]> Git Repo - J-linux.git/blob - drivers/i3c/master/svc-i3c-master.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / i3c / master / svc-i3c-master.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Silvaco dual-role I3C master driver
4  *
5  * Copyright (C) 2020 Silvaco
6  * Author: Miquel RAYNAL <[email protected]>
7  * Based on a work from: Conor Culhane <[email protected]>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/errno.h>
14 #include <linux/i3c/master.h>
15 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23
24 /* Master Mode Registers */
25 #define SVC_I3C_MCONFIG      0x000
26 #define   SVC_I3C_MCONFIG_MASTER_EN BIT(0)
27 #define   SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x))
28 #define   SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x))
29 #define   SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x))
30 #define   SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x))
31 #define   SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x))
32 #define   SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x))
33 #define   SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x))
34 #define   SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x))
35 #define   SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x))
36
37 #define SVC_I3C_MCTRL        0x084
38 #define   SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0)
39 #define   SVC_I3C_MCTRL_REQUEST_NONE 0
40 #define   SVC_I3C_MCTRL_REQUEST_START_ADDR 1
41 #define   SVC_I3C_MCTRL_REQUEST_STOP 2
42 #define   SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3
43 #define   SVC_I3C_MCTRL_REQUEST_PROC_DAA 4
44 #define   SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7
45 #define   SVC_I3C_MCTRL_TYPE_I3C 0
46 #define   SVC_I3C_MCTRL_TYPE_I2C BIT(4)
47 #define   SVC_I3C_MCTRL_IBIRESP_AUTO 0
48 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0
49 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7)
50 #define   SVC_I3C_MCTRL_IBIRESP_NACK BIT(6)
51 #define   SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6)
52 #define   SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x))
53 #define   SVC_I3C_MCTRL_DIR_WRITE 0
54 #define   SVC_I3C_MCTRL_DIR_READ 1
55 #define   SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x))
56 #define   SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x))
57
58 #define SVC_I3C_MSTATUS      0x088
59 #define   SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x))
60 #define   SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5)
61 #define   SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0)
62 #define   SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x))
63 #define   SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x))
64 #define   SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x))
65 #define   SVC_I3C_MSTATUS_IBITYPE_IBI 1
66 #define   SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2
67 #define   SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3
68 #define   SVC_I3C_MINT_SLVSTART BIT(8)
69 #define   SVC_I3C_MINT_MCTRLDONE BIT(9)
70 #define   SVC_I3C_MINT_COMPLETE BIT(10)
71 #define   SVC_I3C_MINT_RXPEND BIT(11)
72 #define   SVC_I3C_MINT_TXNOTFULL BIT(12)
73 #define   SVC_I3C_MINT_IBIWON BIT(13)
74 #define   SVC_I3C_MINT_ERRWARN BIT(15)
75 #define   SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x))
76 #define   SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x))
77 #define   SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x))
78 #define   SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x))
79 #define   SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x))
80 #define   SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x))
81 #define   SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x))
82 #define   SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x))
83
84 #define SVC_I3C_IBIRULES     0x08C
85 #define   SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \
86                                                        ((addr) & 0x3F) << ((slot) * 6))
87 #define   SVC_I3C_IBIRULES_ADDRS 5
88 #define   SVC_I3C_IBIRULES_MSB0 BIT(30)
89 #define   SVC_I3C_IBIRULES_NOBYTE BIT(31)
90 #define   SVC_I3C_IBIRULES_MANDBYTE 0
91 #define SVC_I3C_MINTSET      0x090
92 #define SVC_I3C_MINTCLR      0x094
93 #define SVC_I3C_MINTMASKED   0x098
94 #define SVC_I3C_MERRWARN     0x09C
95 #define   SVC_I3C_MERRWARN_NACK BIT(2)
96 #define   SVC_I3C_MERRWARN_TIMEOUT BIT(20)
97 #define SVC_I3C_MDMACTRL     0x0A0
98 #define SVC_I3C_MDATACTRL    0x0AC
99 #define   SVC_I3C_MDATACTRL_FLUSHTB BIT(0)
100 #define   SVC_I3C_MDATACTRL_FLUSHRB BIT(1)
101 #define   SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3)
102 #define   SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4)
103 #define   SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0
104 #define   SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x))
105 #define   SVC_I3C_MDATACTRL_TXFULL BIT(30)
106 #define   SVC_I3C_MDATACTRL_RXEMPTY BIT(31)
107
108 #define SVC_I3C_MWDATAB      0x0B0
109 #define   SVC_I3C_MWDATAB_END BIT(8)
110
111 #define SVC_I3C_MWDATABE     0x0B4
112 #define SVC_I3C_MWDATAH      0x0B8
113 #define SVC_I3C_MWDATAHE     0x0BC
114 #define SVC_I3C_MRDATAB      0x0C0
115 #define SVC_I3C_MRDATAH      0x0C8
116 #define SVC_I3C_MWMSG_SDR    0x0D0
117 #define SVC_I3C_MRMSG_SDR    0x0D4
118 #define SVC_I3C_MWMSG_DDR    0x0D8
119 #define SVC_I3C_MRMSG_DDR    0x0DC
120
121 #define SVC_I3C_MDYNADDR     0x0E4
122 #define   SVC_MDYNADDR_VALID BIT(0)
123 #define   SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x))
124
125 #define SVC_I3C_MAX_DEVS 32
126 #define SVC_I3C_PM_TIMEOUT_MS 1000
127
128 /* This parameter depends on the implementation and may be tuned */
129 #define SVC_I3C_FIFO_SIZE 16
130 #define SVC_I3C_PPBAUD_MAX 15
131 #define SVC_I3C_QUICK_I2C_CLK 4170000
132
133 #define SVC_I3C_EVENT_IBI       GENMASK(7, 0)
134 #define SVC_I3C_EVENT_HOTJOIN   BIT(31)
135
136 struct svc_i3c_cmd {
137         u8 addr;
138         bool rnw;
139         u8 *in;
140         const void *out;
141         unsigned int len;
142         unsigned int actual_len;
143         struct i3c_priv_xfer *xfer;
144         bool continued;
145 };
146
147 struct svc_i3c_xfer {
148         struct list_head node;
149         struct completion comp;
150         int ret;
151         unsigned int type;
152         unsigned int ncmds;
153         struct svc_i3c_cmd cmds[] __counted_by(ncmds);
154 };
155
156 struct svc_i3c_regs_save {
157         u32 mconfig;
158         u32 mdynaddr;
159 };
160
161 /**
162  * struct svc_i3c_master - Silvaco I3C Master structure
163  * @base: I3C master controller
164  * @dev: Corresponding device
165  * @regs: Memory mapping
166  * @saved_regs: Volatile values for PM operations
167  * @free_slots: Bit array of available slots
168  * @addrs: Array containing the dynamic addresses of each attached device
169  * @descs: Array of descriptors, one per attached device
170  * @hj_work: Hot-join work
171  * @ibi_work: IBI work
172  * @irq: Main interrupt
173  * @pclk: System clock
174  * @fclk: Fast clock (bus)
175  * @sclk: Slow clock (other events)
176  * @xferqueue: Transfer queue structure
177  * @xferqueue.list: List member
178  * @xferqueue.cur: Current ongoing transfer
179  * @xferqueue.lock: Queue lock
180  * @ibi: IBI structure
181  * @ibi.num_slots: Number of slots available in @ibi.slots
182  * @ibi.slots: Available IBI slots
183  * @ibi.tbq_slot: To be queued IBI slot
184  * @ibi.lock: IBI lock
185  * @lock: Transfer lock, protect between IBI work thread and callbacks from master
186  * @enabled_events: Bit masks for enable events (IBI, HotJoin).
187  * @mctrl_config: Configuration value in SVC_I3C_MCTRL for setting speed back.
188  */
189 struct svc_i3c_master {
190         struct i3c_master_controller base;
191         struct device *dev;
192         void __iomem *regs;
193         struct svc_i3c_regs_save saved_regs;
194         u32 free_slots;
195         u8 addrs[SVC_I3C_MAX_DEVS];
196         struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS];
197         struct work_struct hj_work;
198         struct work_struct ibi_work;
199         int irq;
200         struct clk *pclk;
201         struct clk *fclk;
202         struct clk *sclk;
203         struct {
204                 struct list_head list;
205                 struct svc_i3c_xfer *cur;
206                 /* Prevent races between transfers */
207                 spinlock_t lock;
208         } xferqueue;
209         struct {
210                 unsigned int num_slots;
211                 struct i3c_dev_desc **slots;
212                 struct i3c_ibi_slot *tbq_slot;
213                 /* Prevent races within IBI handlers */
214                 spinlock_t lock;
215         } ibi;
216         struct mutex lock;
217         u32 enabled_events;
218         u32 mctrl_config;
219 };
220
221 /**
222  * struct svc_i3c_i2c_dev_data - Device specific data
223  * @index: Index in the master tables corresponding to this device
224  * @ibi: IBI slot index in the master structure
225  * @ibi_pool: IBI pool associated to this device
226  */
227 struct svc_i3c_i2c_dev_data {
228         u8 index;
229         int ibi;
230         struct i3c_generic_ibi_pool *ibi_pool;
231 };
232
233 static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask)
234 {
235         return !!(master->enabled_events & mask);
236 }
237
238 static bool svc_i3c_master_error(struct svc_i3c_master *master)
239 {
240         u32 mstatus, merrwarn;
241
242         mstatus = readl(master->regs + SVC_I3C_MSTATUS);
243         if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) {
244                 merrwarn = readl(master->regs + SVC_I3C_MERRWARN);
245                 writel(merrwarn, master->regs + SVC_I3C_MERRWARN);
246
247                 /* Ignore timeout error */
248                 if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) {
249                         dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
250                                 mstatus, merrwarn);
251                         return false;
252                 }
253
254                 dev_err(master->dev,
255                         "Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
256                         mstatus, merrwarn);
257
258                 return true;
259         }
260
261         return false;
262 }
263
264 static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask)
265 {
266         writel(mask, master->regs + SVC_I3C_MINTSET);
267 }
268
269 static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master)
270 {
271         u32 mask = readl(master->regs + SVC_I3C_MINTSET);
272
273         writel(mask, master->regs + SVC_I3C_MINTCLR);
274 }
275
276 static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master)
277 {
278         /* Clear pending warnings */
279         writel(readl(master->regs + SVC_I3C_MERRWARN),
280                master->regs + SVC_I3C_MERRWARN);
281 }
282
283 static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master)
284 {
285         /* Flush FIFOs */
286         writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB,
287                master->regs + SVC_I3C_MDATACTRL);
288 }
289
290 static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master)
291 {
292         u32 reg;
293
294         /* Set RX and TX tigger levels, flush FIFOs */
295         reg = SVC_I3C_MDATACTRL_FLUSHTB |
296               SVC_I3C_MDATACTRL_FLUSHRB |
297               SVC_I3C_MDATACTRL_UNLOCK_TRIG |
298               SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL |
299               SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY;
300         writel(reg, master->regs + SVC_I3C_MDATACTRL);
301 }
302
303 static void svc_i3c_master_reset(struct svc_i3c_master *master)
304 {
305         svc_i3c_master_clear_merrwarn(master);
306         svc_i3c_master_reset_fifo_trigger(master);
307         svc_i3c_master_disable_interrupts(master);
308 }
309
310 static inline struct svc_i3c_master *
311 to_svc_i3c_master(struct i3c_master_controller *master)
312 {
313         return container_of(master, struct svc_i3c_master, base);
314 }
315
316 static void svc_i3c_master_hj_work(struct work_struct *work)
317 {
318         struct svc_i3c_master *master;
319
320         master = container_of(work, struct svc_i3c_master, hj_work);
321         i3c_master_do_daa(&master->base);
322 }
323
324 static struct i3c_dev_desc *
325 svc_i3c_master_dev_from_addr(struct svc_i3c_master *master,
326                              unsigned int ibiaddr)
327 {
328         int i;
329
330         for (i = 0; i < SVC_I3C_MAX_DEVS; i++)
331                 if (master->addrs[i] == ibiaddr)
332                         break;
333
334         if (i == SVC_I3C_MAX_DEVS)
335                 return NULL;
336
337         return master->descs[i];
338 }
339
340 static void svc_i3c_master_emit_stop(struct svc_i3c_master *master)
341 {
342         writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL);
343
344         /*
345          * This delay is necessary after the emission of a stop, otherwise eg.
346          * repeating IBIs do not get detected. There is a note in the manual
347          * about it, stating that the stop condition might not be settled
348          * correctly if a start condition follows too rapidly.
349          */
350         udelay(1);
351 }
352
353 static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master,
354                                      struct i3c_dev_desc *dev)
355 {
356         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
357         struct i3c_ibi_slot *slot;
358         unsigned int count;
359         u32 mdatactrl;
360         int ret, val;
361         u8 *buf;
362
363         slot = i3c_generic_ibi_get_free_slot(data->ibi_pool);
364         if (!slot)
365                 return -ENOSPC;
366
367         slot->len = 0;
368         buf = slot->data;
369
370         ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
371                                                 SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000);
372         if (ret) {
373                 dev_err(master->dev, "Timeout when polling for COMPLETE\n");
374                 return ret;
375         }
376
377         while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS))  &&
378                slot->len < SVC_I3C_FIFO_SIZE) {
379                 mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL);
380                 count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl);
381                 readsl(master->regs + SVC_I3C_MRDATAB, buf, count);
382                 slot->len += count;
383                 buf += count;
384         }
385
386         master->ibi.tbq_slot = slot;
387
388         return 0;
389 }
390
391 static int svc_i3c_master_ack_ibi(struct svc_i3c_master *master,
392                                    bool mandatory_byte)
393 {
394         unsigned int ibi_ack_nack;
395         u32 reg;
396
397         ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK;
398         if (mandatory_byte)
399                 ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE;
400         else
401                 ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE;
402
403         writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL);
404
405         return readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg,
406                                          SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000);
407
408 }
409
410 static int svc_i3c_master_nack_ibi(struct svc_i3c_master *master)
411 {
412         int ret;
413         u32 reg;
414
415         writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK |
416                SVC_I3C_MCTRL_IBIRESP_NACK,
417                master->regs + SVC_I3C_MCTRL);
418
419         ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg,
420                                         SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000);
421         return ret;
422 }
423
424 static int svc_i3c_master_handle_ibi_won(struct svc_i3c_master *master, u32 mstatus)
425 {
426         u32 ibitype;
427         int ret = 0;
428
429         ibitype = SVC_I3C_MSTATUS_IBITYPE(mstatus);
430
431         writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
432
433         /* Hardware can't auto emit NACK for hot join and master request */
434         switch (ibitype) {
435         case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
436         case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
437                 ret = svc_i3c_master_nack_ibi(master);
438         }
439
440         return ret;
441 }
442
443 static void svc_i3c_master_ibi_work(struct work_struct *work)
444 {
445         struct svc_i3c_master *master = container_of(work, struct svc_i3c_master, ibi_work);
446         struct svc_i3c_i2c_dev_data *data;
447         unsigned int ibitype, ibiaddr;
448         struct i3c_dev_desc *dev;
449         u32 status, val;
450         int ret;
451
452         /*
453          * According to I3C spec ver 1.1, 09-Jun-2021, section 5.1.2.5:
454          *
455          * The I3C Controller shall hold SCL low while the Bus is in ACK/NACK Phase of I3C/I2C
456          * transfer. But maximum stall time is 100us. The IRQs have to be disabled to prevent
457          * schedule during the whole I3C transaction, otherwise, the I3C bus timeout may happen if
458          * any irq or schedule happen during transaction.
459          */
460         guard(spinlock_irqsave)(&master->xferqueue.lock);
461
462         /*
463          * IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing
464          * readl_relaxed_poll_timeout() to return immediately. Consequently,
465          * ibitype will be 0 since it was last updated only after the 8th SCL
466          * cycle, leading to missed client IBI handlers.
467          *
468          * A typical scenario is when IBIWON occurs and bus arbitration is lost
469          * at svc_i3c_master_priv_xfers().
470          *
471          * Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI.
472          */
473         writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
474
475         /* Acknowledge the incoming interrupt with the AUTOIBI mechanism */
476         writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI |
477                SVC_I3C_MCTRL_IBIRESP_AUTO,
478                master->regs + SVC_I3C_MCTRL);
479
480         /* Wait for IBIWON, should take approximately 100us */
481         ret = readl_relaxed_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, val,
482                                          SVC_I3C_MSTATUS_IBIWON(val), 0, 100);
483         if (ret) {
484                 dev_err(master->dev, "Timeout when polling for IBIWON\n");
485                 svc_i3c_master_emit_stop(master);
486                 goto reenable_ibis;
487         }
488
489         status = readl(master->regs + SVC_I3C_MSTATUS);
490         ibitype = SVC_I3C_MSTATUS_IBITYPE(status);
491         ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status);
492
493         /* Handle the critical responses to IBI's */
494         switch (ibitype) {
495         case SVC_I3C_MSTATUS_IBITYPE_IBI:
496                 dev = svc_i3c_master_dev_from_addr(master, ibiaddr);
497                 if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI))
498                         svc_i3c_master_nack_ibi(master);
499                 else
500                         svc_i3c_master_handle_ibi(master, dev);
501                 break;
502         case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
503                 if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
504                         svc_i3c_master_ack_ibi(master, false);
505                 else
506                         svc_i3c_master_nack_ibi(master);
507                 break;
508         case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
509                 svc_i3c_master_nack_ibi(master);
510                 break;
511         default:
512                 break;
513         }
514
515         /*
516          * If an error happened, we probably got interrupted and the exchange
517          * timedout. In this case we just drop everything, emit a stop and wait
518          * for the slave to interrupt again.
519          */
520         if (svc_i3c_master_error(master)) {
521                 if (master->ibi.tbq_slot) {
522                         data = i3c_dev_get_master_data(dev);
523                         i3c_generic_ibi_recycle_slot(data->ibi_pool,
524                                                      master->ibi.tbq_slot);
525                         master->ibi.tbq_slot = NULL;
526                 }
527
528                 svc_i3c_master_emit_stop(master);
529
530                 goto reenable_ibis;
531         }
532
533         /* Handle the non critical tasks */
534         switch (ibitype) {
535         case SVC_I3C_MSTATUS_IBITYPE_IBI:
536                 if (dev) {
537                         i3c_master_queue_ibi(dev, master->ibi.tbq_slot);
538                         master->ibi.tbq_slot = NULL;
539                 }
540                 svc_i3c_master_emit_stop(master);
541                 break;
542         case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
543                 svc_i3c_master_emit_stop(master);
544                 if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
545                         queue_work(master->base.wq, &master->hj_work);
546                 break;
547         case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
548         default:
549                 break;
550         }
551
552 reenable_ibis:
553         svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
554 }
555
556 static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id)
557 {
558         struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id;
559         u32 active = readl(master->regs + SVC_I3C_MSTATUS);
560
561         if (!SVC_I3C_MSTATUS_SLVSTART(active))
562                 return IRQ_NONE;
563
564         /* Clear the interrupt status */
565         writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS);
566
567         svc_i3c_master_disable_interrupts(master);
568
569         /* Handle the interrupt in a non atomic context */
570         queue_work(master->base.wq, &master->ibi_work);
571
572         return IRQ_HANDLED;
573 }
574
575 static int svc_i3c_master_set_speed(struct i3c_master_controller *m,
576                                      enum i3c_open_drain_speed speed)
577 {
578         struct svc_i3c_master *master = to_svc_i3c_master(m);
579         struct i3c_bus *bus = i3c_master_get_bus(&master->base);
580         u32 ppbaud, odbaud, odhpp, mconfig;
581         unsigned long fclk_rate;
582         int ret;
583
584         ret = pm_runtime_resume_and_get(master->dev);
585         if (ret < 0) {
586                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
587                 return ret;
588         }
589
590         switch (speed) {
591         case I3C_OPEN_DRAIN_SLOW_SPEED:
592                 fclk_rate = clk_get_rate(master->fclk);
593                 if (!fclk_rate) {
594                         ret = -EINVAL;
595                         goto rpm_out;
596                 }
597                 /*
598                  * Set 50% duty-cycle I2C speed to I3C OPEN-DRAIN mode, so the first
599                  * broadcast address is visible to all I2C/I3C devices on the I3C bus.
600                  * I3C device working as a I2C device will turn off its 50ns Spike
601                  * Filter to change to I3C mode.
602                  */
603                 mconfig = master->mctrl_config;
604                 ppbaud = FIELD_GET(GENMASK(11, 8), mconfig);
605                 odhpp = 0;
606                 odbaud = DIV_ROUND_UP(fclk_rate, bus->scl_rate.i2c * (2 + 2 * ppbaud)) - 1;
607                 mconfig &= ~GENMASK(24, 16);
608                 mconfig |= SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp);
609                 writel(mconfig, master->regs + SVC_I3C_MCONFIG);
610                 break;
611         case I3C_OPEN_DRAIN_NORMAL_SPEED:
612                 writel(master->mctrl_config, master->regs + SVC_I3C_MCONFIG);
613                 break;
614         }
615
616 rpm_out:
617         pm_runtime_mark_last_busy(master->dev);
618         pm_runtime_put_autosuspend(master->dev);
619
620         return ret;
621 }
622
623 static int svc_i3c_master_bus_init(struct i3c_master_controller *m)
624 {
625         struct svc_i3c_master *master = to_svc_i3c_master(m);
626         struct i3c_bus *bus = i3c_master_get_bus(m);
627         struct i3c_device_info info = {};
628         unsigned long fclk_rate, fclk_period_ns;
629         unsigned long i2c_period_ns, i2c_scl_rate, i3c_scl_rate;
630         unsigned int high_period_ns, od_low_period_ns;
631         u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg;
632         int ret;
633
634         ret = pm_runtime_resume_and_get(master->dev);
635         if (ret < 0) {
636                 dev_err(master->dev,
637                         "<%s> cannot resume i3c bus master, err: %d\n",
638                         __func__, ret);
639                 return ret;
640         }
641
642         /* Timings derivation */
643         fclk_rate = clk_get_rate(master->fclk);
644         if (!fclk_rate) {
645                 ret = -EINVAL;
646                 goto rpm_out;
647         }
648
649         fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate);
650         i2c_period_ns = DIV_ROUND_UP(1000000000, bus->scl_rate.i2c);
651         i2c_scl_rate = bus->scl_rate.i2c;
652         i3c_scl_rate = bus->scl_rate.i3c;
653
654         /*
655          * Using I3C Push-Pull mode, target is 12.5MHz/80ns period.
656          * Simplest configuration is using a 50% duty-cycle of 40ns.
657          */
658         ppbaud = DIV_ROUND_UP(fclk_rate / 2, i3c_scl_rate) - 1;
659         pplow = 0;
660
661         /*
662          * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a
663          * duty-cycle tuned so that high levels are filetered out by
664          * the 50ns filter (target being 40ns).
665          */
666         odhpp = 1;
667         high_period_ns = (ppbaud + 1) * fclk_period_ns;
668         odbaud = DIV_ROUND_UP(fclk_rate, SVC_I3C_QUICK_I2C_CLK * (1 + ppbaud)) - 2;
669         od_low_period_ns = (odbaud + 1) * high_period_ns;
670
671         switch (bus->mode) {
672         case I3C_BUS_MODE_PURE:
673                 i2cbaud = 0;
674                 odstop = 0;
675                 break;
676         case I3C_BUS_MODE_MIXED_FAST:
677                 /*
678                  * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference
679                  * between the high and low period does not really matter.
680                  */
681                 i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
682                 odstop = 1;
683                 break;
684         case I3C_BUS_MODE_MIXED_LIMITED:
685         case I3C_BUS_MODE_MIXED_SLOW:
686                 /* I3C PP + I3C OP + I2C OP both use i2c clk rate */
687                 if (ppbaud > SVC_I3C_PPBAUD_MAX) {
688                         ppbaud = SVC_I3C_PPBAUD_MAX;
689                         pplow =  DIV_ROUND_UP(fclk_rate, i3c_scl_rate) - (2 + 2 * ppbaud);
690                 }
691
692                 high_period_ns = (ppbaud + 1) * fclk_period_ns;
693                 odhpp = 0;
694                 odbaud = DIV_ROUND_UP(fclk_rate, i2c_scl_rate * (2 + 2 * ppbaud)) - 1;
695
696                 od_low_period_ns = (odbaud + 1) * high_period_ns;
697                 i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
698                 odstop = 1;
699                 break;
700         default:
701                 goto rpm_out;
702         }
703
704         reg = SVC_I3C_MCONFIG_MASTER_EN |
705               SVC_I3C_MCONFIG_DISTO(0) |
706               SVC_I3C_MCONFIG_HKEEP(0) |
707               SVC_I3C_MCONFIG_ODSTOP(odstop) |
708               SVC_I3C_MCONFIG_PPBAUD(ppbaud) |
709               SVC_I3C_MCONFIG_PPLOW(pplow) |
710               SVC_I3C_MCONFIG_ODBAUD(odbaud) |
711               SVC_I3C_MCONFIG_ODHPP(odhpp) |
712               SVC_I3C_MCONFIG_SKEW(0) |
713               SVC_I3C_MCONFIG_I2CBAUD(i2cbaud);
714         writel(reg, master->regs + SVC_I3C_MCONFIG);
715
716         master->mctrl_config = reg;
717         /* Master core's registration */
718         ret = i3c_master_get_free_addr(m, 0);
719         if (ret < 0)
720                 goto rpm_out;
721
722         info.dyn_addr = ret;
723
724         writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr),
725                master->regs + SVC_I3C_MDYNADDR);
726
727         ret = i3c_master_set_info(&master->base, &info);
728         if (ret)
729                 goto rpm_out;
730
731 rpm_out:
732         pm_runtime_mark_last_busy(master->dev);
733         pm_runtime_put_autosuspend(master->dev);
734
735         return ret;
736 }
737
738 static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m)
739 {
740         struct svc_i3c_master *master = to_svc_i3c_master(m);
741         int ret;
742
743         ret = pm_runtime_resume_and_get(master->dev);
744         if (ret < 0) {
745                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
746                 return;
747         }
748
749         svc_i3c_master_disable_interrupts(master);
750
751         /* Disable master */
752         writel(0, master->regs + SVC_I3C_MCONFIG);
753
754         pm_runtime_mark_last_busy(master->dev);
755         pm_runtime_put_autosuspend(master->dev);
756 }
757
758 static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master)
759 {
760         unsigned int slot;
761
762         if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0)))
763                 return -ENOSPC;
764
765         slot = ffs(master->free_slots) - 1;
766
767         master->free_slots &= ~BIT(slot);
768
769         return slot;
770 }
771
772 static void svc_i3c_master_release_slot(struct svc_i3c_master *master,
773                                         unsigned int slot)
774 {
775         master->free_slots |= BIT(slot);
776 }
777
778 static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev)
779 {
780         struct i3c_master_controller *m = i3c_dev_get_master(dev);
781         struct svc_i3c_master *master = to_svc_i3c_master(m);
782         struct svc_i3c_i2c_dev_data *data;
783         int slot;
784
785         slot = svc_i3c_master_reserve_slot(master);
786         if (slot < 0)
787                 return slot;
788
789         data = kzalloc(sizeof(*data), GFP_KERNEL);
790         if (!data) {
791                 svc_i3c_master_release_slot(master, slot);
792                 return -ENOMEM;
793         }
794
795         data->ibi = -1;
796         data->index = slot;
797         master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr :
798                                                    dev->info.static_addr;
799         master->descs[slot] = dev;
800
801         i3c_dev_set_master_data(dev, data);
802
803         return 0;
804 }
805
806 static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev,
807                                            u8 old_dyn_addr)
808 {
809         struct i3c_master_controller *m = i3c_dev_get_master(dev);
810         struct svc_i3c_master *master = to_svc_i3c_master(m);
811         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
812
813         master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr :
814                                                           dev->info.static_addr;
815
816         return 0;
817 }
818
819 static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev)
820 {
821         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
822         struct i3c_master_controller *m = i3c_dev_get_master(dev);
823         struct svc_i3c_master *master = to_svc_i3c_master(m);
824
825         master->addrs[data->index] = 0;
826         svc_i3c_master_release_slot(master, data->index);
827
828         kfree(data);
829 }
830
831 static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev)
832 {
833         struct i3c_master_controller *m = i2c_dev_get_master(dev);
834         struct svc_i3c_master *master = to_svc_i3c_master(m);
835         struct svc_i3c_i2c_dev_data *data;
836         int slot;
837
838         slot = svc_i3c_master_reserve_slot(master);
839         if (slot < 0)
840                 return slot;
841
842         data = kzalloc(sizeof(*data), GFP_KERNEL);
843         if (!data) {
844                 svc_i3c_master_release_slot(master, slot);
845                 return -ENOMEM;
846         }
847
848         data->index = slot;
849         master->addrs[slot] = dev->addr;
850
851         i2c_dev_set_master_data(dev, data);
852
853         return 0;
854 }
855
856 static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev)
857 {
858         struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
859         struct i3c_master_controller *m = i2c_dev_get_master(dev);
860         struct svc_i3c_master *master = to_svc_i3c_master(m);
861
862         svc_i3c_master_release_slot(master, data->index);
863
864         kfree(data);
865 }
866
867 static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst,
868                                 unsigned int len)
869 {
870         int ret, i;
871         u32 reg;
872
873         for (i = 0; i < len; i++) {
874                 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
875                                                 reg,
876                                                 SVC_I3C_MSTATUS_RXPEND(reg),
877                                                 0, 1000);
878                 if (ret)
879                         return ret;
880
881                 dst[i] = readl(master->regs + SVC_I3C_MRDATAB);
882         }
883
884         return 0;
885 }
886
887 static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master,
888                                         u8 *addrs, unsigned int *count)
889 {
890         u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0;
891         unsigned int dev_nb = 0, last_addr = 0;
892         u32 reg;
893         int ret, i;
894
895         while (true) {
896                 /* clean SVC_I3C_MINT_IBIWON w1c bits */
897                 writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
898
899                 /* SVC_I3C_MCTRL_REQUEST_PROC_DAA have two mode, ENTER DAA or PROCESS DAA.
900                  *
901                  * ENTER DAA:
902                  *   1 will issue START, 7E, ENTDAA, and then emits 7E/R to process first target.
903                  *   2 Stops just before the new Dynamic Address (DA) is to be emitted.
904                  *
905                  * PROCESS DAA:
906                  *   1 The DA is written using MWDATAB or ADDR bits 6:0.
907                  *   2 ProcessDAA is requested again to write the new address, and then starts the
908                  *     next (START, 7E, ENTDAA)  unless marked to STOP; an MSTATUS indicating NACK
909                  *     means DA was not accepted (e.g. parity error). If PROCESSDAA is NACKed on the
910                  *     7E/R, which means no more Slaves need a DA, then a COMPLETE will be signaled
911                  *     (along with DONE), and a STOP issued automatically.
912                  */
913                 writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA |
914                        SVC_I3C_MCTRL_TYPE_I3C |
915                        SVC_I3C_MCTRL_IBIRESP_NACK |
916                        SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE),
917                        master->regs + SVC_I3C_MCTRL);
918
919                 /*
920                  * Either one slave will send its ID, or the assignment process
921                  * is done.
922                  */
923                 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
924                                                 reg,
925                                                 SVC_I3C_MSTATUS_RXPEND(reg) |
926                                                 SVC_I3C_MSTATUS_MCTRLDONE(reg),
927                                                 1, 1000);
928                 if (ret)
929                         break;
930
931                 if (SVC_I3C_MSTATUS_RXPEND(reg)) {
932                         u8 data[6];
933
934                         /*
935                          * We only care about the 48-bit provisioned ID yet to
936                          * be sure a device does not nack an address twice.
937                          * Otherwise, we would just need to flush the RX FIFO.
938                          */
939                         ret = svc_i3c_master_readb(master, data, 6);
940                         if (ret)
941                                 break;
942
943                         for (i = 0; i < 6; i++)
944                                 prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i));
945
946                         /* We do not care about the BCR and DCR yet */
947                         ret = svc_i3c_master_readb(master, data, 2);
948                         if (ret)
949                                 break;
950                 } else if (SVC_I3C_MSTATUS_IBIWON(reg)) {
951                         ret = svc_i3c_master_handle_ibi_won(master, reg);
952                         if (ret)
953                                 break;
954                         continue;
955                 } else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) {
956                         if (SVC_I3C_MSTATUS_STATE_IDLE(reg) &&
957                             SVC_I3C_MSTATUS_COMPLETE(reg)) {
958                                 /*
959                                  * All devices received and acked they dynamic
960                                  * address, this is the natural end of the DAA
961                                  * procedure.
962                                  *
963                                  * Hardware will auto emit STOP at this case.
964                                  */
965                                 *count = dev_nb;
966                                 return 0;
967
968                         } else if (SVC_I3C_MSTATUS_NACKED(reg)) {
969                                 /* No I3C devices attached */
970                                 if (dev_nb == 0) {
971                                         /*
972                                          * Hardware can't treat first NACK for ENTAA as normal
973                                          * COMPLETE. So need manual emit STOP.
974                                          */
975                                         ret = 0;
976                                         *count = 0;
977                                         break;
978                                 }
979
980                                 /*
981                                  * A slave device nacked the address, this is
982                                  * allowed only once, DAA will be stopped and
983                                  * then resumed. The same device is supposed to
984                                  * answer again immediately and shall ack the
985                                  * address this time.
986                                  */
987                                 if (prov_id[dev_nb] == nacking_prov_id) {
988                                         ret = -EIO;
989                                         break;
990                                 }
991
992                                 dev_nb--;
993                                 nacking_prov_id = prov_id[dev_nb];
994                                 svc_i3c_master_emit_stop(master);
995
996                                 continue;
997                         } else {
998                                 break;
999                         }
1000                 }
1001
1002                 /* Wait for the slave to be ready to receive its address */
1003                 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
1004                                                 reg,
1005                                                 SVC_I3C_MSTATUS_MCTRLDONE(reg) &&
1006                                                 SVC_I3C_MSTATUS_STATE_DAA(reg) &&
1007                                                 SVC_I3C_MSTATUS_BETWEEN(reg),
1008                                                 0, 1000);
1009                 if (ret)
1010                         break;
1011
1012                 /* Give the slave device a suitable dynamic address */
1013                 ret = i3c_master_get_free_addr(&master->base, last_addr + 1);
1014                 if (ret < 0)
1015                         break;
1016
1017                 addrs[dev_nb] = ret;
1018                 dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n",
1019                         dev_nb, addrs[dev_nb]);
1020
1021                 writel(addrs[dev_nb], master->regs + SVC_I3C_MWDATAB);
1022                 last_addr = addrs[dev_nb++];
1023         }
1024
1025         /* Need manual issue STOP except for Complete condition */
1026         svc_i3c_master_emit_stop(master);
1027         return ret;
1028 }
1029
1030 static int svc_i3c_update_ibirules(struct svc_i3c_master *master)
1031 {
1032         struct i3c_dev_desc *dev;
1033         u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE;
1034         unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0,
1035                 nobyte_addr_ko = 0;
1036         bool list_mbyte = false, list_nobyte = false;
1037
1038         /* Create the IBIRULES register for both cases */
1039         i3c_bus_for_each_i3cdev(&master->base.bus, dev) {
1040                 if (I3C_BCR_DEVICE_ROLE(dev->info.bcr) == I3C_BCR_I3C_MASTER)
1041                         continue;
1042
1043                 if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) {
1044                         reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok,
1045                                                            dev->info.dyn_addr);
1046
1047                         /* IBI rules cannot be applied to devices with MSb=1 */
1048                         if (dev->info.dyn_addr & BIT(7))
1049                                 mbyte_addr_ko++;
1050                         else
1051                                 mbyte_addr_ok++;
1052                 } else {
1053                         reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok,
1054                                                             dev->info.dyn_addr);
1055
1056                         /* IBI rules cannot be applied to devices with MSb=1 */
1057                         if (dev->info.dyn_addr & BIT(7))
1058                                 nobyte_addr_ko++;
1059                         else
1060                                 nobyte_addr_ok++;
1061                 }
1062         }
1063
1064         /* Device list cannot be handled by hardware */
1065         if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1066                 list_mbyte = true;
1067
1068         if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1069                 list_nobyte = true;
1070
1071         /* No list can be properly handled, return an error */
1072         if (!list_mbyte && !list_nobyte)
1073                 return -ERANGE;
1074
1075         /* Pick the first list that can be handled by hardware, randomly */
1076         if (list_mbyte)
1077                 writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES);
1078         else
1079                 writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES);
1080
1081         return 0;
1082 }
1083
1084 static int svc_i3c_master_do_daa(struct i3c_master_controller *m)
1085 {
1086         struct svc_i3c_master *master = to_svc_i3c_master(m);
1087         u8 addrs[SVC_I3C_MAX_DEVS];
1088         unsigned long flags;
1089         unsigned int dev_nb;
1090         int ret, i;
1091
1092         ret = pm_runtime_resume_and_get(master->dev);
1093         if (ret < 0) {
1094                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1095                 return ret;
1096         }
1097
1098         spin_lock_irqsave(&master->xferqueue.lock, flags);
1099         ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb);
1100         spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1101
1102         svc_i3c_master_clear_merrwarn(master);
1103         if (ret)
1104                 goto rpm_out;
1105
1106         /*
1107          * Register all devices who participated to the core
1108          *
1109          * If two devices (A and B) are detected in DAA and address 0xa is assigned to
1110          * device A and 0xb to device B, a failure in i3c_master_add_i3c_dev_locked()
1111          * for device A (addr: 0xa) could prevent device B (addr: 0xb) from being
1112          * registered on the bus. The I3C stack might still consider 0xb a free
1113          * address. If a subsequent Hotjoin occurs, 0xb might be assigned to Device A,
1114          * causing both devices A and B to use the same address 0xb, violating the I3C
1115          * specification.
1116          *
1117          * The return value for i3c_master_add_i3c_dev_locked() should not be checked
1118          * because subsequent steps will scan the entire I3C bus, independent of
1119          * whether i3c_master_add_i3c_dev_locked() returns success.
1120          *
1121          * If device A registration fails, there is still a chance to register device
1122          * B. i3c_master_add_i3c_dev_locked() can reset DAA if a failure occurs while
1123          * retrieving device information.
1124          */
1125         for (i = 0; i < dev_nb; i++)
1126                 i3c_master_add_i3c_dev_locked(m, addrs[i]);
1127
1128         /* Configure IBI auto-rules */
1129         ret = svc_i3c_update_ibirules(master);
1130         if (ret)
1131                 dev_err(master->dev, "Cannot handle such a list of devices");
1132
1133 rpm_out:
1134         pm_runtime_mark_last_busy(master->dev);
1135         pm_runtime_put_autosuspend(master->dev);
1136
1137         return ret;
1138 }
1139
1140 static int svc_i3c_master_read(struct svc_i3c_master *master,
1141                                u8 *in, unsigned int len)
1142 {
1143         int offset = 0, i;
1144         u32 mdctrl, mstatus;
1145         bool completed = false;
1146         unsigned int count;
1147         unsigned long start = jiffies;
1148
1149         while (!completed) {
1150                 mstatus = readl(master->regs + SVC_I3C_MSTATUS);
1151                 if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0)
1152                         completed = true;
1153
1154                 if (time_after(jiffies, start + msecs_to_jiffies(1000))) {
1155                         dev_dbg(master->dev, "I3C read timeout\n");
1156                         return -ETIMEDOUT;
1157                 }
1158
1159                 mdctrl = readl(master->regs + SVC_I3C_MDATACTRL);
1160                 count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl);
1161                 if (offset + count > len) {
1162                         dev_err(master->dev, "I3C receive length too long!\n");
1163                         return -EINVAL;
1164                 }
1165                 for (i = 0; i < count; i++)
1166                         in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB);
1167
1168                 offset += count;
1169         }
1170
1171         return offset;
1172 }
1173
1174 static int svc_i3c_master_write(struct svc_i3c_master *master,
1175                                 const u8 *out, unsigned int len)
1176 {
1177         int offset = 0, ret;
1178         u32 mdctrl;
1179
1180         while (offset < len) {
1181                 ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL,
1182                                          mdctrl,
1183                                          !(mdctrl & SVC_I3C_MDATACTRL_TXFULL),
1184                                          0, 1000);
1185                 if (ret)
1186                         return ret;
1187
1188                 /*
1189                  * The last byte to be sent over the bus must either have the
1190                  * "end" bit set or be written in MWDATABE.
1191                  */
1192                 if (likely(offset < (len - 1)))
1193                         writel(out[offset++], master->regs + SVC_I3C_MWDATAB);
1194                 else
1195                         writel(out[offset++], master->regs + SVC_I3C_MWDATABE);
1196         }
1197
1198         return 0;
1199 }
1200
1201 static int svc_i3c_master_xfer(struct svc_i3c_master *master,
1202                                bool rnw, unsigned int xfer_type, u8 addr,
1203                                u8 *in, const u8 *out, unsigned int xfer_len,
1204                                unsigned int *actual_len, bool continued)
1205 {
1206         int retry = 2;
1207         u32 reg;
1208         int ret;
1209
1210         /* clean SVC_I3C_MINT_IBIWON w1c bits */
1211         writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
1212
1213
1214         while (retry--) {
1215                 writel(SVC_I3C_MCTRL_REQUEST_START_ADDR |
1216                        xfer_type |
1217                        SVC_I3C_MCTRL_IBIRESP_NACK |
1218                        SVC_I3C_MCTRL_DIR(rnw) |
1219                        SVC_I3C_MCTRL_ADDR(addr) |
1220                        SVC_I3C_MCTRL_RDTERM(*actual_len),
1221                        master->regs + SVC_I3C_MCTRL);
1222
1223                 ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1224                                  SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000);
1225                 if (ret)
1226                         goto emit_stop;
1227
1228                 /*
1229                  * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a
1230                  * Frame with I3C Target Address.
1231                  *
1232                  * The I3C Controller normally should start a Frame, the Address may be arbitrated,
1233                  * and so the Controller shall monitor to see whether an In-Band Interrupt request,
1234                  * a Controller Role Request (i.e., Secondary Controller requests to become the
1235                  * Active Controller), or a Hot-Join Request has been made.
1236                  *
1237                  * If missed IBIWON check, the wrong data will be return. When IBIWON happen, issue
1238                  * repeat start. Address arbitrate only happen at START, never happen at REPEAT
1239                  * start.
1240                  */
1241                 if (SVC_I3C_MSTATUS_IBIWON(reg)) {
1242                         ret = svc_i3c_master_handle_ibi_won(master, reg);
1243                         if (ret)
1244                                 goto emit_stop;
1245                         continue;
1246                 }
1247
1248                 if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) {
1249                         /*
1250                          * According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3.
1251                          * If the Controller chooses to start an I3C Message with an I3C Dynamic
1252                          * Address, then special provisions shall be made because that same I3C
1253                          * Target may be initiating an IBI or a Controller Role Request. So, one of
1254                          * three things may happen: (skip 1, 2)
1255                          *
1256                          * 3. The Addresses match and the RnW bits also match, and so neither
1257                          * Controller nor Target will ACK since both are expecting the other side to
1258                          * provide ACK. As a result, each side might think it had "won" arbitration,
1259                          * but neither side would continue, as each would subsequently see that the
1260                          * other did not provide ACK.
1261                          * ...
1262                          * For either value of RnW: Due to the NACK, the Controller shall defer the
1263                          * Private Write or Private Read, and should typically transmit the Target
1264                          * Address again after a Repeated START (i.e., the next one or any one prior
1265                          * to a STOP in the Frame). Since the Address Header following a Repeated
1266                          * START is not arbitrated, the Controller will always win (see Section
1267                          * 5.1.2.2.4).
1268                          */
1269                         if (retry && addr != 0x7e) {
1270                                 writel(SVC_I3C_MERRWARN_NACK, master->regs + SVC_I3C_MERRWARN);
1271                         } else {
1272                                 ret = -ENXIO;
1273                                 *actual_len = 0;
1274                                 goto emit_stop;
1275                         }
1276                 } else {
1277                         break;
1278                 }
1279         }
1280
1281         if (rnw)
1282                 ret = svc_i3c_master_read(master, in, xfer_len);
1283         else
1284                 ret = svc_i3c_master_write(master, out, xfer_len);
1285         if (ret < 0)
1286                 goto emit_stop;
1287
1288         if (rnw)
1289                 *actual_len = ret;
1290
1291         ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1292                                  SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000);
1293         if (ret)
1294                 goto emit_stop;
1295
1296         writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS);
1297
1298         if (!continued) {
1299                 svc_i3c_master_emit_stop(master);
1300
1301                 /* Wait idle if stop is sent. */
1302                 readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1303                                    SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000);
1304         }
1305
1306         return 0;
1307
1308 emit_stop:
1309         svc_i3c_master_emit_stop(master);
1310         svc_i3c_master_clear_merrwarn(master);
1311
1312         return ret;
1313 }
1314
1315 static struct svc_i3c_xfer *
1316 svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds)
1317 {
1318         struct svc_i3c_xfer *xfer;
1319
1320         xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL);
1321         if (!xfer)
1322                 return NULL;
1323
1324         INIT_LIST_HEAD(&xfer->node);
1325         xfer->ncmds = ncmds;
1326         xfer->ret = -ETIMEDOUT;
1327
1328         return xfer;
1329 }
1330
1331 static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer)
1332 {
1333         kfree(xfer);
1334 }
1335
1336 static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master,
1337                                                struct svc_i3c_xfer *xfer)
1338 {
1339         if (master->xferqueue.cur == xfer)
1340                 master->xferqueue.cur = NULL;
1341         else
1342                 list_del_init(&xfer->node);
1343 }
1344
1345 static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master,
1346                                         struct svc_i3c_xfer *xfer)
1347 {
1348         unsigned long flags;
1349
1350         spin_lock_irqsave(&master->xferqueue.lock, flags);
1351         svc_i3c_master_dequeue_xfer_locked(master, xfer);
1352         spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1353 }
1354
1355 static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master)
1356 {
1357         struct svc_i3c_xfer *xfer = master->xferqueue.cur;
1358         int ret, i;
1359
1360         if (!xfer)
1361                 return;
1362
1363         svc_i3c_master_clear_merrwarn(master);
1364         svc_i3c_master_flush_fifo(master);
1365
1366         for (i = 0; i < xfer->ncmds; i++) {
1367                 struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1368
1369                 ret = svc_i3c_master_xfer(master, cmd->rnw, xfer->type,
1370                                           cmd->addr, cmd->in, cmd->out,
1371                                           cmd->len, &cmd->actual_len,
1372                                           cmd->continued);
1373                 /* cmd->xfer is NULL if I2C or CCC transfer */
1374                 if (cmd->xfer)
1375                         cmd->xfer->actual_len = cmd->actual_len;
1376
1377                 if (ret)
1378                         break;
1379         }
1380
1381         xfer->ret = ret;
1382         complete(&xfer->comp);
1383
1384         if (ret < 0)
1385                 svc_i3c_master_dequeue_xfer_locked(master, xfer);
1386
1387         xfer = list_first_entry_or_null(&master->xferqueue.list,
1388                                         struct svc_i3c_xfer,
1389                                         node);
1390         if (xfer)
1391                 list_del_init(&xfer->node);
1392
1393         master->xferqueue.cur = xfer;
1394         svc_i3c_master_start_xfer_locked(master);
1395 }
1396
1397 static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master,
1398                                         struct svc_i3c_xfer *xfer)
1399 {
1400         unsigned long flags;
1401         int ret;
1402
1403         ret = pm_runtime_resume_and_get(master->dev);
1404         if (ret < 0) {
1405                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1406                 return;
1407         }
1408
1409         init_completion(&xfer->comp);
1410         spin_lock_irqsave(&master->xferqueue.lock, flags);
1411         if (master->xferqueue.cur) {
1412                 list_add_tail(&xfer->node, &master->xferqueue.list);
1413         } else {
1414                 master->xferqueue.cur = xfer;
1415                 svc_i3c_master_start_xfer_locked(master);
1416         }
1417         spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1418
1419         pm_runtime_mark_last_busy(master->dev);
1420         pm_runtime_put_autosuspend(master->dev);
1421 }
1422
1423 static bool
1424 svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master,
1425                                 const struct i3c_ccc_cmd *cmd)
1426 {
1427         /* No software support for CCC commands targeting more than one slave */
1428         return (cmd->ndests == 1);
1429 }
1430
1431 static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master,
1432                                               struct i3c_ccc_cmd *ccc)
1433 {
1434         unsigned int xfer_len = ccc->dests[0].payload.len + 1;
1435         struct svc_i3c_xfer *xfer;
1436         struct svc_i3c_cmd *cmd;
1437         u8 *buf;
1438         int ret;
1439
1440         xfer = svc_i3c_master_alloc_xfer(master, 1);
1441         if (!xfer)
1442                 return -ENOMEM;
1443
1444         buf = kmalloc(xfer_len, GFP_KERNEL);
1445         if (!buf) {
1446                 svc_i3c_master_free_xfer(xfer);
1447                 return -ENOMEM;
1448         }
1449
1450         buf[0] = ccc->id;
1451         memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len);
1452
1453         xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1454
1455         cmd = &xfer->cmds[0];
1456         cmd->addr = ccc->dests[0].addr;
1457         cmd->rnw = ccc->rnw;
1458         cmd->in = NULL;
1459         cmd->out = buf;
1460         cmd->len = xfer_len;
1461         cmd->actual_len = 0;
1462         cmd->continued = false;
1463
1464         mutex_lock(&master->lock);
1465         svc_i3c_master_enqueue_xfer(master, xfer);
1466         if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1467                 svc_i3c_master_dequeue_xfer(master, xfer);
1468         mutex_unlock(&master->lock);
1469
1470         ret = xfer->ret;
1471         kfree(buf);
1472         svc_i3c_master_free_xfer(xfer);
1473
1474         return ret;
1475 }
1476
1477 static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master,
1478                                               struct i3c_ccc_cmd *ccc)
1479 {
1480         unsigned int xfer_len = ccc->dests[0].payload.len;
1481         unsigned int actual_len = ccc->rnw ? xfer_len : 0;
1482         struct svc_i3c_xfer *xfer;
1483         struct svc_i3c_cmd *cmd;
1484         int ret;
1485
1486         xfer = svc_i3c_master_alloc_xfer(master, 2);
1487         if (!xfer)
1488                 return -ENOMEM;
1489
1490         xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1491
1492         /* Broadcasted message */
1493         cmd = &xfer->cmds[0];
1494         cmd->addr = I3C_BROADCAST_ADDR;
1495         cmd->rnw = 0;
1496         cmd->in = NULL;
1497         cmd->out = &ccc->id;
1498         cmd->len = 1;
1499         cmd->actual_len = 0;
1500         cmd->continued = true;
1501
1502         /* Directed message */
1503         cmd = &xfer->cmds[1];
1504         cmd->addr = ccc->dests[0].addr;
1505         cmd->rnw = ccc->rnw;
1506         cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL;
1507         cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data;
1508         cmd->len = xfer_len;
1509         cmd->actual_len = actual_len;
1510         cmd->continued = false;
1511
1512         mutex_lock(&master->lock);
1513         svc_i3c_master_enqueue_xfer(master, xfer);
1514         if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1515                 svc_i3c_master_dequeue_xfer(master, xfer);
1516         mutex_unlock(&master->lock);
1517
1518         if (cmd->actual_len != xfer_len)
1519                 ccc->dests[0].payload.len = cmd->actual_len;
1520
1521         ret = xfer->ret;
1522         svc_i3c_master_free_xfer(xfer);
1523
1524         return ret;
1525 }
1526
1527 static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m,
1528                                        struct i3c_ccc_cmd *cmd)
1529 {
1530         struct svc_i3c_master *master = to_svc_i3c_master(m);
1531         bool broadcast = cmd->id < 0x80;
1532         int ret;
1533
1534         if (broadcast)
1535                 ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd);
1536         else
1537                 ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd);
1538
1539         if (ret)
1540                 cmd->err = I3C_ERROR_M2;
1541
1542         return ret;
1543 }
1544
1545 static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev,
1546                                      struct i3c_priv_xfer *xfers,
1547                                      int nxfers)
1548 {
1549         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1550         struct svc_i3c_master *master = to_svc_i3c_master(m);
1551         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1552         struct svc_i3c_xfer *xfer;
1553         int ret, i;
1554
1555         xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1556         if (!xfer)
1557                 return -ENOMEM;
1558
1559         xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1560
1561         for (i = 0; i < nxfers; i++) {
1562                 struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1563
1564                 cmd->xfer = &xfers[i];
1565                 cmd->addr = master->addrs[data->index];
1566                 cmd->rnw = xfers[i].rnw;
1567                 cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL;
1568                 cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out;
1569                 cmd->len = xfers[i].len;
1570                 cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0;
1571                 cmd->continued = (i + 1) < nxfers;
1572         }
1573
1574         mutex_lock(&master->lock);
1575         svc_i3c_master_enqueue_xfer(master, xfer);
1576         if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1577                 svc_i3c_master_dequeue_xfer(master, xfer);
1578         mutex_unlock(&master->lock);
1579
1580         ret = xfer->ret;
1581         svc_i3c_master_free_xfer(xfer);
1582
1583         return ret;
1584 }
1585
1586 static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev,
1587                                     const struct i2c_msg *xfers,
1588                                     int nxfers)
1589 {
1590         struct i3c_master_controller *m = i2c_dev_get_master(dev);
1591         struct svc_i3c_master *master = to_svc_i3c_master(m);
1592         struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
1593         struct svc_i3c_xfer *xfer;
1594         int ret, i;
1595
1596         xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1597         if (!xfer)
1598                 return -ENOMEM;
1599
1600         xfer->type = SVC_I3C_MCTRL_TYPE_I2C;
1601
1602         for (i = 0; i < nxfers; i++) {
1603                 struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1604
1605                 cmd->addr = master->addrs[data->index];
1606                 cmd->rnw = xfers[i].flags & I2C_M_RD;
1607                 cmd->in = cmd->rnw ? xfers[i].buf : NULL;
1608                 cmd->out = cmd->rnw ? NULL : xfers[i].buf;
1609                 cmd->len = xfers[i].len;
1610                 cmd->actual_len = cmd->rnw ? xfers[i].len : 0;
1611                 cmd->continued = (i + 1 < nxfers);
1612         }
1613
1614         mutex_lock(&master->lock);
1615         svc_i3c_master_enqueue_xfer(master, xfer);
1616         if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1617                 svc_i3c_master_dequeue_xfer(master, xfer);
1618         mutex_unlock(&master->lock);
1619
1620         ret = xfer->ret;
1621         svc_i3c_master_free_xfer(xfer);
1622
1623         return ret;
1624 }
1625
1626 static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev,
1627                                       const struct i3c_ibi_setup *req)
1628 {
1629         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1630         struct svc_i3c_master *master = to_svc_i3c_master(m);
1631         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1632         unsigned long flags;
1633         unsigned int i;
1634
1635         if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) {
1636                 dev_err(master->dev, "IBI max payload %d should be < %d\n",
1637                         dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE);
1638                 return -ERANGE;
1639         }
1640
1641         data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req);
1642         if (IS_ERR(data->ibi_pool))
1643                 return PTR_ERR(data->ibi_pool);
1644
1645         spin_lock_irqsave(&master->ibi.lock, flags);
1646         for (i = 0; i < master->ibi.num_slots; i++) {
1647                 if (!master->ibi.slots[i]) {
1648                         data->ibi = i;
1649                         master->ibi.slots[i] = dev;
1650                         break;
1651                 }
1652         }
1653         spin_unlock_irqrestore(&master->ibi.lock, flags);
1654
1655         if (i < master->ibi.num_slots)
1656                 return 0;
1657
1658         i3c_generic_ibi_free_pool(data->ibi_pool);
1659         data->ibi_pool = NULL;
1660
1661         return -ENOSPC;
1662 }
1663
1664 static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev)
1665 {
1666         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1667         struct svc_i3c_master *master = to_svc_i3c_master(m);
1668         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1669         unsigned long flags;
1670
1671         spin_lock_irqsave(&master->ibi.lock, flags);
1672         master->ibi.slots[data->ibi] = NULL;
1673         data->ibi = -1;
1674         spin_unlock_irqrestore(&master->ibi.lock, flags);
1675
1676         i3c_generic_ibi_free_pool(data->ibi_pool);
1677 }
1678
1679 static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev)
1680 {
1681         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1682         struct svc_i3c_master *master = to_svc_i3c_master(m);
1683         int ret;
1684
1685         ret = pm_runtime_resume_and_get(master->dev);
1686         if (ret < 0) {
1687                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1688                 return ret;
1689         }
1690
1691         master->enabled_events++;
1692         svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1693
1694         return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1695 }
1696
1697 static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev)
1698 {
1699         struct i3c_master_controller *m = i3c_dev_get_master(dev);
1700         struct svc_i3c_master *master = to_svc_i3c_master(m);
1701         int ret;
1702
1703         master->enabled_events--;
1704         if (!master->enabled_events)
1705                 svc_i3c_master_disable_interrupts(master);
1706
1707         ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1708
1709         pm_runtime_mark_last_busy(master->dev);
1710         pm_runtime_put_autosuspend(master->dev);
1711
1712         return ret;
1713 }
1714
1715 static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m)
1716 {
1717         struct svc_i3c_master *master = to_svc_i3c_master(m);
1718         int ret;
1719
1720         ret = pm_runtime_resume_and_get(master->dev);
1721         if (ret < 0) {
1722                 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1723                 return ret;
1724         }
1725
1726         master->enabled_events |= SVC_I3C_EVENT_HOTJOIN;
1727
1728         svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1729
1730         return 0;
1731 }
1732
1733 static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m)
1734 {
1735         struct svc_i3c_master *master = to_svc_i3c_master(m);
1736
1737         master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN;
1738
1739         if (!master->enabled_events)
1740                 svc_i3c_master_disable_interrupts(master);
1741
1742         pm_runtime_mark_last_busy(master->dev);
1743         pm_runtime_put_autosuspend(master->dev);
1744
1745         return 0;
1746 }
1747
1748 static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev,
1749                                             struct i3c_ibi_slot *slot)
1750 {
1751         struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1752
1753         i3c_generic_ibi_recycle_slot(data->ibi_pool, slot);
1754 }
1755
1756 static const struct i3c_master_controller_ops svc_i3c_master_ops = {
1757         .bus_init = svc_i3c_master_bus_init,
1758         .bus_cleanup = svc_i3c_master_bus_cleanup,
1759         .attach_i3c_dev = svc_i3c_master_attach_i3c_dev,
1760         .detach_i3c_dev = svc_i3c_master_detach_i3c_dev,
1761         .reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev,
1762         .attach_i2c_dev = svc_i3c_master_attach_i2c_dev,
1763         .detach_i2c_dev = svc_i3c_master_detach_i2c_dev,
1764         .do_daa = svc_i3c_master_do_daa,
1765         .supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd,
1766         .send_ccc_cmd = svc_i3c_master_send_ccc_cmd,
1767         .priv_xfers = svc_i3c_master_priv_xfers,
1768         .i2c_xfers = svc_i3c_master_i2c_xfers,
1769         .request_ibi = svc_i3c_master_request_ibi,
1770         .free_ibi = svc_i3c_master_free_ibi,
1771         .recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot,
1772         .enable_ibi = svc_i3c_master_enable_ibi,
1773         .disable_ibi = svc_i3c_master_disable_ibi,
1774         .enable_hotjoin = svc_i3c_master_enable_hotjoin,
1775         .disable_hotjoin = svc_i3c_master_disable_hotjoin,
1776         .set_speed = svc_i3c_master_set_speed,
1777 };
1778
1779 static int svc_i3c_master_prepare_clks(struct svc_i3c_master *master)
1780 {
1781         int ret = 0;
1782
1783         ret = clk_prepare_enable(master->pclk);
1784         if (ret)
1785                 return ret;
1786
1787         ret = clk_prepare_enable(master->fclk);
1788         if (ret) {
1789                 clk_disable_unprepare(master->pclk);
1790                 return ret;
1791         }
1792
1793         ret = clk_prepare_enable(master->sclk);
1794         if (ret) {
1795                 clk_disable_unprepare(master->pclk);
1796                 clk_disable_unprepare(master->fclk);
1797                 return ret;
1798         }
1799
1800         return 0;
1801 }
1802
1803 static void svc_i3c_master_unprepare_clks(struct svc_i3c_master *master)
1804 {
1805         clk_disable_unprepare(master->pclk);
1806         clk_disable_unprepare(master->fclk);
1807         clk_disable_unprepare(master->sclk);
1808 }
1809
1810 static int svc_i3c_master_probe(struct platform_device *pdev)
1811 {
1812         struct device *dev = &pdev->dev;
1813         struct svc_i3c_master *master;
1814         int ret;
1815
1816         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
1817         if (!master)
1818                 return -ENOMEM;
1819
1820         master->regs = devm_platform_ioremap_resource(pdev, 0);
1821         if (IS_ERR(master->regs))
1822                 return PTR_ERR(master->regs);
1823
1824         master->pclk = devm_clk_get(dev, "pclk");
1825         if (IS_ERR(master->pclk))
1826                 return PTR_ERR(master->pclk);
1827
1828         master->fclk = devm_clk_get(dev, "fast_clk");
1829         if (IS_ERR(master->fclk))
1830                 return PTR_ERR(master->fclk);
1831
1832         master->sclk = devm_clk_get(dev, "slow_clk");
1833         if (IS_ERR(master->sclk))
1834                 return PTR_ERR(master->sclk);
1835
1836         master->irq = platform_get_irq(pdev, 0);
1837         if (master->irq < 0)
1838                 return master->irq;
1839
1840         master->dev = dev;
1841
1842         ret = svc_i3c_master_prepare_clks(master);
1843         if (ret)
1844                 return ret;
1845
1846         INIT_WORK(&master->hj_work, svc_i3c_master_hj_work);
1847         INIT_WORK(&master->ibi_work, svc_i3c_master_ibi_work);
1848         mutex_init(&master->lock);
1849
1850         ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler,
1851                                IRQF_NO_SUSPEND, "svc-i3c-irq", master);
1852         if (ret)
1853                 goto err_disable_clks;
1854
1855         master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0);
1856
1857         spin_lock_init(&master->xferqueue.lock);
1858         INIT_LIST_HEAD(&master->xferqueue.list);
1859
1860         spin_lock_init(&master->ibi.lock);
1861         master->ibi.num_slots = SVC_I3C_MAX_DEVS;
1862         master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots,
1863                                          sizeof(*master->ibi.slots),
1864                                          GFP_KERNEL);
1865         if (!master->ibi.slots) {
1866                 ret = -ENOMEM;
1867                 goto err_disable_clks;
1868         }
1869
1870         platform_set_drvdata(pdev, master);
1871
1872         pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS);
1873         pm_runtime_use_autosuspend(&pdev->dev);
1874         pm_runtime_get_noresume(&pdev->dev);
1875         pm_runtime_set_active(&pdev->dev);
1876         pm_runtime_enable(&pdev->dev);
1877
1878         svc_i3c_master_reset(master);
1879
1880         /* Register the master */
1881         ret = i3c_master_register(&master->base, &pdev->dev,
1882                                   &svc_i3c_master_ops, false);
1883         if (ret)
1884                 goto rpm_disable;
1885
1886         pm_runtime_mark_last_busy(&pdev->dev);
1887         pm_runtime_put_autosuspend(&pdev->dev);
1888
1889         return 0;
1890
1891 rpm_disable:
1892         pm_runtime_dont_use_autosuspend(&pdev->dev);
1893         pm_runtime_put_noidle(&pdev->dev);
1894         pm_runtime_disable(&pdev->dev);
1895         pm_runtime_set_suspended(&pdev->dev);
1896
1897 err_disable_clks:
1898         svc_i3c_master_unprepare_clks(master);
1899
1900         return ret;
1901 }
1902
1903 static void svc_i3c_master_remove(struct platform_device *pdev)
1904 {
1905         struct svc_i3c_master *master = platform_get_drvdata(pdev);
1906
1907         cancel_work_sync(&master->hj_work);
1908         i3c_master_unregister(&master->base);
1909
1910         pm_runtime_dont_use_autosuspend(&pdev->dev);
1911         pm_runtime_disable(&pdev->dev);
1912 }
1913
1914 static void svc_i3c_save_regs(struct svc_i3c_master *master)
1915 {
1916         master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG);
1917         master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR);
1918 }
1919
1920 static void svc_i3c_restore_regs(struct svc_i3c_master *master)
1921 {
1922         if (readl(master->regs + SVC_I3C_MDYNADDR) !=
1923             master->saved_regs.mdynaddr) {
1924                 writel(master->saved_regs.mconfig,
1925                        master->regs + SVC_I3C_MCONFIG);
1926                 writel(master->saved_regs.mdynaddr,
1927                        master->regs + SVC_I3C_MDYNADDR);
1928         }
1929 }
1930
1931 static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev)
1932 {
1933         struct svc_i3c_master *master = dev_get_drvdata(dev);
1934
1935         svc_i3c_save_regs(master);
1936         svc_i3c_master_unprepare_clks(master);
1937         pinctrl_pm_select_sleep_state(dev);
1938
1939         return 0;
1940 }
1941
1942 static int __maybe_unused svc_i3c_runtime_resume(struct device *dev)
1943 {
1944         struct svc_i3c_master *master = dev_get_drvdata(dev);
1945
1946         pinctrl_pm_select_default_state(dev);
1947         svc_i3c_master_prepare_clks(master);
1948
1949         svc_i3c_restore_regs(master);
1950
1951         return 0;
1952 }
1953
1954 static const struct dev_pm_ops svc_i3c_pm_ops = {
1955         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1956                                       pm_runtime_force_resume)
1957         SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend,
1958                            svc_i3c_runtime_resume, NULL)
1959 };
1960
1961 static const struct of_device_id svc_i3c_master_of_match_tbl[] = {
1962         { .compatible = "silvaco,i3c-master-v1"},
1963         { /* sentinel */ },
1964 };
1965 MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl);
1966
1967 static struct platform_driver svc_i3c_master = {
1968         .probe = svc_i3c_master_probe,
1969         .remove = svc_i3c_master_remove,
1970         .driver = {
1971                 .name = "silvaco-i3c-master",
1972                 .of_match_table = svc_i3c_master_of_match_tbl,
1973                 .pm = &svc_i3c_pm_ops,
1974         },
1975 };
1976 module_platform_driver(svc_i3c_master);
1977
1978 MODULE_AUTHOR("Conor Culhane <[email protected]>");
1979 MODULE_AUTHOR("Miquel Raynal <[email protected]>");
1980 MODULE_DESCRIPTION("Silvaco dual-role I3C master driver");
1981 MODULE_LICENSE("GPL v2");
This page took 0.137977 seconds and 4 git commands to generate.