1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright 2013-2014 Analog Devices Inc.
8 * Documentation for the parts can be found at:
9 * - XADC hardmacro: Xilinx UG480
10 * - ZYNQ XADC interface: Xilinx UG585
11 * - AXI XADC interface: Xilinx PG019
14 #include <linux/clk.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/property.h>
25 #include <linux/slab.h>
26 #include <linux/sysfs.h>
28 #include <linux/iio/buffer.h>
29 #include <linux/iio/events.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/trigger.h>
33 #include <linux/iio/trigger_consumer.h>
34 #include <linux/iio/triggered_buffer.h>
36 #include "xilinx-xadc.h"
38 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
40 /* ZYNQ register definitions */
41 #define XADC_ZYNQ_REG_CFG 0x00
42 #define XADC_ZYNQ_REG_INTSTS 0x04
43 #define XADC_ZYNQ_REG_INTMSK 0x08
44 #define XADC_ZYNQ_REG_STATUS 0x0c
45 #define XADC_ZYNQ_REG_CFIFO 0x10
46 #define XADC_ZYNQ_REG_DFIFO 0x14
47 #define XADC_ZYNQ_REG_CTL 0x18
49 #define XADC_ZYNQ_CFG_ENABLE BIT(31)
50 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
51 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
52 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
53 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
54 #define XADC_ZYNQ_CFG_WEDGE BIT(13)
55 #define XADC_ZYNQ_CFG_REDGE BIT(12)
56 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
60 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
61 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
62 #define XADC_ZYNQ_CFG_IGAP(x) (x)
64 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
65 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
66 #define XADC_ZYNQ_INT_ALARM_MASK 0xff
67 #define XADC_ZYNQ_INT_ALARM_OFFSET 0
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
70 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
72 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
73 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
74 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
75 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
76 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
77 #define XADC_ZYNQ_STATUS_OT BIT(7)
78 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
80 #define XADC_ZYNQ_CTL_RESET BIT(4)
82 #define XADC_ZYNQ_CMD_NOP 0x00
83 #define XADC_ZYNQ_CMD_READ 0x01
84 #define XADC_ZYNQ_CMD_WRITE 0x02
86 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
88 /* AXI register definitions */
89 #define XADC_AXI_REG_RESET 0x00
90 #define XADC_AXI_REG_STATUS 0x04
91 #define XADC_AXI_REG_ALARM_STATUS 0x08
92 #define XADC_AXI_REG_CONVST 0x0c
93 #define XADC_AXI_REG_XADC_RESET 0x10
94 #define XADC_AXI_REG_GIER 0x5c
95 #define XADC_AXI_REG_IPISR 0x60
96 #define XADC_AXI_REG_IPIER 0x68
99 #define XADC_7S_AXI_ADC_REG_OFFSET 0x200
102 #define XADC_US_AXI_ADC_REG_OFFSET 0x400
104 #define XADC_AXI_RESET_MAGIC 0xa
105 #define XADC_AXI_GIER_ENABLE BIT(31)
107 #define XADC_AXI_INT_EOS BIT(4)
108 #define XADC_AXI_INT_ALARM_MASK 0x3c0f
110 #define XADC_FLAGS_BUFFERED BIT(0)
111 #define XADC_FLAGS_IRQ_OPTIONAL BIT(1)
114 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
115 * not have a hardware FIFO. Which means an interrupt is generated for each
116 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
117 * overloaded by the interrupts that it soft-lockups. For this reason the driver
118 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
119 * but still responsive.
121 #define XADC_MAX_SAMPLERATE 150000
123 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
126 writel(val, xadc->base + reg);
129 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
132 *val = readl(xadc->base + reg);
136 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
137 * XADC. Reads and writes to the XADC register are performed by submitting a
138 * request to the command FIFO (CFIFO), once the request has been completed the
139 * result can be read from the data FIFO (DFIFO). The method currently used in
140 * this driver is to submit the request for a read/write operation, then go to
141 * sleep and wait for an interrupt that signals that a response is available in
145 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
150 for (i = 0; i < n; i++)
151 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
154 static void xadc_zynq_drain_fifo(struct xadc *xadc)
156 uint32_t status, tmp;
158 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
160 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
161 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
162 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
166 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
169 xadc->zynq_intmask &= ~mask;
170 xadc->zynq_intmask |= val;
172 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
173 xadc->zynq_intmask | xadc->zynq_masked_alarm);
176 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
183 spin_lock_irq(&xadc->lock);
184 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
185 XADC_ZYNQ_INT_DFIFO_GTH);
187 reinit_completion(&xadc->completion);
189 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
190 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
191 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
192 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
193 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
194 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
196 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
197 spin_unlock_irq(&xadc->lock);
199 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
205 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
210 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
217 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
218 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
220 spin_lock_irq(&xadc->lock);
221 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
222 XADC_ZYNQ_INT_DFIFO_GTH);
223 xadc_zynq_drain_fifo(xadc);
224 reinit_completion(&xadc->completion);
226 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
227 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
228 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
229 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
230 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
232 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
233 spin_unlock_irq(&xadc->lock);
234 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
240 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
241 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
243 *val = resp & 0xffff;
248 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
250 return ((alarm & 0x80) >> 4) |
251 ((alarm & 0x78) << 1) |
256 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
257 * threshold condition go way from within the interrupt handler, this means as
258 * soon as a threshold condition is present we would enter the interrupt handler
259 * again and again. To work around this we mask all active thresholds interrupts
260 * in the interrupt handler and start a timer. In this timer we poll the
261 * interrupt status and only if the interrupt is inactive we unmask it again.
263 static void xadc_zynq_unmask_worker(struct work_struct *work)
265 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
266 unsigned int misc_sts, unmask;
268 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
270 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
272 spin_lock_irq(&xadc->lock);
274 /* Clear those bits which are not active anymore */
275 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
276 xadc->zynq_masked_alarm &= misc_sts;
278 /* Also clear those which are masked out anyway */
279 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
281 /* Clear the interrupts before we unmask them */
282 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
284 xadc_zynq_update_intmsk(xadc, 0, 0);
286 spin_unlock_irq(&xadc->lock);
288 /* if still pending some alarm re-trigger the timer */
289 if (xadc->zynq_masked_alarm) {
290 schedule_delayed_work(&xadc->zynq_unmask_work,
291 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
296 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
298 struct iio_dev *indio_dev = devid;
299 struct xadc *xadc = iio_priv(indio_dev);
302 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
304 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
309 spin_lock(&xadc->lock);
311 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
313 if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
314 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
315 XADC_ZYNQ_INT_DFIFO_GTH);
316 complete(&xadc->completion);
319 status &= XADC_ZYNQ_INT_ALARM_MASK;
321 xadc->zynq_masked_alarm |= status;
323 * mask the current event interrupt,
324 * unmask it when the interrupt is no more active.
326 xadc_zynq_update_intmsk(xadc, 0, 0);
328 xadc_handle_events(indio_dev,
329 xadc_zynq_transform_alarm(status));
331 /* unmask the required interrupts in timer. */
332 schedule_delayed_work(&xadc->zynq_unmask_work,
333 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
335 spin_unlock(&xadc->lock);
340 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
341 #define XADC_ZYNQ_IGAP_DEFAULT 20
342 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
344 static int xadc_zynq_setup(struct platform_device *pdev,
345 struct iio_dev *indio_dev, int irq)
347 struct xadc *xadc = iio_priv(indio_dev);
348 unsigned long pcap_rate;
349 unsigned int tck_div;
352 unsigned int tck_rate;
355 /* TODO: Figure out how to make igap and tck_rate configurable */
356 igap = XADC_ZYNQ_IGAP_DEFAULT;
357 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
359 xadc->zynq_intmask = ~0;
361 pcap_rate = clk_get_rate(xadc->clk);
365 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
366 ret = clk_set_rate(xadc->clk,
367 (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
372 if (tck_rate > pcap_rate / 2) {
375 div = pcap_rate / tck_rate;
376 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
381 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
383 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
385 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
387 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
389 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
390 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
391 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
392 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
393 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
394 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
395 tck_div | XADC_ZYNQ_CFG_IGAP(igap));
397 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
398 ret = clk_set_rate(xadc->clk, pcap_rate);
406 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
411 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
413 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
414 case XADC_ZYNQ_CFG_TCKRATE_DIV4:
417 case XADC_ZYNQ_CFG_TCKRATE_DIV8:
420 case XADC_ZYNQ_CFG_TCKRATE_DIV16:
428 return clk_get_rate(xadc->clk) / div;
431 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
436 /* Move OT to bit 7 */
437 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
439 spin_lock_irqsave(&xadc->lock, flags);
441 /* Clear previous interrupts if any. */
442 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
443 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
445 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
446 ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
448 spin_unlock_irqrestore(&xadc->lock, flags);
451 static const struct xadc_ops xadc_zynq_ops = {
452 .read = xadc_zynq_read_adc_reg,
453 .write = xadc_zynq_write_adc_reg,
454 .setup = xadc_zynq_setup,
455 .get_dclk_rate = xadc_zynq_get_dclk_rate,
456 .interrupt_handler = xadc_zynq_interrupt_handler,
457 .update_alarm = xadc_zynq_update_alarm,
458 .type = XADC_TYPE_S7,
459 /* Temp in C = (val * 503.975) / 2**bits - 273.15 */
460 .temp_scale = 503975,
461 .temp_offset = 273150,
464 static const unsigned int xadc_axi_reg_offsets[] = {
465 [XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET,
466 [XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET,
469 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
474 xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
476 *val = val32 & 0xffff;
481 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
484 xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
490 static int xadc_axi_setup(struct platform_device *pdev,
491 struct iio_dev *indio_dev, int irq)
493 struct xadc *xadc = iio_priv(indio_dev);
495 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
496 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
501 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
503 struct iio_dev *indio_dev = devid;
504 struct xadc *xadc = iio_priv(indio_dev);
505 uint32_t status, mask;
508 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
509 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
515 if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
516 iio_trigger_poll(xadc->trigger);
518 if (status & XADC_AXI_INT_ALARM_MASK) {
520 * The order of the bits in the AXI-XADC status register does
521 * not match the order of the bits in the XADC alarm enable
522 * register. xadc_handle_events() expects the events to be in
523 * the same order as the XADC alarm enable register.
525 events = (status & 0x000e) >> 1;
526 events |= (status & 0x0001) << 3;
527 events |= (status & 0x3c00) >> 6;
528 xadc_handle_events(indio_dev, events);
531 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
536 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
542 * The order of the bits in the AXI-XADC status register does not match
543 * the order of the bits in the XADC alarm enable register. We get
544 * passed the alarm mask in the same order as in the XADC alarm enable
547 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
548 ((alarm & 0xf0) << 6);
550 spin_lock_irqsave(&xadc->lock, flags);
551 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
552 val &= ~XADC_AXI_INT_ALARM_MASK;
554 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
555 spin_unlock_irqrestore(&xadc->lock, flags);
558 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
560 return clk_get_rate(xadc->clk);
563 static const struct xadc_ops xadc_7s_axi_ops = {
564 .read = xadc_axi_read_adc_reg,
565 .write = xadc_axi_write_adc_reg,
566 .setup = xadc_axi_setup,
567 .get_dclk_rate = xadc_axi_get_dclk,
568 .update_alarm = xadc_axi_update_alarm,
569 .interrupt_handler = xadc_axi_interrupt_handler,
570 .flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
571 .type = XADC_TYPE_S7,
572 /* Temp in C = (val * 503.975) / 2**bits - 273.15 */
573 .temp_scale = 503975,
574 .temp_offset = 273150,
577 static const struct xadc_ops xadc_us_axi_ops = {
578 .read = xadc_axi_read_adc_reg,
579 .write = xadc_axi_write_adc_reg,
580 .setup = xadc_axi_setup,
581 .get_dclk_rate = xadc_axi_get_dclk,
582 .update_alarm = xadc_axi_update_alarm,
583 .interrupt_handler = xadc_axi_interrupt_handler,
584 .flags = XADC_FLAGS_BUFFERED | XADC_FLAGS_IRQ_OPTIONAL,
585 .type = XADC_TYPE_US,
587 * Values below are for UltraScale+ (SYSMONE4) using internal reference.
588 * See https://docs.xilinx.com/v/u/en-US/ug580-ultrascale-sysmon
590 .temp_scale = 509314,
591 .temp_offset = 280231,
594 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
595 uint16_t mask, uint16_t val)
600 ret = _xadc_read_adc_reg(xadc, reg, &tmp);
604 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
607 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
608 uint16_t mask, uint16_t val)
612 mutex_lock(&xadc->mutex);
613 ret = _xadc_update_adc_reg(xadc, reg, mask, val);
614 mutex_unlock(&xadc->mutex);
619 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
621 return xadc->ops->get_dclk_rate(xadc);
624 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
625 const unsigned long *mask)
627 struct xadc *xadc = iio_priv(indio_dev);
631 n = bitmap_weight(mask, iio_get_masklength(indio_dev));
633 data = devm_krealloc_array(indio_dev->dev.parent, xadc->data,
634 n, sizeof(*xadc->data), GFP_KERNEL);
638 memset(data, 0, n * sizeof(*xadc->data));
644 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
646 switch (scan_index) {
648 return XADC_REG_VCCPINT;
650 return XADC_REG_VCCPAUX;
652 return XADC_REG_VCCO_DDR;
654 return XADC_REG_TEMP;
656 return XADC_REG_VCCINT;
658 return XADC_REG_VCCAUX;
660 return XADC_REG_VPVN;
662 return XADC_REG_VREFP;
664 return XADC_REG_VREFN;
666 return XADC_REG_VCCBRAM;
668 return XADC_REG_VAUX(scan_index - 16);
672 static irqreturn_t xadc_trigger_handler(int irq, void *p)
674 struct iio_poll_func *pf = p;
675 struct iio_dev *indio_dev = pf->indio_dev;
676 struct xadc *xadc = iio_priv(indio_dev);
684 iio_for_each_active_channel(indio_dev, i) {
685 chan = xadc_scan_index_to_channel(i);
686 xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
690 iio_push_to_buffers(indio_dev, xadc->data);
693 iio_trigger_notify_done(indio_dev->trig);
698 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
700 struct xadc *xadc = iio_trigger_get_drvdata(trigger);
706 mutex_lock(&xadc->mutex);
709 /* Only one of the two triggers can be active at a time. */
710 if (xadc->trigger != NULL) {
714 xadc->trigger = trigger;
715 if (trigger == xadc->convst_trigger)
716 convst = XADC_CONF0_EC;
720 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
725 xadc->trigger = NULL;
728 spin_lock_irqsave(&xadc->lock, flags);
729 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
730 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
732 val |= XADC_AXI_INT_EOS;
734 val &= ~XADC_AXI_INT_EOS;
735 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
736 spin_unlock_irqrestore(&xadc->lock, flags);
739 mutex_unlock(&xadc->mutex);
744 static const struct iio_trigger_ops xadc_trigger_ops = {
745 .set_trigger_state = &xadc_trigger_set_state,
748 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
751 struct device *dev = indio_dev->dev.parent;
752 struct iio_trigger *trig;
755 trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
756 iio_device_id(indio_dev), name);
758 return ERR_PTR(-ENOMEM);
760 trig->ops = &xadc_trigger_ops;
761 iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
763 ret = devm_iio_trigger_register(dev, trig);
770 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
775 * As per datasheet the power-down bits are don't care in the
776 * UltraScale, but as per reality setting the power-down bit for the
777 * non-existing ADC-B powers down the main ADC, so just return and don't
780 if (xadc->ops->type == XADC_TYPE_US)
783 /* Powerdown the ADC-B when it is not needed. */
785 case XADC_CONF1_SEQ_SIMULTANEOUS:
786 case XADC_CONF1_SEQ_INDEPENDENT:
790 val = XADC_CONF2_PD_ADC_B;
794 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
798 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
800 unsigned int aux_scan_mode = scan_mode >> 16;
802 /* UltraScale has only one ADC and supports only continuous mode */
803 if (xadc->ops->type == XADC_TYPE_US)
804 return XADC_CONF1_SEQ_CONTINUOUS;
806 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
807 return XADC_CONF1_SEQ_SIMULTANEOUS;
809 if ((aux_scan_mode & 0xff00) == 0 ||
810 (aux_scan_mode & 0x00ff) == 0)
811 return XADC_CONF1_SEQ_CONTINUOUS;
813 return XADC_CONF1_SEQ_SIMULTANEOUS;
816 static int xadc_postdisable(struct iio_dev *indio_dev)
818 struct xadc *xadc = iio_priv(indio_dev);
819 unsigned long scan_mask;
823 scan_mask = 1; /* Run calibration as part of the sequence */
824 for (i = 0; i < indio_dev->num_channels; i++)
825 scan_mask |= BIT(indio_dev->channels[i].scan_index);
827 /* Enable all channels and calibration */
828 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
832 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
836 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
837 XADC_CONF1_SEQ_CONTINUOUS);
841 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
844 static int xadc_preenable(struct iio_dev *indio_dev)
846 struct xadc *xadc = iio_priv(indio_dev);
847 unsigned long scan_mask;
851 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
852 XADC_CONF1_SEQ_DEFAULT);
856 scan_mask = *indio_dev->active_scan_mask;
857 seq_mode = xadc_get_seq_mode(xadc, scan_mask);
859 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
864 * In simultaneous mode the upper and lower aux channels are samples at
865 * the same time. In this mode the upper 8 bits in the sequencer
866 * register are don't care and the lower 8 bits control two channels
867 * each. As such we must set the bit if either the channel in the lower
868 * group or the upper group is enabled.
870 if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
871 scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
873 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
877 ret = xadc_power_adc_b(xadc, seq_mode);
881 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
888 xadc_postdisable(indio_dev);
892 static const struct iio_buffer_setup_ops xadc_buffer_ops = {
893 .preenable = &xadc_preenable,
894 .postdisable = &xadc_postdisable,
897 static int xadc_read_samplerate(struct xadc *xadc)
903 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
907 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
911 return xadc_get_dclk_rate(xadc) / div / 26;
914 static int xadc_read_raw(struct iio_dev *indio_dev,
915 struct iio_chan_spec const *chan, int *val, int *val2, long info)
917 struct xadc *xadc = iio_priv(indio_dev);
918 unsigned int bits = chan->scan_type.realbits;
923 case IIO_CHAN_INFO_RAW:
924 if (iio_buffer_enabled(indio_dev))
926 ret = xadc_read_adc_reg(xadc, chan->address, &val16);
930 val16 >>= chan->scan_type.shift;
931 if (chan->scan_type.sign == 'u')
934 *val = sign_extend32(val16, bits - 1);
937 case IIO_CHAN_INFO_SCALE:
938 switch (chan->type) {
940 /* V = (val * 3.0) / 2**bits */
941 switch (chan->address) {
942 case XADC_REG_VCCINT:
943 case XADC_REG_VCCAUX:
946 case XADC_REG_VCCBRAM:
947 case XADC_REG_VCCPINT:
948 case XADC_REG_VCCPAUX:
949 case XADC_REG_VCCO_DDR:
957 return IIO_VAL_FRACTIONAL_LOG2;
959 *val = xadc->ops->temp_scale;
961 return IIO_VAL_FRACTIONAL_LOG2;
965 case IIO_CHAN_INFO_OFFSET:
966 /* Only the temperature channel has an offset */
967 *val = -((xadc->ops->temp_offset << bits) / xadc->ops->temp_scale);
969 case IIO_CHAN_INFO_SAMP_FREQ:
970 ret = xadc_read_samplerate(xadc);
981 static int xadc_write_samplerate(struct xadc *xadc, int val)
983 unsigned long clk_rate = xadc_get_dclk_rate(xadc);
993 if (val > XADC_MAX_SAMPLERATE)
994 val = XADC_MAX_SAMPLERATE;
1003 * We want to round down, but only if we do not exceed the 150 kSPS
1006 div = clk_rate / val;
1007 if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
1011 else if (div > 0xff)
1014 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
1015 div << XADC_CONF2_DIV_OFFSET);
1018 static int xadc_write_raw(struct iio_dev *indio_dev,
1019 struct iio_chan_spec const *chan, int val, int val2, long info)
1021 struct xadc *xadc = iio_priv(indio_dev);
1023 if (info != IIO_CHAN_INFO_SAMP_FREQ)
1026 return xadc_write_samplerate(xadc, val);
1029 static const struct iio_event_spec xadc_temp_events[] = {
1031 .type = IIO_EV_TYPE_THRESH,
1032 .dir = IIO_EV_DIR_RISING,
1033 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
1034 BIT(IIO_EV_INFO_VALUE) |
1035 BIT(IIO_EV_INFO_HYSTERESIS),
1039 /* Separate values for upper and lower thresholds, but only a shared enabled */
1040 static const struct iio_event_spec xadc_voltage_events[] = {
1042 .type = IIO_EV_TYPE_THRESH,
1043 .dir = IIO_EV_DIR_RISING,
1044 .mask_separate = BIT(IIO_EV_INFO_VALUE),
1046 .type = IIO_EV_TYPE_THRESH,
1047 .dir = IIO_EV_DIR_FALLING,
1048 .mask_separate = BIT(IIO_EV_INFO_VALUE),
1050 .type = IIO_EV_TYPE_THRESH,
1051 .dir = IIO_EV_DIR_EITHER,
1052 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
1056 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \
1059 .channel = (_chan), \
1060 .address = (_addr), \
1061 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1062 BIT(IIO_CHAN_INFO_SCALE) | \
1063 BIT(IIO_CHAN_INFO_OFFSET), \
1064 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1065 .event_spec = xadc_temp_events, \
1066 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1067 .scan_index = (_scan_index), \
1070 .realbits = (_bits), \
1071 .storagebits = 16, \
1072 .shift = 16 - (_bits), \
1073 .endianness = IIO_CPU, \
1077 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \
1078 .type = IIO_VOLTAGE, \
1080 .channel = (_chan), \
1081 .address = (_addr), \
1082 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1083 BIT(IIO_CHAN_INFO_SCALE), \
1084 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1085 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1086 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1087 .scan_index = (_scan_index), \
1089 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1090 .realbits = (_bits), \
1091 .storagebits = 16, \
1092 .shift = 16 - (_bits), \
1093 .endianness = IIO_CPU, \
1095 .extend_name = _ext, \
1099 #define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \
1100 XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12)
1101 #define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1102 XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm)
1104 static const struct iio_chan_spec xadc_7s_channels[] = {
1105 XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1106 XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1107 XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1108 XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1109 XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1110 XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1111 XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1112 XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1113 XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1114 XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1115 XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1116 XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1117 XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1118 XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1119 XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1120 XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1121 XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1122 XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1123 XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1124 XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1125 XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1126 XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1127 XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1128 XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1129 XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1130 XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1134 #define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \
1135 XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10)
1136 #define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1137 XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm)
1139 static const struct iio_chan_spec xadc_us_channels[] = {
1140 XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1141 XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1142 XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1143 XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1144 XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true),
1145 XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true),
1146 XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true),
1147 XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1148 XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1149 XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1150 XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1151 XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1152 XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1153 XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1154 XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1155 XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1156 XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1157 XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1158 XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1159 XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1160 XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1161 XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1162 XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1163 XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1164 XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1165 XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1168 static const struct iio_info xadc_info = {
1169 .read_raw = &xadc_read_raw,
1170 .write_raw = &xadc_write_raw,
1171 .read_event_config = &xadc_read_event_config,
1172 .write_event_config = &xadc_write_event_config,
1173 .read_event_value = &xadc_read_event_value,
1174 .write_event_value = &xadc_write_event_value,
1175 .update_scan_mode = &xadc_update_scan_mode,
1178 static const struct of_device_id xadc_of_match_table[] = {
1180 .compatible = "xlnx,zynq-xadc-1.00.a",
1181 .data = &xadc_zynq_ops
1183 .compatible = "xlnx,axi-xadc-1.00.a",
1184 .data = &xadc_7s_axi_ops
1186 .compatible = "xlnx,system-management-wiz-1.3",
1187 .data = &xadc_us_axi_ops
1191 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1193 static int xadc_parse_dt(struct iio_dev *indio_dev, unsigned int *conf, int irq)
1195 struct device *dev = indio_dev->dev.parent;
1196 struct xadc *xadc = iio_priv(indio_dev);
1197 const struct iio_chan_spec *channel_templates;
1198 struct iio_chan_spec *channels, *chan;
1199 struct fwnode_handle *chan_node, *child;
1200 unsigned int max_channels;
1201 unsigned int num_channels;
1202 const char *external_mux;
1210 ret = device_property_read_string(dev, "xlnx,external-mux", &external_mux);
1211 if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1212 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1213 else if (strcasecmp(external_mux, "single") == 0)
1214 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1215 else if (strcasecmp(external_mux, "dual") == 0)
1216 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1220 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1221 ret = device_property_read_u32(dev, "xlnx,external-mux-channel", &ext_mux_chan);
1225 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1226 if (ext_mux_chan == 0)
1227 ext_mux_chan = XADC_REG_VPVN;
1228 else if (ext_mux_chan <= 16)
1229 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1233 if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1234 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1239 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1241 if (xadc->ops->type == XADC_TYPE_S7) {
1242 channel_templates = xadc_7s_channels;
1243 max_channels = ARRAY_SIZE(xadc_7s_channels);
1245 channel_templates = xadc_us_channels;
1246 max_channels = ARRAY_SIZE(xadc_us_channels);
1248 channels = devm_kmemdup(dev, channel_templates,
1249 sizeof(channels[0]) * max_channels, GFP_KERNEL);
1254 chan = &channels[9];
1256 chan_node = device_get_named_child_node(dev, "xlnx,channels");
1257 fwnode_for_each_child_node(chan_node, child) {
1258 if (num_channels >= max_channels) {
1259 fwnode_handle_put(child);
1263 ret = fwnode_property_read_u32(child, "reg", ®);
1264 if (ret || reg > 16)
1267 if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1268 chan->scan_type.sign = 's';
1271 chan->scan_index = 11;
1272 chan->address = XADC_REG_VPVN;
1274 chan->scan_index = 15 + reg;
1275 chan->address = XADC_REG_VAUX(reg - 1);
1280 fwnode_handle_put(chan_node);
1282 /* No IRQ => no events */
1284 for (i = 0; i < num_channels; i++) {
1285 channels[i].event_spec = NULL;
1286 channels[i].num_event_specs = 0;
1290 indio_dev->num_channels = num_channels;
1291 indio_dev->channels = devm_krealloc_array(dev, channels,
1292 num_channels, sizeof(*channels),
1294 /* If we can't resize the channels array, just use the original */
1295 if (!indio_dev->channels)
1296 indio_dev->channels = channels;
1301 static const char * const xadc_type_names[] = {
1302 [XADC_TYPE_S7] = "xadc",
1303 [XADC_TYPE_US] = "xilinx-system-monitor",
1306 static void xadc_cancel_delayed_work(void *data)
1308 struct delayed_work *work = data;
1310 cancel_delayed_work_sync(work);
1313 static int xadc_probe(struct platform_device *pdev)
1315 struct device *dev = &pdev->dev;
1316 const struct xadc_ops *ops;
1317 struct iio_dev *indio_dev;
1318 unsigned int bipolar_mask;
1325 ops = device_get_match_data(dev);
1329 irq = platform_get_irq_optional(pdev, 0);
1331 (irq != -ENXIO || !(ops->flags & XADC_FLAGS_IRQ_OPTIONAL)))
1334 indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1338 xadc = iio_priv(indio_dev);
1340 init_completion(&xadc->completion);
1341 mutex_init(&xadc->mutex);
1342 spin_lock_init(&xadc->lock);
1343 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1345 xadc->base = devm_platform_ioremap_resource(pdev, 0);
1346 if (IS_ERR(xadc->base))
1347 return PTR_ERR(xadc->base);
1349 indio_dev->name = xadc_type_names[xadc->ops->type];
1350 indio_dev->modes = INDIO_DIRECT_MODE;
1351 indio_dev->info = &xadc_info;
1353 ret = xadc_parse_dt(indio_dev, &conf0, irq);
1357 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1358 ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1359 &iio_pollfunc_store_time,
1360 &xadc_trigger_handler,
1366 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1367 if (IS_ERR(xadc->convst_trigger))
1368 return PTR_ERR(xadc->convst_trigger);
1370 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1372 if (IS_ERR(xadc->samplerate_trigger))
1373 return PTR_ERR(xadc->samplerate_trigger);
1377 xadc->clk = devm_clk_get_enabled(dev, NULL);
1378 if (IS_ERR(xadc->clk))
1379 return PTR_ERR(xadc->clk);
1382 * Make sure not to exceed the maximum samplerate since otherwise the
1383 * resulting interrupt storm will soft-lock the system.
1385 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1386 ret = xadc_read_samplerate(xadc);
1390 if (ret > XADC_MAX_SAMPLERATE) {
1391 ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1398 ret = devm_request_irq(dev, irq, xadc->ops->interrupt_handler,
1399 0, dev_name(dev), indio_dev);
1403 ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1404 &xadc->zynq_unmask_work);
1409 ret = xadc->ops->setup(pdev, indio_dev, irq);
1413 for (i = 0; i < 16; i++)
1414 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1415 &xadc->threshold[i]);
1417 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1422 for (i = 0; i < indio_dev->num_channels; i++) {
1423 if (indio_dev->channels[i].scan_type.sign == 's')
1424 bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1427 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1431 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1432 bipolar_mask >> 16);
1436 /* Go to non-buffered mode */
1437 xadc_postdisable(indio_dev);
1439 return devm_iio_device_register(dev, indio_dev);
1442 static struct platform_driver xadc_driver = {
1443 .probe = xadc_probe,
1446 .of_match_table = xadc_of_match_table,
1449 module_platform_driver(xadc_driver);
1451 MODULE_LICENSE("GPL v2");
1453 MODULE_DESCRIPTION("Xilinx XADC IIO driver");