]> Git Repo - J-linux.git/blob - drivers/infiniband/core/verbs.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59                                struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory bind operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "remote invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return   1;
130         case IB_RATE_5_GBPS:   return   2;
131         case IB_RATE_10_GBPS:  return   4;
132         case IB_RATE_20_GBPS:  return   8;
133         case IB_RATE_30_GBPS:  return  12;
134         case IB_RATE_40_GBPS:  return  16;
135         case IB_RATE_60_GBPS:  return  24;
136         case IB_RATE_80_GBPS:  return  32;
137         case IB_RATE_120_GBPS: return  48;
138         case IB_RATE_14_GBPS:  return   6;
139         case IB_RATE_56_GBPS:  return  22;
140         case IB_RATE_112_GBPS: return  45;
141         case IB_RATE_168_GBPS: return  67;
142         case IB_RATE_25_GBPS:  return  10;
143         case IB_RATE_100_GBPS: return  40;
144         case IB_RATE_200_GBPS: return  80;
145         case IB_RATE_300_GBPS: return 120;
146         case IB_RATE_28_GBPS:  return  11;
147         case IB_RATE_50_GBPS:  return  20;
148         case IB_RATE_400_GBPS: return 160;
149         case IB_RATE_600_GBPS: return 240;
150         case IB_RATE_800_GBPS: return 320;
151         default:               return  -1;
152         }
153 }
154 EXPORT_SYMBOL(ib_rate_to_mult);
155
156 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
157 {
158         switch (mult) {
159         case 1:   return IB_RATE_2_5_GBPS;
160         case 2:   return IB_RATE_5_GBPS;
161         case 4:   return IB_RATE_10_GBPS;
162         case 8:   return IB_RATE_20_GBPS;
163         case 12:  return IB_RATE_30_GBPS;
164         case 16:  return IB_RATE_40_GBPS;
165         case 24:  return IB_RATE_60_GBPS;
166         case 32:  return IB_RATE_80_GBPS;
167         case 48:  return IB_RATE_120_GBPS;
168         case 6:   return IB_RATE_14_GBPS;
169         case 22:  return IB_RATE_56_GBPS;
170         case 45:  return IB_RATE_112_GBPS;
171         case 67:  return IB_RATE_168_GBPS;
172         case 10:  return IB_RATE_25_GBPS;
173         case 40:  return IB_RATE_100_GBPS;
174         case 80:  return IB_RATE_200_GBPS;
175         case 120: return IB_RATE_300_GBPS;
176         case 11:  return IB_RATE_28_GBPS;
177         case 20:  return IB_RATE_50_GBPS;
178         case 160: return IB_RATE_400_GBPS;
179         case 240: return IB_RATE_600_GBPS;
180         case 320: return IB_RATE_800_GBPS;
181         default:  return IB_RATE_PORT_CURRENT;
182         }
183 }
184 EXPORT_SYMBOL(mult_to_ib_rate);
185
186 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187 {
188         switch (rate) {
189         case IB_RATE_2_5_GBPS: return 2500;
190         case IB_RATE_5_GBPS:   return 5000;
191         case IB_RATE_10_GBPS:  return 10000;
192         case IB_RATE_20_GBPS:  return 20000;
193         case IB_RATE_30_GBPS:  return 30000;
194         case IB_RATE_40_GBPS:  return 40000;
195         case IB_RATE_60_GBPS:  return 60000;
196         case IB_RATE_80_GBPS:  return 80000;
197         case IB_RATE_120_GBPS: return 120000;
198         case IB_RATE_14_GBPS:  return 14062;
199         case IB_RATE_56_GBPS:  return 56250;
200         case IB_RATE_112_GBPS: return 112500;
201         case IB_RATE_168_GBPS: return 168750;
202         case IB_RATE_25_GBPS:  return 25781;
203         case IB_RATE_100_GBPS: return 103125;
204         case IB_RATE_200_GBPS: return 206250;
205         case IB_RATE_300_GBPS: return 309375;
206         case IB_RATE_28_GBPS:  return 28125;
207         case IB_RATE_50_GBPS:  return 53125;
208         case IB_RATE_400_GBPS: return 425000;
209         case IB_RATE_600_GBPS: return 637500;
210         case IB_RATE_800_GBPS: return 850000;
211         default:               return -1;
212         }
213 }
214 EXPORT_SYMBOL(ib_rate_to_mbps);
215
216 __attribute_const__ enum rdma_transport_type
217 rdma_node_get_transport(unsigned int node_type)
218 {
219
220         if (node_type == RDMA_NODE_USNIC)
221                 return RDMA_TRANSPORT_USNIC;
222         if (node_type == RDMA_NODE_USNIC_UDP)
223                 return RDMA_TRANSPORT_USNIC_UDP;
224         if (node_type == RDMA_NODE_RNIC)
225                 return RDMA_TRANSPORT_IWARP;
226         if (node_type == RDMA_NODE_UNSPECIFIED)
227                 return RDMA_TRANSPORT_UNSPECIFIED;
228
229         return RDMA_TRANSPORT_IB;
230 }
231 EXPORT_SYMBOL(rdma_node_get_transport);
232
233 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
234                                               u32 port_num)
235 {
236         enum rdma_transport_type lt;
237         if (device->ops.get_link_layer)
238                 return device->ops.get_link_layer(device, port_num);
239
240         lt = rdma_node_get_transport(device->node_type);
241         if (lt == RDMA_TRANSPORT_IB)
242                 return IB_LINK_LAYER_INFINIBAND;
243
244         return IB_LINK_LAYER_ETHERNET;
245 }
246 EXPORT_SYMBOL(rdma_port_get_link_layer);
247
248 /* Protection domains */
249
250 /**
251  * __ib_alloc_pd - Allocates an unused protection domain.
252  * @device: The device on which to allocate the protection domain.
253  * @flags: protection domain flags
254  * @caller: caller's build-time module name
255  *
256  * A protection domain object provides an association between QPs, shared
257  * receive queues, address handles, memory regions, and memory windows.
258  *
259  * Every PD has a local_dma_lkey which can be used as the lkey value for local
260  * memory operations.
261  */
262 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
263                 const char *caller)
264 {
265         struct ib_pd *pd;
266         int mr_access_flags = 0;
267         int ret;
268
269         pd = rdma_zalloc_drv_obj(device, ib_pd);
270         if (!pd)
271                 return ERR_PTR(-ENOMEM);
272
273         pd->device = device;
274         pd->flags = flags;
275
276         rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277         rdma_restrack_set_name(&pd->res, caller);
278
279         ret = device->ops.alloc_pd(pd, NULL);
280         if (ret) {
281                 rdma_restrack_put(&pd->res);
282                 kfree(pd);
283                 return ERR_PTR(ret);
284         }
285         rdma_restrack_add(&pd->res);
286
287         if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
288                 pd->local_dma_lkey = device->local_dma_lkey;
289         else
290                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293                 pr_warn("%s: enabling unsafe global rkey\n", caller);
294                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295         }
296
297         if (mr_access_flags) {
298                 struct ib_mr *mr;
299
300                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301                 if (IS_ERR(mr)) {
302                         ib_dealloc_pd(pd);
303                         return ERR_CAST(mr);
304                 }
305
306                 mr->device      = pd->device;
307                 mr->pd          = pd;
308                 mr->type        = IB_MR_TYPE_DMA;
309                 mr->uobject     = NULL;
310                 mr->need_inval  = false;
311
312                 pd->__internal_mr = mr;
313
314                 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
315                         pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319         }
320
321         return pd;
322 }
323 EXPORT_SYMBOL(__ib_alloc_pd);
324
325 /**
326  * ib_dealloc_pd_user - Deallocates a protection domain.
327  * @pd: The protection domain to deallocate.
328  * @udata: Valid user data or NULL for kernel object
329  *
330  * It is an error to call this function while any resources in the pd still
331  * exist.  The caller is responsible to synchronously destroy them and
332  * guarantee no new allocations will happen.
333  */
334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335 {
336         int ret;
337
338         if (pd->__internal_mr) {
339                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340                 WARN_ON(ret);
341                 pd->__internal_mr = NULL;
342         }
343
344         ret = pd->device->ops.dealloc_pd(pd, udata);
345         if (ret)
346                 return ret;
347
348         rdma_restrack_del(&pd->res);
349         kfree(pd);
350         return ret;
351 }
352 EXPORT_SYMBOL(ib_dealloc_pd_user);
353
354 /* Address handles */
355
356 /**
357  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
358  * @dest:       Pointer to destination ah_attr. Contents of the destination
359  *              pointer is assumed to be invalid and attribute are overwritten.
360  * @src:        Pointer to source ah_attr.
361  */
362 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
363                        const struct rdma_ah_attr *src)
364 {
365         *dest = *src;
366         if (dest->grh.sgid_attr)
367                 rdma_hold_gid_attr(dest->grh.sgid_attr);
368 }
369 EXPORT_SYMBOL(rdma_copy_ah_attr);
370
371 /**
372  * rdma_replace_ah_attr - Replace valid ah_attr with new one.
373  * @old:        Pointer to existing ah_attr which needs to be replaced.
374  *              old is assumed to be valid or zero'd
375  * @new:        Pointer to the new ah_attr.
376  *
377  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
378  * old the ah_attr is valid; after that it copies the new attribute and holds
379  * the reference to the replaced ah_attr.
380  */
381 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
382                           const struct rdma_ah_attr *new)
383 {
384         rdma_destroy_ah_attr(old);
385         *old = *new;
386         if (old->grh.sgid_attr)
387                 rdma_hold_gid_attr(old->grh.sgid_attr);
388 }
389 EXPORT_SYMBOL(rdma_replace_ah_attr);
390
391 /**
392  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
393  * @dest:       Pointer to destination ah_attr to copy to.
394  *              dest is assumed to be valid or zero'd
395  * @src:        Pointer to the new ah_attr.
396  *
397  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
398  * if it is valid. This also transfers ownership of internal references from
399  * src to dest, making src invalid in the process. No new reference of the src
400  * ah_attr is taken.
401  */
402 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
403 {
404         rdma_destroy_ah_attr(dest);
405         *dest = *src;
406         src->grh.sgid_attr = NULL;
407 }
408 EXPORT_SYMBOL(rdma_move_ah_attr);
409
410 /*
411  * Validate that the rdma_ah_attr is valid for the device before passing it
412  * off to the driver.
413  */
414 static int rdma_check_ah_attr(struct ib_device *device,
415                               struct rdma_ah_attr *ah_attr)
416 {
417         if (!rdma_is_port_valid(device, ah_attr->port_num))
418                 return -EINVAL;
419
420         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
421              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
422             !(ah_attr->ah_flags & IB_AH_GRH))
423                 return -EINVAL;
424
425         if (ah_attr->grh.sgid_attr) {
426                 /*
427                  * Make sure the passed sgid_attr is consistent with the
428                  * parameters
429                  */
430                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
431                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
432                         return -EINVAL;
433         }
434         return 0;
435 }
436
437 /*
438  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
439  * On success the caller is responsible to call rdma_unfill_sgid_attr().
440  */
441 static int rdma_fill_sgid_attr(struct ib_device *device,
442                                struct rdma_ah_attr *ah_attr,
443                                const struct ib_gid_attr **old_sgid_attr)
444 {
445         const struct ib_gid_attr *sgid_attr;
446         struct ib_global_route *grh;
447         int ret;
448
449         *old_sgid_attr = ah_attr->grh.sgid_attr;
450
451         ret = rdma_check_ah_attr(device, ah_attr);
452         if (ret)
453                 return ret;
454
455         if (!(ah_attr->ah_flags & IB_AH_GRH))
456                 return 0;
457
458         grh = rdma_ah_retrieve_grh(ah_attr);
459         if (grh->sgid_attr)
460                 return 0;
461
462         sgid_attr =
463                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
464         if (IS_ERR(sgid_attr))
465                 return PTR_ERR(sgid_attr);
466
467         /* Move ownerhip of the kref into the ah_attr */
468         grh->sgid_attr = sgid_attr;
469         return 0;
470 }
471
472 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
473                                   const struct ib_gid_attr *old_sgid_attr)
474 {
475         /*
476          * Fill didn't change anything, the caller retains ownership of
477          * whatever it passed
478          */
479         if (ah_attr->grh.sgid_attr == old_sgid_attr)
480                 return;
481
482         /*
483          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
484          * doesn't see any change in the rdma_ah_attr. If we get here
485          * old_sgid_attr is NULL.
486          */
487         rdma_destroy_ah_attr(ah_attr);
488 }
489
490 static const struct ib_gid_attr *
491 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
492                       const struct ib_gid_attr *old_attr)
493 {
494         if (old_attr)
495                 rdma_put_gid_attr(old_attr);
496         if (ah_attr->ah_flags & IB_AH_GRH) {
497                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
498                 return ah_attr->grh.sgid_attr;
499         }
500         return NULL;
501 }
502
503 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
504                                      struct rdma_ah_attr *ah_attr,
505                                      u32 flags,
506                                      struct ib_udata *udata,
507                                      struct net_device *xmit_slave)
508 {
509         struct rdma_ah_init_attr init_attr = {};
510         struct ib_device *device = pd->device;
511         struct ib_ah *ah;
512         int ret;
513
514         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
515
516         if (!udata && !device->ops.create_ah)
517                 return ERR_PTR(-EOPNOTSUPP);
518
519         ah = rdma_zalloc_drv_obj_gfp(
520                 device, ib_ah,
521                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
522         if (!ah)
523                 return ERR_PTR(-ENOMEM);
524
525         ah->device = device;
526         ah->pd = pd;
527         ah->type = ah_attr->type;
528         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
529         init_attr.ah_attr = ah_attr;
530         init_attr.flags = flags;
531         init_attr.xmit_slave = xmit_slave;
532
533         if (udata)
534                 ret = device->ops.create_user_ah(ah, &init_attr, udata);
535         else
536                 ret = device->ops.create_ah(ah, &init_attr, NULL);
537         if (ret) {
538                 if (ah->sgid_attr)
539                         rdma_put_gid_attr(ah->sgid_attr);
540                 kfree(ah);
541                 return ERR_PTR(ret);
542         }
543
544         atomic_inc(&pd->usecnt);
545         return ah;
546 }
547
548 /**
549  * rdma_create_ah - Creates an address handle for the
550  * given address vector.
551  * @pd: The protection domain associated with the address handle.
552  * @ah_attr: The attributes of the address vector.
553  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
554  *
555  * It returns 0 on success and returns appropriate error code on error.
556  * The address handle is used to reference a local or global destination
557  * in all UD QP post sends.
558  */
559 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
560                              u32 flags)
561 {
562         const struct ib_gid_attr *old_sgid_attr;
563         struct net_device *slave;
564         struct ib_ah *ah;
565         int ret;
566
567         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
568         if (ret)
569                 return ERR_PTR(ret);
570         slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
571                                            (flags & RDMA_CREATE_AH_SLEEPABLE) ?
572                                            GFP_KERNEL : GFP_ATOMIC);
573         if (IS_ERR(slave)) {
574                 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575                 return (void *)slave;
576         }
577         ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
578         rdma_lag_put_ah_roce_slave(slave);
579         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
580         return ah;
581 }
582 EXPORT_SYMBOL(rdma_create_ah);
583
584 /**
585  * rdma_create_user_ah - Creates an address handle for the
586  * given address vector.
587  * It resolves destination mac address for ah attribute of RoCE type.
588  * @pd: The protection domain associated with the address handle.
589  * @ah_attr: The attributes of the address vector.
590  * @udata: pointer to user's input output buffer information need by
591  *         provider driver.
592  *
593  * It returns 0 on success and returns appropriate error code on error.
594  * The address handle is used to reference a local or global destination
595  * in all UD QP post sends.
596  */
597 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
598                                   struct rdma_ah_attr *ah_attr,
599                                   struct ib_udata *udata)
600 {
601         const struct ib_gid_attr *old_sgid_attr;
602         struct ib_ah *ah;
603         int err;
604
605         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
606         if (err)
607                 return ERR_PTR(err);
608
609         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
610                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
611                 if (err) {
612                         ah = ERR_PTR(err);
613                         goto out;
614                 }
615         }
616
617         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
618                              udata, NULL);
619
620 out:
621         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
622         return ah;
623 }
624 EXPORT_SYMBOL(rdma_create_user_ah);
625
626 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
627 {
628         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
629         struct iphdr ip4h_checked;
630         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
631
632         /* If it's IPv6, the version must be 6, otherwise, the first
633          * 20 bytes (before the IPv4 header) are garbled.
634          */
635         if (ip6h->version != 6)
636                 return (ip4h->version == 4) ? 4 : 0;
637         /* version may be 6 or 4 because the first 20 bytes could be garbled */
638
639         /* RoCE v2 requires no options, thus header length
640          * must be 5 words
641          */
642         if (ip4h->ihl != 5)
643                 return 6;
644
645         /* Verify checksum.
646          * We can't write on scattered buffers so we need to copy to
647          * temp buffer.
648          */
649         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
650         ip4h_checked.check = 0;
651         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
652         /* if IPv4 header checksum is OK, believe it */
653         if (ip4h->check == ip4h_checked.check)
654                 return 4;
655         return 6;
656 }
657 EXPORT_SYMBOL(ib_get_rdma_header_version);
658
659 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
660                                                      u32 port_num,
661                                                      const struct ib_grh *grh)
662 {
663         int grh_version;
664
665         if (rdma_protocol_ib(device, port_num))
666                 return RDMA_NETWORK_IB;
667
668         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
669
670         if (grh_version == 4)
671                 return RDMA_NETWORK_IPV4;
672
673         if (grh->next_hdr == IPPROTO_UDP)
674                 return RDMA_NETWORK_IPV6;
675
676         return RDMA_NETWORK_ROCE_V1;
677 }
678
679 struct find_gid_index_context {
680         u16 vlan_id;
681         enum ib_gid_type gid_type;
682 };
683
684 static bool find_gid_index(const union ib_gid *gid,
685                            const struct ib_gid_attr *gid_attr,
686                            void *context)
687 {
688         struct find_gid_index_context *ctx = context;
689         u16 vlan_id = 0xffff;
690         int ret;
691
692         if (ctx->gid_type != gid_attr->gid_type)
693                 return false;
694
695         ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
696         if (ret)
697                 return false;
698
699         return ctx->vlan_id == vlan_id;
700 }
701
702 static const struct ib_gid_attr *
703 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
704                        u16 vlan_id, const union ib_gid *sgid,
705                        enum ib_gid_type gid_type)
706 {
707         struct find_gid_index_context context = {.vlan_id = vlan_id,
708                                                  .gid_type = gid_type};
709
710         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
711                                        &context);
712 }
713
714 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
715                               enum rdma_network_type net_type,
716                               union ib_gid *sgid, union ib_gid *dgid)
717 {
718         struct sockaddr_in  src_in;
719         struct sockaddr_in  dst_in;
720         __be32 src_saddr, dst_saddr;
721
722         if (!sgid || !dgid)
723                 return -EINVAL;
724
725         if (net_type == RDMA_NETWORK_IPV4) {
726                 memcpy(&src_in.sin_addr.s_addr,
727                        &hdr->roce4grh.saddr, 4);
728                 memcpy(&dst_in.sin_addr.s_addr,
729                        &hdr->roce4grh.daddr, 4);
730                 src_saddr = src_in.sin_addr.s_addr;
731                 dst_saddr = dst_in.sin_addr.s_addr;
732                 ipv6_addr_set_v4mapped(src_saddr,
733                                        (struct in6_addr *)sgid);
734                 ipv6_addr_set_v4mapped(dst_saddr,
735                                        (struct in6_addr *)dgid);
736                 return 0;
737         } else if (net_type == RDMA_NETWORK_IPV6 ||
738                    net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
739                 *dgid = hdr->ibgrh.dgid;
740                 *sgid = hdr->ibgrh.sgid;
741                 return 0;
742         } else {
743                 return -EINVAL;
744         }
745 }
746 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
747
748 /* Resolve destination mac address and hop limit for unicast destination
749  * GID entry, considering the source GID entry as well.
750  * ah_attribute must have valid port_num, sgid_index.
751  */
752 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
753                                        struct rdma_ah_attr *ah_attr)
754 {
755         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
756         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
757         int hop_limit = 0xff;
758         int ret = 0;
759
760         /* If destination is link local and source GID is RoCEv1,
761          * IP stack is not used.
762          */
763         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
764             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
765                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
766                                 ah_attr->roce.dmac);
767                 return ret;
768         }
769
770         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
771                                            ah_attr->roce.dmac,
772                                            sgid_attr, &hop_limit);
773
774         grh->hop_limit = hop_limit;
775         return ret;
776 }
777
778 /*
779  * This function initializes address handle attributes from the incoming packet.
780  * Incoming packet has dgid of the receiver node on which this code is
781  * getting executed and, sgid contains the GID of the sender.
782  *
783  * When resolving mac address of destination, the arrived dgid is used
784  * as sgid and, sgid is used as dgid because sgid contains destinations
785  * GID whom to respond to.
786  *
787  * On success the caller is responsible to call rdma_destroy_ah_attr on the
788  * attr.
789  */
790 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
791                             const struct ib_wc *wc, const struct ib_grh *grh,
792                             struct rdma_ah_attr *ah_attr)
793 {
794         u32 flow_class;
795         int ret;
796         enum rdma_network_type net_type = RDMA_NETWORK_IB;
797         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
798         const struct ib_gid_attr *sgid_attr;
799         int hoplimit = 0xff;
800         union ib_gid dgid;
801         union ib_gid sgid;
802
803         might_sleep();
804
805         memset(ah_attr, 0, sizeof *ah_attr);
806         ah_attr->type = rdma_ah_find_type(device, port_num);
807         if (rdma_cap_eth_ah(device, port_num)) {
808                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
809                         net_type = wc->network_hdr_type;
810                 else
811                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
812                 gid_type = ib_network_to_gid_type(net_type);
813         }
814         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
815                                         &sgid, &dgid);
816         if (ret)
817                 return ret;
818
819         rdma_ah_set_sl(ah_attr, wc->sl);
820         rdma_ah_set_port_num(ah_attr, port_num);
821
822         if (rdma_protocol_roce(device, port_num)) {
823                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
824                                 wc->vlan_id : 0xffff;
825
826                 if (!(wc->wc_flags & IB_WC_GRH))
827                         return -EPROTOTYPE;
828
829                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
830                                                    vlan_id, &dgid,
831                                                    gid_type);
832                 if (IS_ERR(sgid_attr))
833                         return PTR_ERR(sgid_attr);
834
835                 flow_class = be32_to_cpu(grh->version_tclass_flow);
836                 rdma_move_grh_sgid_attr(ah_attr,
837                                         &sgid,
838                                         flow_class & 0xFFFFF,
839                                         hoplimit,
840                                         (flow_class >> 20) & 0xFF,
841                                         sgid_attr);
842
843                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
844                 if (ret)
845                         rdma_destroy_ah_attr(ah_attr);
846
847                 return ret;
848         } else {
849                 rdma_ah_set_dlid(ah_attr, wc->slid);
850                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
851
852                 if ((wc->wc_flags & IB_WC_GRH) == 0)
853                         return 0;
854
855                 if (dgid.global.interface_id !=
856                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
857                         sgid_attr = rdma_find_gid_by_port(
858                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
859                 } else
860                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
861
862                 if (IS_ERR(sgid_attr))
863                         return PTR_ERR(sgid_attr);
864                 flow_class = be32_to_cpu(grh->version_tclass_flow);
865                 rdma_move_grh_sgid_attr(ah_attr,
866                                         &sgid,
867                                         flow_class & 0xFFFFF,
868                                         hoplimit,
869                                         (flow_class >> 20) & 0xFF,
870                                         sgid_attr);
871
872                 return 0;
873         }
874 }
875 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
876
877 /**
878  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
879  * of the reference
880  *
881  * @attr:       Pointer to AH attribute structure
882  * @dgid:       Destination GID
883  * @flow_label: Flow label
884  * @hop_limit:  Hop limit
885  * @traffic_class: traffic class
886  * @sgid_attr:  Pointer to SGID attribute
887  *
888  * This takes ownership of the sgid_attr reference. The caller must ensure
889  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
890  * calling this function.
891  */
892 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
893                              u32 flow_label, u8 hop_limit, u8 traffic_class,
894                              const struct ib_gid_attr *sgid_attr)
895 {
896         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
897                         traffic_class);
898         attr->grh.sgid_attr = sgid_attr;
899 }
900 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
901
902 /**
903  * rdma_destroy_ah_attr - Release reference to SGID attribute of
904  * ah attribute.
905  * @ah_attr: Pointer to ah attribute
906  *
907  * Release reference to the SGID attribute of the ah attribute if it is
908  * non NULL. It is safe to call this multiple times, and safe to call it on
909  * a zero initialized ah_attr.
910  */
911 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
912 {
913         if (ah_attr->grh.sgid_attr) {
914                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
915                 ah_attr->grh.sgid_attr = NULL;
916         }
917 }
918 EXPORT_SYMBOL(rdma_destroy_ah_attr);
919
920 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
921                                    const struct ib_grh *grh, u32 port_num)
922 {
923         struct rdma_ah_attr ah_attr;
924         struct ib_ah *ah;
925         int ret;
926
927         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
928         if (ret)
929                 return ERR_PTR(ret);
930
931         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
932
933         rdma_destroy_ah_attr(&ah_attr);
934         return ah;
935 }
936 EXPORT_SYMBOL(ib_create_ah_from_wc);
937
938 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
939 {
940         const struct ib_gid_attr *old_sgid_attr;
941         int ret;
942
943         if (ah->type != ah_attr->type)
944                 return -EINVAL;
945
946         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
947         if (ret)
948                 return ret;
949
950         ret = ah->device->ops.modify_ah ?
951                 ah->device->ops.modify_ah(ah, ah_attr) :
952                 -EOPNOTSUPP;
953
954         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
955         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
956         return ret;
957 }
958 EXPORT_SYMBOL(rdma_modify_ah);
959
960 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
961 {
962         ah_attr->grh.sgid_attr = NULL;
963
964         return ah->device->ops.query_ah ?
965                 ah->device->ops.query_ah(ah, ah_attr) :
966                 -EOPNOTSUPP;
967 }
968 EXPORT_SYMBOL(rdma_query_ah);
969
970 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
971 {
972         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
973         struct ib_pd *pd;
974         int ret;
975
976         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
977
978         pd = ah->pd;
979
980         ret = ah->device->ops.destroy_ah(ah, flags);
981         if (ret)
982                 return ret;
983
984         atomic_dec(&pd->usecnt);
985         if (sgid_attr)
986                 rdma_put_gid_attr(sgid_attr);
987
988         kfree(ah);
989         return ret;
990 }
991 EXPORT_SYMBOL(rdma_destroy_ah_user);
992
993 /* Shared receive queues */
994
995 /**
996  * ib_create_srq_user - Creates a SRQ associated with the specified protection
997  *   domain.
998  * @pd: The protection domain associated with the SRQ.
999  * @srq_init_attr: A list of initial attributes required to create the
1000  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1001  *   the actual capabilities of the created SRQ.
1002  * @uobject: uobject pointer if this is not a kernel SRQ
1003  * @udata: udata pointer if this is not a kernel SRQ
1004  *
1005  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1006  * requested size of the SRQ, and set to the actual values allocated
1007  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1008  * will always be at least as large as the requested values.
1009  */
1010 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1011                                   struct ib_srq_init_attr *srq_init_attr,
1012                                   struct ib_usrq_object *uobject,
1013                                   struct ib_udata *udata)
1014 {
1015         struct ib_srq *srq;
1016         int ret;
1017
1018         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1019         if (!srq)
1020                 return ERR_PTR(-ENOMEM);
1021
1022         srq->device = pd->device;
1023         srq->pd = pd;
1024         srq->event_handler = srq_init_attr->event_handler;
1025         srq->srq_context = srq_init_attr->srq_context;
1026         srq->srq_type = srq_init_attr->srq_type;
1027         srq->uobject = uobject;
1028
1029         if (ib_srq_has_cq(srq->srq_type)) {
1030                 srq->ext.cq = srq_init_attr->ext.cq;
1031                 atomic_inc(&srq->ext.cq->usecnt);
1032         }
1033         if (srq->srq_type == IB_SRQT_XRC) {
1034                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1035                 if (srq->ext.xrc.xrcd)
1036                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1037         }
1038         atomic_inc(&pd->usecnt);
1039
1040         rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1041         rdma_restrack_parent_name(&srq->res, &pd->res);
1042
1043         ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1044         if (ret) {
1045                 rdma_restrack_put(&srq->res);
1046                 atomic_dec(&pd->usecnt);
1047                 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1048                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1049                 if (ib_srq_has_cq(srq->srq_type))
1050                         atomic_dec(&srq->ext.cq->usecnt);
1051                 kfree(srq);
1052                 return ERR_PTR(ret);
1053         }
1054
1055         rdma_restrack_add(&srq->res);
1056
1057         return srq;
1058 }
1059 EXPORT_SYMBOL(ib_create_srq_user);
1060
1061 int ib_modify_srq(struct ib_srq *srq,
1062                   struct ib_srq_attr *srq_attr,
1063                   enum ib_srq_attr_mask srq_attr_mask)
1064 {
1065         return srq->device->ops.modify_srq ?
1066                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1067                                             NULL) : -EOPNOTSUPP;
1068 }
1069 EXPORT_SYMBOL(ib_modify_srq);
1070
1071 int ib_query_srq(struct ib_srq *srq,
1072                  struct ib_srq_attr *srq_attr)
1073 {
1074         return srq->device->ops.query_srq ?
1075                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1076 }
1077 EXPORT_SYMBOL(ib_query_srq);
1078
1079 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1080 {
1081         int ret;
1082
1083         if (atomic_read(&srq->usecnt))
1084                 return -EBUSY;
1085
1086         ret = srq->device->ops.destroy_srq(srq, udata);
1087         if (ret)
1088                 return ret;
1089
1090         atomic_dec(&srq->pd->usecnt);
1091         if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1092                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1093         if (ib_srq_has_cq(srq->srq_type))
1094                 atomic_dec(&srq->ext.cq->usecnt);
1095         rdma_restrack_del(&srq->res);
1096         kfree(srq);
1097
1098         return ret;
1099 }
1100 EXPORT_SYMBOL(ib_destroy_srq_user);
1101
1102 /* Queue pairs */
1103
1104 static void __ib_qp_event_handler(struct ib_event *event, void *context)
1105 {
1106         struct ib_qp *qp = event->element.qp;
1107
1108         if (event->event == IB_EVENT_QP_LAST_WQE_REACHED)
1109                 complete(&qp->srq_completion);
1110         if (qp->registered_event_handler)
1111                 qp->registered_event_handler(event, qp->qp_context);
1112 }
1113
1114 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1115 {
1116         struct ib_qp *qp = context;
1117         unsigned long flags;
1118
1119         spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1120         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1121                 if (event->element.qp->event_handler)
1122                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1123         spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1124 }
1125
1126 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1127                                   void (*event_handler)(struct ib_event *, void *),
1128                                   void *qp_context)
1129 {
1130         struct ib_qp *qp;
1131         unsigned long flags;
1132         int err;
1133
1134         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1135         if (!qp)
1136                 return ERR_PTR(-ENOMEM);
1137
1138         qp->real_qp = real_qp;
1139         err = ib_open_shared_qp_security(qp, real_qp->device);
1140         if (err) {
1141                 kfree(qp);
1142                 return ERR_PTR(err);
1143         }
1144
1145         qp->real_qp = real_qp;
1146         atomic_inc(&real_qp->usecnt);
1147         qp->device = real_qp->device;
1148         qp->event_handler = event_handler;
1149         qp->qp_context = qp_context;
1150         qp->qp_num = real_qp->qp_num;
1151         qp->qp_type = real_qp->qp_type;
1152
1153         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1154         list_add(&qp->open_list, &real_qp->open_list);
1155         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1156
1157         return qp;
1158 }
1159
1160 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1161                          struct ib_qp_open_attr *qp_open_attr)
1162 {
1163         struct ib_qp *qp, *real_qp;
1164
1165         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1166                 return ERR_PTR(-EINVAL);
1167
1168         down_read(&xrcd->tgt_qps_rwsem);
1169         real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1170         if (!real_qp) {
1171                 up_read(&xrcd->tgt_qps_rwsem);
1172                 return ERR_PTR(-EINVAL);
1173         }
1174         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1175                           qp_open_attr->qp_context);
1176         up_read(&xrcd->tgt_qps_rwsem);
1177         return qp;
1178 }
1179 EXPORT_SYMBOL(ib_open_qp);
1180
1181 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1182                                         struct ib_qp_init_attr *qp_init_attr)
1183 {
1184         struct ib_qp *real_qp = qp;
1185         int err;
1186
1187         qp->event_handler = __ib_shared_qp_event_handler;
1188         qp->qp_context = qp;
1189         qp->pd = NULL;
1190         qp->send_cq = qp->recv_cq = NULL;
1191         qp->srq = NULL;
1192         qp->xrcd = qp_init_attr->xrcd;
1193         atomic_inc(&qp_init_attr->xrcd->usecnt);
1194         INIT_LIST_HEAD(&qp->open_list);
1195
1196         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1197                           qp_init_attr->qp_context);
1198         if (IS_ERR(qp))
1199                 return qp;
1200
1201         err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1202                               real_qp, GFP_KERNEL));
1203         if (err) {
1204                 ib_close_qp(qp);
1205                 return ERR_PTR(err);
1206         }
1207         return qp;
1208 }
1209
1210 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1211                                struct ib_qp_init_attr *attr,
1212                                struct ib_udata *udata,
1213                                struct ib_uqp_object *uobj, const char *caller)
1214 {
1215         struct ib_udata dummy = {};
1216         struct ib_qp *qp;
1217         int ret;
1218
1219         if (!dev->ops.create_qp)
1220                 return ERR_PTR(-EOPNOTSUPP);
1221
1222         qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1223         if (!qp)
1224                 return ERR_PTR(-ENOMEM);
1225
1226         qp->device = dev;
1227         qp->pd = pd;
1228         qp->uobject = uobj;
1229         qp->real_qp = qp;
1230
1231         qp->qp_type = attr->qp_type;
1232         qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1233         qp->srq = attr->srq;
1234         qp->event_handler = __ib_qp_event_handler;
1235         qp->registered_event_handler = attr->event_handler;
1236         qp->port = attr->port_num;
1237         qp->qp_context = attr->qp_context;
1238
1239         spin_lock_init(&qp->mr_lock);
1240         INIT_LIST_HEAD(&qp->rdma_mrs);
1241         INIT_LIST_HEAD(&qp->sig_mrs);
1242         init_completion(&qp->srq_completion);
1243
1244         qp->send_cq = attr->send_cq;
1245         qp->recv_cq = attr->recv_cq;
1246
1247         rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1248         WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1249         rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1250         ret = dev->ops.create_qp(qp, attr, udata);
1251         if (ret)
1252                 goto err_create;
1253
1254         /*
1255          * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1256          * Unfortunately, it is not an easy task to fix that driver.
1257          */
1258         qp->send_cq = attr->send_cq;
1259         qp->recv_cq = attr->recv_cq;
1260
1261         ret = ib_create_qp_security(qp, dev);
1262         if (ret)
1263                 goto err_security;
1264
1265         rdma_restrack_add(&qp->res);
1266         return qp;
1267
1268 err_security:
1269         qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1270 err_create:
1271         rdma_restrack_put(&qp->res);
1272         kfree(qp);
1273         return ERR_PTR(ret);
1274
1275 }
1276
1277 /**
1278  * ib_create_qp_user - Creates a QP associated with the specified protection
1279  *   domain.
1280  * @dev: IB device
1281  * @pd: The protection domain associated with the QP.
1282  * @attr: A list of initial attributes required to create the
1283  *   QP.  If QP creation succeeds, then the attributes are updated to
1284  *   the actual capabilities of the created QP.
1285  * @udata: User data
1286  * @uobj: uverbs obect
1287  * @caller: caller's build-time module name
1288  */
1289 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1290                                 struct ib_qp_init_attr *attr,
1291                                 struct ib_udata *udata,
1292                                 struct ib_uqp_object *uobj, const char *caller)
1293 {
1294         struct ib_qp *qp, *xrc_qp;
1295
1296         if (attr->qp_type == IB_QPT_XRC_TGT)
1297                 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1298         else
1299                 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1300         if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1301                 return qp;
1302
1303         xrc_qp = create_xrc_qp_user(qp, attr);
1304         if (IS_ERR(xrc_qp)) {
1305                 ib_destroy_qp(qp);
1306                 return xrc_qp;
1307         }
1308
1309         xrc_qp->uobject = uobj;
1310         return xrc_qp;
1311 }
1312 EXPORT_SYMBOL(ib_create_qp_user);
1313
1314 void ib_qp_usecnt_inc(struct ib_qp *qp)
1315 {
1316         if (qp->pd)
1317                 atomic_inc(&qp->pd->usecnt);
1318         if (qp->send_cq)
1319                 atomic_inc(&qp->send_cq->usecnt);
1320         if (qp->recv_cq)
1321                 atomic_inc(&qp->recv_cq->usecnt);
1322         if (qp->srq)
1323                 atomic_inc(&qp->srq->usecnt);
1324         if (qp->rwq_ind_tbl)
1325                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1326 }
1327 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1328
1329 void ib_qp_usecnt_dec(struct ib_qp *qp)
1330 {
1331         if (qp->rwq_ind_tbl)
1332                 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1333         if (qp->srq)
1334                 atomic_dec(&qp->srq->usecnt);
1335         if (qp->recv_cq)
1336                 atomic_dec(&qp->recv_cq->usecnt);
1337         if (qp->send_cq)
1338                 atomic_dec(&qp->send_cq->usecnt);
1339         if (qp->pd)
1340                 atomic_dec(&qp->pd->usecnt);
1341 }
1342 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1343
1344 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1345                                   struct ib_qp_init_attr *qp_init_attr,
1346                                   const char *caller)
1347 {
1348         struct ib_device *device = pd->device;
1349         struct ib_qp *qp;
1350         int ret;
1351
1352         /*
1353          * If the callers is using the RDMA API calculate the resources
1354          * needed for the RDMA READ/WRITE operations.
1355          *
1356          * Note that these callers need to pass in a port number.
1357          */
1358         if (qp_init_attr->cap.max_rdma_ctxs)
1359                 rdma_rw_init_qp(device, qp_init_attr);
1360
1361         qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1362         if (IS_ERR(qp))
1363                 return qp;
1364
1365         ib_qp_usecnt_inc(qp);
1366
1367         if (qp_init_attr->cap.max_rdma_ctxs) {
1368                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1369                 if (ret)
1370                         goto err;
1371         }
1372
1373         /*
1374          * Note: all hw drivers guarantee that max_send_sge is lower than
1375          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1376          * max_send_sge <= max_sge_rd.
1377          */
1378         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1379         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1380                                  device->attrs.max_sge_rd);
1381         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1382                 qp->integrity_en = true;
1383
1384         return qp;
1385
1386 err:
1387         ib_destroy_qp(qp);
1388         return ERR_PTR(ret);
1389
1390 }
1391 EXPORT_SYMBOL(ib_create_qp_kernel);
1392
1393 static const struct {
1394         int                     valid;
1395         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1396         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1397 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1398         [IB_QPS_RESET] = {
1399                 [IB_QPS_RESET] = { .valid = 1 },
1400                 [IB_QPS_INIT]  = {
1401                         .valid = 1,
1402                         .req_param = {
1403                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1404                                                 IB_QP_PORT                      |
1405                                                 IB_QP_QKEY),
1406                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1407                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1408                                                 IB_QP_PORT                      |
1409                                                 IB_QP_ACCESS_FLAGS),
1410                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1411                                                 IB_QP_PORT                      |
1412                                                 IB_QP_ACCESS_FLAGS),
1413                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1414                                                 IB_QP_PORT                      |
1415                                                 IB_QP_ACCESS_FLAGS),
1416                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1417                                                 IB_QP_PORT                      |
1418                                                 IB_QP_ACCESS_FLAGS),
1419                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1420                                                 IB_QP_QKEY),
1421                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1422                                                 IB_QP_QKEY),
1423                         }
1424                 },
1425         },
1426         [IB_QPS_INIT]  = {
1427                 [IB_QPS_RESET] = { .valid = 1 },
1428                 [IB_QPS_ERR] =   { .valid = 1 },
1429                 [IB_QPS_INIT]  = {
1430                         .valid = 1,
1431                         .opt_param = {
1432                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1433                                                 IB_QP_PORT                      |
1434                                                 IB_QP_QKEY),
1435                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1436                                                 IB_QP_PORT                      |
1437                                                 IB_QP_ACCESS_FLAGS),
1438                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1439                                                 IB_QP_PORT                      |
1440                                                 IB_QP_ACCESS_FLAGS),
1441                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1442                                                 IB_QP_PORT                      |
1443                                                 IB_QP_ACCESS_FLAGS),
1444                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1445                                                 IB_QP_PORT                      |
1446                                                 IB_QP_ACCESS_FLAGS),
1447                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1448                                                 IB_QP_QKEY),
1449                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1450                                                 IB_QP_QKEY),
1451                         }
1452                 },
1453                 [IB_QPS_RTR]   = {
1454                         .valid = 1,
1455                         .req_param = {
1456                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1457                                                 IB_QP_PATH_MTU                  |
1458                                                 IB_QP_DEST_QPN                  |
1459                                                 IB_QP_RQ_PSN),
1460                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1461                                                 IB_QP_PATH_MTU                  |
1462                                                 IB_QP_DEST_QPN                  |
1463                                                 IB_QP_RQ_PSN                    |
1464                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1465                                                 IB_QP_MIN_RNR_TIMER),
1466                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1467                                                 IB_QP_PATH_MTU                  |
1468                                                 IB_QP_DEST_QPN                  |
1469                                                 IB_QP_RQ_PSN),
1470                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1471                                                 IB_QP_PATH_MTU                  |
1472                                                 IB_QP_DEST_QPN                  |
1473                                                 IB_QP_RQ_PSN                    |
1474                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1475                                                 IB_QP_MIN_RNR_TIMER),
1476                         },
1477                         .opt_param = {
1478                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1479                                                  IB_QP_QKEY),
1480                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1481                                                  IB_QP_ACCESS_FLAGS             |
1482                                                  IB_QP_PKEY_INDEX),
1483                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1484                                                  IB_QP_ACCESS_FLAGS             |
1485                                                  IB_QP_PKEY_INDEX),
1486                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1487                                                  IB_QP_ACCESS_FLAGS             |
1488                                                  IB_QP_PKEY_INDEX),
1489                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1490                                                  IB_QP_ACCESS_FLAGS             |
1491                                                  IB_QP_PKEY_INDEX),
1492                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1493                                                  IB_QP_QKEY),
1494                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1495                                                  IB_QP_QKEY),
1496                          },
1497                 },
1498         },
1499         [IB_QPS_RTR]   = {
1500                 [IB_QPS_RESET] = { .valid = 1 },
1501                 [IB_QPS_ERR] =   { .valid = 1 },
1502                 [IB_QPS_RTS]   = {
1503                         .valid = 1,
1504                         .req_param = {
1505                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1506                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1507                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1508                                                 IB_QP_RETRY_CNT                 |
1509                                                 IB_QP_RNR_RETRY                 |
1510                                                 IB_QP_SQ_PSN                    |
1511                                                 IB_QP_MAX_QP_RD_ATOMIC),
1512                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1513                                                 IB_QP_RETRY_CNT                 |
1514                                                 IB_QP_RNR_RETRY                 |
1515                                                 IB_QP_SQ_PSN                    |
1516                                                 IB_QP_MAX_QP_RD_ATOMIC),
1517                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1518                                                 IB_QP_SQ_PSN),
1519                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1520                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1521                         },
1522                         .opt_param = {
1523                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1524                                                  IB_QP_QKEY),
1525                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1526                                                  IB_QP_ALT_PATH                 |
1527                                                  IB_QP_ACCESS_FLAGS             |
1528                                                  IB_QP_PATH_MIG_STATE),
1529                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1530                                                  IB_QP_ALT_PATH                 |
1531                                                  IB_QP_ACCESS_FLAGS             |
1532                                                  IB_QP_MIN_RNR_TIMER            |
1533                                                  IB_QP_PATH_MIG_STATE),
1534                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1535                                                  IB_QP_ALT_PATH                 |
1536                                                  IB_QP_ACCESS_FLAGS             |
1537                                                  IB_QP_PATH_MIG_STATE),
1538                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1539                                                  IB_QP_ALT_PATH                 |
1540                                                  IB_QP_ACCESS_FLAGS             |
1541                                                  IB_QP_MIN_RNR_TIMER            |
1542                                                  IB_QP_PATH_MIG_STATE),
1543                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1544                                                  IB_QP_QKEY),
1545                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1546                                                  IB_QP_QKEY),
1547                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1548                          }
1549                 }
1550         },
1551         [IB_QPS_RTS]   = {
1552                 [IB_QPS_RESET] = { .valid = 1 },
1553                 [IB_QPS_ERR] =   { .valid = 1 },
1554                 [IB_QPS_RTS]   = {
1555                         .valid = 1,
1556                         .opt_param = {
1557                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1558                                                 IB_QP_QKEY),
1559                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1560                                                 IB_QP_ACCESS_FLAGS              |
1561                                                 IB_QP_ALT_PATH                  |
1562                                                 IB_QP_PATH_MIG_STATE),
1563                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1564                                                 IB_QP_ACCESS_FLAGS              |
1565                                                 IB_QP_ALT_PATH                  |
1566                                                 IB_QP_PATH_MIG_STATE            |
1567                                                 IB_QP_MIN_RNR_TIMER),
1568                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1569                                                 IB_QP_ACCESS_FLAGS              |
1570                                                 IB_QP_ALT_PATH                  |
1571                                                 IB_QP_PATH_MIG_STATE),
1572                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1573                                                 IB_QP_ACCESS_FLAGS              |
1574                                                 IB_QP_ALT_PATH                  |
1575                                                 IB_QP_PATH_MIG_STATE            |
1576                                                 IB_QP_MIN_RNR_TIMER),
1577                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1578                                                 IB_QP_QKEY),
1579                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1580                                                 IB_QP_QKEY),
1581                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1582                         }
1583                 },
1584                 [IB_QPS_SQD]   = {
1585                         .valid = 1,
1586                         .opt_param = {
1587                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1588                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1589                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1590                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1591                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1592                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1593                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1594                         }
1595                 },
1596         },
1597         [IB_QPS_SQD]   = {
1598                 [IB_QPS_RESET] = { .valid = 1 },
1599                 [IB_QPS_ERR] =   { .valid = 1 },
1600                 [IB_QPS_RTS]   = {
1601                         .valid = 1,
1602                         .opt_param = {
1603                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1604                                                 IB_QP_QKEY),
1605                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1606                                                 IB_QP_ALT_PATH                  |
1607                                                 IB_QP_ACCESS_FLAGS              |
1608                                                 IB_QP_PATH_MIG_STATE),
1609                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1610                                                 IB_QP_ALT_PATH                  |
1611                                                 IB_QP_ACCESS_FLAGS              |
1612                                                 IB_QP_MIN_RNR_TIMER             |
1613                                                 IB_QP_PATH_MIG_STATE),
1614                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1615                                                 IB_QP_ALT_PATH                  |
1616                                                 IB_QP_ACCESS_FLAGS              |
1617                                                 IB_QP_PATH_MIG_STATE),
1618                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1619                                                 IB_QP_ALT_PATH                  |
1620                                                 IB_QP_ACCESS_FLAGS              |
1621                                                 IB_QP_MIN_RNR_TIMER             |
1622                                                 IB_QP_PATH_MIG_STATE),
1623                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1624                                                 IB_QP_QKEY),
1625                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1626                                                 IB_QP_QKEY),
1627                         }
1628                 },
1629                 [IB_QPS_SQD]   = {
1630                         .valid = 1,
1631                         .opt_param = {
1632                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1633                                                 IB_QP_QKEY),
1634                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1635                                                 IB_QP_ALT_PATH                  |
1636                                                 IB_QP_ACCESS_FLAGS              |
1637                                                 IB_QP_PKEY_INDEX                |
1638                                                 IB_QP_PATH_MIG_STATE),
1639                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1640                                                 IB_QP_AV                        |
1641                                                 IB_QP_TIMEOUT                   |
1642                                                 IB_QP_RETRY_CNT                 |
1643                                                 IB_QP_RNR_RETRY                 |
1644                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1645                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1646                                                 IB_QP_ALT_PATH                  |
1647                                                 IB_QP_ACCESS_FLAGS              |
1648                                                 IB_QP_PKEY_INDEX                |
1649                                                 IB_QP_MIN_RNR_TIMER             |
1650                                                 IB_QP_PATH_MIG_STATE),
1651                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1652                                                 IB_QP_AV                        |
1653                                                 IB_QP_TIMEOUT                   |
1654                                                 IB_QP_RETRY_CNT                 |
1655                                                 IB_QP_RNR_RETRY                 |
1656                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1657                                                 IB_QP_ALT_PATH                  |
1658                                                 IB_QP_ACCESS_FLAGS              |
1659                                                 IB_QP_PKEY_INDEX                |
1660                                                 IB_QP_PATH_MIG_STATE),
1661                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1662                                                 IB_QP_AV                        |
1663                                                 IB_QP_TIMEOUT                   |
1664                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1665                                                 IB_QP_ALT_PATH                  |
1666                                                 IB_QP_ACCESS_FLAGS              |
1667                                                 IB_QP_PKEY_INDEX                |
1668                                                 IB_QP_MIN_RNR_TIMER             |
1669                                                 IB_QP_PATH_MIG_STATE),
1670                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1671                                                 IB_QP_QKEY),
1672                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1673                                                 IB_QP_QKEY),
1674                         }
1675                 }
1676         },
1677         [IB_QPS_SQE]   = {
1678                 [IB_QPS_RESET] = { .valid = 1 },
1679                 [IB_QPS_ERR] =   { .valid = 1 },
1680                 [IB_QPS_RTS]   = {
1681                         .valid = 1,
1682                         .opt_param = {
1683                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1684                                                 IB_QP_QKEY),
1685                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1686                                                 IB_QP_ACCESS_FLAGS),
1687                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1688                                                 IB_QP_QKEY),
1689                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1690                                                 IB_QP_QKEY),
1691                         }
1692                 }
1693         },
1694         [IB_QPS_ERR] = {
1695                 [IB_QPS_RESET] = { .valid = 1 },
1696                 [IB_QPS_ERR] =   { .valid = 1 }
1697         }
1698 };
1699
1700 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1701                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1702 {
1703         enum ib_qp_attr_mask req_param, opt_param;
1704
1705         if (mask & IB_QP_CUR_STATE  &&
1706             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1707             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1708                 return false;
1709
1710         if (!qp_state_table[cur_state][next_state].valid)
1711                 return false;
1712
1713         req_param = qp_state_table[cur_state][next_state].req_param[type];
1714         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1715
1716         if ((mask & req_param) != req_param)
1717                 return false;
1718
1719         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1720                 return false;
1721
1722         return true;
1723 }
1724 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1725
1726 /**
1727  * ib_resolve_eth_dmac - Resolve destination mac address
1728  * @device:             Device to consider
1729  * @ah_attr:            address handle attribute which describes the
1730  *                      source and destination parameters
1731  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1732  * returns 0 on success or appropriate error code. It initializes the
1733  * necessary ah_attr fields when call is successful.
1734  */
1735 static int ib_resolve_eth_dmac(struct ib_device *device,
1736                                struct rdma_ah_attr *ah_attr)
1737 {
1738         int ret = 0;
1739
1740         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1741                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1742                         __be32 addr = 0;
1743
1744                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1745                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1746                 } else {
1747                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1748                                         (char *)ah_attr->roce.dmac);
1749                 }
1750         } else {
1751                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1752         }
1753         return ret;
1754 }
1755
1756 static bool is_qp_type_connected(const struct ib_qp *qp)
1757 {
1758         return (qp->qp_type == IB_QPT_UC ||
1759                 qp->qp_type == IB_QPT_RC ||
1760                 qp->qp_type == IB_QPT_XRC_INI ||
1761                 qp->qp_type == IB_QPT_XRC_TGT);
1762 }
1763
1764 /*
1765  * IB core internal function to perform QP attributes modification.
1766  */
1767 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1768                          int attr_mask, struct ib_udata *udata)
1769 {
1770         u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1771         const struct ib_gid_attr *old_sgid_attr_av;
1772         const struct ib_gid_attr *old_sgid_attr_alt_av;
1773         int ret;
1774
1775         attr->xmit_slave = NULL;
1776         if (attr_mask & IB_QP_AV) {
1777                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1778                                           &old_sgid_attr_av);
1779                 if (ret)
1780                         return ret;
1781
1782                 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1783                     is_qp_type_connected(qp)) {
1784                         struct net_device *slave;
1785
1786                         /*
1787                          * If the user provided the qp_attr then we have to
1788                          * resolve it. Kerne users have to provide already
1789                          * resolved rdma_ah_attr's.
1790                          */
1791                         if (udata) {
1792                                 ret = ib_resolve_eth_dmac(qp->device,
1793                                                           &attr->ah_attr);
1794                                 if (ret)
1795                                         goto out_av;
1796                         }
1797                         slave = rdma_lag_get_ah_roce_slave(qp->device,
1798                                                            &attr->ah_attr,
1799                                                            GFP_KERNEL);
1800                         if (IS_ERR(slave)) {
1801                                 ret = PTR_ERR(slave);
1802                                 goto out_av;
1803                         }
1804                         attr->xmit_slave = slave;
1805                 }
1806         }
1807         if (attr_mask & IB_QP_ALT_PATH) {
1808                 /*
1809                  * FIXME: This does not track the migration state, so if the
1810                  * user loads a new alternate path after the HW has migrated
1811                  * from primary->alternate we will keep the wrong
1812                  * references. This is OK for IB because the reference
1813                  * counting does not serve any functional purpose.
1814                  */
1815                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1816                                           &old_sgid_attr_alt_av);
1817                 if (ret)
1818                         goto out_av;
1819
1820                 /*
1821                  * Today the core code can only handle alternate paths and APM
1822                  * for IB. Ban them in roce mode.
1823                  */
1824                 if (!(rdma_protocol_ib(qp->device,
1825                                        attr->alt_ah_attr.port_num) &&
1826                       rdma_protocol_ib(qp->device, port))) {
1827                         ret = -EINVAL;
1828                         goto out;
1829                 }
1830         }
1831
1832         if (rdma_ib_or_roce(qp->device, port)) {
1833                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1834                         dev_warn(&qp->device->dev,
1835                                  "%s rq_psn overflow, masking to 24 bits\n",
1836                                  __func__);
1837                         attr->rq_psn &= 0xffffff;
1838                 }
1839
1840                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1841                         dev_warn(&qp->device->dev,
1842                                  " %s sq_psn overflow, masking to 24 bits\n",
1843                                  __func__);
1844                         attr->sq_psn &= 0xffffff;
1845                 }
1846         }
1847
1848         /*
1849          * Bind this qp to a counter automatically based on the rdma counter
1850          * rules. This only set in RST2INIT with port specified
1851          */
1852         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1853             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1854                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1855
1856         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1857         if (ret)
1858                 goto out;
1859
1860         if (attr_mask & IB_QP_PORT)
1861                 qp->port = attr->port_num;
1862         if (attr_mask & IB_QP_AV)
1863                 qp->av_sgid_attr =
1864                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1865         if (attr_mask & IB_QP_ALT_PATH)
1866                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1867                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1868
1869 out:
1870         if (attr_mask & IB_QP_ALT_PATH)
1871                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1872 out_av:
1873         if (attr_mask & IB_QP_AV) {
1874                 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1875                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1876         }
1877         return ret;
1878 }
1879
1880 /**
1881  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1882  * @ib_qp: The QP to modify.
1883  * @attr: On input, specifies the QP attributes to modify.  On output,
1884  *   the current values of selected QP attributes are returned.
1885  * @attr_mask: A bit-mask used to specify which attributes of the QP
1886  *   are being modified.
1887  * @udata: pointer to user's input output buffer information
1888  *   are being modified.
1889  * It returns 0 on success and returns appropriate error code on error.
1890  */
1891 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1892                             int attr_mask, struct ib_udata *udata)
1893 {
1894         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1895 }
1896 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1897
1898 static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1899                                    u16 *speed, u8 *width)
1900 {
1901         if (!lanes) {
1902                 if (netdev_speed <= SPEED_1000) {
1903                         *width = IB_WIDTH_1X;
1904                         *speed = IB_SPEED_SDR;
1905                 } else if (netdev_speed <= SPEED_10000) {
1906                         *width = IB_WIDTH_1X;
1907                         *speed = IB_SPEED_FDR10;
1908                 } else if (netdev_speed <= SPEED_20000) {
1909                         *width = IB_WIDTH_4X;
1910                         *speed = IB_SPEED_DDR;
1911                 } else if (netdev_speed <= SPEED_25000) {
1912                         *width = IB_WIDTH_1X;
1913                         *speed = IB_SPEED_EDR;
1914                 } else if (netdev_speed <= SPEED_40000) {
1915                         *width = IB_WIDTH_4X;
1916                         *speed = IB_SPEED_FDR10;
1917                 } else if (netdev_speed <= SPEED_50000) {
1918                         *width = IB_WIDTH_2X;
1919                         *speed = IB_SPEED_EDR;
1920                 } else if (netdev_speed <= SPEED_100000) {
1921                         *width = IB_WIDTH_4X;
1922                         *speed = IB_SPEED_EDR;
1923                 } else if (netdev_speed <= SPEED_200000) {
1924                         *width = IB_WIDTH_4X;
1925                         *speed = IB_SPEED_HDR;
1926                 } else {
1927                         *width = IB_WIDTH_4X;
1928                         *speed = IB_SPEED_NDR;
1929                 }
1930
1931                 return;
1932         }
1933
1934         switch (lanes) {
1935         case 1:
1936                 *width = IB_WIDTH_1X;
1937                 break;
1938         case 2:
1939                 *width = IB_WIDTH_2X;
1940                 break;
1941         case 4:
1942                 *width = IB_WIDTH_4X;
1943                 break;
1944         case 8:
1945                 *width = IB_WIDTH_8X;
1946                 break;
1947         case 12:
1948                 *width = IB_WIDTH_12X;
1949                 break;
1950         default:
1951                 *width = IB_WIDTH_1X;
1952         }
1953
1954         switch (netdev_speed / lanes) {
1955         case SPEED_2500:
1956                 *speed = IB_SPEED_SDR;
1957                 break;
1958         case SPEED_5000:
1959                 *speed = IB_SPEED_DDR;
1960                 break;
1961         case SPEED_10000:
1962                 *speed = IB_SPEED_FDR10;
1963                 break;
1964         case SPEED_14000:
1965                 *speed = IB_SPEED_FDR;
1966                 break;
1967         case SPEED_25000:
1968                 *speed = IB_SPEED_EDR;
1969                 break;
1970         case SPEED_50000:
1971                 *speed = IB_SPEED_HDR;
1972                 break;
1973         case SPEED_100000:
1974                 *speed = IB_SPEED_NDR;
1975                 break;
1976         default:
1977                 *speed = IB_SPEED_SDR;
1978         }
1979 }
1980
1981 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1982 {
1983         int rc;
1984         u32 netdev_speed;
1985         struct net_device *netdev;
1986         struct ethtool_link_ksettings lksettings = {};
1987
1988         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1989                 return -EINVAL;
1990
1991         netdev = ib_device_get_netdev(dev, port_num);
1992         if (!netdev)
1993                 return -ENODEV;
1994
1995         rtnl_lock();
1996         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1997         rtnl_unlock();
1998
1999         dev_put(netdev);
2000
2001         if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
2002                 netdev_speed = lksettings.base.speed;
2003         } else {
2004                 netdev_speed = SPEED_1000;
2005                 if (rc)
2006                         pr_warn("%s speed is unknown, defaulting to %u\n",
2007                                 netdev->name, netdev_speed);
2008         }
2009
2010         ib_get_width_and_speed(netdev_speed, lksettings.lanes,
2011                                speed, width);
2012
2013         return 0;
2014 }
2015 EXPORT_SYMBOL(ib_get_eth_speed);
2016
2017 int ib_modify_qp(struct ib_qp *qp,
2018                  struct ib_qp_attr *qp_attr,
2019                  int qp_attr_mask)
2020 {
2021         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2022 }
2023 EXPORT_SYMBOL(ib_modify_qp);
2024
2025 int ib_query_qp(struct ib_qp *qp,
2026                 struct ib_qp_attr *qp_attr,
2027                 int qp_attr_mask,
2028                 struct ib_qp_init_attr *qp_init_attr)
2029 {
2030         qp_attr->ah_attr.grh.sgid_attr = NULL;
2031         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2032
2033         return qp->device->ops.query_qp ?
2034                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2035                                          qp_init_attr) : -EOPNOTSUPP;
2036 }
2037 EXPORT_SYMBOL(ib_query_qp);
2038
2039 int ib_close_qp(struct ib_qp *qp)
2040 {
2041         struct ib_qp *real_qp;
2042         unsigned long flags;
2043
2044         real_qp = qp->real_qp;
2045         if (real_qp == qp)
2046                 return -EINVAL;
2047
2048         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2049         list_del(&qp->open_list);
2050         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2051
2052         atomic_dec(&real_qp->usecnt);
2053         if (qp->qp_sec)
2054                 ib_close_shared_qp_security(qp->qp_sec);
2055         kfree(qp);
2056
2057         return 0;
2058 }
2059 EXPORT_SYMBOL(ib_close_qp);
2060
2061 static int __ib_destroy_shared_qp(struct ib_qp *qp)
2062 {
2063         struct ib_xrcd *xrcd;
2064         struct ib_qp *real_qp;
2065         int ret;
2066
2067         real_qp = qp->real_qp;
2068         xrcd = real_qp->xrcd;
2069         down_write(&xrcd->tgt_qps_rwsem);
2070         ib_close_qp(qp);
2071         if (atomic_read(&real_qp->usecnt) == 0)
2072                 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2073         else
2074                 real_qp = NULL;
2075         up_write(&xrcd->tgt_qps_rwsem);
2076
2077         if (real_qp) {
2078                 ret = ib_destroy_qp(real_qp);
2079                 if (!ret)
2080                         atomic_dec(&xrcd->usecnt);
2081         }
2082
2083         return 0;
2084 }
2085
2086 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2087 {
2088         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2089         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2090         struct ib_qp_security *sec;
2091         int ret;
2092
2093         WARN_ON_ONCE(qp->mrs_used > 0);
2094
2095         if (atomic_read(&qp->usecnt))
2096                 return -EBUSY;
2097
2098         if (qp->real_qp != qp)
2099                 return __ib_destroy_shared_qp(qp);
2100
2101         sec  = qp->qp_sec;
2102         if (sec)
2103                 ib_destroy_qp_security_begin(sec);
2104
2105         if (!qp->uobject)
2106                 rdma_rw_cleanup_mrs(qp);
2107
2108         rdma_counter_unbind_qp(qp, true);
2109         ret = qp->device->ops.destroy_qp(qp, udata);
2110         if (ret) {
2111                 if (sec)
2112                         ib_destroy_qp_security_abort(sec);
2113                 return ret;
2114         }
2115
2116         if (alt_path_sgid_attr)
2117                 rdma_put_gid_attr(alt_path_sgid_attr);
2118         if (av_sgid_attr)
2119                 rdma_put_gid_attr(av_sgid_attr);
2120
2121         ib_qp_usecnt_dec(qp);
2122         if (sec)
2123                 ib_destroy_qp_security_end(sec);
2124
2125         rdma_restrack_del(&qp->res);
2126         kfree(qp);
2127         return ret;
2128 }
2129 EXPORT_SYMBOL(ib_destroy_qp_user);
2130
2131 /* Completion queues */
2132
2133 struct ib_cq *__ib_create_cq(struct ib_device *device,
2134                              ib_comp_handler comp_handler,
2135                              void (*event_handler)(struct ib_event *, void *),
2136                              void *cq_context,
2137                              const struct ib_cq_init_attr *cq_attr,
2138                              const char *caller)
2139 {
2140         struct ib_cq *cq;
2141         int ret;
2142
2143         cq = rdma_zalloc_drv_obj(device, ib_cq);
2144         if (!cq)
2145                 return ERR_PTR(-ENOMEM);
2146
2147         cq->device = device;
2148         cq->uobject = NULL;
2149         cq->comp_handler = comp_handler;
2150         cq->event_handler = event_handler;
2151         cq->cq_context = cq_context;
2152         atomic_set(&cq->usecnt, 0);
2153
2154         rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2155         rdma_restrack_set_name(&cq->res, caller);
2156
2157         ret = device->ops.create_cq(cq, cq_attr, NULL);
2158         if (ret) {
2159                 rdma_restrack_put(&cq->res);
2160                 kfree(cq);
2161                 return ERR_PTR(ret);
2162         }
2163
2164         rdma_restrack_add(&cq->res);
2165         return cq;
2166 }
2167 EXPORT_SYMBOL(__ib_create_cq);
2168
2169 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2170 {
2171         if (cq->shared)
2172                 return -EOPNOTSUPP;
2173
2174         return cq->device->ops.modify_cq ?
2175                 cq->device->ops.modify_cq(cq, cq_count,
2176                                           cq_period) : -EOPNOTSUPP;
2177 }
2178 EXPORT_SYMBOL(rdma_set_cq_moderation);
2179
2180 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2181 {
2182         int ret;
2183
2184         if (WARN_ON_ONCE(cq->shared))
2185                 return -EOPNOTSUPP;
2186
2187         if (atomic_read(&cq->usecnt))
2188                 return -EBUSY;
2189
2190         ret = cq->device->ops.destroy_cq(cq, udata);
2191         if (ret)
2192                 return ret;
2193
2194         rdma_restrack_del(&cq->res);
2195         kfree(cq);
2196         return ret;
2197 }
2198 EXPORT_SYMBOL(ib_destroy_cq_user);
2199
2200 int ib_resize_cq(struct ib_cq *cq, int cqe)
2201 {
2202         if (cq->shared)
2203                 return -EOPNOTSUPP;
2204
2205         return cq->device->ops.resize_cq ?
2206                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2207 }
2208 EXPORT_SYMBOL(ib_resize_cq);
2209
2210 /* Memory regions */
2211
2212 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2213                              u64 virt_addr, int access_flags)
2214 {
2215         struct ib_mr *mr;
2216
2217         if (access_flags & IB_ACCESS_ON_DEMAND) {
2218                 if (!(pd->device->attrs.kernel_cap_flags &
2219                       IBK_ON_DEMAND_PAGING)) {
2220                         pr_debug("ODP support not available\n");
2221                         return ERR_PTR(-EINVAL);
2222                 }
2223         }
2224
2225         mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2226                                          access_flags, NULL);
2227
2228         if (IS_ERR(mr))
2229                 return mr;
2230
2231         mr->device = pd->device;
2232         mr->type = IB_MR_TYPE_USER;
2233         mr->pd = pd;
2234         mr->dm = NULL;
2235         atomic_inc(&pd->usecnt);
2236         mr->iova =  virt_addr;
2237         mr->length = length;
2238
2239         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2240         rdma_restrack_parent_name(&mr->res, &pd->res);
2241         rdma_restrack_add(&mr->res);
2242
2243         return mr;
2244 }
2245 EXPORT_SYMBOL(ib_reg_user_mr);
2246
2247 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2248                  u32 flags, struct ib_sge *sg_list, u32 num_sge)
2249 {
2250         if (!pd->device->ops.advise_mr)
2251                 return -EOPNOTSUPP;
2252
2253         if (!num_sge)
2254                 return 0;
2255
2256         return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2257                                          NULL);
2258 }
2259 EXPORT_SYMBOL(ib_advise_mr);
2260
2261 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2262 {
2263         struct ib_pd *pd = mr->pd;
2264         struct ib_dm *dm = mr->dm;
2265         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2266         int ret;
2267
2268         trace_mr_dereg(mr);
2269         rdma_restrack_del(&mr->res);
2270         ret = mr->device->ops.dereg_mr(mr, udata);
2271         if (!ret) {
2272                 atomic_dec(&pd->usecnt);
2273                 if (dm)
2274                         atomic_dec(&dm->usecnt);
2275                 kfree(sig_attrs);
2276         }
2277
2278         return ret;
2279 }
2280 EXPORT_SYMBOL(ib_dereg_mr_user);
2281
2282 /**
2283  * ib_alloc_mr() - Allocates a memory region
2284  * @pd:            protection domain associated with the region
2285  * @mr_type:       memory region type
2286  * @max_num_sg:    maximum sg entries available for registration.
2287  *
2288  * Notes:
2289  * Memory registeration page/sg lists must not exceed max_num_sg.
2290  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2291  * max_num_sg * used_page_size.
2292  *
2293  */
2294 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2295                           u32 max_num_sg)
2296 {
2297         struct ib_mr *mr;
2298
2299         if (!pd->device->ops.alloc_mr) {
2300                 mr = ERR_PTR(-EOPNOTSUPP);
2301                 goto out;
2302         }
2303
2304         if (mr_type == IB_MR_TYPE_INTEGRITY) {
2305                 WARN_ON_ONCE(1);
2306                 mr = ERR_PTR(-EINVAL);
2307                 goto out;
2308         }
2309
2310         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2311         if (IS_ERR(mr))
2312                 goto out;
2313
2314         mr->device = pd->device;
2315         mr->pd = pd;
2316         mr->dm = NULL;
2317         mr->uobject = NULL;
2318         atomic_inc(&pd->usecnt);
2319         mr->need_inval = false;
2320         mr->type = mr_type;
2321         mr->sig_attrs = NULL;
2322
2323         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2324         rdma_restrack_parent_name(&mr->res, &pd->res);
2325         rdma_restrack_add(&mr->res);
2326 out:
2327         trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2328         return mr;
2329 }
2330 EXPORT_SYMBOL(ib_alloc_mr);
2331
2332 /**
2333  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2334  * @pd:                      protection domain associated with the region
2335  * @max_num_data_sg:         maximum data sg entries available for registration
2336  * @max_num_meta_sg:         maximum metadata sg entries available for
2337  *                           registration
2338  *
2339  * Notes:
2340  * Memory registration page/sg lists must not exceed max_num_sg,
2341  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2342  *
2343  */
2344 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2345                                     u32 max_num_data_sg,
2346                                     u32 max_num_meta_sg)
2347 {
2348         struct ib_mr *mr;
2349         struct ib_sig_attrs *sig_attrs;
2350
2351         if (!pd->device->ops.alloc_mr_integrity ||
2352             !pd->device->ops.map_mr_sg_pi) {
2353                 mr = ERR_PTR(-EOPNOTSUPP);
2354                 goto out;
2355         }
2356
2357         if (!max_num_meta_sg) {
2358                 mr = ERR_PTR(-EINVAL);
2359                 goto out;
2360         }
2361
2362         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2363         if (!sig_attrs) {
2364                 mr = ERR_PTR(-ENOMEM);
2365                 goto out;
2366         }
2367
2368         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2369                                                 max_num_meta_sg);
2370         if (IS_ERR(mr)) {
2371                 kfree(sig_attrs);
2372                 goto out;
2373         }
2374
2375         mr->device = pd->device;
2376         mr->pd = pd;
2377         mr->dm = NULL;
2378         mr->uobject = NULL;
2379         atomic_inc(&pd->usecnt);
2380         mr->need_inval = false;
2381         mr->type = IB_MR_TYPE_INTEGRITY;
2382         mr->sig_attrs = sig_attrs;
2383
2384         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2385         rdma_restrack_parent_name(&mr->res, &pd->res);
2386         rdma_restrack_add(&mr->res);
2387 out:
2388         trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2389         return mr;
2390 }
2391 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2392
2393 /* Multicast groups */
2394
2395 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2396 {
2397         struct ib_qp_init_attr init_attr = {};
2398         struct ib_qp_attr attr = {};
2399         int num_eth_ports = 0;
2400         unsigned int port;
2401
2402         /* If QP state >= init, it is assigned to a port and we can check this
2403          * port only.
2404          */
2405         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2406                 if (attr.qp_state >= IB_QPS_INIT) {
2407                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2408                             IB_LINK_LAYER_INFINIBAND)
2409                                 return true;
2410                         goto lid_check;
2411                 }
2412         }
2413
2414         /* Can't get a quick answer, iterate over all ports */
2415         rdma_for_each_port(qp->device, port)
2416                 if (rdma_port_get_link_layer(qp->device, port) !=
2417                     IB_LINK_LAYER_INFINIBAND)
2418                         num_eth_ports++;
2419
2420         /* If we have at lease one Ethernet port, RoCE annex declares that
2421          * multicast LID should be ignored. We can't tell at this step if the
2422          * QP belongs to an IB or Ethernet port.
2423          */
2424         if (num_eth_ports)
2425                 return true;
2426
2427         /* If all the ports are IB, we can check according to IB spec. */
2428 lid_check:
2429         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2430                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2431 }
2432
2433 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2434 {
2435         int ret;
2436
2437         if (!qp->device->ops.attach_mcast)
2438                 return -EOPNOTSUPP;
2439
2440         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2441             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2442                 return -EINVAL;
2443
2444         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2445         if (!ret)
2446                 atomic_inc(&qp->usecnt);
2447         return ret;
2448 }
2449 EXPORT_SYMBOL(ib_attach_mcast);
2450
2451 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2452 {
2453         int ret;
2454
2455         if (!qp->device->ops.detach_mcast)
2456                 return -EOPNOTSUPP;
2457
2458         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2459             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2460                 return -EINVAL;
2461
2462         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2463         if (!ret)
2464                 atomic_dec(&qp->usecnt);
2465         return ret;
2466 }
2467 EXPORT_SYMBOL(ib_detach_mcast);
2468
2469 /**
2470  * ib_alloc_xrcd_user - Allocates an XRC domain.
2471  * @device: The device on which to allocate the XRC domain.
2472  * @inode: inode to connect XRCD
2473  * @udata: Valid user data or NULL for kernel object
2474  */
2475 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2476                                    struct inode *inode, struct ib_udata *udata)
2477 {
2478         struct ib_xrcd *xrcd;
2479         int ret;
2480
2481         if (!device->ops.alloc_xrcd)
2482                 return ERR_PTR(-EOPNOTSUPP);
2483
2484         xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2485         if (!xrcd)
2486                 return ERR_PTR(-ENOMEM);
2487
2488         xrcd->device = device;
2489         xrcd->inode = inode;
2490         atomic_set(&xrcd->usecnt, 0);
2491         init_rwsem(&xrcd->tgt_qps_rwsem);
2492         xa_init(&xrcd->tgt_qps);
2493
2494         ret = device->ops.alloc_xrcd(xrcd, udata);
2495         if (ret)
2496                 goto err;
2497         return xrcd;
2498 err:
2499         kfree(xrcd);
2500         return ERR_PTR(ret);
2501 }
2502 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2503
2504 /**
2505  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2506  * @xrcd: The XRC domain to deallocate.
2507  * @udata: Valid user data or NULL for kernel object
2508  */
2509 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2510 {
2511         int ret;
2512
2513         if (atomic_read(&xrcd->usecnt))
2514                 return -EBUSY;
2515
2516         WARN_ON(!xa_empty(&xrcd->tgt_qps));
2517         ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2518         if (ret)
2519                 return ret;
2520         kfree(xrcd);
2521         return ret;
2522 }
2523 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2524
2525 /**
2526  * ib_create_wq - Creates a WQ associated with the specified protection
2527  * domain.
2528  * @pd: The protection domain associated with the WQ.
2529  * @wq_attr: A list of initial attributes required to create the
2530  * WQ. If WQ creation succeeds, then the attributes are updated to
2531  * the actual capabilities of the created WQ.
2532  *
2533  * wq_attr->max_wr and wq_attr->max_sge determine
2534  * the requested size of the WQ, and set to the actual values allocated
2535  * on return.
2536  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2537  * at least as large as the requested values.
2538  */
2539 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2540                            struct ib_wq_init_attr *wq_attr)
2541 {
2542         struct ib_wq *wq;
2543
2544         if (!pd->device->ops.create_wq)
2545                 return ERR_PTR(-EOPNOTSUPP);
2546
2547         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2548         if (!IS_ERR(wq)) {
2549                 wq->event_handler = wq_attr->event_handler;
2550                 wq->wq_context = wq_attr->wq_context;
2551                 wq->wq_type = wq_attr->wq_type;
2552                 wq->cq = wq_attr->cq;
2553                 wq->device = pd->device;
2554                 wq->pd = pd;
2555                 wq->uobject = NULL;
2556                 atomic_inc(&pd->usecnt);
2557                 atomic_inc(&wq_attr->cq->usecnt);
2558                 atomic_set(&wq->usecnt, 0);
2559         }
2560         return wq;
2561 }
2562 EXPORT_SYMBOL(ib_create_wq);
2563
2564 /**
2565  * ib_destroy_wq_user - Destroys the specified user WQ.
2566  * @wq: The WQ to destroy.
2567  * @udata: Valid user data
2568  */
2569 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2570 {
2571         struct ib_cq *cq = wq->cq;
2572         struct ib_pd *pd = wq->pd;
2573         int ret;
2574
2575         if (atomic_read(&wq->usecnt))
2576                 return -EBUSY;
2577
2578         ret = wq->device->ops.destroy_wq(wq, udata);
2579         if (ret)
2580                 return ret;
2581
2582         atomic_dec(&pd->usecnt);
2583         atomic_dec(&cq->usecnt);
2584         return ret;
2585 }
2586 EXPORT_SYMBOL(ib_destroy_wq_user);
2587
2588 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2589                        struct ib_mr_status *mr_status)
2590 {
2591         if (!mr->device->ops.check_mr_status)
2592                 return -EOPNOTSUPP;
2593
2594         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2595 }
2596 EXPORT_SYMBOL(ib_check_mr_status);
2597
2598 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2599                          int state)
2600 {
2601         if (!device->ops.set_vf_link_state)
2602                 return -EOPNOTSUPP;
2603
2604         return device->ops.set_vf_link_state(device, vf, port, state);
2605 }
2606 EXPORT_SYMBOL(ib_set_vf_link_state);
2607
2608 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2609                      struct ifla_vf_info *info)
2610 {
2611         if (!device->ops.get_vf_config)
2612                 return -EOPNOTSUPP;
2613
2614         return device->ops.get_vf_config(device, vf, port, info);
2615 }
2616 EXPORT_SYMBOL(ib_get_vf_config);
2617
2618 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2619                     struct ifla_vf_stats *stats)
2620 {
2621         if (!device->ops.get_vf_stats)
2622                 return -EOPNOTSUPP;
2623
2624         return device->ops.get_vf_stats(device, vf, port, stats);
2625 }
2626 EXPORT_SYMBOL(ib_get_vf_stats);
2627
2628 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2629                    int type)
2630 {
2631         if (!device->ops.set_vf_guid)
2632                 return -EOPNOTSUPP;
2633
2634         return device->ops.set_vf_guid(device, vf, port, guid, type);
2635 }
2636 EXPORT_SYMBOL(ib_set_vf_guid);
2637
2638 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2639                    struct ifla_vf_guid *node_guid,
2640                    struct ifla_vf_guid *port_guid)
2641 {
2642         if (!device->ops.get_vf_guid)
2643                 return -EOPNOTSUPP;
2644
2645         return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2646 }
2647 EXPORT_SYMBOL(ib_get_vf_guid);
2648 /**
2649  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2650  *     information) and set an appropriate memory region for registration.
2651  * @mr:             memory region
2652  * @data_sg:        dma mapped scatterlist for data
2653  * @data_sg_nents:  number of entries in data_sg
2654  * @data_sg_offset: offset in bytes into data_sg
2655  * @meta_sg:        dma mapped scatterlist for metadata
2656  * @meta_sg_nents:  number of entries in meta_sg
2657  * @meta_sg_offset: offset in bytes into meta_sg
2658  * @page_size:      page vector desired page size
2659  *
2660  * Constraints:
2661  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2662  *
2663  * Return: 0 on success.
2664  *
2665  * After this completes successfully, the  memory region
2666  * is ready for registration.
2667  */
2668 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2669                     int data_sg_nents, unsigned int *data_sg_offset,
2670                     struct scatterlist *meta_sg, int meta_sg_nents,
2671                     unsigned int *meta_sg_offset, unsigned int page_size)
2672 {
2673         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2674                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2675                 return -EOPNOTSUPP;
2676
2677         mr->page_size = page_size;
2678
2679         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2680                                             data_sg_offset, meta_sg,
2681                                             meta_sg_nents, meta_sg_offset);
2682 }
2683 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2684
2685 /**
2686  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2687  *     and set it the memory region.
2688  * @mr:            memory region
2689  * @sg:            dma mapped scatterlist
2690  * @sg_nents:      number of entries in sg
2691  * @sg_offset:     offset in bytes into sg
2692  * @page_size:     page vector desired page size
2693  *
2694  * Constraints:
2695  *
2696  * - The first sg element is allowed to have an offset.
2697  * - Each sg element must either be aligned to page_size or virtually
2698  *   contiguous to the previous element. In case an sg element has a
2699  *   non-contiguous offset, the mapping prefix will not include it.
2700  * - The last sg element is allowed to have length less than page_size.
2701  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2702  *   then only max_num_sg entries will be mapped.
2703  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2704  *   constraints holds and the page_size argument is ignored.
2705  *
2706  * Returns the number of sg elements that were mapped to the memory region.
2707  *
2708  * After this completes successfully, the  memory region
2709  * is ready for registration.
2710  */
2711 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2712                  unsigned int *sg_offset, unsigned int page_size)
2713 {
2714         if (unlikely(!mr->device->ops.map_mr_sg))
2715                 return -EOPNOTSUPP;
2716
2717         mr->page_size = page_size;
2718
2719         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2720 }
2721 EXPORT_SYMBOL(ib_map_mr_sg);
2722
2723 /**
2724  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2725  *     to a page vector
2726  * @mr:            memory region
2727  * @sgl:           dma mapped scatterlist
2728  * @sg_nents:      number of entries in sg
2729  * @sg_offset_p:   ==== =======================================================
2730  *                 IN   start offset in bytes into sg
2731  *                 OUT  offset in bytes for element n of the sg of the first
2732  *                      byte that has not been processed where n is the return
2733  *                      value of this function.
2734  *                 ==== =======================================================
2735  * @set_page:      driver page assignment function pointer
2736  *
2737  * Core service helper for drivers to convert the largest
2738  * prefix of given sg list to a page vector. The sg list
2739  * prefix converted is the prefix that meet the requirements
2740  * of ib_map_mr_sg.
2741  *
2742  * Returns the number of sg elements that were assigned to
2743  * a page vector.
2744  */
2745 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2746                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2747 {
2748         struct scatterlist *sg;
2749         u64 last_end_dma_addr = 0;
2750         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2751         unsigned int last_page_off = 0;
2752         u64 page_mask = ~((u64)mr->page_size - 1);
2753         int i, ret;
2754
2755         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2756                 return -EINVAL;
2757
2758         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2759         mr->length = 0;
2760
2761         for_each_sg(sgl, sg, sg_nents, i) {
2762                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2763                 u64 prev_addr = dma_addr;
2764                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2765                 u64 end_dma_addr = dma_addr + dma_len;
2766                 u64 page_addr = dma_addr & page_mask;
2767
2768                 /*
2769                  * For the second and later elements, check whether either the
2770                  * end of element i-1 or the start of element i is not aligned
2771                  * on a page boundary.
2772                  */
2773                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2774                         /* Stop mapping if there is a gap. */
2775                         if (last_end_dma_addr != dma_addr)
2776                                 break;
2777
2778                         /*
2779                          * Coalesce this element with the last. If it is small
2780                          * enough just update mr->length. Otherwise start
2781                          * mapping from the next page.
2782                          */
2783                         goto next_page;
2784                 }
2785
2786                 do {
2787                         ret = set_page(mr, page_addr);
2788                         if (unlikely(ret < 0)) {
2789                                 sg_offset = prev_addr - sg_dma_address(sg);
2790                                 mr->length += prev_addr - dma_addr;
2791                                 if (sg_offset_p)
2792                                         *sg_offset_p = sg_offset;
2793                                 return i || sg_offset ? i : ret;
2794                         }
2795                         prev_addr = page_addr;
2796 next_page:
2797                         page_addr += mr->page_size;
2798                 } while (page_addr < end_dma_addr);
2799
2800                 mr->length += dma_len;
2801                 last_end_dma_addr = end_dma_addr;
2802                 last_page_off = end_dma_addr & ~page_mask;
2803
2804                 sg_offset = 0;
2805         }
2806
2807         if (sg_offset_p)
2808                 *sg_offset_p = 0;
2809         return i;
2810 }
2811 EXPORT_SYMBOL(ib_sg_to_pages);
2812
2813 struct ib_drain_cqe {
2814         struct ib_cqe cqe;
2815         struct completion done;
2816 };
2817
2818 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2819 {
2820         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2821                                                 cqe);
2822
2823         complete(&cqe->done);
2824 }
2825
2826 /*
2827  * Post a WR and block until its completion is reaped for the SQ.
2828  */
2829 static void __ib_drain_sq(struct ib_qp *qp)
2830 {
2831         struct ib_cq *cq = qp->send_cq;
2832         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2833         struct ib_drain_cqe sdrain;
2834         struct ib_rdma_wr swr = {
2835                 .wr = {
2836                         .next = NULL,
2837                         { .wr_cqe       = &sdrain.cqe, },
2838                         .opcode = IB_WR_RDMA_WRITE,
2839                 },
2840         };
2841         int ret;
2842
2843         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2844         if (ret) {
2845                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2846                 return;
2847         }
2848
2849         sdrain.cqe.done = ib_drain_qp_done;
2850         init_completion(&sdrain.done);
2851
2852         ret = ib_post_send(qp, &swr.wr, NULL);
2853         if (ret) {
2854                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2855                 return;
2856         }
2857
2858         if (cq->poll_ctx == IB_POLL_DIRECT)
2859                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2860                         ib_process_cq_direct(cq, -1);
2861         else
2862                 wait_for_completion(&sdrain.done);
2863 }
2864
2865 /*
2866  * Post a WR and block until its completion is reaped for the RQ.
2867  */
2868 static void __ib_drain_rq(struct ib_qp *qp)
2869 {
2870         struct ib_cq *cq = qp->recv_cq;
2871         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2872         struct ib_drain_cqe rdrain;
2873         struct ib_recv_wr rwr = {};
2874         int ret;
2875
2876         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2877         if (ret) {
2878                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2879                 return;
2880         }
2881
2882         rwr.wr_cqe = &rdrain.cqe;
2883         rdrain.cqe.done = ib_drain_qp_done;
2884         init_completion(&rdrain.done);
2885
2886         ret = ib_post_recv(qp, &rwr, NULL);
2887         if (ret) {
2888                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2889                 return;
2890         }
2891
2892         if (cq->poll_ctx == IB_POLL_DIRECT)
2893                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2894                         ib_process_cq_direct(cq, -1);
2895         else
2896                 wait_for_completion(&rdrain.done);
2897 }
2898
2899 /*
2900  * __ib_drain_srq() - Block until Last WQE Reached event arrives, or timeout
2901  *                    expires.
2902  * @qp:               queue pair associated with SRQ to drain
2903  *
2904  * Quoting 10.3.1 Queue Pair and EE Context States:
2905  *
2906  * Note, for QPs that are associated with an SRQ, the Consumer should take the
2907  * QP through the Error State before invoking a Destroy QP or a Modify QP to the
2908  * Reset State.  The Consumer may invoke the Destroy QP without first performing
2909  * a Modify QP to the Error State and waiting for the Affiliated Asynchronous
2910  * Last WQE Reached Event. However, if the Consumer does not wait for the
2911  * Affiliated Asynchronous Last WQE Reached Event, then WQE and Data Segment
2912  * leakage may occur. Therefore, it is good programming practice to tear down a
2913  * QP that is associated with an SRQ by using the following process:
2914  *
2915  * - Put the QP in the Error State
2916  * - Wait for the Affiliated Asynchronous Last WQE Reached Event;
2917  * - either:
2918  *       drain the CQ by invoking the Poll CQ verb and either wait for CQ
2919  *       to be empty or the number of Poll CQ operations has exceeded
2920  *       CQ capacity size;
2921  * - or
2922  *       post another WR that completes on the same CQ and wait for this
2923  *       WR to return as a WC;
2924  * - and then invoke a Destroy QP or Reset QP.
2925  *
2926  * We use the first option.
2927  */
2928 static void __ib_drain_srq(struct ib_qp *qp)
2929 {
2930         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2931         struct ib_cq *cq;
2932         int n, polled = 0;
2933         int ret;
2934
2935         if (!qp->srq) {
2936                 WARN_ONCE(1, "QP 0x%p is not associated with SRQ\n", qp);
2937                 return;
2938         }
2939
2940         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2941         if (ret) {
2942                 WARN_ONCE(ret, "failed to drain shared recv queue: %d\n", ret);
2943                 return;
2944         }
2945
2946         if (ib_srq_has_cq(qp->srq->srq_type)) {
2947                 cq = qp->srq->ext.cq;
2948         } else if (qp->recv_cq) {
2949                 cq = qp->recv_cq;
2950         } else {
2951                 WARN_ONCE(1, "QP 0x%p has no CQ associated with SRQ\n", qp);
2952                 return;
2953         }
2954
2955         if (wait_for_completion_timeout(&qp->srq_completion, 60 * HZ) > 0) {
2956                 while (polled != cq->cqe) {
2957                         n = ib_process_cq_direct(cq, cq->cqe - polled);
2958                         if (!n)
2959                                 return;
2960                         polled += n;
2961                 }
2962         }
2963 }
2964
2965 /**
2966  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2967  *                 application.
2968  * @qp:            queue pair to drain
2969  *
2970  * If the device has a provider-specific drain function, then
2971  * call that.  Otherwise call the generic drain function
2972  * __ib_drain_sq().
2973  *
2974  * The caller must:
2975  *
2976  * ensure there is room in the CQ and SQ for the drain work request and
2977  * completion.
2978  *
2979  * allocate the CQ using ib_alloc_cq().
2980  *
2981  * ensure that there are no other contexts that are posting WRs concurrently.
2982  * Otherwise the drain is not guaranteed.
2983  */
2984 void ib_drain_sq(struct ib_qp *qp)
2985 {
2986         if (qp->device->ops.drain_sq)
2987                 qp->device->ops.drain_sq(qp);
2988         else
2989                 __ib_drain_sq(qp);
2990         trace_cq_drain_complete(qp->send_cq);
2991 }
2992 EXPORT_SYMBOL(ib_drain_sq);
2993
2994 /**
2995  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2996  *                 application.
2997  * @qp:            queue pair to drain
2998  *
2999  * If the device has a provider-specific drain function, then
3000  * call that.  Otherwise call the generic drain function
3001  * __ib_drain_rq().
3002  *
3003  * The caller must:
3004  *
3005  * ensure there is room in the CQ and RQ for the drain work request and
3006  * completion.
3007  *
3008  * allocate the CQ using ib_alloc_cq().
3009  *
3010  * ensure that there are no other contexts that are posting WRs concurrently.
3011  * Otherwise the drain is not guaranteed.
3012  */
3013 void ib_drain_rq(struct ib_qp *qp)
3014 {
3015         if (qp->device->ops.drain_rq)
3016                 qp->device->ops.drain_rq(qp);
3017         else
3018                 __ib_drain_rq(qp);
3019         trace_cq_drain_complete(qp->recv_cq);
3020 }
3021 EXPORT_SYMBOL(ib_drain_rq);
3022
3023 /**
3024  * ib_drain_qp() - Block until all CQEs have been consumed by the
3025  *                 application on both the RQ and SQ.
3026  * @qp:            queue pair to drain
3027  *
3028  * The caller must:
3029  *
3030  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
3031  * and completions.
3032  *
3033  * allocate the CQs using ib_alloc_cq().
3034  *
3035  * ensure that there are no other contexts that are posting WRs concurrently.
3036  * Otherwise the drain is not guaranteed.
3037  */
3038 void ib_drain_qp(struct ib_qp *qp)
3039 {
3040         ib_drain_sq(qp);
3041         if (!qp->srq)
3042                 ib_drain_rq(qp);
3043         else
3044                 __ib_drain_srq(qp);
3045 }
3046 EXPORT_SYMBOL(ib_drain_qp);
3047
3048 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
3049                                      enum rdma_netdev_t type, const char *name,
3050                                      unsigned char name_assign_type,
3051                                      void (*setup)(struct net_device *))
3052 {
3053         struct rdma_netdev_alloc_params params;
3054         struct net_device *netdev;
3055         int rc;
3056
3057         if (!device->ops.rdma_netdev_get_params)
3058                 return ERR_PTR(-EOPNOTSUPP);
3059
3060         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3061                                                 &params);
3062         if (rc)
3063                 return ERR_PTR(rc);
3064
3065         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
3066                                   setup, params.txqs, params.rxqs);
3067         if (!netdev)
3068                 return ERR_PTR(-ENOMEM);
3069
3070         return netdev;
3071 }
3072 EXPORT_SYMBOL(rdma_alloc_netdev);
3073
3074 int rdma_init_netdev(struct ib_device *device, u32 port_num,
3075                      enum rdma_netdev_t type, const char *name,
3076                      unsigned char name_assign_type,
3077                      void (*setup)(struct net_device *),
3078                      struct net_device *netdev)
3079 {
3080         struct rdma_netdev_alloc_params params;
3081         int rc;
3082
3083         if (!device->ops.rdma_netdev_get_params)
3084                 return -EOPNOTSUPP;
3085
3086         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3087                                                 &params);
3088         if (rc)
3089                 return rc;
3090
3091         return params.initialize_rdma_netdev(device, port_num,
3092                                              netdev, params.param);
3093 }
3094 EXPORT_SYMBOL(rdma_init_netdev);
3095
3096 void __rdma_block_iter_start(struct ib_block_iter *biter,
3097                              struct scatterlist *sglist, unsigned int nents,
3098                              unsigned long pgsz)
3099 {
3100         memset(biter, 0, sizeof(struct ib_block_iter));
3101         biter->__sg = sglist;
3102         biter->__sg_nents = nents;
3103
3104         /* Driver provides best block size to use */
3105         biter->__pg_bit = __fls(pgsz);
3106 }
3107 EXPORT_SYMBOL(__rdma_block_iter_start);
3108
3109 bool __rdma_block_iter_next(struct ib_block_iter *biter)
3110 {
3111         unsigned int block_offset;
3112         unsigned int sg_delta;
3113
3114         if (!biter->__sg_nents || !biter->__sg)
3115                 return false;
3116
3117         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3118         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3119         sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
3120
3121         if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
3122                 biter->__sg_advance += sg_delta;
3123         } else {
3124                 biter->__sg_advance = 0;
3125                 biter->__sg = sg_next(biter->__sg);
3126                 biter->__sg_nents--;
3127         }
3128
3129         return true;
3130 }
3131 EXPORT_SYMBOL(__rdma_block_iter_next);
3132
3133 /**
3134  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3135  *   for the drivers.
3136  * @descs: array of static descriptors
3137  * @num_counters: number of elements in array
3138  * @lifespan: milliseconds between updates
3139  */
3140 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3141         const struct rdma_stat_desc *descs, int num_counters,
3142         unsigned long lifespan)
3143 {
3144         struct rdma_hw_stats *stats;
3145
3146         stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3147         if (!stats)
3148                 return NULL;
3149
3150         stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3151                                      sizeof(*stats->is_disabled), GFP_KERNEL);
3152         if (!stats->is_disabled)
3153                 goto err;
3154
3155         stats->descs = descs;
3156         stats->num_counters = num_counters;
3157         stats->lifespan = msecs_to_jiffies(lifespan);
3158         mutex_init(&stats->lock);
3159
3160         return stats;
3161
3162 err:
3163         kfree(stats);
3164         return NULL;
3165 }
3166 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3167
3168 /**
3169  * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3170  * @stats: statistics to release
3171  */
3172 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3173 {
3174         if (!stats)
3175                 return;
3176
3177         kfree(stats->is_disabled);
3178         kfree(stats);
3179 }
3180 EXPORT_SYMBOL(rdma_free_hw_stats_struct);
This page took 0.216527 seconds and 4 git commands to generate.