1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2020 Invensense, Inc.
6 #include <linux/errno.h>
7 #include <linux/kernel.h>
8 #include <linux/math64.h>
9 #include <linux/module.h>
11 #include <linux/iio/common/inv_sensors_timestamp.h>
13 /* compute jitter, min and max following jitter in per mille */
14 #define INV_SENSORS_TIMESTAMP_JITTER(_val, _jitter) \
15 (div_s64((_val) * (_jitter), 1000))
16 #define INV_SENSORS_TIMESTAMP_MIN(_val, _jitter) \
17 (((_val) * (1000 - (_jitter))) / 1000)
18 #define INV_SENSORS_TIMESTAMP_MAX(_val, _jitter) \
19 (((_val) * (1000 + (_jitter))) / 1000)
21 /* Add a new value inside an accumulator and update the estimate value */
22 static void inv_update_acc(struct inv_sensors_timestamp_acc *acc, uint32_t val)
27 acc->values[acc->idx++] = val;
28 if (acc->idx >= ARRAY_SIZE(acc->values))
31 /* compute the mean of all stored values, use 0 as empty slot */
32 for (i = 0; i < ARRAY_SIZE(acc->values); ++i) {
33 if (acc->values[i] == 0)
35 sum += acc->values[i];
38 acc->val = div_u64(sum, i);
41 void inv_sensors_timestamp_init(struct inv_sensors_timestamp *ts,
42 const struct inv_sensors_timestamp_chip *chip)
44 memset(ts, 0, sizeof(*ts));
46 /* save chip parameters and compute min and max clock period */
48 ts->min_period = INV_SENSORS_TIMESTAMP_MIN(chip->clock_period, chip->jitter);
49 ts->max_period = INV_SENSORS_TIMESTAMP_MAX(chip->clock_period, chip->jitter);
51 /* current multiplier and period values after reset */
52 ts->mult = chip->init_period / chip->clock_period;
53 ts->period = chip->init_period;
55 /* use theoretical value for chip period */
56 inv_update_acc(&ts->chip_period, chip->clock_period);
58 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_init, "IIO_INV_SENSORS_TIMESTAMP");
60 int inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp *ts,
61 uint32_t period, bool fifo)
65 /* when FIFO is on, prevent odr change if one is already pending */
66 if (fifo && ts->new_mult != 0)
69 mult = period / ts->chip.clock_period;
73 /* When FIFO is off, directly apply the new ODR */
75 inv_sensors_timestamp_apply_odr(ts, 0, 0, 0);
79 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_update_odr, "IIO_INV_SENSORS_TIMESTAMP");
81 static bool inv_validate_period(struct inv_sensors_timestamp *ts, uint32_t period)
83 uint32_t period_min, period_max;
85 /* check that period is acceptable */
86 period_min = ts->min_period * ts->mult;
87 period_max = ts->max_period * ts->mult;
88 if (period > period_min && period < period_max)
94 static bool inv_update_chip_period(struct inv_sensors_timestamp *ts,
97 uint32_t new_chip_period;
99 if (!inv_validate_period(ts, period))
102 /* update chip internal period estimation */
103 new_chip_period = period / ts->mult;
104 inv_update_acc(&ts->chip_period, new_chip_period);
105 ts->period = ts->mult * ts->chip_period.val;
110 static void inv_align_timestamp_it(struct inv_sensors_timestamp *ts)
112 const int64_t period_min = ts->min_period * ts->mult;
113 const int64_t period_max = ts->max_period * ts->mult;
114 int64_t add_max, sub_max;
115 int64_t delta, jitter;
118 /* delta time between last sample and last interrupt */
119 delta = ts->it.lo - ts->timestamp;
121 /* adjust timestamp while respecting jitter */
122 add_max = period_max - (int64_t)ts->period;
123 sub_max = period_min - (int64_t)ts->period;
124 jitter = INV_SENSORS_TIMESTAMP_JITTER((int64_t)ts->period, ts->chip.jitter);
127 else if (delta < -jitter)
132 ts->timestamp += adjust;
135 void inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp *ts,
136 size_t sample_nb, int64_t timestamp)
138 struct inv_sensors_timestamp_interval *it;
139 int64_t delta, interval;
146 /* update interrupt timestamp and compute chip and sensor periods */
150 delta = it->up - it->lo;
152 /* compute period: delta time divided by number of samples */
153 period = div_s64(delta, sample_nb);
154 valid = inv_update_chip_period(ts, period);
157 /* no previous data, compute theoritical value from interrupt */
158 if (ts->timestamp == 0) {
159 /* elapsed time: sensor period * sensor samples number */
160 interval = (int64_t)ts->period * (int64_t)sample_nb;
161 ts->timestamp = it->up - interval;
165 /* if interrupt interval is valid, sync with interrupt timestamp */
167 inv_align_timestamp_it(ts);
169 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_interrupt, "IIO_INV_SENSORS_TIMESTAMP");
171 void inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp *ts,
172 uint32_t fifo_period, size_t fifo_nb,
173 unsigned int fifo_no)
178 if (ts->new_mult == 0)
181 /* update to new multiplier and update period */
182 ts->mult = ts->new_mult;
184 ts->period = ts->mult * ts->chip_period.val;
187 * After ODR change the time interval with the previous sample is
188 * undertermined (depends when the change occures). So we compute the
189 * timestamp from the current interrupt using the new FIFO period, the
190 * total number of samples and the current sample numero.
192 if (ts->timestamp != 0) {
193 /* compute measured fifo period */
194 fifo_mult = fifo_period / ts->chip.clock_period;
195 fifo_period = fifo_mult * ts->chip_period.val;
196 /* computes time interval between interrupt and this sample */
197 interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period;
198 ts->timestamp = ts->it.up - interval;
201 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_apply_odr, "IIO_INV_SENSORS_TIMESTAMP");
203 MODULE_AUTHOR("InvenSense, Inc.");
204 MODULE_DESCRIPTION("InvenSense sensors timestamp module");
205 MODULE_LICENSE("GPL");