state MUST be updated before updating the user space
12932  * statusp.
12933  */
12934 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12935 {
12936         /*
12937          * Set port status flags in the page mapped into userspace
12938          * memory. Do it here to ensure a reliable state - this is
12939          * the only function called by all state handling code.
12940          * Always set the flags due to the fact that the cache value
12941          * might have been changed explicitly outside of this
12942          * function.
12943          */
12944         if (ppd->statusp) {
12945                 switch (state) {
12946                 case IB_PORT_DOWN:
12947                 case IB_PORT_INIT:
12948                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12949                                            HFI1_STATUS_IB_READY);
12950                         break;
12951                 case IB_PORT_ARMED:
12952                         *ppd->statusp |= HFI1_STATUS_IB_CONF;
12953                         break;
12954                 case IB_PORT_ACTIVE:
12955                         *ppd->statusp |= HFI1_STATUS_IB_READY;
12956                         break;
12957                 }
12958         }
12959         dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12960                     opa_lstate_name(state), state);
12961 }
12962
12963 /**
12964  * wait_logical_linkstate - wait for an IB link state change to occur
12965  * @ppd: port device
12966  * @state: the state to wait for
12967  * @msecs: the number of milliseconds to wait
12968  *
12969  * Wait up to msecs milliseconds for IB link state change to occur.
12970  * For now, take the easy polling route.
12971  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12972  */
12973 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12974                                   int msecs)
12975 {
12976         unsigned long timeout;
12977         u32 new_state;
12978
12979         timeout = jiffies + msecs_to_jiffies(msecs);
12980         while (1) {
12981                 new_state = chip_to_opa_lstate(ppd->dd,
12982                                                read_logical_state(ppd->dd));
12983                 if (new_state == state)
12984                         break;
12985                 if (time_after(jiffies, timeout)) {
12986                         dd_dev_err(ppd->dd,
12987                                    "timeout waiting for link state 0x%x\n",
12988                                    state);
12989                         return -ETIMEDOUT;
12990                 }
12991                 msleep(20);
12992         }
12993
12994         return 0;
12995 }
12996
12997 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12998 {
12999         u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
13000
13001         dd_dev_info(ppd->dd,
13002                     "physical state changed to %s (0x%x), phy 0x%x\n",
13003                     opa_pstate_name(ib_pstate), ib_pstate, state);
13004 }
13005
13006 /*
13007  * Read the physical hardware link state and check if it matches host
13008  * drivers anticipated state.
13009  */
13010 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13011 {
13012         u32 read_state = read_physical_state(ppd->dd);
13013
13014         if (read_state == state) {
13015                 log_state_transition(ppd, state);
13016         } else {
13017                 dd_dev_err(ppd->dd,
13018                            "anticipated phy link state 0x%x, read 0x%x\n",
13019                            state, read_state);
13020         }
13021 }
13022
13023 /*
13024  * wait_physical_linkstate - wait for an physical link state change to occur
13025  * @ppd: port device
13026  * @state: the state to wait for
13027  * @msecs: the number of milliseconds to wait
13028  *
13029  * Wait up to msecs milliseconds for physical link state change to occur.
13030  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13031  */
13032 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13033                                    int msecs)
13034 {
13035         u32 read_state;
13036         unsigned long timeout;
13037
13038         timeout = jiffies + msecs_to_jiffies(msecs);
13039         while (1) {
13040                 read_state = read_physical_state(ppd->dd);
13041                 if (read_state == state)
13042                         break;
13043                 if (time_after(jiffies, timeout)) {
13044                         dd_dev_err(ppd->dd,
13045                                    "timeout waiting for phy link state 0x%x\n",
13046                                    state);
13047                         return -ETIMEDOUT;
13048                 }
13049                 usleep_range(1950, 2050); /* sleep 2ms-ish */
13050         }
13051
13052         log_state_transition(ppd, state);
13053         return 0;
13054 }
13055
13056 /*
13057  * wait_phys_link_offline_quiet_substates - wait for any offline substate
13058  * @ppd: port device
13059  * @msecs: the number of milliseconds to wait
13060  *
13061  * Wait up to msecs milliseconds for any offline physical link
13062  * state change to occur.
13063  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13064  */
13065 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13066                                             int msecs)
13067 {
13068         u32 read_state;
13069         unsigned long timeout;
13070
13071         timeout = jiffies + msecs_to_jiffies(msecs);
13072         while (1) {
13073                 read_state = read_physical_state(ppd->dd);
13074                 if ((read_state & 0xF0) == PLS_OFFLINE)
13075                         break;
13076                 if (time_after(jiffies, timeout)) {
13077                         dd_dev_err(ppd->dd,
13078                                    "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13079                                    read_state, msecs);
13080                         return -ETIMEDOUT;
13081                 }
13082                 usleep_range(1950, 2050); /* sleep 2ms-ish */
13083         }
13084
13085         log_state_transition(ppd, read_state);
13086         return read_state;
13087 }
13088
13089 /*
13090  * wait_phys_link_out_of_offline - wait for any out of offline state
13091  * @ppd: port device
13092  * @msecs: the number of milliseconds to wait
13093  *
13094  * Wait up to msecs milliseconds for any out of offline physical link
13095  * state change to occur.
13096  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13097  */
13098 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13099                                          int msecs)
13100 {
13101         u32 read_state;
13102         unsigned long timeout;
13103
13104         timeout = jiffies + msecs_to_jiffies(msecs);
13105         while (1) {
13106                 read_state = read_physical_state(ppd->dd);
13107                 if ((read_state & 0xF0) != PLS_OFFLINE)
13108                         break;
13109                 if (time_after(jiffies, timeout)) {
13110                         dd_dev_err(ppd->dd,
13111                                    "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13112                                    read_state, msecs);
13113                         return -ETIMEDOUT;
13114                 }
13115                 usleep_range(1950, 2050); /* sleep 2ms-ish */
13116         }
13117
13118         log_state_transition(ppd, read_state);
13119         return read_state;
13120 }
13121
13122 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13123 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13124
13125 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
13126 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13127
13128 void hfi1_init_ctxt(struct send_context *sc)
13129 {
13130         if (sc) {
13131                 struct hfi1_devdata *dd = sc->dd;
13132                 u64 reg;
13133                 u8 set = (sc->type == SC_USER ?
13134                           HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13135                           HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13136                 reg = read_kctxt_csr(dd, sc->hw_context,
13137                                      SEND_CTXT_CHECK_ENABLE);
13138                 if (set)
13139                         CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13140                 else
13141                         SET_STATIC_RATE_CONTROL_SMASK(reg);
13142                 write_kctxt_csr(dd, sc->hw_context,
13143                                 SEND_CTXT_CHECK_ENABLE, reg);
13144         }
13145 }
13146
13147 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13148 {
13149         int ret = 0;
13150         u64 reg;
13151
13152         if (dd->icode != ICODE_RTL_SILICON) {
13153                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13154                         dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13155                                     __func__);
13156                 return -EINVAL;
13157         }
13158         reg = read_csr(dd, ASIC_STS_THERM);
13159         temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13160                       ASIC_STS_THERM_CURR_TEMP_MASK);
13161         temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13162                         ASIC_STS_THERM_LO_TEMP_MASK);
13163         temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13164                         ASIC_STS_THERM_HI_TEMP_MASK);
13165         temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13166                           ASIC_STS_THERM_CRIT_TEMP_MASK);
13167         /* triggers is a 3-bit value - 1 bit per trigger. */
13168         temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13169
13170         return ret;
13171 }
13172
13173 /* ========================================================================= */
13174
13175 /**
13176  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13177  * @dd: valid devdata
13178  * @src: IRQ source to determine register index from
13179  * @bits: the bits to set or clear
13180  * @set: true == set the bits, false == clear the bits
13181  *
13182  */
13183 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13184                            bool set)
13185 {
13186         u64 reg;
13187         u16 idx = src / BITS_PER_REGISTER;
13188         unsigned long flags;
13189
13190         spin_lock_irqsave(&dd->irq_src_lock, flags);
13191         reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13192         if (set)
13193                 reg |= bits;
13194         else
13195                 reg &= ~bits;
13196         write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13197         spin_unlock_irqrestore(&dd->irq_src_lock, flags);
13198 }
13199
13200 /**
13201  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13202  * @dd: valid devdata
13203  * @first: first IRQ source to set/clear
13204  * @last: last IRQ source (inclusive) to set/clear
13205  * @set: true == set the bits, false == clear the bits
13206  *
13207  * If first == last, set the exact source.
13208  */
13209 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13210 {
13211         u64 bits = 0;
13212         u64 bit;
13213         u16 src;
13214
13215         if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13216                 return -EINVAL;
13217
13218         if (last < first)
13219                 return -ERANGE;
13220
13221         for (src = first; src <= last; src++) {
13222                 bit = src % BITS_PER_REGISTER;
13223                 /* wrapped to next register? */
13224                 if (!bit && bits) {
13225                         read_mod_write(dd, src - 1, bits, set);
13226                         bits = 0;
13227                 }
13228                 bits |= BIT_ULL(bit);
13229         }
13230         read_mod_write(dd, last, bits, set);
13231
13232         return 0;
13233 }
13234
13235 /*
13236  * Clear all interrupt sources on the chip.
13237  */
13238 static void clear_all_interrupts(struct hfi1_devdata *dd)
13239 {
13240         int i;
13241
13242         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13243                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13244
13245         write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13246         write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13247         write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13248         write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13249         write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13250         write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13251         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13252         for (i = 0; i < chip_send_contexts(dd); i++)
13253                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13254         for (i = 0; i < chip_sdma_engines(dd); i++)
13255                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13256
13257         write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13258         write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13259         write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13260 }
13261
13262 /*
13263  * Remap the interrupt source from the general handler to the given MSI-X
13264  * interrupt.
13265  */
13266 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13267 {
13268         u64 reg;
13269         int m, n;
13270
13271         /* clear from the handled mask of the general interrupt */
13272         m = isrc / 64;
13273         n = isrc % 64;
13274         if (likely(m < CCE_NUM_INT_CSRS)) {
13275                 dd->gi_mask[m] &= ~((u64)1 << n);
13276         } else {
13277                 dd_dev_err(dd, "remap interrupt err\n");
13278                 return;
13279         }
13280
13281         /* direct the chip source to the given MSI-X interrupt */
13282         m = isrc / 8;
13283         n = isrc % 8;
13284         reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13285         reg &= ~((u64)0xff << (8 * n));
13286         reg |= ((u64)msix_intr & 0xff) << (8 * n);
13287         write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13288 }
13289
13290 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13291 {
13292         /*
13293          * SDMA engine interrupt sources grouped by type, rather than
13294          * engine.  Per-engine interrupts are as follows:
13295          *      SDMA
13296          *      SDMAProgress
13297          *      SDMAIdle
13298          */
13299         remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13300         remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13301         remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13302 }
13303
13304 /*
13305  * Set the general handler to accept all interrupts, remap all
13306  * chip interrupts back to MSI-X 0.
13307  */
13308 void reset_interrupts(struct hfi1_devdata *dd)
13309 {
13310         int i;
13311
13312         /* all interrupts handled by the general handler */
13313         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13314                 dd->gi_mask[i] = ~(u64)0;
13315
13316         /* all chip interrupts map to MSI-X 0 */
13317         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13318                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13319 }
13320
13321 /**
13322  * set_up_interrupts() - Initialize the IRQ resources and state
13323  * @dd: valid devdata
13324  *
13325  */
13326 static int set_up_interrupts(struct hfi1_devdata *dd)
13327 {
13328         int ret;
13329
13330         /* mask all interrupts */
13331         set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13332
13333         /* clear all pending interrupts */
13334         clear_all_interrupts(dd);
13335
13336         /* reset general handler mask, chip MSI-X mappings */
13337         reset_interrupts(dd);
13338
13339         /* ask for MSI-X interrupts */
13340         ret = msix_initialize(dd);
13341         if (ret)
13342                 return ret;
13343
13344         ret = msix_request_irqs(dd);
13345         if (ret)
13346                 msix_clean_up_interrupts(dd);
13347
13348         return ret;
13349 }
13350
13351 /*
13352  * Set up context values in dd.  Sets:
13353  *
13354  *      num_rcv_contexts - number of contexts being used
13355  *      n_krcv_queues - number of kernel contexts
13356  *      first_dyn_alloc_ctxt - first dynamically allocated context
13357  *                             in array of contexts
13358  *      freectxts  - number of free user contexts
13359  *      num_send_contexts - number of PIO send contexts being used
13360  *      num_netdev_contexts - number of contexts reserved for netdev
13361  */
13362 static int set_up_context_variables(struct hfi1_devdata *dd)
13363 {
13364         unsigned long num_kernel_contexts;
13365         u16 num_netdev_contexts;
13366         int ret;
13367         unsigned ngroups;
13368         int rmt_count;
13369         u32 n_usr_ctxts;
13370         u32 send_contexts = chip_send_contexts(dd);
13371         u32 rcv_contexts = chip_rcv_contexts(dd);
13372
13373         /*
13374          * Kernel receive contexts:
13375          * - Context 0 - control context (VL15/multicast/error)
13376          * - Context 1 - first kernel context
13377          * - Context 2 - second kernel context
13378          * ...
13379          */
13380         if (n_krcvqs)
13381                 /*
13382                  * n_krcvqs is the sum of module parameter kernel receive
13383                  * contexts, krcvqs[].  It does not include the control
13384                  * context, so add that.
13385                  */
13386                 num_kernel_contexts = n_krcvqs + 1;
13387         else
13388                 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13389         /*
13390          * Every kernel receive context needs an ACK send context.
13391          * one send context is allocated for each VL{0-7} and VL15
13392          */
13393         if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13394                 dd_dev_err(dd,
13395                            "Reducing # kernel rcv contexts to: %d, from %lu\n",
13396                            send_contexts - num_vls - 1,
13397                            num_kernel_contexts);
13398                 num_kernel_contexts = send_contexts - num_vls - 1;
13399         }
13400
13401         /*
13402          * User contexts:
13403          *      - default to 1 user context per real (non-HT) CPU core if
13404          *        num_user_contexts is negative
13405          */
13406         if (num_user_contexts < 0)
13407                 n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13408         else
13409                 n_usr_ctxts = num_user_contexts;
13410         /*
13411          * Adjust the counts given a global max.
13412          */
13413         if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13414                 dd_dev_err(dd,
13415                            "Reducing # user receive contexts to: %u, from %u\n",
13416                            (u32)(rcv_contexts - num_kernel_contexts),
13417                            n_usr_ctxts);
13418                 /* recalculate */
13419                 n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13420         }
13421
13422         num_netdev_contexts =
13423                 hfi1_num_netdev_contexts(dd, rcv_contexts -
13424                                          (num_kernel_contexts + n_usr_ctxts),
13425                                          &node_affinity.real_cpu_mask);
13426         /*
13427          * RMT entries are allocated as follows:
13428          * 1. QOS (0 to 128 entries)
13429          * 2. FECN (num_kernel_context - 1 [a] + num_user_contexts +
13430          *          num_netdev_contexts [b])
13431          * 3. netdev (NUM_NETDEV_MAP_ENTRIES)
13432          *
13433          * Notes:
13434          * [a] Kernel contexts (except control) are included in FECN if kernel
13435          *     TID_RDMA is active.
13436          * [b] Netdev and user contexts are randomly allocated from the same
13437          *     context pool, so FECN must cover all contexts in the pool.
13438          */
13439         rmt_count = qos_rmt_entries(num_kernel_contexts - 1, NULL, NULL)
13440                     + (HFI1_CAP_IS_KSET(TID_RDMA) ? num_kernel_contexts - 1
13441                                                   : 0)
13442                     + n_usr_ctxts
13443                     + num_netdev_contexts
13444                     + NUM_NETDEV_MAP_ENTRIES;
13445         if (rmt_count > NUM_MAP_ENTRIES) {
13446                 int over = rmt_count - NUM_MAP_ENTRIES;
13447                 /* try to squish user contexts, minimum of 1 */
13448                 if (over >= n_usr_ctxts) {
13449                         dd_dev_err(dd, "RMT overflow: reduce the requested number of contexts\n");
13450                         return -EINVAL;
13451                 }
13452                 dd_dev_err(dd, "RMT overflow: reducing # user contexts from %u to %u\n",
13453                            n_usr_ctxts, n_usr_ctxts - over);
13454                 n_usr_ctxts -= over;
13455         }
13456
13457         /* the first N are kernel contexts, the rest are user/netdev contexts */
13458         dd->num_rcv_contexts =
13459                 num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13460         dd->n_krcv_queues = num_kernel_contexts;
13461         dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13462         dd->num_netdev_contexts = num_netdev_contexts;
13463         dd->num_user_contexts = n_usr_ctxts;
13464         dd->freectxts = n_usr_ctxts;
13465         dd_dev_info(dd,
13466                     "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13467                     rcv_contexts,
13468                     (int)dd->num_rcv_contexts,
13469                     (int)dd->n_krcv_queues,
13470                     dd->num_netdev_contexts,
13471                     dd->num_user_contexts);
13472
13473         /*
13474          * Receive array allocation:
13475          *   All RcvArray entries are divided into groups of 8. This
13476          *   is required by the hardware and will speed up writes to
13477          *   consecutive entries by using write-combining of the entire
13478          *   cacheline.
13479          *
13480          *   The number of groups are evenly divided among all contexts.
13481          *   any left over groups will be given to the first N user
13482          *   contexts.
13483          */
13484         dd->rcv_entries.group_size = RCV_INCREMENT;
13485         ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13486         dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13487         dd->rcv_entries.nctxt_extra = ngroups -
13488                 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13489         dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13490                     dd->rcv_entries.ngroups,
13491                     dd->rcv_entries.nctxt_extra);
13492         if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13493             MAX_EAGER_ENTRIES * 2) {
13494                 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13495                         dd->rcv_entries.group_size;
13496                 dd_dev_info(dd,
13497                             "RcvArray group count too high, change to %u\n",
13498                             dd->rcv_entries.ngroups);
13499                 dd->rcv_entries.nctxt_extra = 0;
13500         }
13501         /*
13502          * PIO send contexts
13503          */
13504         ret = init_sc_pools_and_sizes(dd);
13505         if (ret >= 0) { /* success */
13506                 dd->num_send_contexts = ret;
13507                 dd_dev_info(
13508                         dd,
13509                         "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13510                         send_contexts,
13511                         dd->num_send_contexts,
13512                         dd->sc_sizes[SC_KERNEL].count,
13513                         dd->sc_sizes[SC_ACK].count,
13514                         dd->sc_sizes[SC_USER].count,
13515                         dd->sc_sizes[SC_VL15].count);
13516                 ret = 0;        /* success */
13517         }
13518
13519         return ret;
13520 }
13521
13522 /*
13523  * Set the device/port partition key table. The MAD code
13524  * will ensure that, at least, the partial management
13525  * partition key is present in the table.
13526  */
13527 static void set_partition_keys(struct hfi1_pportdata *ppd)
13528 {
13529         struct hfi1_devdata *dd = ppd->dd;
13530         u64 reg = 0;
13531         int i;
13532
13533         dd_dev_info(dd, "Setting partition keys\n");
13534         for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13535                 reg |= (ppd->pkeys[i] &
13536                         RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13537                         ((i % 4) *
13538                          RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13539                 /* Each register holds 4 PKey values. */
13540                 if ((i % 4) == 3) {
13541                         write_csr(dd, RCV_PARTITION_KEY +
13542                                   ((i - 3) * 2), reg);
13543                         reg = 0;
13544                 }
13545         }
13546
13547         /* Always enable HW pkeys check when pkeys table is set */
13548         add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13549 }
13550
13551 /*
13552  * These CSRs and memories are uninitialized on reset and must be
13553  * written before reading to set the ECC/parity bits.
13554  *
13555  * NOTE: All user context CSRs that are not mmaped write-only
13556  * (e.g. the TID flows) must be initialized even if the driver never
13557  * reads them.
13558  */
13559 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13560 {
13561         int i, j;
13562
13563         /* CceIntMap */
13564         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13565                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13566
13567         /* SendCtxtCreditReturnAddr */
13568         for (i = 0; i < chip_send_contexts(dd); i++)
13569                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13570
13571         /* PIO Send buffers */
13572         /* SDMA Send buffers */
13573         /*
13574          * These are not normally read, and (presently) have no method
13575          * to be read, so are not pre-initialized
13576          */
13577
13578         /* RcvHdrAddr */
13579         /* RcvHdrTailAddr */
13580         /* RcvTidFlowTable */
13581         for (i = 0; i < chip_rcv_contexts(dd); i++) {
13582                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13583                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13584                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13585                         write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13586         }
13587
13588         /* RcvArray */
13589         for (i = 0; i < chip_rcv_array_count(dd); i++)
13590                 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13591
13592         /* RcvQPMapTable */
13593         for (i = 0; i < 32; i++)
13594                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13595 }
13596
13597 /*
13598  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13599  */
13600 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13601                              u64 ctrl_bits)
13602 {
13603         unsigned long timeout;
13604         u64 reg;
13605
13606         /* is the condition present? */
13607         reg = read_csr(dd, CCE_STATUS);
13608         if ((reg & status_bits) == 0)
13609                 return;
13610
13611         /* clear the condition */
13612         write_csr(dd, CCE_CTRL, ctrl_bits);
13613
13614         /* wait for the condition to clear */
13615         timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13616         while (1) {
13617                 reg = read_csr(dd, CCE_STATUS);
13618                 if ((reg & status_bits) == 0)
13619                         return;
13620                 if (time_after(jiffies, timeout)) {
13621                         dd_dev_err(dd,
13622                                    "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13623                                    status_bits, reg & status_bits);
13624                         return;
13625                 }
13626                 udelay(1);
13627         }
13628 }
13629
13630 /* set CCE CSRs to chip reset defaults */
13631 static void reset_cce_csrs(struct hfi1_devdata *dd)
13632 {
13633         int i;
13634
13635         /* CCE_REVISION read-only */
13636         /* CCE_REVISION2 read-only */
13637         /* CCE_CTRL - bits clear automatically */
13638         /* CCE_STATUS read-only, use CceCtrl to clear */
13639         clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13640         clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13641         clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13642         for (i = 0; i < CCE_NUM_SCRATCH; i++)
13643                 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13644         /* CCE_ERR_STATUS read-only */
13645         write_csr(dd, CCE_ERR_MASK, 0);
13646         write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13647         /* CCE_ERR_FORCE leave alone */
13648         for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13649                 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13650         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13651         /* CCE_PCIE_CTRL leave alone */
13652         for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13653                 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13654                 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13655                           CCE_MSIX_TABLE_UPPER_RESETCSR);
13656         }
13657         for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13658                 /* CCE_MSIX_PBA read-only */
13659                 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13660                 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13661         }
13662         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13663                 write_csr(dd, CCE_INT_MAP, 0);
13664         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13665                 /* CCE_INT_STATUS read-only */
13666                 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13667                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13668                 /* CCE_INT_FORCE leave alone */
13669                 /* CCE_INT_BLOCKED read-only */
13670         }
13671         for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13672                 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13673 }
13674
13675 /* set MISC CSRs to chip reset defaults */
13676 static void reset_misc_csrs(struct hfi1_devdata *dd)
13677 {
13678         int i;
13679
13680         for (i = 0; i < 32; i++) {
13681                 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13682                 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13683                 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13684         }
13685         /*
13686          * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13687          * only be written 128-byte chunks
13688          */
13689         /* init RSA engine to clear lingering errors */
13690         write_csr(dd, MISC_CFG_RSA_CMD, 1);
13691         write_csr(dd, MISC_CFG_RSA_MU, 0);
13692         write_csr(dd, MISC_CFG_FW_CTRL, 0);
13693         /* MISC_STS_8051_DIGEST read-only */
13694         /* MISC_STS_SBM_DIGEST read-only */
13695         /* MISC_STS_PCIE_DIGEST read-only */
13696         /* MISC_STS_FAB_DIGEST read-only */
13697         /* MISC_ERR_STATUS read-only */
13698         write_csr(dd, MISC_ERR_MASK, 0);
13699         write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13700         /* MISC_ERR_FORCE leave alone */
13701 }
13702
13703 /* set TXE CSRs to chip reset defaults */
13704 static void reset_txe_csrs(struct hfi1_devdata *dd)
13705 {
13706         int i;
13707
13708         /*
13709          * TXE Kernel CSRs
13710          */
13711         write_csr(dd, SEND_CTRL, 0);
13712         __cm_reset(dd, 0);      /* reset CM internal state */
13713         /* SEND_CONTEXTS read-only */
13714         /* SEND_DMA_ENGINES read-only */
13715         /* SEND_PIO_MEM_SIZE read-only */
13716         /* SEND_DMA_MEM_SIZE read-only */
13717         write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13718         pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13719         /* SEND_PIO_ERR_STATUS read-only */
13720         write_csr(dd, SEND_PIO_ERR_MASK, 0);
13721         write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13722         /* SEND_PIO_ERR_FORCE leave alone */
13723         /* SEND_DMA_ERR_STATUS read-only */
13724         write_csr(dd, SEND_DMA_ERR_MASK, 0);
13725         write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13726         /* SEND_DMA_ERR_FORCE leave alone */
13727         /* SEND_EGRESS_ERR_STATUS read-only */
13728         write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13729         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13730         /* SEND_EGRESS_ERR_FORCE leave alone */
13731         write_csr(dd, SEND_BTH_QP, 0);
13732         write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13733         write_csr(dd, SEND_SC2VLT0, 0);
13734         write_csr(dd, SEND_SC2VLT1, 0);
13735         write_csr(dd, SEND_SC2VLT2, 0);
13736         write_csr(dd, SEND_SC2VLT3, 0);
13737         write_csr(dd, SEND_LEN_CHECK0, 0);
13738         write_csr(dd, SEND_LEN_CHECK1, 0);
13739         /* SEND_ERR_STATUS read-only */
13740         write_csr(dd, SEND_ERR_MASK, 0);
13741         write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13742         /* SEND_ERR_FORCE read-only */
13743         for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13744                 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13745         for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13746                 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13747         for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13748                 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13749         for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13750                 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13751         for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13752                 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13753         write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13754         write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13755         /* SEND_CM_CREDIT_USED_STATUS read-only */
13756         write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13757         write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13758         write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13759         write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13760         write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13761         for (i = 0; i < TXE_NUM_DATA_VL; i++)
13762                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13763         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13764         /* SEND_CM_CREDIT_USED_VL read-only */
13765         /* SEND_CM_CREDIT_USED_VL15 read-only */
13766         /* SEND_EGRESS_CTXT_STATUS read-only */
13767         /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13768         write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13769         /* SEND_EGRESS_ERR_INFO read-only */
13770         /* SEND_EGRESS_ERR_SOURCE read-only */
13771
13772         /*
13773          * TXE Per-Context CSRs
13774          */
13775         for (i = 0; i < chip_send_contexts(dd); i++) {
13776                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13777                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13778                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13779                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13780                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13781                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13782                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13783                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13784                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13785                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13786                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13787                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13788         }
13789
13790         /*
13791          * TXE Per-SDMA CSRs
13792          */
13793         for (i = 0; i < chip_sdma_engines(dd); i++) {
13794                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13795                 /* SEND_DMA_STATUS read-only */
13796                 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13797                 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13798                 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13799                 /* SEND_DMA_HEAD read-only */
13800                 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13801                 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13802                 /* SEND_DMA_IDLE_CNT read-only */
13803                 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13804                 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13805                 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13806                 /* SEND_DMA_ENG_ERR_STATUS read-only */
13807                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13808                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13809                 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13810                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13811                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13812                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13813                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13814                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13815                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13816                 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13817         }
13818 }
13819
13820 /*
13821  * Expect on entry:
13822  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13823  */
13824 static void init_rbufs(struct hfi1_devdata *dd)
13825 {
13826         u64 reg;
13827         int count;
13828
13829         /*
13830          * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13831          * clear.
13832          */
13833         count = 0;
13834         while (1) {
13835                 reg = read_csr(dd, RCV_STATUS);
13836                 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13837                             | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13838                         break;
13839                 /*
13840                  * Give up after 1ms - maximum wait time.
13841                  *
13842                  * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13843                  * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13844                  *      136 KB / (66% * 250MB/s) = 844us
13845                  */
13846                 if (count++ > 500) {
13847                         dd_dev_err(dd,
13848                                    "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13849                                    __func__, reg);
13850                         break;
13851                 }
13852                 udelay(2); /* do not busy-wait the CSR */
13853         }
13854
13855         /* start the init - expect RcvCtrl to be 0 */
13856         write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13857
13858         /*
13859          * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13860          * period after the write before RcvStatus.RxRbufInitDone is valid.
13861          * The delay in the first run through the loop below is sufficient and
13862          * required before the first read of RcvStatus.RxRbufInintDone.
13863          */
13864         read_csr(dd, RCV_CTRL);
13865
13866         /* wait for the init to finish */
13867         count = 0;
13868         while (1) {
13869                 /* delay is required first time through - see above */
13870                 udelay(2); /* do not busy-wait the CSR */
13871                 reg = read_csr(dd, RCV_STATUS);
13872                 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13873                         break;
13874
13875                 /* give up after 100us - slowest possible at 33MHz is 73us */
13876                 if (count++ > 50) {
13877                         dd_dev_err(dd,
13878                                    "%s: RcvStatus.RxRbufInit not set, continuing\n",
13879                                    __func__);
13880                         break;
13881                 }
13882         }
13883 }
13884
13885 /* set RXE CSRs to chip reset defaults */
13886 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13887 {
13888         int i, j;
13889
13890         /*
13891          * RXE Kernel CSRs
13892          */
13893         write_csr(dd, RCV_CTRL, 0);
13894         init_rbufs(dd);
13895         /* RCV_STATUS read-only */
13896         /* RCV_CONTEXTS read-only */
13897         /* RCV_ARRAY_CNT read-only */
13898         /* RCV_BUF_SIZE read-only */
13899         write_csr(dd, RCV_BTH_QP, 0);
13900         write_csr(dd, RCV_MULTICAST, 0);
13901         write_csr(dd, RCV_BYPASS, 0);
13902         write_csr(dd, RCV_VL15, 0);
13903         /* this is a clear-down */
13904         write_csr(dd, RCV_ERR_INFO,
13905                   RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13906         /* RCV_ERR_STATUS read-only */
13907         write_csr(dd, RCV_ERR_MASK, 0);
13908         write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13909         /* RCV_ERR_FORCE leave alone */
13910         for (i = 0; i < 32; i++)
13911                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13912         for (i = 0; i < 4; i++)
13913                 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13914         for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13915                 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13916         for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13917                 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13918         for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13919                 clear_rsm_rule(dd, i);
13920         for (i = 0; i < 32; i++)
13921                 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13922
13923         /*
13924          * RXE Kernel and User Per-Context CSRs
13925          */
13926         for (i = 0; i < chip_rcv_contexts(dd); i++) {
13927                 /* kernel */
13928                 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13929                 /* RCV_CTXT_STATUS read-only */
13930                 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13931                 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13932                 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13933                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13934                 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13935                 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13936                 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13937                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13938                 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13939                 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13940
13941                 /* user */
13942                 /* RCV_HDR_TAIL read-only */
13943                 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13944                 /* RCV_EGR_INDEX_TAIL read-only */
13945                 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13946                 /* RCV_EGR_OFFSET_TAIL read-only */
13947                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13948                         write_uctxt_csr(dd, i,
13949                                         RCV_TID_FLOW_TABLE + (8 * j), 0);
13950                 }
13951         }
13952 }
13953
13954 /*
13955  * Set sc2vl tables.
13956  *
13957  * They power on to zeros, so to avoid send context errors
13958  * they need to be set:
13959  *
13960  * SC 0-7 -> VL 0-7 (respectively)
13961  * SC 15  -> VL 15
13962  * otherwise
13963  *        -> VL 0
13964  */
13965 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13966 {
13967         int i;
13968         /* init per architecture spec, constrained by hardware capability */
13969
13970         /* HFI maps sent packets */
13971         write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13972                 0,
13973                 0, 0, 1, 1,
13974                 2, 2, 3, 3,
13975                 4, 4, 5, 5,
13976                 6, 6, 7, 7));
13977         write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13978                 1,
13979                 8, 0, 9, 0,
13980                 10, 0, 11, 0,
13981                 12, 0, 13, 0,
13982                 14, 0, 15, 15));
13983         write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13984                 2,
13985                 16, 0, 17, 0,
13986                 18, 0, 19, 0,
13987                 20, 0, 21, 0,
13988                 22, 0, 23, 0));
13989         write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13990                 3,
13991                 24, 0, 25, 0,
13992                 26, 0, 27, 0,
13993                 28, 0, 29, 0,
13994                 30, 0, 31, 0));
13995
13996         /* DC maps received packets */
13997         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13998                 15_0,
13999                 0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14000                 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14001         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14002                 31_16,
14003                 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14004                 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14005
14006         /* initialize the cached sc2vl values consistently with h/w */
14007         for (i = 0; i < 32; i++) {
14008                 if (i < 8 || i == 15)
14009                         *((u8 *)(dd->sc2vl) + i) = (u8)i;
14010                 else
14011                         *((u8 *)(dd->sc2vl) + i) = 0;
14012         }
14013 }
14014
14015 /*
14016  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14017  * depend on the chip going through a power-on reset - a driver may be loaded
14018  * and unloaded many times.
14019  *
14020  * Do not write any CSR values to the chip in this routine - there may be
14021  * a reset following the (possible) FLR in this routine.
14022  *
14023  */
14024 static int init_chip(struct hfi1_devdata *dd)
14025 {
14026         int i;
14027         int ret = 0;
14028
14029         /*
14030          * Put the HFI CSRs in a known state.
14031          * Combine this with a DC reset.
14032          *
14033          * Stop the device from doing anything while we do a
14034          * reset.  We know there are no other active users of
14035          * the device since we are now in charge.  Turn off
14036          * off all outbound and inbound traffic and make sure
14037          * the device does not generate any interrupts.
14038          */
14039
14040         /* disable send contexts and SDMA engines */
14041         write_csr(dd, SEND_CTRL, 0);
14042         for (i = 0; i < chip_send_contexts(dd); i++)
14043                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14044         for (i = 0; i < chip_sdma_engines(dd); i++)
14045                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14046         /* disable port (turn off RXE inbound traffic) and contexts */
14047         write_csr(dd, RCV_CTRL, 0);
14048         for (i = 0; i < chip_rcv_contexts(dd); i++)
14049                 write_csr(dd, RCV_CTXT_CTRL, 0);
14050         /* mask all interrupt sources */
14051         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14052                 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14053
14054         /*
14055          * DC Reset: do a full DC reset before the register clear.
14056          * A recommended length of time to hold is one CSR read,
14057          * so reread the CceDcCtrl.  Then, hold the DC in reset
14058          * across the clear.
14059          */
14060         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14061         (void)read_csr(dd, CCE_DC_CTRL);
14062
14063         if (use_flr) {
14064                 /*
14065                  * A FLR will reset the SPC core and part of the PCIe.
14066                  * The parts that need to be restored have already been
14067                  * saved.
14068                  */
14069                 dd_dev_info(dd, "Resetting CSRs with FLR\n");
14070
14071                 /* do the FLR, the DC reset will remain */
14072                 pcie_flr(dd->pcidev);
14073
14074                 /* restore command and BARs */
14075                 ret = restore_pci_variables(dd);
14076                 if (ret) {
14077                         dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14078                                    __func__);
14079                         return ret;
14080                 }
14081
14082                 if (is_ax(dd)) {
14083                         dd_dev_info(dd, "Resetting CSRs with FLR\n");
14084                         pcie_flr(dd->pcidev);
14085                         ret = restore_pci_variables(dd);
14086                         if (ret) {
14087                                 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14088                                            __func__);
14089                                 return ret;
14090                         }
14091                 }
14092         } else {
14093                 dd_dev_info(dd, "Resetting CSRs with writes\n");
14094                 reset_cce_csrs(dd);
14095                 reset_txe_csrs(dd);
14096                 reset_rxe_csrs(dd);
14097                 reset_misc_csrs(dd);
14098         }
14099         /* clear the DC reset */
14100         write_csr(dd, CCE_DC_CTRL, 0);
14101
14102         /* Set the LED off */
14103         setextled(dd, 0);
14104
14105         /*
14106          * Clear the QSFP reset.
14107          * An FLR enforces a 0 on all out pins. The driver does not touch
14108          * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14109          * anything plugged constantly in reset, if it pays attention
14110          * to RESET_N.
14111          * Prime examples of this are optical cables. Set all pins high.
14112          * I2CCLK and I2CDAT will change per direction, and INT_N and
14113          * MODPRS_N are input only and their value is ignored.
14114          */
14115         write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14116         write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14117         init_chip_resources(dd);
14118         return ret;
14119 }
14120
14121 static void init_early_variables(struct hfi1_devdata *dd)
14122 {
14123         int i;
14124
14125         /* assign link credit variables */
14126         dd->vau = CM_VAU;
14127         dd->link_credits = CM_GLOBAL_CREDITS;
14128         if (is_ax(dd))
14129                 dd->link_credits--;
14130         dd->vcu = cu_to_vcu(hfi1_cu);
14131         /* enough room for 8 MAD packets plus header - 17K */
14132         dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14133         if (dd->vl15_init > dd->link_credits)
14134                 dd->vl15_init = dd->link_credits;
14135
14136         write_uninitialized_csrs_and_memories(dd);
14137
14138         if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14139                 for (i = 0; i < dd->num_pports; i++) {
14140                         struct hfi1_pportdata *ppd = &dd->pport[i];
14141
14142                         set_partition_keys(ppd);
14143                 }
14144         init_sc2vl_tables(dd);
14145 }
14146
14147 static void init_kdeth_qp(struct hfi1_devdata *dd)
14148 {
14149         write_csr(dd, SEND_BTH_QP,
14150                   (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14151                   SEND_BTH_QP_KDETH_QP_SHIFT);
14152
14153         write_csr(dd, RCV_BTH_QP,
14154                   (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14155                   RCV_BTH_QP_KDETH_QP_SHIFT);
14156 }
14157
14158 /**
14159  * hfi1_get_qp_map - get qp map
14160  * @dd: device data
14161  * @idx: index to read
14162  */
14163 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14164 {
14165         u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14166
14167         reg >>= (idx % 8) * 8;
14168         return reg;
14169 }
14170
14171 /**
14172  * init_qpmap_table - init qp map
14173  * @dd: device data
14174  * @first_ctxt: first context
14175  * @last_ctxt: first context
14176  *
14177  * This return sets the qpn mapping table that
14178  * is indexed by qpn[8:1].
14179  *
14180  * The routine will round robin the 256 settings
14181  * from first_ctxt to last_ctxt.
14182  *
14183  * The first/last looks ahead to having specialized
14184  * receive contexts for mgmt and bypass.  Normal
14185  * verbs traffic will assumed to be on a range
14186  * of receive contexts.
14187  */
14188 static void init_qpmap_table(struct hfi1_devdata *dd,
14189                              u32 first_ctxt,
14190                              u32 last_ctxt)
14191 {
14192         u64 reg = 0;
14193         u64 regno = RCV_QP_MAP_TABLE;
14194         int i;
14195         u64 ctxt = first_ctxt;
14196
14197         for (i = 0; i < 256; i++) {
14198                 reg |= ctxt << (8 * (i % 8));
14199                 ctxt++;
14200                 if (ctxt > last_ctxt)
14201                         ctxt = first_ctxt;
14202                 if (i % 8 == 7) {
14203                         write_csr(dd, regno, reg);
14204                         reg = 0;
14205                         regno += 8;
14206                 }
14207         }
14208
14209         add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14210                         | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14211 }
14212
14213 struct rsm_map_table {
14214         u64 map[NUM_MAP_REGS];
14215         unsigned int used;
14216 };
14217
14218 struct rsm_rule_data {
14219         u8 offset;
14220         u8 pkt_type;
14221         u32 field1_off;
14222         u32 field2_off;
14223         u32 index1_off;
14224         u32 index1_width;
14225         u32 index2_off;
14226         u32 index2_width;
14227         u32 mask1;
14228         u32 value1;
14229         u32 mask2;
14230         u32 value2;
14231 };
14232
14233 /*
14234  * Return an initialized RMT map table for users to fill in.  OK if it
14235  * returns NULL, indicating no table.
14236  */
14237 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14238 {
14239         struct rsm_map_table *rmt;
14240         u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14241
14242         rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14243         if (rmt) {
14244                 memset(rmt->map, rxcontext, sizeof(rmt->map));
14245                 rmt->used = 0;
14246         }
14247
14248         return rmt;
14249 }
14250
14251 /*
14252  * Write the final RMT map table to the chip and free the table.  OK if
14253  * table is NULL.
14254  */
14255 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14256                                    struct rsm_map_table *rmt)
14257 {
14258         int i;
14259
14260         if (rmt) {
14261                 /* write table to chip */
14262                 for (i = 0; i < NUM_MAP_REGS; i++)
14263                         write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14264
14265                 /* enable RSM */
14266                 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14267         }
14268 }
14269
14270 /* Is a receive side mapping rule */
14271 static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14272 {
14273         return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14274 }
14275
14276 /*
14277  * Add a receive side mapping rule.
14278  */
14279 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14280                          struct rsm_rule_data *rrd)
14281 {
14282         write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14283                   (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14284                   1ull << rule_index | /* enable bit */
14285                   (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14286         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14287                   (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14288                   (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14289                   (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14290                   (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14291                   (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14292                   (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14293         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14294                   (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14295                   (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14296                   (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14297                   (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14298 }
14299
14300 /*
14301  * Clear a receive side mapping rule.
14302  */
14303 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14304 {
14305         write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14306         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14307         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14308 }
14309
14310 /* return the number of RSM map table entries that will be used for QOS */
14311 static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
14312                            unsigned int *np)
14313 {
14314         int i;
14315         unsigned int m, n;
14316         uint max_by_vl = 0;
14317
14318         /* is QOS active at all? */
14319         if (n_krcv_queues < MIN_KERNEL_KCTXTS ||
14320             num_vls == 1 ||
14321             krcvqsset <= 1)
14322                 goto no_qos;
14323
14324         /* determine bits for qpn */
14325         for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14326                 if (krcvqs[i] > max_by_vl)
14327                         max_by_vl = krcvqs[i];
14328         if (max_by_vl > 32)
14329                 goto no_qos;
14330         m = ilog2(__roundup_pow_of_two(max_by_vl));
14331
14332         /* determine bits for vl */
14333         n = ilog2(__roundup_pow_of_two(num_vls));
14334
14335         /* reject if too much is used */
14336         if ((m + n) > 7)
14337                 goto no_qos;
14338
14339         if (mp)
14340                 *mp = m;
14341         if (np)
14342                 *np = n;
14343
14344         return 1 << (m + n);
14345
14346 no_qos:
14347         if (mp)
14348                 *mp = 0;
14349         if (np)
14350                 *np = 0;
14351         return 0;
14352 }
14353
14354 /**
14355  * init_qos - init RX qos
14356  * @dd: device data
14357  * @rmt: RSM map table
14358  *
14359  * This routine initializes Rule 0 and the RSM map table to implement
14360  * quality of service (qos).
14361  *
14362  * If all of the limit tests succeed, qos is applied based on the array
14363  * interpretation of krcvqs where entry 0 is VL0.
14364  *
14365  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14366  * feed both the RSM map table and the single rule.
14367  */
14368 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14369 {
14370         struct rsm_rule_data rrd;
14371         unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14372         unsigned int rmt_entries;
14373         u64 reg;
14374
14375         if (!rmt)
14376                 goto bail;
14377         rmt_entries = qos_rmt_entries(dd->n_krcv_queues - 1, &m, &n);
14378         if (rmt_entries == 0)
14379                 goto bail;
14380         qpns_per_vl = 1 << m;
14381
14382         /* enough room in the map table? */
14383         rmt_entries = 1 << (m + n);
14384         if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14385                 goto bail;
14386
14387         /* add qos entries to the RSM map table */
14388         for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14389                 unsigned tctxt;
14390
14391                 for (qpn = 0, tctxt = ctxt;
14392                      krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14393                         unsigned idx, regoff, regidx;
14394
14395                         /* generate the index the hardware will produce */
14396                         idx = rmt->used + ((qpn << n) ^ i);
14397                         regoff = (idx % 8) * 8;
14398                         regidx = idx / 8;
14399                         /* replace default with context number */
14400                         reg = rmt->map[regidx];
14401                         reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14402                                 << regoff);
14403                         reg |= (u64)(tctxt++) << regoff;
14404                         rmt->map[regidx] = reg;
14405                         if (tctxt == ctxt + krcvqs[i])
14406                                 tctxt = ctxt;
14407                 }
14408                 ctxt += krcvqs[i];
14409         }
14410
14411         rrd.offset = rmt->used;
14412         rrd.pkt_type = 2;
14413         rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14414         rrd.field2_off = LRH_SC_MATCH_OFFSET;
14415         rrd.index1_off = LRH_SC_SELECT_OFFSET;
14416         rrd.index1_width = n;
14417         rrd.index2_off = QPN_SELECT_OFFSET;
14418         rrd.index2_width = m + n;
14419         rrd.mask1 = LRH_BTH_MASK;
14420         rrd.value1 = LRH_BTH_VALUE;
14421         rrd.mask2 = LRH_SC_MASK;
14422         rrd.value2 = LRH_SC_VALUE;
14423
14424         /* add rule 0 */
14425         add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14426
14427         /* mark RSM map entries as used */
14428         rmt->used += rmt_entries;
14429         /* map everything else to the mcast/err/vl15 context */
14430         init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14431         dd->qos_shift = n + 1;
14432         return;
14433 bail:
14434         dd->qos_shift = 1;
14435         init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14436 }
14437
14438 static void init_fecn_handling(struct hfi1_devdata *dd,
14439                                struct rsm_map_table *rmt)
14440 {
14441         struct rsm_rule_data rrd;
14442         u64 reg;
14443         int i, idx, regoff, regidx, start;
14444         u8 offset;
14445         u32 total_cnt;
14446
14447         if (HFI1_CAP_IS_KSET(TID_RDMA))
14448                 /* Exclude context 0 */
14449                 start = 1;
14450         else
14451                 start = dd->first_dyn_alloc_ctxt;
14452
14453         total_cnt = dd->num_rcv_contexts - start;
14454
14455         /* there needs to be enough room in the map table */
14456         if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14457                 dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14458                 return;
14459         }
14460
14461         /*
14462          * RSM will extract the destination context as an index into the
14463          * map table.  The destination contexts are a sequential block
14464          * in the range start...num_rcv_contexts-1 (inclusive).
14465          * Map entries are accessed as offset + extracted value.  Adjust
14466          * the added offset so this sequence can be placed anywhere in
14467          * the table - as long as the entries themselves do not wrap.
14468          * There are only enough bits in offset for the table size, so
14469          * start with that to allow for a "negative" offset.
14470          */
14471         offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14472
14473         for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14474              i++, idx++) {
14475                 /* replace with identity mapping */
14476                 regoff = (idx % 8) * 8;
14477                 regidx = idx / 8;
14478                 reg = rmt->map[regidx];
14479                 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14480                 reg |= (u64)i << regoff;
14481                 rmt->map[regidx] = reg;
14482         }
14483
14484         /*
14485          * For RSM intercept of Expected FECN packets:
14486          * o packet type 0 - expected
14487          * o match on F (bit 95), using select/match 1, and
14488          * o match on SH (bit 133), using select/match 2.
14489          *
14490          * Use index 1 to extract the 8-bit receive context from DestQP
14491          * (start at bit 64).  Use that as the RSM map table index.
14492          */
14493         rrd.offset = offset;
14494         rrd.pkt_type = 0;
14495         rrd.field1_off = 95;
14496         rrd.field2_off = 133;
14497         rrd.index1_off = 64;
14498         rrd.index1_width = 8;
14499         rrd.index2_off = 0;
14500         rrd.index2_width = 0;
14501         rrd.mask1 = 1;
14502         rrd.value1 = 1;
14503         rrd.mask2 = 1;
14504         rrd.value2 = 1;
14505
14506         /* add rule 1 */
14507         add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14508
14509         rmt->used += total_cnt;
14510 }
14511
14512 static inline bool hfi1_is_rmt_full(int start, int spare)
14513 {
14514         return (start + spare) > NUM_MAP_ENTRIES;
14515 }
14516
14517 static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14518 {
14519         u8 i, j;
14520         u8 ctx_id = 0;
14521         u64 reg;
14522         u32 regoff;
14523         int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14524         int ctxt_count = hfi1_netdev_ctxt_count(dd);
14525
14526         /* We already have contexts mapped in RMT */
14527         if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14528                 dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14529                 return true;
14530         }
14531
14532         if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14533                 dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14534                            rmt_start);
14535                 return false;
14536         }
14537
14538         dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14539                 rmt_start,
14540                 rmt_start + NUM_NETDEV_MAP_ENTRIES);
14541
14542         /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14543         regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14544         reg = read_csr(dd, regoff);
14545         for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14546                 /* Update map register with netdev context */
14547                 j = (rmt_start + i) % 8;
14548                 reg &= ~(0xffllu << (j * 8));
14549                 reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14550                 /* Wrap up netdev ctx index */
14551                 ctx_id %= ctxt_count;
14552                 /* Write back map register */
14553                 if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14554                         dev_dbg(&(dd)->pcidev->dev,
14555                                 "RMT[%d] =0x%llx\n",
14556                                 regoff - RCV_RSM_MAP_TABLE, reg);
14557
14558                         write_csr(dd, regoff, reg);
14559                         regoff += 8;
14560                         if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14561                                 reg = read_csr(dd, regoff);
14562                 }
14563         }
14564
14565         return true;
14566 }
14567
14568 static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14569                                  int rule, struct rsm_rule_data *rrd)
14570 {
14571         if (!hfi1_netdev_update_rmt(dd)) {
14572                 dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14573                 return;
14574         }
14575
14576         add_rsm_rule(dd, rule, rrd);
14577         add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14578 }
14579
14580 void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14581 {
14582         /*
14583          * go through with the initialisation only if this rule actually doesn't
14584          * exist yet
14585          */
14586         if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14587                 int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14588                 struct rsm_rule_data rrd = {
14589                         .offset = rmt_start,
14590                         .pkt_type = IB_PACKET_TYPE,
14591                         .field1_off = LRH_BTH_MATCH_OFFSET,
14592                         .mask1 = LRH_BTH_MASK,
14593                         .value1 = LRH_BTH_VALUE,
14594                         .field2_off = BTH_DESTQP_MATCH_OFFSET,
14595                         .mask2 = BTH_DESTQP_MASK,
14596                         .value2 = BTH_DESTQP_VALUE,
14597                         .index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14598                                         ilog2(NUM_NETDEV_MAP_ENTRIES),
14599                         .index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14600                         .index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14601                         .index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14602                 };
14603
14604                 hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14605         }
14606 }
14607
14608 /* Initialize RSM for VNIC */
14609 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14610 {
14611         int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14612         struct rsm_rule_data rrd = {
14613                 /* Add rule for vnic */
14614                 .offset = rmt_start,
14615                 .pkt_type = 4,
14616                 /* Match 16B packets */
14617                 .field1_off = L2_TYPE_MATCH_OFFSET,
14618                 .mask1 = L2_TYPE_MASK,
14619                 .value1 = L2_16B_VALUE,
14620                 /* Match ETH L4 packets */
14621                 .field2_off = L4_TYPE_MATCH_OFFSET,
14622                 .mask2 = L4_16B_TYPE_MASK,
14623                 .value2 = L4_16B_ETH_VALUE,
14624                 /* Calc context from veswid and entropy */
14625                 .index1_off = L4_16B_HDR_VESWID_OFFSET,
14626                 .index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14627                 .index2_off = L2_16B_ENTROPY_OFFSET,
14628                 .index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14629         };
14630
14631         hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14632 }
14633
14634 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14635 {
14636         clear_rsm_rule(dd, RSM_INS_VNIC);
14637 }
14638
14639 void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14640 {
14641         /* only actually clear the rule if it's the last user asking to do so */
14642         if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14643                 clear_rsm_rule(dd, RSM_INS_AIP);
14644 }
14645
14646 static int init_rxe(struct hfi1_devdata *dd)
14647 {
14648         struct rsm_map_table *rmt;
14649         u64 val;
14650
14651         /* enable all receive errors */
14652         write_csr(dd, RCV_ERR_MASK, ~0ull);
14653
14654         rmt = alloc_rsm_map_table(dd);
14655         if (!rmt)
14656                 return -ENOMEM;
14657
14658         /* set up QOS, including the QPN map table */
14659         init_qos(dd, rmt);
14660         init_fecn_handling(dd, rmt);
14661         complete_rsm_map_table(dd, rmt);
14662         /* record number of used rsm map entries for netdev */
14663         hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14664         kfree(rmt);
14665
14666         /*
14667          * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14668          * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14669          * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14670          * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14671          * Max_PayLoad_Size set to its minimum of 128.
14672          *
14673          * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14674          * (64 bytes).  Max_Payload_Size is possibly modified upward in
14675          * tune_pcie_caps() which is called after this routine.
14676          */
14677
14678         /* Have 16 bytes (4DW) of bypass header available in header queue */
14679         val = read_csr(dd, RCV_BYPASS);
14680         val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14681         val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14682                 RCV_BYPASS_HDR_SIZE_SHIFT);
14683         write_csr(dd, RCV_BYPASS, val);
14684         return 0;
14685 }
14686
14687 static void init_other(struct hfi1_devdata *dd)
14688 {
14689         /* enable all CCE errors */
14690         write_csr(dd, CCE_ERR_MASK, ~0ull);
14691         /* enable *some* Misc errors */
14692         write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14693         /* enable all DC errors, except LCB */
14694         write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14695         write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14696 }
14697
14698 /*
14699  * Fill out the given AU table using the given CU.  A CU is defined in terms
14700  * AUs.  The table is a an encoding: given the index, how many AUs does that
14701  * represent?
14702  *
14703  * NOTE: Assumes that the register layout is the same for the
14704  * local and remote tables.
14705  */
14706 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14707                                u32 csr0to3, u32 csr4to7)
14708 {
14709         write_csr(dd, csr0to3,
14710                   0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14711                   1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14712                   2ull * cu <<
14713                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14714                   4ull * cu <<
14715                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14716         write_csr(dd, csr4to7,
14717                   8ull * cu <<
14718                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14719                   16ull * cu <<
14720                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14721                   32ull * cu <<
14722                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14723                   64ull * cu <<
14724                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14725 }
14726
14727 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14728 {
14729         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14730                            SEND_CM_LOCAL_AU_TABLE4_TO7);
14731 }
14732
14733 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14734 {
14735         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14736                            SEND_CM_REMOTE_AU_TABLE4_TO7);
14737 }
14738
14739 static void init_txe(struct hfi1_devdata *dd)
14740 {
14741         int i;
14742
14743         /* enable all PIO, SDMA, general, and Egress errors */
14744         write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14745         write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14746         write_csr(dd, SEND_ERR_MASK, ~0ull);
14747         write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14748
14749         /* enable all per-context and per-SDMA engine errors */
14750         for (i = 0; i < chip_send_contexts(dd); i++)
14751                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14752         for (i = 0; i < chip_sdma_engines(dd); i++)
14753                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14754
14755         /* set the local CU to AU mapping */
14756         assign_local_cm_au_table(dd, dd->vcu);
14757
14758         /*
14759          * Set reasonable default for Credit Return Timer
14760          * Don't set on Simulator - causes it to choke.
14761          */
14762         if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14763                 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14764 }
14765
14766 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14767                        u16 jkey)
14768 {
14769         u8 hw_ctxt;
14770         u64 reg;
14771
14772         if (!rcd || !rcd->sc)
14773                 return -EINVAL;
14774
14775         hw_ctxt = rcd->sc->hw_context;
14776         reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14777                 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14778                  SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14779         /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14780         if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14781                 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14782         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14783         /*
14784          * Enable send-side J_KEY integrity check, unless this is A0 h/w
14785          */
14786         if (!is_ax(dd)) {
14787                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14788                 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14789                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14790         }
14791
14792         /* Enable J_KEY check on receive context. */
14793         reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14794                 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14795                  RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14796         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14797
14798         return 0;
14799 }
14800
14801 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14802 {
14803         u8 hw_ctxt;
14804         u64 reg;
14805
14806         if (!rcd || !rcd->sc)
14807                 return -EINVAL;
14808
14809         hw_ctxt = rcd->sc->hw_context;
14810         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14811         /*
14812          * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14813          * This check would not have been enabled for A0 h/w, see
14814          * set_ctxt_jkey().
14815          */
14816         if (!is_ax(dd)) {
14817                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14818                 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14819                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14820         }
14821         /* Turn off the J_KEY on the receive side */
14822         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14823
14824         return 0;
14825 }
14826
14827 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14828                        u16 pkey)
14829 {
14830         u8 hw_ctxt;
14831         u64 reg;
14832
14833         if (!rcd || !rcd->sc)
14834                 return -EINVAL;
14835
14836         hw_ctxt = rcd->sc->hw_context;
14837         reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14838                 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14839         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14840         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14841         reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14842         reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14843         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14844
14845         return 0;
14846 }
14847
14848 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14849 {
14850         u8 hw_ctxt;
14851         u64 reg;
14852
14853         if (!ctxt || !ctxt->sc)
14854                 return -EINVAL;
14855
14856         hw_ctxt = ctxt->sc->hw_context;
14857         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14858         reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14859         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14860         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14861
14862         return 0;
14863 }
14864
14865 /*
14866  * Start doing the clean up the chip. Our clean up happens in multiple
14867  * stages and this is just the first.
14868  */
14869 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14870 {
14871         aspm_exit(dd);
14872         free_cntrs(dd);
14873         free_rcverr(dd);
14874         finish_chip_resources(dd);
14875 }
14876
14877 #define HFI_BASE_GUID(dev) \
14878         ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14879
14880 /*
14881  * Information can be shared between the two HFIs on the same ASIC
14882  * in the same OS.  This function finds the peer device and sets
14883  * up a shared structure.
14884  */
14885 static int init_asic_data(struct hfi1_devdata *dd)
14886 {
14887         unsigned long index;
14888         struct hfi1_devdata *peer;
14889         struct hfi1_asic_data *asic_data;
14890         int ret = 0;
14891
14892         /* pre-allocate the asic structure in case we are the first device */
14893         asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14894         if (!asic_data)
14895                 return -ENOMEM;
14896
14897         xa_lock_irq(&hfi1_dev_table);
14898         /* Find our peer device */
14899         xa_for_each(&hfi1_dev_table, index, peer) {
14900                 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14901                     dd->unit != peer->unit)
14902                         break;
14903         }
14904
14905         if (peer) {
14906                 /* use already allocated structure */
14907                 dd->asic_data = peer->asic_data;
14908                 kfree(asic_data);
14909         } else {
14910                 dd->asic_data = asic_data;
14911                 mutex_init(&dd->asic_data->asic_resource_mutex);
14912         }
14913         dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14914         xa_unlock_irq(&hfi1_dev_table);
14915
14916         /* first one through - set up i2c devices */
14917         if (!peer)
14918                 ret = set_up_i2c(dd, dd->asic_data);
14919
14920         return ret;
14921 }
14922
14923 /*
14924  * Set dd->boardname.  Use a generic name if a name is not returned from
14925  * EFI variable space.
14926  *
14927  * Return 0 on success, -ENOMEM if space could not be allocated.
14928  */
14929 static int obtain_boardname(struct hfi1_devdata *dd)
14930 {
14931         /* generic board description */
14932         const char generic[] =
14933                 "Cornelis Omni-Path Host Fabric Interface Adapter 100 Series";
14934         unsigned long size;
14935         int ret;
14936
14937         ret = read_hfi1_efi_var(dd, "description", &size,
14938                                 (void **)&dd->boardname);
14939         if (ret) {
14940                 dd_dev_info(dd, "Board description not found\n");
14941                 /* use generic description */
14942                 dd->boardname = kstrdup(generic, GFP_KERNEL);
14943                 if (!dd->boardname)
14944                         return -ENOMEM;
14945         }
14946         return 0;
14947 }
14948
14949 /*
14950  * Check the interrupt registers to make sure that they are mapped correctly.
14951  * It is intended to help user identify any mismapping by VMM when the driver
14952  * is running in a VM. This function should only be called before interrupt
14953  * is set up properly.
14954  *
14955  * Return 0 on success, -EINVAL on failure.
14956  */
14957 static int check_int_registers(struct hfi1_devdata *dd)
14958 {
14959         u64 reg;
14960         u64 all_bits = ~(u64)0;
14961         u64 mask;
14962
14963         /* Clear CceIntMask[0] to avoid raising any interrupts */
14964         mask = read_csr(dd, CCE_INT_MASK);
14965         write_csr(dd, CCE_INT_MASK, 0ull);
14966         reg = read_csr(dd, CCE_INT_MASK);
14967         if (reg)
14968                 goto err_exit;
14969
14970         /* Clear all interrupt status bits */
14971         write_csr(dd, CCE_INT_CLEAR, all_bits);
14972         reg = read_csr(dd, CCE_INT_STATUS);
14973         if (reg)
14974                 goto err_exit;
14975
14976         /* Set all interrupt status bits */
14977         write_csr(dd, CCE_INT_FORCE, all_bits);
14978         reg = read_csr(dd, CCE_INT_STATUS);
14979         if (reg != all_bits)
14980                 goto err_exit;
14981
14982         /* Restore the interrupt mask */
14983         write_csr(dd, CCE_INT_CLEAR, all_bits);
14984         write_csr(dd, CCE_INT_MASK, mask);
14985
14986         return 0;
14987 err_exit:
14988         write_csr(dd, CCE_INT_MASK, mask);
14989         dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14990         return -EINVAL;
14991 }
14992
14993 /**
14994  * hfi1_init_dd() - Initialize most of the dd structure.
14995  * @dd: the dd device
14996  *
14997  * This is global, and is called directly at init to set up the
14998  * chip-specific function pointers for later use.
14999  */
15000 int hfi1_init_dd(struct hfi1_devdata *dd)
15001 {
15002         struct pci_dev *pdev = dd->pcidev;
15003         struct hfi1_pportdata *ppd;
15004         u64 reg;
15005         int i, ret;
15006         static const char * const inames[] = { /* implementation names */
15007                 "RTL silicon",
15008                 "RTL VCS simulation",
15009                 "RTL FPGA emulation",
15010                 "Functional simulator"
15011         };
15012         struct pci_dev *parent = pdev->bus->self;
15013         u32 sdma_engines = chip_sdma_engines(dd);
15014
15015         ppd = dd->pport;
15016         for (i = 0; i < dd->num_pports; i++, ppd++) {
15017                 int vl;
15018                 /* init common fields */
15019                 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15020                 /* DC supports 4 link widths */
15021                 ppd->link_width_supported =
15022                         OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15023                         OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15024                 ppd->link_width_downgrade_supported =
15025                         ppd->link_width_supported;
15026                 /* start out enabling only 4X */
15027                 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15028                 ppd->link_width_downgrade_enabled =
15029                                         ppd->link_width_downgrade_supported;
15030                 /* link width active is 0 when link is down */
15031                 /* link width downgrade active is 0 when link is down */
15032
15033                 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15034                     num_vls > HFI1_MAX_VLS_SUPPORTED) {
15035                         dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15036                                    num_vls, HFI1_MAX_VLS_SUPPORTED);
15037                         num_vls = HFI1_MAX_VLS_SUPPORTED;
15038                 }
15039                 ppd->vls_supported = num_vls;
15040                 ppd->vls_operational = ppd->vls_supported;
15041                 /* Set the default MTU. */
15042                 for (vl = 0; vl < num_vls; vl++)
15043                         dd->vld[vl].mtu = hfi1_max_mtu;
15044                 dd->vld[15].mtu = MAX_MAD_PACKET;
15045                 /*
15046                  * Set the initial values to reasonable default, will be set
15047                  * for real when link is up.
15048                  */
15049                 ppd->overrun_threshold = 0x4;
15050                 ppd->phy_error_threshold = 0xf;
15051                 ppd->port_crc_mode_enabled = link_crc_mask;
15052                 /* initialize supported LTP CRC mode */
15053                 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15054                 /* initialize enabled LTP CRC mode */
15055                 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15056                 /* start in offline */
15057                 ppd->host_link_state = HLS_DN_OFFLINE;
15058                 init_vl_arb_caches(ppd);
15059         }
15060
15061         /*
15062          * Do remaining PCIe setup and save PCIe values in dd.
15063          * Any error printing is already done by the init code.
15064          * On return, we have the chip mapped.
15065          */
15066         ret = hfi1_pcie_ddinit(dd, pdev);
15067         if (ret < 0)
15068                 goto bail_free;
15069
15070         /* Save PCI space registers to rewrite after device reset */
15071         ret = save_pci_variables(dd);
15072         if (ret < 0)
15073                 goto bail_cleanup;
15074
15075         dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15076                         & CCE_REVISION_CHIP_REV_MAJOR_MASK;
15077         dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15078                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
15079
15080         /*
15081          * Check interrupt registers mapping if the driver has no access to
15082          * the upstream component. In this case, it is likely that the driver
15083          * is running in a VM.
15084          */
15085         if (!parent) {
15086                 ret = check_int_registers(dd);
15087                 if (ret)
15088                         goto bail_cleanup;
15089         }
15090
15091         /*
15092          * obtain the hardware ID - NOT related to unit, which is a
15093          * software enumeration
15094          */
15095         reg = read_csr(dd, CCE_REVISION2);
15096         dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15097                                         & CCE_REVISION2_HFI_ID_MASK;
15098         /* the variable size will remove unwanted bits */
15099         dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15100         dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15101         dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15102                     dd->icode < ARRAY_SIZE(inames) ?
15103                     inames[dd->icode] : "unknown", (int)dd->irev);
15104
15105         /* speeds the hardware can support */
15106         dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15107         /* speeds allowed to run at */
15108         dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15109         /* give a reasonable active value, will be set on link up */
15110         dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15111
15112         /* fix up link widths for emulation _p */
15113         ppd = dd->pport;
15114         if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15115                 ppd->link_width_supported =
15116                         ppd->link_width_enabled =
15117                         ppd->link_width_downgrade_supported =
15118                         ppd->link_width_downgrade_enabled =
15119                                 OPA_LINK_WIDTH_1X;
15120         }
15121         /* insure num_vls isn't larger than number of sdma engines */
15122         if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15123                 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15124                            num_vls, sdma_engines);
15125                 num_vls = sdma_engines;
15126                 ppd->vls_supported = sdma_engines;
15127                 ppd->vls_operational = ppd->vls_supported;
15128         }
15129
15130         /*
15131          * Convert the ns parameter to the 64 * cclocks used in the CSR.
15132          * Limit the max if larger than the field holds.  If timeout is
15133          * non-zero, then the calculated field will be at least 1.
15134          *
15135          * Must be after icode is set up - the cclock rate depends
15136          * on knowing the hardware being used.
15137          */
15138         dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15139         if (dd->rcv_intr_timeout_csr >
15140                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15141                 dd->rcv_intr_timeout_csr =
15142                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15143         else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15144                 dd->rcv_intr_timeout_csr = 1;
15145
15146         /* needs to be done before we look for the peer device */
15147         read_guid(dd);
15148
15149         /* set up shared ASIC data with peer device */
15150         ret = init_asic_data(dd);
15151         if (ret)
15152                 goto bail_cleanup;
15153
15154         /* obtain chip sizes, reset chip CSRs */
15155         ret = init_chip(dd);
15156         if (ret)
15157                 goto bail_cleanup;
15158
15159         /* read in the PCIe link speed information */
15160         ret = pcie_speeds(dd);
15161         if (ret)
15162                 goto bail_cleanup;
15163
15164         /* call before get_platform_config(), after init_chip_resources() */
15165         ret = eprom_init(dd);
15166         if (ret)
15167                 goto bail_free_rcverr;
15168
15169         /* Needs to be called before hfi1_firmware_init */
15170         get_platform_config(dd);
15171
15172         /* read in firmware */
15173         ret = hfi1_firmware_init(dd);
15174         if (ret)
15175                 goto bail_cleanup;
15176
15177         /*
15178          * In general, the PCIe Gen3 transition must occur after the
15179          * chip has been idled (so it won't initiate any PCIe transactions
15180          * e.g. an interrupt) and before the driver changes any registers
15181          * (the transition will reset the registers).
15182          *
15183          * In particular, place this call after:
15184          * - init_chip()     - the chip will not initiate any PCIe transactions
15185          * - pcie_speeds()   - reads the current link speed
15186          * - hfi1_firmware_init() - the needed firmware is ready to be
15187          *                          downloaded
15188          */
15189         ret = do_pcie_gen3_transition(dd);
15190         if (ret)
15191                 goto bail_cleanup;
15192
15193         /*
15194          * This should probably occur in hfi1_pcie_init(), but historically
15195          * occurs after the do_pcie_gen3_transition() code.
15196          */
15197         tune_pcie_caps(dd);
15198
15199         /* start setting dd values and adjusting CSRs */
15200         init_early_variables(dd);
15201
15202         parse_platform_config(dd);
15203
15204         ret = obtain_boardname(dd);
15205         if (ret)
15206                 goto bail_cleanup;
15207
15208         snprintf(dd->boardversion, BOARD_VERS_MAX,
15209                  "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15210                  HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15211                  (u32)dd->majrev,
15212                  (u32)dd->minrev,
15213                  (dd->revision >> CCE_REVISION_SW_SHIFT)
15214                     & CCE_REVISION_SW_MASK);
15215
15216         /* alloc VNIC/AIP rx data */
15217         ret = hfi1_alloc_rx(dd);
15218         if (ret)
15219                 goto bail_cleanup;
15220
15221         ret = set_up_context_variables(dd);
15222         if (ret)
15223                 goto bail_cleanup;
15224
15225         /* set initial RXE CSRs */
15226         ret = init_rxe(dd);
15227         if (ret)
15228                 goto bail_cleanup;
15229
15230         /* set initial TXE CSRs */
15231         init_txe(dd);
15232         /* set initial non-RXE, non-TXE CSRs */
15233         init_other(dd);
15234         /* set up KDETH QP prefix in both RX and TX CSRs */
15235         init_kdeth_qp(dd);
15236
15237         ret = hfi1_dev_affinity_init(dd);
15238         if (ret)
15239                 goto bail_cleanup;
15240
15241         /* send contexts must be set up before receive contexts */
15242         ret = init_send_contexts(dd);
15243         if (ret)
15244                 goto bail_cleanup;
15245
15246         ret = hfi1_create_kctxts(dd);
15247         if (ret)
15248                 goto bail_cleanup;
15249
15250         /*
15251          * Initialize aspm, to be done after gen3 transition and setting up
15252          * contexts and before enabling interrupts
15253          */
15254         aspm_init(dd);
15255
15256         ret = init_pervl_scs(dd);
15257         if (ret)
15258                 goto bail_cleanup;
15259
15260         /* sdma init */
15261         for (i = 0; i < dd->num_pports; ++i) {
15262                 ret = sdma_init(dd, i);
15263                 if (ret)
15264                         goto bail_cleanup;
15265         }
15266
15267         /* use contexts created by hfi1_create_kctxts */
15268         ret = set_up_interrupts(dd);
15269         if (ret)
15270                 goto bail_cleanup;
15271
15272         ret = hfi1_comp_vectors_set_up(dd);
15273         if (ret)
15274                 goto bail_clear_intr;
15275
15276         /* set up LCB access - must be after set_up_interrupts() */
15277         init_lcb_access(dd);
15278
15279         /*
15280          * Serial number is created from the base guid:
15281          * [27:24] = base guid [38:35]
15282          * [23: 0] = base guid [23: 0]
15283          */
15284         snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15285                  (dd->base_guid & 0xFFFFFF) |
15286                      ((dd->base_guid >> 11) & 0xF000000));
15287
15288         dd->oui1 = dd->base_guid >> 56 & 0xFF;
15289         dd->oui2 = dd->base_guid >> 48 & 0xFF;
15290         dd->oui3 = dd->base_guid >> 40 & 0xFF;
15291
15292         ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15293         if (ret)
15294                 goto bail_clear_intr;
15295
15296         thermal_init(dd);
15297
15298         ret = init_cntrs(dd);
15299         if (ret)
15300                 goto bail_clear_intr;
15301
15302         ret = init_rcverr(dd);
15303         if (ret)
15304                 goto bail_free_cntrs;
15305
15306         init_completion(&dd->user_comp);
15307
15308         /* The user refcount starts with one to inidicate an active device */
15309         refcount_set(&dd->user_refcount, 1);
15310
15311         goto bail;
15312
15313 bail_free_rcverr:
15314         free_rcverr(dd);
15315 bail_free_cntrs:
15316         free_cntrs(dd);
15317 bail_clear_intr:
15318         hfi1_comp_vectors_clean_up(dd);
15319         msix_clean_up_interrupts(dd);
15320 bail_cleanup:
15321         hfi1_free_rx(dd);
15322         hfi1_pcie_ddcleanup(dd);
15323 bail_free:
15324         hfi1_free_devdata(dd);
15325 bail:
15326         return ret;
15327 }
15328
15329 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15330                         u32 dw_len)
15331 {
15332         u32 delta_cycles;
15333         u32 current_egress_rate = ppd->current_egress_rate;
15334         /* rates here are in units of 10^6 bits/sec */
15335
15336         if (desired_egress_rate == -1)
15337                 return 0; /* shouldn't happen */
15338
15339         if (desired_egress_rate >= current_egress_rate)
15340                 return 0; /* we can't help go faster, only slower */
15341
15342         delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15343                         egress_cycles(dw_len * 4, current_egress_rate);
15344
15345         return (u16)delta_cycles;
15346 }
15347
15348 /**
15349  * create_pbc - build a pbc for transmission
15350  * @ppd: info of physical Hfi port
15351  * @flags: special case flags or-ed in built pbc
15352  * @srate_mbs: static rate
15353  * @vl: vl
15354  * @dw_len: dword length (header words + data words + pbc words)
15355  *
15356  * Create a PBC with the given flags, rate, VL, and length.
15357  *
15358  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15359  * for verbs, which does not use this PSM feature.  The lone other caller
15360  * is for the diagnostic interface which calls this if the user does not
15361  * supply their own PBC.
15362  */
15363 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15364                u32 dw_len)
15365 {
15366         u64 pbc, delay = 0;
15367
15368         if (unlikely(srate_mbs))
15369                 delay = delay_cycles(ppd, srate_mbs, dw_len);
15370
15371         pbc = flags
15372                 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15373                 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15374                 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15375                 | (dw_len & PBC_LENGTH_DWS_MASK)
15376                         << PBC_LENGTH_DWS_SHIFT;
15377
15378         return pbc;
15379 }
15380
15381 #define SBUS_THERMAL    0x4f
15382 #define SBUS_THERM_MONITOR_MODE 0x1
15383
15384 #define THERM_FAILURE(dev, ret, reason) \
15385         dd_dev_err((dd),                                                \
15386                    "Thermal sensor initialization failed: %s (%d)\n",   \
15387                    (reason), (ret))
15388
15389 /*
15390  * Initialize the thermal sensor.
15391  *
15392  * After initialization, enable polling of thermal sensor through
15393  * SBus interface. In order for this to work, the SBus Master
15394  * firmware has to be loaded due to the fact that the HW polling
15395  * logic uses SBus interrupts, which are not supported with
15396  * default firmware. Otherwise, no data will be returned through
15397  * the ASIC_STS_THERM CSR.
15398  */
15399 static int thermal_init(struct hfi1_devdata *dd)
15400 {
15401         int ret = 0;
15402
15403         if (dd->icode != ICODE_RTL_SILICON ||
15404             check_chip_resource(dd, CR_THERM_INIT, NULL))
15405                 return ret;
15406
15407         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15408         if (ret) {
15409                 THERM_FAILURE(dd, ret, "Acquire SBus");
15410                 return ret;
15411         }
15412
15413         dd_dev_info(dd, "Initializing thermal sensor\n");
15414         /* Disable polling of thermal readings */
15415         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15416         msleep(100);
15417         /* Thermal Sensor Initialization */
15418         /*    Step 1: Reset the Thermal SBus Receiver */
15419         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15420                                 RESET_SBUS_RECEIVER, 0);
15421         if (ret) {
15422                 THERM_FAILURE(dd, ret, "Bus Reset");
15423                 goto done;
15424         }
15425         /*    Step 2: Set Reset bit in Thermal block */
15426         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15427                                 WRITE_SBUS_RECEIVER, 0x1);
15428         if (ret) {
15429                 THERM_FAILURE(dd, ret, "Therm Block Reset");
15430                 goto done;
15431         }
15432         /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15433         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15434                                 WRITE_SBUS_RECEIVER, 0x32);
15435         if (ret) {
15436                 THERM_FAILURE(dd, ret, "Write Clock Div");
15437                 goto done;
15438         }
15439         /*    Step 4: Select temperature mode */
15440         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15441                                 WRITE_SBUS_RECEIVER,
15442                                 SBUS_THERM_MONITOR_MODE);
15443         if (ret) {
15444                 THERM_FAILURE(dd, ret, "Write Mode Sel");
15445                 goto done;
15446         }
15447         /*    Step 5: De-assert block reset and start conversion */
15448         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15449                                 WRITE_SBUS_RECEIVER, 0x2);
15450         if (ret) {
15451                 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15452                 goto done;
15453         }
15454         /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15455         msleep(22);
15456
15457         /* Enable polling of thermal readings */
15458         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15459
15460         /* Set initialized flag */
15461         ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15462         if (ret)
15463                 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15464
15465 done:
15466         release_chip_resource(dd, CR_SBUS);
15467         return ret;
15468 }
15469
15470 static void handle_temp_err(struct hfi1_devdata *dd)
15471 {
15472         struct hfi1_pportdata *ppd = &dd->pport[0];
15473         /*
15474          * Thermal Critical Interrupt
15475          * Put the device into forced freeze mode, take link down to
15476          * offline, and put DC into reset.
15477          */
15478         dd_dev_emerg(dd,
15479                      "Critical temperature reached! Forcing device into freeze mode!\n");
15480         dd->flags |= HFI1_FORCED_FREEZE;
15481         start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15482         /*
15483          * Shut DC down as much and as quickly as possible.
15484          *
15485          * Step 1: Take the link down to OFFLINE. This will cause the
15486          *         8051 to put the Serdes in reset. However, we don't want to
15487          *         go through the entire link state machine since we want to
15488          *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15489          *         but rather an attempt to save the chip.
15490          *         Code below is almost the same as quiet_serdes() but avoids
15491          *         all the extra work and the sleeps.
15492          */
15493         ppd->driver_link_ready = 0;
15494         ppd->link_enabled = 0;
15495         set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15496                                 PLS_OFFLINE);
15497         /*
15498          * Step 2: Shutdown LCB and 8051
15499          *         After shutdown, do not restore DC_CFG_RESET value.
15500          */
15501         dc_shutdown(dd);
15502 }
This page took 0.937178 seconds and 4 git commands to generate.