]> Git Repo - J-linux.git/blob - drivers/gpu/drm/i915/gvt/gtt.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <[email protected]>
27  *    Zhenyu Wang <[email protected]>
28  *    Xiao Zheng <[email protected]>
29  *
30  * Contributors:
31  *    Min He <[email protected]>
32  *    Bing Niu <[email protected]>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #include "gt/intel_gt_regs.h"
42 #include <linux/vmalloc.h>
43
44 #if defined(VERBOSE_DEBUG)
45 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
46 #else
47 #define gvt_vdbg_mm(fmt, args...)
48 #endif
49
50 static bool enable_out_of_sync = false;
51 static int preallocated_oos_pages = 8192;
52
53 /*
54  * validate a gm address and related range size,
55  * translate it to host gm address
56  */
57 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
58 {
59         if (size == 0)
60                 return vgpu_gmadr_is_valid(vgpu, addr);
61
62         if (vgpu_gmadr_is_aperture(vgpu, addr) &&
63             vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
64                 return true;
65         else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
66                  vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
67                 return true;
68
69         gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
70                      addr, size);
71         return false;
72 }
73
74 /* translate a guest gmadr to host gmadr */
75 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
76 {
77         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
78
79         if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
80                      "invalid guest gmadr %llx\n", g_addr))
81                 return -EACCES;
82
83         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
84                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
85                           + (g_addr - vgpu_aperture_offset(vgpu));
86         else
87                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
88                           + (g_addr - vgpu_hidden_offset(vgpu));
89         return 0;
90 }
91
92 /* translate a host gmadr to guest gmadr */
93 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
94 {
95         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
96
97         if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
98                      "invalid host gmadr %llx\n", h_addr))
99                 return -EACCES;
100
101         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
102                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
103                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
104         else
105                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
106                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
107         return 0;
108 }
109
110 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
111                              unsigned long *h_index)
112 {
113         u64 h_addr;
114         int ret;
115
116         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
117                                        &h_addr);
118         if (ret)
119                 return ret;
120
121         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
122         return 0;
123 }
124
125 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
126                              unsigned long *g_index)
127 {
128         u64 g_addr;
129         int ret;
130
131         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
132                                        &g_addr);
133         if (ret)
134                 return ret;
135
136         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
137         return 0;
138 }
139
140 #define gtt_type_is_entry(type) \
141         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
142          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
143          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
144
145 #define gtt_type_is_pt(type) \
146         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
147
148 #define gtt_type_is_pte_pt(type) \
149         (type == GTT_TYPE_PPGTT_PTE_PT)
150
151 #define gtt_type_is_root_pointer(type) \
152         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
153
154 #define gtt_init_entry(e, t, p, v) do { \
155         (e)->type = t; \
156         (e)->pdev = p; \
157         memcpy(&(e)->val64, &v, sizeof(v)); \
158 } while (0)
159
160 /*
161  * Mappings between GTT_TYPE* enumerations.
162  * Following information can be found according to the given type:
163  * - type of next level page table
164  * - type of entry inside this level page table
165  * - type of entry with PSE set
166  *
167  * If the given type doesn't have such a kind of information,
168  * e.g. give a l4 root entry type, then request to get its PSE type,
169  * give a PTE page table type, then request to get its next level page
170  * table type, as we know l4 root entry doesn't have a PSE bit,
171  * and a PTE page table doesn't have a next level page table type,
172  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
173  * page table.
174  */
175
176 struct gtt_type_table_entry {
177         int entry_type;
178         int pt_type;
179         int next_pt_type;
180         int pse_entry_type;
181 };
182
183 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
184         [type] = { \
185                 .entry_type = e_type, \
186                 .pt_type = cpt_type, \
187                 .next_pt_type = npt_type, \
188                 .pse_entry_type = pse_type, \
189         }
190
191 static const struct gtt_type_table_entry gtt_type_table[] = {
192         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
193                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
194                         GTT_TYPE_INVALID,
195                         GTT_TYPE_PPGTT_PML4_PT,
196                         GTT_TYPE_INVALID),
197         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
198                         GTT_TYPE_PPGTT_PML4_ENTRY,
199                         GTT_TYPE_PPGTT_PML4_PT,
200                         GTT_TYPE_PPGTT_PDP_PT,
201                         GTT_TYPE_INVALID),
202         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
203                         GTT_TYPE_PPGTT_PML4_ENTRY,
204                         GTT_TYPE_PPGTT_PML4_PT,
205                         GTT_TYPE_PPGTT_PDP_PT,
206                         GTT_TYPE_INVALID),
207         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
208                         GTT_TYPE_PPGTT_PDP_ENTRY,
209                         GTT_TYPE_PPGTT_PDP_PT,
210                         GTT_TYPE_PPGTT_PDE_PT,
211                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
212         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
213                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
214                         GTT_TYPE_INVALID,
215                         GTT_TYPE_PPGTT_PDE_PT,
216                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
217         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
218                         GTT_TYPE_PPGTT_PDP_ENTRY,
219                         GTT_TYPE_PPGTT_PDP_PT,
220                         GTT_TYPE_PPGTT_PDE_PT,
221                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
222         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
223                         GTT_TYPE_PPGTT_PDE_ENTRY,
224                         GTT_TYPE_PPGTT_PDE_PT,
225                         GTT_TYPE_PPGTT_PTE_PT,
226                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
227         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
228                         GTT_TYPE_PPGTT_PDE_ENTRY,
229                         GTT_TYPE_PPGTT_PDE_PT,
230                         GTT_TYPE_PPGTT_PTE_PT,
231                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
232         /* We take IPS bit as 'PSE' for PTE level. */
233         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
234                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
235                         GTT_TYPE_PPGTT_PTE_PT,
236                         GTT_TYPE_INVALID,
237                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
238         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
239                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
240                         GTT_TYPE_PPGTT_PTE_PT,
241                         GTT_TYPE_INVALID,
242                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
243         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
244                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
245                         GTT_TYPE_PPGTT_PTE_PT,
246                         GTT_TYPE_INVALID,
247                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
248         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
249                         GTT_TYPE_PPGTT_PDE_ENTRY,
250                         GTT_TYPE_PPGTT_PDE_PT,
251                         GTT_TYPE_INVALID,
252                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
253         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
254                         GTT_TYPE_PPGTT_PDP_ENTRY,
255                         GTT_TYPE_PPGTT_PDP_PT,
256                         GTT_TYPE_INVALID,
257                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
258         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
259                         GTT_TYPE_GGTT_PTE,
260                         GTT_TYPE_INVALID,
261                         GTT_TYPE_INVALID,
262                         GTT_TYPE_INVALID),
263 };
264
265 static inline int get_next_pt_type(int type)
266 {
267         return gtt_type_table[type].next_pt_type;
268 }
269
270 static inline int get_entry_type(int type)
271 {
272         return gtt_type_table[type].entry_type;
273 }
274
275 static inline int get_pse_type(int type)
276 {
277         return gtt_type_table[type].pse_entry_type;
278 }
279
280 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
281 {
282         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
283
284         return readq(addr);
285 }
286
287 static void ggtt_invalidate(struct intel_gt *gt)
288 {
289         mmio_hw_access_pre(gt);
290         intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
291         mmio_hw_access_post(gt);
292 }
293
294 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
295 {
296         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
297
298         writeq(pte, addr);
299 }
300
301 static inline int gtt_get_entry64(void *pt,
302                 struct intel_gvt_gtt_entry *e,
303                 unsigned long index, bool hypervisor_access, unsigned long gpa,
304                 struct intel_vgpu *vgpu)
305 {
306         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
307         int ret;
308
309         if (WARN_ON(info->gtt_entry_size != 8))
310                 return -EINVAL;
311
312         if (hypervisor_access) {
313                 ret = intel_gvt_read_gpa(vgpu, gpa +
314                                 (index << info->gtt_entry_size_shift),
315                                 &e->val64, 8);
316                 if (WARN_ON(ret))
317                         return ret;
318         } else if (!pt) {
319                 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
320         } else {
321                 e->val64 = *((u64 *)pt + index);
322         }
323         return 0;
324 }
325
326 static inline int gtt_set_entry64(void *pt,
327                 struct intel_gvt_gtt_entry *e,
328                 unsigned long index, bool hypervisor_access, unsigned long gpa,
329                 struct intel_vgpu *vgpu)
330 {
331         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
332         int ret;
333
334         if (WARN_ON(info->gtt_entry_size != 8))
335                 return -EINVAL;
336
337         if (hypervisor_access) {
338                 ret = intel_gvt_write_gpa(vgpu, gpa +
339                                 (index << info->gtt_entry_size_shift),
340                                 &e->val64, 8);
341                 if (WARN_ON(ret))
342                         return ret;
343         } else if (!pt) {
344                 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
345         } else {
346                 *((u64 *)pt + index) = e->val64;
347         }
348         return 0;
349 }
350
351 #define GTT_HAW 46
352
353 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
354 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
355 #define ADDR_64K_MASK   GENMASK_ULL(GTT_HAW - 1, 16)
356 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
357
358 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
359 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
360
361 #define GTT_64K_PTE_STRIDE 16
362
363 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
364 {
365         unsigned long pfn;
366
367         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
368                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
369         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
370                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
371         else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
372                 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
373         else
374                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
375         return pfn;
376 }
377
378 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
379 {
380         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
381                 e->val64 &= ~ADDR_1G_MASK;
382                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
383         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
384                 e->val64 &= ~ADDR_2M_MASK;
385                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
386         } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
387                 e->val64 &= ~ADDR_64K_MASK;
388                 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
389         } else {
390                 e->val64 &= ~ADDR_4K_MASK;
391                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
392         }
393
394         e->val64 |= (pfn << PAGE_SHIFT);
395 }
396
397 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
398 {
399         return !!(e->val64 & _PAGE_PSE);
400 }
401
402 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
403 {
404         if (gen8_gtt_test_pse(e)) {
405                 switch (e->type) {
406                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
407                         e->val64 &= ~_PAGE_PSE;
408                         e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
409                         break;
410                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
411                         e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
412                         e->val64 &= ~_PAGE_PSE;
413                         break;
414                 default:
415                         WARN_ON(1);
416                 }
417         }
418 }
419
420 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
421 {
422         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
423                 return false;
424
425         return !!(e->val64 & GEN8_PDE_IPS_64K);
426 }
427
428 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
429 {
430         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
431                 return;
432
433         e->val64 &= ~GEN8_PDE_IPS_64K;
434 }
435
436 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
437 {
438         /*
439          * i915 writes PDP root pointer registers without present bit,
440          * it also works, so we need to treat root pointer entry
441          * specifically.
442          */
443         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
444                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
445                 return (e->val64 != 0);
446         else
447                 return (e->val64 & GEN8_PAGE_PRESENT);
448 }
449
450 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
451 {
452         e->val64 &= ~GEN8_PAGE_PRESENT;
453 }
454
455 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
456 {
457         e->val64 |= GEN8_PAGE_PRESENT;
458 }
459
460 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
461 {
462         return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
463 }
464
465 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
466 {
467         e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
468 }
469
470 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
471 {
472         e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
473 }
474
475 /*
476  * Per-platform GMA routines.
477  */
478 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
479 {
480         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
481
482         trace_gma_index(__func__, gma, x);
483         return x;
484 }
485
486 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
487 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
488 { \
489         unsigned long x = (exp); \
490         trace_gma_index(__func__, gma, x); \
491         return x; \
492 }
493
494 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
495 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
499
500 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
501         .get_entry = gtt_get_entry64,
502         .set_entry = gtt_set_entry64,
503         .clear_present = gtt_entry_clear_present,
504         .set_present = gtt_entry_set_present,
505         .test_present = gen8_gtt_test_present,
506         .test_pse = gen8_gtt_test_pse,
507         .clear_pse = gen8_gtt_clear_pse,
508         .clear_ips = gen8_gtt_clear_ips,
509         .test_ips = gen8_gtt_test_ips,
510         .clear_64k_splited = gen8_gtt_clear_64k_splited,
511         .set_64k_splited = gen8_gtt_set_64k_splited,
512         .test_64k_splited = gen8_gtt_test_64k_splited,
513         .get_pfn = gen8_gtt_get_pfn,
514         .set_pfn = gen8_gtt_set_pfn,
515 };
516
517 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
518         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
519         .gma_to_pte_index = gen8_gma_to_pte_index,
520         .gma_to_pde_index = gen8_gma_to_pde_index,
521         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
522         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
523         .gma_to_pml4_index = gen8_gma_to_pml4_index,
524 };
525
526 /* Update entry type per pse and ips bit. */
527 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
528         struct intel_gvt_gtt_entry *entry, bool ips)
529 {
530         switch (entry->type) {
531         case GTT_TYPE_PPGTT_PDE_ENTRY:
532         case GTT_TYPE_PPGTT_PDP_ENTRY:
533                 if (pte_ops->test_pse(entry))
534                         entry->type = get_pse_type(entry->type);
535                 break;
536         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
537                 if (ips)
538                         entry->type = get_pse_type(entry->type);
539                 break;
540         default:
541                 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
542         }
543
544         GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
545 }
546
547 /*
548  * MM helpers.
549  */
550 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
551                 struct intel_gvt_gtt_entry *entry, unsigned long index,
552                 bool guest)
553 {
554         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
555
556         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
557
558         entry->type = mm->ppgtt_mm.root_entry_type;
559         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
560                            mm->ppgtt_mm.shadow_pdps,
561                            entry, index, false, 0, mm->vgpu);
562         update_entry_type_for_real(pte_ops, entry, false);
563 }
564
565 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
566                 struct intel_gvt_gtt_entry *entry, unsigned long index)
567 {
568         _ppgtt_get_root_entry(mm, entry, index, true);
569 }
570
571 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
572                 struct intel_gvt_gtt_entry *entry, unsigned long index)
573 {
574         _ppgtt_get_root_entry(mm, entry, index, false);
575 }
576
577 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
578                 struct intel_gvt_gtt_entry *entry, unsigned long index,
579                 bool guest)
580 {
581         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
582
583         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
584                            mm->ppgtt_mm.shadow_pdps,
585                            entry, index, false, 0, mm->vgpu);
586 }
587
588 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
589                 struct intel_gvt_gtt_entry *entry, unsigned long index)
590 {
591         _ppgtt_set_root_entry(mm, entry, index, false);
592 }
593
594 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
595                 struct intel_gvt_gtt_entry *entry, unsigned long index)
596 {
597         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
598
599         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
600
601         entry->type = GTT_TYPE_GGTT_PTE;
602         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
603                            false, 0, mm->vgpu);
604 }
605
606 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
607                 struct intel_gvt_gtt_entry *entry, unsigned long index)
608 {
609         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
610
611         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
612
613         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
614                            false, 0, mm->vgpu);
615 }
616
617 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
618                 struct intel_gvt_gtt_entry *entry, unsigned long index)
619 {
620         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
621
622         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
623
624         pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
625 }
626
627 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
628                 struct intel_gvt_gtt_entry *entry, unsigned long index)
629 {
630         const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
631         unsigned long offset = index;
632
633         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
634
635         if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
636                 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
637                 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
638         } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
639                 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
640                 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
641         }
642
643         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
644 }
645
646 /*
647  * PPGTT shadow page table helpers.
648  */
649 static inline int ppgtt_spt_get_entry(
650                 struct intel_vgpu_ppgtt_spt *spt,
651                 void *page_table, int type,
652                 struct intel_gvt_gtt_entry *e, unsigned long index,
653                 bool guest)
654 {
655         struct intel_gvt *gvt = spt->vgpu->gvt;
656         const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
657         int ret;
658
659         e->type = get_entry_type(type);
660
661         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
662                 return -EINVAL;
663
664         ret = ops->get_entry(page_table, e, index, guest,
665                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
666                         spt->vgpu);
667         if (ret)
668                 return ret;
669
670         update_entry_type_for_real(ops, e, guest ?
671                                    spt->guest_page.pde_ips : false);
672
673         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
674                     type, e->type, index, e->val64);
675         return 0;
676 }
677
678 static inline int ppgtt_spt_set_entry(
679                 struct intel_vgpu_ppgtt_spt *spt,
680                 void *page_table, int type,
681                 struct intel_gvt_gtt_entry *e, unsigned long index,
682                 bool guest)
683 {
684         struct intel_gvt *gvt = spt->vgpu->gvt;
685         const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
686
687         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
688                 return -EINVAL;
689
690         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
691                     type, e->type, index, e->val64);
692
693         return ops->set_entry(page_table, e, index, guest,
694                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
695                         spt->vgpu);
696 }
697
698 #define ppgtt_get_guest_entry(spt, e, index) \
699         ppgtt_spt_get_entry(spt, NULL, \
700                 spt->guest_page.type, e, index, true)
701
702 #define ppgtt_set_guest_entry(spt, e, index) \
703         ppgtt_spt_set_entry(spt, NULL, \
704                 spt->guest_page.type, e, index, true)
705
706 #define ppgtt_get_shadow_entry(spt, e, index) \
707         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
708                 spt->shadow_page.type, e, index, false)
709
710 #define ppgtt_set_shadow_entry(spt, e, index) \
711         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
712                 spt->shadow_page.type, e, index, false)
713
714 static void *alloc_spt(gfp_t gfp_mask)
715 {
716         struct intel_vgpu_ppgtt_spt *spt;
717
718         spt = kzalloc(sizeof(*spt), gfp_mask);
719         if (!spt)
720                 return NULL;
721
722         spt->shadow_page.page = alloc_page(gfp_mask);
723         if (!spt->shadow_page.page) {
724                 kfree(spt);
725                 return NULL;
726         }
727         return spt;
728 }
729
730 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
731 {
732         __free_page(spt->shadow_page.page);
733         kfree(spt);
734 }
735
736 static int detach_oos_page(struct intel_vgpu *vgpu,
737                 struct intel_vgpu_oos_page *oos_page);
738
739 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
740 {
741         struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
742
743         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
744
745         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
746                        DMA_BIDIRECTIONAL);
747
748         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
749
750         if (spt->guest_page.gfn) {
751                 if (spt->guest_page.oos_page)
752                         detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
753
754                 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
755         }
756
757         list_del_init(&spt->post_shadow_list);
758         free_spt(spt);
759 }
760
761 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
762 {
763         struct intel_vgpu_ppgtt_spt *spt, *spn;
764         struct radix_tree_iter iter;
765         LIST_HEAD(all_spt);
766         void __rcu **slot;
767
768         rcu_read_lock();
769         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
770                 spt = radix_tree_deref_slot(slot);
771                 list_move(&spt->post_shadow_list, &all_spt);
772         }
773         rcu_read_unlock();
774
775         list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
776                 ppgtt_free_spt(spt);
777 }
778
779 static int ppgtt_handle_guest_write_page_table_bytes(
780                 struct intel_vgpu_ppgtt_spt *spt,
781                 u64 pa, void *p_data, int bytes);
782
783 static int ppgtt_write_protection_handler(
784                 struct intel_vgpu_page_track *page_track,
785                 u64 gpa, void *data, int bytes)
786 {
787         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
788
789         int ret;
790
791         if (bytes != 4 && bytes != 8)
792                 return -EINVAL;
793
794         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
795         if (ret)
796                 return ret;
797         return ret;
798 }
799
800 /* Find a spt by guest gfn. */
801 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
802                 struct intel_vgpu *vgpu, unsigned long gfn)
803 {
804         struct intel_vgpu_page_track *track;
805
806         track = intel_vgpu_find_page_track(vgpu, gfn);
807         if (track && track->handler == ppgtt_write_protection_handler)
808                 return track->priv_data;
809
810         return NULL;
811 }
812
813 /* Find the spt by shadow page mfn. */
814 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
815                 struct intel_vgpu *vgpu, unsigned long mfn)
816 {
817         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
818 }
819
820 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
821
822 /* Allocate shadow page table without guest page. */
823 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
824                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
825 {
826         struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
827         struct intel_vgpu_ppgtt_spt *spt = NULL;
828         dma_addr_t daddr;
829         int ret;
830
831 retry:
832         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
833         if (!spt) {
834                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
835                         goto retry;
836
837                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
838                 return ERR_PTR(-ENOMEM);
839         }
840
841         spt->vgpu = vgpu;
842         atomic_set(&spt->refcount, 1);
843         INIT_LIST_HEAD(&spt->post_shadow_list);
844
845         /*
846          * Init shadow_page.
847          */
848         spt->shadow_page.type = type;
849         daddr = dma_map_page(kdev, spt->shadow_page.page,
850                              0, 4096, DMA_BIDIRECTIONAL);
851         if (dma_mapping_error(kdev, daddr)) {
852                 gvt_vgpu_err("fail to map dma addr\n");
853                 ret = -EINVAL;
854                 goto err_free_spt;
855         }
856         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
857         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
858
859         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
860         if (ret)
861                 goto err_unmap_dma;
862
863         return spt;
864
865 err_unmap_dma:
866         dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
867 err_free_spt:
868         free_spt(spt);
869         return ERR_PTR(ret);
870 }
871
872 /* Allocate shadow page table associated with specific gfn. */
873 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
874                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
875                 unsigned long gfn, bool guest_pde_ips)
876 {
877         struct intel_vgpu_ppgtt_spt *spt;
878         int ret;
879
880         spt = ppgtt_alloc_spt(vgpu, type);
881         if (IS_ERR(spt))
882                 return spt;
883
884         /*
885          * Init guest_page.
886          */
887         ret = intel_vgpu_register_page_track(vgpu, gfn,
888                         ppgtt_write_protection_handler, spt);
889         if (ret) {
890                 ppgtt_free_spt(spt);
891                 return ERR_PTR(ret);
892         }
893
894         spt->guest_page.type = type;
895         spt->guest_page.gfn = gfn;
896         spt->guest_page.pde_ips = guest_pde_ips;
897
898         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
899
900         return spt;
901 }
902
903 #define pt_entry_size_shift(spt) \
904         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
905
906 #define pt_entries(spt) \
907         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
908
909 #define for_each_present_guest_entry(spt, e, i) \
910         for (i = 0; i < pt_entries(spt); \
911              i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
912                 if (!ppgtt_get_guest_entry(spt, e, i) && \
913                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
914
915 #define for_each_present_shadow_entry(spt, e, i) \
916         for (i = 0; i < pt_entries(spt); \
917              i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
918                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
919                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
920
921 #define for_each_shadow_entry(spt, e, i) \
922         for (i = 0; i < pt_entries(spt); \
923              i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
924                 if (!ppgtt_get_shadow_entry(spt, e, i))
925
926 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
927 {
928         int v = atomic_read(&spt->refcount);
929
930         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
931         atomic_inc(&spt->refcount);
932 }
933
934 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
935 {
936         int v = atomic_read(&spt->refcount);
937
938         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
939         return atomic_dec_return(&spt->refcount);
940 }
941
942 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
943
944 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
945                 struct intel_gvt_gtt_entry *e)
946 {
947         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
948         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
949         struct intel_vgpu_ppgtt_spt *s;
950         enum intel_gvt_gtt_type cur_pt_type;
951
952         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
953
954         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
955                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
956                 cur_pt_type = get_next_pt_type(e->type);
957
958                 if (!gtt_type_is_pt(cur_pt_type) ||
959                                 !gtt_type_is_pt(cur_pt_type + 1)) {
960                         drm_WARN(&i915->drm, 1,
961                                  "Invalid page table type, cur_pt_type is: %d\n",
962                                  cur_pt_type);
963                         return -EINVAL;
964                 }
965
966                 cur_pt_type += 1;
967
968                 if (ops->get_pfn(e) ==
969                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
970                         return 0;
971         }
972         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
973         if (!s) {
974                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
975                                 ops->get_pfn(e));
976                 return -ENXIO;
977         }
978         return ppgtt_invalidate_spt(s);
979 }
980
981 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
982                 struct intel_gvt_gtt_entry *entry)
983 {
984         struct intel_vgpu *vgpu = spt->vgpu;
985         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
986         unsigned long pfn;
987         int type;
988
989         pfn = ops->get_pfn(entry);
990         type = spt->shadow_page.type;
991
992         /* Uninitialized spte or unshadowed spte. */
993         if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
994                 return;
995
996         intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
997 }
998
999 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1000 {
1001         struct intel_vgpu *vgpu = spt->vgpu;
1002         struct intel_gvt_gtt_entry e;
1003         unsigned long index;
1004         int ret;
1005
1006         trace_spt_change(spt->vgpu->id, "die", spt,
1007                         spt->guest_page.gfn, spt->shadow_page.type);
1008
1009         if (ppgtt_put_spt(spt) > 0)
1010                 return 0;
1011
1012         for_each_present_shadow_entry(spt, &e, index) {
1013                 switch (e.type) {
1014                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1015                         gvt_vdbg_mm("invalidate 4K entry\n");
1016                         ppgtt_invalidate_pte(spt, &e);
1017                         break;
1018                 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1019                         /* We don't setup 64K shadow entry so far. */
1020                         WARN(1, "suspicious 64K gtt entry\n");
1021                         continue;
1022                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1023                         gvt_vdbg_mm("invalidate 2M entry\n");
1024                         continue;
1025                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1026                         WARN(1, "GVT doesn't support 1GB page\n");
1027                         continue;
1028                 case GTT_TYPE_PPGTT_PML4_ENTRY:
1029                 case GTT_TYPE_PPGTT_PDP_ENTRY:
1030                 case GTT_TYPE_PPGTT_PDE_ENTRY:
1031                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1032                         ret = ppgtt_invalidate_spt_by_shadow_entry(
1033                                         spt->vgpu, &e);
1034                         if (ret)
1035                                 goto fail;
1036                         break;
1037                 default:
1038                         GEM_BUG_ON(1);
1039                 }
1040         }
1041
1042         trace_spt_change(spt->vgpu->id, "release", spt,
1043                          spt->guest_page.gfn, spt->shadow_page.type);
1044         ppgtt_free_spt(spt);
1045         return 0;
1046 fail:
1047         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1048                         spt, e.val64, e.type);
1049         return ret;
1050 }
1051
1052 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1053 {
1054         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1055
1056         if (GRAPHICS_VER(dev_priv) == 9) {
1057                 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1058                         GAMW_ECO_ENABLE_64K_IPS_FIELD;
1059
1060                 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1061         } else if (GRAPHICS_VER(dev_priv) >= 11) {
1062                 /* 64K paging only controlled by IPS bit in PTE now. */
1063                 return true;
1064         } else
1065                 return false;
1066 }
1067
1068 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1069
1070 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1071                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1072 {
1073         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1074         struct intel_vgpu_ppgtt_spt *spt = NULL;
1075         bool ips = false;
1076         int ret;
1077
1078         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1079
1080         if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1081                 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1082
1083         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1084         if (spt) {
1085                 ppgtt_get_spt(spt);
1086
1087                 if (ips != spt->guest_page.pde_ips) {
1088                         spt->guest_page.pde_ips = ips;
1089
1090                         gvt_dbg_mm("reshadow PDE since ips changed\n");
1091                         clear_page(spt->shadow_page.vaddr);
1092                         ret = ppgtt_populate_spt(spt);
1093                         if (ret) {
1094                                 ppgtt_put_spt(spt);
1095                                 goto err;
1096                         }
1097                 }
1098         } else {
1099                 int type = get_next_pt_type(we->type);
1100
1101                 if (!gtt_type_is_pt(type)) {
1102                         ret = -EINVAL;
1103                         goto err;
1104                 }
1105
1106                 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1107                 if (IS_ERR(spt)) {
1108                         ret = PTR_ERR(spt);
1109                         goto err;
1110                 }
1111
1112                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1113                 if (ret)
1114                         goto err_free_spt;
1115
1116                 ret = ppgtt_populate_spt(spt);
1117                 if (ret)
1118                         goto err_free_spt;
1119
1120                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1121                                  spt->shadow_page.type);
1122         }
1123         return spt;
1124
1125 err_free_spt:
1126         ppgtt_free_spt(spt);
1127         spt = NULL;
1128 err:
1129         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1130                      spt, we->val64, we->type);
1131         return ERR_PTR(ret);
1132 }
1133
1134 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1135                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1136 {
1137         const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1138
1139         se->type = ge->type;
1140         se->val64 = ge->val64;
1141
1142         /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1143         if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1144                 ops->clear_ips(se);
1145
1146         ops->set_pfn(se, s->shadow_page.mfn);
1147 }
1148
1149 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1150         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1151         struct intel_gvt_gtt_entry *se)
1152 {
1153         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1154         struct intel_vgpu_ppgtt_spt *sub_spt;
1155         struct intel_gvt_gtt_entry sub_se;
1156         unsigned long start_gfn;
1157         dma_addr_t dma_addr;
1158         unsigned long sub_index;
1159         int ret;
1160
1161         gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1162
1163         start_gfn = ops->get_pfn(se);
1164
1165         sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1166         if (IS_ERR(sub_spt))
1167                 return PTR_ERR(sub_spt);
1168
1169         for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1170                 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
1171                                                    PAGE_SIZE, &dma_addr);
1172                 if (ret)
1173                         goto err;
1174                 sub_se.val64 = se->val64;
1175
1176                 /* Copy the PAT field from PDE. */
1177                 sub_se.val64 &= ~_PAGE_PAT;
1178                 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1179
1180                 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1181                 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1182         }
1183
1184         /* Clear dirty field. */
1185         se->val64 &= ~_PAGE_DIRTY;
1186
1187         ops->clear_pse(se);
1188         ops->clear_ips(se);
1189         ops->set_pfn(se, sub_spt->shadow_page.mfn);
1190         ppgtt_set_shadow_entry(spt, se, index);
1191         return 0;
1192 err:
1193         /* Cancel the existing address mappings of DMA addr. */
1194         for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1195                 gvt_vdbg_mm("invalidate 4K entry\n");
1196                 ppgtt_invalidate_pte(sub_spt, &sub_se);
1197         }
1198         /* Release the new allocated spt. */
1199         trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1200                 sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1201         ppgtt_free_spt(sub_spt);
1202         return ret;
1203 }
1204
1205 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1206         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1207         struct intel_gvt_gtt_entry *se)
1208 {
1209         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1210         struct intel_gvt_gtt_entry entry = *se;
1211         unsigned long start_gfn;
1212         dma_addr_t dma_addr;
1213         int i, ret;
1214
1215         gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1216
1217         GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1218
1219         start_gfn = ops->get_pfn(se);
1220
1221         entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1222         ops->set_64k_splited(&entry);
1223
1224         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1225                 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
1226                                                    PAGE_SIZE, &dma_addr);
1227                 if (ret)
1228                         return ret;
1229
1230                 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1231                 ppgtt_set_shadow_entry(spt, &entry, index + i);
1232         }
1233         return 0;
1234 }
1235
1236 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1237         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1238         struct intel_gvt_gtt_entry *ge)
1239 {
1240         const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1241         struct intel_gvt_gtt_entry se = *ge;
1242         unsigned long gfn;
1243         dma_addr_t dma_addr;
1244         int ret;
1245
1246         if (!pte_ops->test_present(ge))
1247                 return 0;
1248
1249         gfn = pte_ops->get_pfn(ge);
1250
1251         switch (ge->type) {
1252         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1253                 gvt_vdbg_mm("shadow 4K gtt entry\n");
1254                 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, &dma_addr);
1255                 if (ret)
1256                         return -ENXIO;
1257                 break;
1258         case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1259                 gvt_vdbg_mm("shadow 64K gtt entry\n");
1260                 /*
1261                  * The layout of 64K page is special, the page size is
1262                  * controlled by uper PDE. To be simple, we always split
1263                  * 64K page to smaller 4K pages in shadow PT.
1264                  */
1265                 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1266         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1267                 gvt_vdbg_mm("shadow 2M gtt entry\n");
1268                 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M) ||
1269                     intel_gvt_dma_map_guest_page(vgpu, gfn,
1270                                                  I915_GTT_PAGE_SIZE_2M, &dma_addr))
1271                         return split_2MB_gtt_entry(vgpu, spt, index, &se);
1272                 break;
1273         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1274                 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1275                 return -EINVAL;
1276         default:
1277                 GEM_BUG_ON(1);
1278                 return -EINVAL;
1279         }
1280
1281         /* Successfully shadowed a 4K or 2M page (without splitting). */
1282         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1283         ppgtt_set_shadow_entry(spt, &se, index);
1284         return 0;
1285 }
1286
1287 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1288 {
1289         struct intel_vgpu *vgpu = spt->vgpu;
1290         struct intel_vgpu_ppgtt_spt *s;
1291         struct intel_gvt_gtt_entry se, ge;
1292         unsigned long i;
1293         int ret;
1294
1295         trace_spt_change(spt->vgpu->id, "born", spt,
1296                          spt->guest_page.gfn, spt->shadow_page.type);
1297
1298         for_each_present_guest_entry(spt, &ge, i) {
1299                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1300                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1301                         if (IS_ERR(s)) {
1302                                 ret = PTR_ERR(s);
1303                                 goto fail;
1304                         }
1305                         ppgtt_get_shadow_entry(spt, &se, i);
1306                         ppgtt_generate_shadow_entry(&se, s, &ge);
1307                         ppgtt_set_shadow_entry(spt, &se, i);
1308                 } else {
1309                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1310                         if (ret)
1311                                 goto fail;
1312                 }
1313         }
1314         return 0;
1315 fail:
1316         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1317                         spt, ge.val64, ge.type);
1318         return ret;
1319 }
1320
1321 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1322                 struct intel_gvt_gtt_entry *se, unsigned long index)
1323 {
1324         struct intel_vgpu *vgpu = spt->vgpu;
1325         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1326         int ret;
1327
1328         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1329                                spt->shadow_page.type, se->val64, index);
1330
1331         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1332                     se->type, index, se->val64);
1333
1334         if (!ops->test_present(se))
1335                 return 0;
1336
1337         if (ops->get_pfn(se) ==
1338             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1339                 return 0;
1340
1341         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1342                 struct intel_vgpu_ppgtt_spt *s =
1343                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1344                 if (!s) {
1345                         gvt_vgpu_err("fail to find guest page\n");
1346                         ret = -ENXIO;
1347                         goto fail;
1348                 }
1349                 ret = ppgtt_invalidate_spt(s);
1350                 if (ret)
1351                         goto fail;
1352         } else {
1353                 /* We don't setup 64K shadow entry so far. */
1354                 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1355                      "suspicious 64K entry\n");
1356                 ppgtt_invalidate_pte(spt, se);
1357         }
1358
1359         return 0;
1360 fail:
1361         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1362                         spt, se->val64, se->type);
1363         return ret;
1364 }
1365
1366 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1367                 struct intel_gvt_gtt_entry *we, unsigned long index)
1368 {
1369         struct intel_vgpu *vgpu = spt->vgpu;
1370         struct intel_gvt_gtt_entry m;
1371         struct intel_vgpu_ppgtt_spt *s;
1372         int ret;
1373
1374         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1375                                we->val64, index);
1376
1377         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1378                     we->type, index, we->val64);
1379
1380         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1381                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1382                 if (IS_ERR(s)) {
1383                         ret = PTR_ERR(s);
1384                         goto fail;
1385                 }
1386                 ppgtt_get_shadow_entry(spt, &m, index);
1387                 ppgtt_generate_shadow_entry(&m, s, we);
1388                 ppgtt_set_shadow_entry(spt, &m, index);
1389         } else {
1390                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1391                 if (ret)
1392                         goto fail;
1393         }
1394         return 0;
1395 fail:
1396         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1397                 spt, we->val64, we->type);
1398         return ret;
1399 }
1400
1401 static int sync_oos_page(struct intel_vgpu *vgpu,
1402                 struct intel_vgpu_oos_page *oos_page)
1403 {
1404         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1405         struct intel_gvt *gvt = vgpu->gvt;
1406         const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1407         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1408         struct intel_gvt_gtt_entry old, new;
1409         int index;
1410         int ret;
1411
1412         trace_oos_change(vgpu->id, "sync", oos_page->id,
1413                          spt, spt->guest_page.type);
1414
1415         old.type = new.type = get_entry_type(spt->guest_page.type);
1416         old.val64 = new.val64 = 0;
1417
1418         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1419                                 info->gtt_entry_size_shift); index++) {
1420                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1421                 ops->get_entry(NULL, &new, index, true,
1422                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1423
1424                 if (old.val64 == new.val64
1425                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1426                         continue;
1427
1428                 trace_oos_sync(vgpu->id, oos_page->id,
1429                                 spt, spt->guest_page.type,
1430                                 new.val64, index);
1431
1432                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1433                 if (ret)
1434                         return ret;
1435
1436                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1437         }
1438
1439         spt->guest_page.write_cnt = 0;
1440         list_del_init(&spt->post_shadow_list);
1441         return 0;
1442 }
1443
1444 static int detach_oos_page(struct intel_vgpu *vgpu,
1445                 struct intel_vgpu_oos_page *oos_page)
1446 {
1447         struct intel_gvt *gvt = vgpu->gvt;
1448         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1449
1450         trace_oos_change(vgpu->id, "detach", oos_page->id,
1451                          spt, spt->guest_page.type);
1452
1453         spt->guest_page.write_cnt = 0;
1454         spt->guest_page.oos_page = NULL;
1455         oos_page->spt = NULL;
1456
1457         list_del_init(&oos_page->vm_list);
1458         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1459
1460         return 0;
1461 }
1462
1463 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1464                 struct intel_vgpu_ppgtt_spt *spt)
1465 {
1466         struct intel_gvt *gvt = spt->vgpu->gvt;
1467         int ret;
1468
1469         ret = intel_gvt_read_gpa(spt->vgpu,
1470                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1471                         oos_page->mem, I915_GTT_PAGE_SIZE);
1472         if (ret)
1473                 return ret;
1474
1475         oos_page->spt = spt;
1476         spt->guest_page.oos_page = oos_page;
1477
1478         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1479
1480         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1481                          spt, spt->guest_page.type);
1482         return 0;
1483 }
1484
1485 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1486 {
1487         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1488         int ret;
1489
1490         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1491         if (ret)
1492                 return ret;
1493
1494         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1495                          spt, spt->guest_page.type);
1496
1497         list_del_init(&oos_page->vm_list);
1498         return sync_oos_page(spt->vgpu, oos_page);
1499 }
1500
1501 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1502 {
1503         struct intel_gvt *gvt = spt->vgpu->gvt;
1504         struct intel_gvt_gtt *gtt = &gvt->gtt;
1505         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1506         int ret;
1507
1508         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1509
1510         if (list_empty(&gtt->oos_page_free_list_head)) {
1511                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1512                         struct intel_vgpu_oos_page, list);
1513                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1514                 if (ret)
1515                         return ret;
1516                 ret = detach_oos_page(spt->vgpu, oos_page);
1517                 if (ret)
1518                         return ret;
1519         } else
1520                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1521                         struct intel_vgpu_oos_page, list);
1522         return attach_oos_page(oos_page, spt);
1523 }
1524
1525 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1526 {
1527         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1528
1529         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1530                 return -EINVAL;
1531
1532         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1533                          spt, spt->guest_page.type);
1534
1535         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1536         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1537 }
1538
1539 /**
1540  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1541  * @vgpu: a vGPU
1542  *
1543  * This function is called before submitting a guest workload to host,
1544  * to sync all the out-of-synced shadow for vGPU
1545  *
1546  * Returns:
1547  * Zero on success, negative error code if failed.
1548  */
1549 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1550 {
1551         struct list_head *pos, *n;
1552         struct intel_vgpu_oos_page *oos_page;
1553         int ret;
1554
1555         if (!enable_out_of_sync)
1556                 return 0;
1557
1558         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1559                 oos_page = container_of(pos,
1560                                 struct intel_vgpu_oos_page, vm_list);
1561                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1562                 if (ret)
1563                         return ret;
1564         }
1565         return 0;
1566 }
1567
1568 /*
1569  * The heart of PPGTT shadow page table.
1570  */
1571 static int ppgtt_handle_guest_write_page_table(
1572                 struct intel_vgpu_ppgtt_spt *spt,
1573                 struct intel_gvt_gtt_entry *we, unsigned long index)
1574 {
1575         struct intel_vgpu *vgpu = spt->vgpu;
1576         int type = spt->shadow_page.type;
1577         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1578         struct intel_gvt_gtt_entry old_se;
1579         int new_present;
1580         int i, ret;
1581
1582         new_present = ops->test_present(we);
1583
1584         /*
1585          * Adding the new entry first and then removing the old one, that can
1586          * guarantee the ppgtt table is validated during the window between
1587          * adding and removal.
1588          */
1589         ppgtt_get_shadow_entry(spt, &old_se, index);
1590
1591         if (new_present) {
1592                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1593                 if (ret)
1594                         goto fail;
1595         }
1596
1597         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1598         if (ret)
1599                 goto fail;
1600
1601         if (!new_present) {
1602                 /* For 64KB splited entries, we need clear them all. */
1603                 if (ops->test_64k_splited(&old_se) &&
1604                     !(index % GTT_64K_PTE_STRIDE)) {
1605                         gvt_vdbg_mm("remove splited 64K shadow entries\n");
1606                         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1607                                 ops->clear_64k_splited(&old_se);
1608                                 ops->set_pfn(&old_se,
1609                                         vgpu->gtt.scratch_pt[type].page_mfn);
1610                                 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1611                         }
1612                 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1613                            old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1614                         ops->clear_pse(&old_se);
1615                         ops->set_pfn(&old_se,
1616                                      vgpu->gtt.scratch_pt[type].page_mfn);
1617                         ppgtt_set_shadow_entry(spt, &old_se, index);
1618                 } else {
1619                         ops->set_pfn(&old_se,
1620                                      vgpu->gtt.scratch_pt[type].page_mfn);
1621                         ppgtt_set_shadow_entry(spt, &old_se, index);
1622                 }
1623         }
1624
1625         return 0;
1626 fail:
1627         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1628                         spt, we->val64, we->type);
1629         return ret;
1630 }
1631
1632
1633
1634 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1635 {
1636         return enable_out_of_sync
1637                 && gtt_type_is_pte_pt(spt->guest_page.type)
1638                 && spt->guest_page.write_cnt >= 2;
1639 }
1640
1641 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1642                 unsigned long index)
1643 {
1644         set_bit(index, spt->post_shadow_bitmap);
1645         if (!list_empty(&spt->post_shadow_list))
1646                 return;
1647
1648         list_add_tail(&spt->post_shadow_list,
1649                         &spt->vgpu->gtt.post_shadow_list_head);
1650 }
1651
1652 /**
1653  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1654  * @vgpu: a vGPU
1655  *
1656  * This function is called before submitting a guest workload to host,
1657  * to flush all the post shadows for a vGPU.
1658  *
1659  * Returns:
1660  * Zero on success, negative error code if failed.
1661  */
1662 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1663 {
1664         struct list_head *pos, *n;
1665         struct intel_vgpu_ppgtt_spt *spt;
1666         struct intel_gvt_gtt_entry ge;
1667         unsigned long index;
1668         int ret;
1669
1670         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1671                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1672                                 post_shadow_list);
1673
1674                 for_each_set_bit(index, spt->post_shadow_bitmap,
1675                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1676                         ppgtt_get_guest_entry(spt, &ge, index);
1677
1678                         ret = ppgtt_handle_guest_write_page_table(spt,
1679                                                         &ge, index);
1680                         if (ret)
1681                                 return ret;
1682                         clear_bit(index, spt->post_shadow_bitmap);
1683                 }
1684                 list_del_init(&spt->post_shadow_list);
1685         }
1686         return 0;
1687 }
1688
1689 static int ppgtt_handle_guest_write_page_table_bytes(
1690                 struct intel_vgpu_ppgtt_spt *spt,
1691                 u64 pa, void *p_data, int bytes)
1692 {
1693         struct intel_vgpu *vgpu = spt->vgpu;
1694         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1695         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1696         struct intel_gvt_gtt_entry we, se;
1697         unsigned long index;
1698         int ret;
1699
1700         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1701
1702         ppgtt_get_guest_entry(spt, &we, index);
1703
1704         /*
1705          * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1706          * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1707          * ignored.
1708          */
1709         if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1710             (index % GTT_64K_PTE_STRIDE)) {
1711                 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1712                             index);
1713                 return 0;
1714         }
1715
1716         if (bytes == info->gtt_entry_size) {
1717                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1718                 if (ret)
1719                         return ret;
1720         } else {
1721                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1722                         int type = spt->shadow_page.type;
1723
1724                         ppgtt_get_shadow_entry(spt, &se, index);
1725                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1726                         if (ret)
1727                                 return ret;
1728                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1729                         ppgtt_set_shadow_entry(spt, &se, index);
1730                 }
1731                 ppgtt_set_post_shadow(spt, index);
1732         }
1733
1734         if (!enable_out_of_sync)
1735                 return 0;
1736
1737         spt->guest_page.write_cnt++;
1738
1739         if (spt->guest_page.oos_page)
1740                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1741                                 false, 0, vgpu);
1742
1743         if (can_do_out_of_sync(spt)) {
1744                 if (!spt->guest_page.oos_page)
1745                         ppgtt_allocate_oos_page(spt);
1746
1747                 ret = ppgtt_set_guest_page_oos(spt);
1748                 if (ret < 0)
1749                         return ret;
1750         }
1751         return 0;
1752 }
1753
1754 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1755 {
1756         struct intel_vgpu *vgpu = mm->vgpu;
1757         struct intel_gvt *gvt = vgpu->gvt;
1758         struct intel_gvt_gtt *gtt = &gvt->gtt;
1759         const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1760         struct intel_gvt_gtt_entry se;
1761         int index;
1762
1763         if (!mm->ppgtt_mm.shadowed)
1764                 return;
1765
1766         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1767                 ppgtt_get_shadow_root_entry(mm, &se, index);
1768
1769                 if (!ops->test_present(&se))
1770                         continue;
1771
1772                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1773                 se.val64 = 0;
1774                 ppgtt_set_shadow_root_entry(mm, &se, index);
1775
1776                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1777                                        NULL, se.type, se.val64, index);
1778         }
1779
1780         mm->ppgtt_mm.shadowed = false;
1781 }
1782
1783
1784 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1785 {
1786         struct intel_vgpu *vgpu = mm->vgpu;
1787         struct intel_gvt *gvt = vgpu->gvt;
1788         struct intel_gvt_gtt *gtt = &gvt->gtt;
1789         const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1790         struct intel_vgpu_ppgtt_spt *spt;
1791         struct intel_gvt_gtt_entry ge, se;
1792         int index, ret;
1793
1794         if (mm->ppgtt_mm.shadowed)
1795                 return 0;
1796
1797         if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1798                 return -EINVAL;
1799
1800         mm->ppgtt_mm.shadowed = true;
1801
1802         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1803                 ppgtt_get_guest_root_entry(mm, &ge, index);
1804
1805                 if (!ops->test_present(&ge))
1806                         continue;
1807
1808                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1809                                        ge.type, ge.val64, index);
1810
1811                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1812                 if (IS_ERR(spt)) {
1813                         gvt_vgpu_err("fail to populate guest root pointer\n");
1814                         ret = PTR_ERR(spt);
1815                         goto fail;
1816                 }
1817                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1818                 ppgtt_set_shadow_root_entry(mm, &se, index);
1819
1820                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1821                                        NULL, se.type, se.val64, index);
1822         }
1823
1824         return 0;
1825 fail:
1826         invalidate_ppgtt_mm(mm);
1827         return ret;
1828 }
1829
1830 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1831 {
1832         struct intel_vgpu_mm *mm;
1833
1834         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1835         if (!mm)
1836                 return NULL;
1837
1838         mm->vgpu = vgpu;
1839         kref_init(&mm->ref);
1840         atomic_set(&mm->pincount, 0);
1841
1842         return mm;
1843 }
1844
1845 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1846 {
1847         kfree(mm);
1848 }
1849
1850 /**
1851  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1852  * @vgpu: a vGPU
1853  * @root_entry_type: ppgtt root entry type
1854  * @pdps: guest pdps.
1855  *
1856  * This function is used to create a ppgtt mm object for a vGPU.
1857  *
1858  * Returns:
1859  * Zero on success, negative error code in pointer if failed.
1860  */
1861 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1862                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1863 {
1864         struct intel_gvt *gvt = vgpu->gvt;
1865         struct intel_vgpu_mm *mm;
1866         int ret;
1867
1868         mm = vgpu_alloc_mm(vgpu);
1869         if (!mm)
1870                 return ERR_PTR(-ENOMEM);
1871
1872         mm->type = INTEL_GVT_MM_PPGTT;
1873
1874         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1875                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1876         mm->ppgtt_mm.root_entry_type = root_entry_type;
1877
1878         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1879         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1880         INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1881
1882         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1883                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1884         else
1885                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1886                        sizeof(mm->ppgtt_mm.guest_pdps));
1887
1888         ret = shadow_ppgtt_mm(mm);
1889         if (ret) {
1890                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1891                 vgpu_free_mm(mm);
1892                 return ERR_PTR(ret);
1893         }
1894
1895         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1896
1897         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1898         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1899         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1900
1901         return mm;
1902 }
1903
1904 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1905 {
1906         struct intel_vgpu_mm *mm;
1907         unsigned long nr_entries;
1908
1909         mm = vgpu_alloc_mm(vgpu);
1910         if (!mm)
1911                 return ERR_PTR(-ENOMEM);
1912
1913         mm->type = INTEL_GVT_MM_GGTT;
1914
1915         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1916         mm->ggtt_mm.virtual_ggtt =
1917                 vzalloc(array_size(nr_entries,
1918                                    vgpu->gvt->device_info.gtt_entry_size));
1919         if (!mm->ggtt_mm.virtual_ggtt) {
1920                 vgpu_free_mm(mm);
1921                 return ERR_PTR(-ENOMEM);
1922         }
1923
1924         mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1925         if (!mm->ggtt_mm.host_ggtt_aperture) {
1926                 vfree(mm->ggtt_mm.virtual_ggtt);
1927                 vgpu_free_mm(mm);
1928                 return ERR_PTR(-ENOMEM);
1929         }
1930
1931         mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1932         if (!mm->ggtt_mm.host_ggtt_hidden) {
1933                 vfree(mm->ggtt_mm.host_ggtt_aperture);
1934                 vfree(mm->ggtt_mm.virtual_ggtt);
1935                 vgpu_free_mm(mm);
1936                 return ERR_PTR(-ENOMEM);
1937         }
1938
1939         return mm;
1940 }
1941
1942 /**
1943  * _intel_vgpu_mm_release - destroy a mm object
1944  * @mm_ref: a kref object
1945  *
1946  * This function is used to destroy a mm object for vGPU
1947  *
1948  */
1949 void _intel_vgpu_mm_release(struct kref *mm_ref)
1950 {
1951         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1952
1953         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1954                 gvt_err("vgpu mm pin count bug detected\n");
1955
1956         if (mm->type == INTEL_GVT_MM_PPGTT) {
1957                 list_del(&mm->ppgtt_mm.list);
1958
1959                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1960                 list_del(&mm->ppgtt_mm.lru_list);
1961                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1962
1963                 invalidate_ppgtt_mm(mm);
1964         } else {
1965                 vfree(mm->ggtt_mm.virtual_ggtt);
1966                 vfree(mm->ggtt_mm.host_ggtt_aperture);
1967                 vfree(mm->ggtt_mm.host_ggtt_hidden);
1968         }
1969
1970         vgpu_free_mm(mm);
1971 }
1972
1973 /**
1974  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1975  * @mm: a vGPU mm object
1976  *
1977  * This function is called when user doesn't want to use a vGPU mm object
1978  */
1979 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1980 {
1981         atomic_dec_if_positive(&mm->pincount);
1982 }
1983
1984 /**
1985  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1986  * @mm: target vgpu mm
1987  *
1988  * This function is called when user wants to use a vGPU mm object. If this
1989  * mm object hasn't been shadowed yet, the shadow will be populated at this
1990  * time.
1991  *
1992  * Returns:
1993  * Zero on success, negative error code if failed.
1994  */
1995 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1996 {
1997         int ret;
1998
1999         atomic_inc(&mm->pincount);
2000
2001         if (mm->type == INTEL_GVT_MM_PPGTT) {
2002                 ret = shadow_ppgtt_mm(mm);
2003                 if (ret)
2004                         return ret;
2005
2006                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2007                 list_move_tail(&mm->ppgtt_mm.lru_list,
2008                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2009                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2010         }
2011
2012         return 0;
2013 }
2014
2015 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2016 {
2017         struct intel_vgpu_mm *mm;
2018         struct list_head *pos, *n;
2019
2020         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2021
2022         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2023                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2024
2025                 if (atomic_read(&mm->pincount))
2026                         continue;
2027
2028                 list_del_init(&mm->ppgtt_mm.lru_list);
2029                 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2030                 invalidate_ppgtt_mm(mm);
2031                 return 1;
2032         }
2033         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2034         return 0;
2035 }
2036
2037 /*
2038  * GMA translation APIs.
2039  */
2040 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2041                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2042 {
2043         struct intel_vgpu *vgpu = mm->vgpu;
2044         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2045         struct intel_vgpu_ppgtt_spt *s;
2046
2047         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2048         if (!s)
2049                 return -ENXIO;
2050
2051         if (!guest)
2052                 ppgtt_get_shadow_entry(s, e, index);
2053         else
2054                 ppgtt_get_guest_entry(s, e, index);
2055         return 0;
2056 }
2057
2058 /**
2059  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2060  * @mm: mm object. could be a PPGTT or GGTT mm object
2061  * @gma: graphics memory address in this mm object
2062  *
2063  * This function is used to translate a graphics memory address in specific
2064  * graphics memory space to guest physical address.
2065  *
2066  * Returns:
2067  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2068  */
2069 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2070 {
2071         struct intel_vgpu *vgpu = mm->vgpu;
2072         struct intel_gvt *gvt = vgpu->gvt;
2073         const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2074         const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2075         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2076         unsigned long gma_index[4];
2077         struct intel_gvt_gtt_entry e;
2078         int i, levels = 0;
2079         int ret;
2080
2081         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2082                    mm->type != INTEL_GVT_MM_PPGTT);
2083
2084         if (mm->type == INTEL_GVT_MM_GGTT) {
2085                 if (!vgpu_gmadr_is_valid(vgpu, gma))
2086                         goto err;
2087
2088                 ggtt_get_guest_entry(mm, &e,
2089                         gma_ops->gma_to_ggtt_pte_index(gma));
2090
2091                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2092                         + (gma & ~I915_GTT_PAGE_MASK);
2093
2094                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2095         } else {
2096                 switch (mm->ppgtt_mm.root_entry_type) {
2097                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2098                         ppgtt_get_shadow_root_entry(mm, &e, 0);
2099
2100                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2101                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2102                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
2103                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
2104                         levels = 4;
2105                         break;
2106                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2107                         ppgtt_get_shadow_root_entry(mm, &e,
2108                                         gma_ops->gma_to_l3_pdp_index(gma));
2109
2110                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
2111                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
2112                         levels = 2;
2113                         break;
2114                 default:
2115                         GEM_BUG_ON(1);
2116                 }
2117
2118                 /* walk the shadow page table and get gpa from guest entry */
2119                 for (i = 0; i < levels; i++) {
2120                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2121                                 (i == levels - 1));
2122                         if (ret)
2123                                 goto err;
2124
2125                         if (!pte_ops->test_present(&e)) {
2126                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2127                                 goto err;
2128                         }
2129                 }
2130
2131                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2132                                         (gma & ~I915_GTT_PAGE_MASK);
2133                 trace_gma_translate(vgpu->id, "ppgtt", 0,
2134                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
2135         }
2136
2137         return gpa;
2138 err:
2139         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2140         return INTEL_GVT_INVALID_ADDR;
2141 }
2142
2143 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2144         unsigned int off, void *p_data, unsigned int bytes)
2145 {
2146         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2147         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2148         unsigned long index = off >> info->gtt_entry_size_shift;
2149         unsigned long gma;
2150         struct intel_gvt_gtt_entry e;
2151
2152         if (bytes != 4 && bytes != 8)
2153                 return -EINVAL;
2154
2155         gma = index << I915_GTT_PAGE_SHIFT;
2156         if (!intel_gvt_ggtt_validate_range(vgpu,
2157                                            gma, 1 << I915_GTT_PAGE_SHIFT)) {
2158                 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2159                 memset(p_data, 0, bytes);
2160                 return 0;
2161         }
2162
2163         ggtt_get_guest_entry(ggtt_mm, &e, index);
2164         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2165                         bytes);
2166         return 0;
2167 }
2168
2169 /**
2170  * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2171  * @vgpu: a vGPU
2172  * @off: register offset
2173  * @p_data: data will be returned to guest
2174  * @bytes: data length
2175  *
2176  * This function is used to emulate the GTT MMIO register read
2177  *
2178  * Returns:
2179  * Zero on success, error code if failed.
2180  */
2181 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2182         void *p_data, unsigned int bytes)
2183 {
2184         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2185         int ret;
2186
2187         if (bytes != 4 && bytes != 8)
2188                 return -EINVAL;
2189
2190         off -= info->gtt_start_offset;
2191         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2192         return ret;
2193 }
2194
2195 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2196                 struct intel_gvt_gtt_entry *entry)
2197 {
2198         const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2199         unsigned long pfn;
2200
2201         pfn = pte_ops->get_pfn(entry);
2202         if (pfn != vgpu->gvt->gtt.scratch_mfn)
2203                 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
2204 }
2205
2206 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2207         void *p_data, unsigned int bytes)
2208 {
2209         struct intel_gvt *gvt = vgpu->gvt;
2210         const struct intel_gvt_device_info *info = &gvt->device_info;
2211         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2212         const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2213         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2214         unsigned long gma, gfn;
2215         struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2216         struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2217         dma_addr_t dma_addr;
2218         int ret;
2219         struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2220         bool partial_update = false;
2221
2222         if (bytes != 4 && bytes != 8)
2223                 return -EINVAL;
2224
2225         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2226
2227         /* the VM may configure the whole GM space when ballooning is used */
2228         if (!vgpu_gmadr_is_valid(vgpu, gma))
2229                 return 0;
2230
2231         e.type = GTT_TYPE_GGTT_PTE;
2232         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2233                         bytes);
2234
2235         /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2236          * write, save the first 4 bytes in a list and update virtual
2237          * PTE. Only update shadow PTE when the second 4 bytes comes.
2238          */
2239         if (bytes < info->gtt_entry_size) {
2240                 bool found = false;
2241
2242                 list_for_each_entry_safe(pos, n,
2243                                 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2244                         if (g_gtt_index == pos->offset >>
2245                                         info->gtt_entry_size_shift) {
2246                                 if (off != pos->offset) {
2247                                         /* the second partial part*/
2248                                         int last_off = pos->offset &
2249                                                 (info->gtt_entry_size - 1);
2250
2251                                         memcpy((void *)&e.val64 + last_off,
2252                                                 (void *)&pos->data + last_off,
2253                                                 bytes);
2254
2255                                         list_del(&pos->list);
2256                                         kfree(pos);
2257                                         found = true;
2258                                         break;
2259                                 }
2260
2261                                 /* update of the first partial part */
2262                                 pos->data = e.val64;
2263                                 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2264                                 return 0;
2265                         }
2266                 }
2267
2268                 if (!found) {
2269                         /* the first partial part */
2270                         partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2271                         if (!partial_pte)
2272                                 return -ENOMEM;
2273                         partial_pte->offset = off;
2274                         partial_pte->data = e.val64;
2275                         list_add_tail(&partial_pte->list,
2276                                 &ggtt_mm->ggtt_mm.partial_pte_list);
2277                         partial_update = true;
2278                 }
2279         }
2280
2281         if (!partial_update && (ops->test_present(&e))) {
2282                 gfn = ops->get_pfn(&e);
2283                 m.val64 = e.val64;
2284                 m.type = e.type;
2285
2286                 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2287                                                    &dma_addr);
2288                 if (ret) {
2289                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
2290                         /* guest driver may read/write the entry when partial
2291                          * update the entry in this situation p2m will fail
2292                          * setting the shadow entry to point to a scratch page
2293                          */
2294                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2295                 } else
2296                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2297         } else {
2298                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2299                 ops->clear_present(&m);
2300         }
2301
2302         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2303
2304         ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2305         ggtt_invalidate_pte(vgpu, &e);
2306
2307         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2308         ggtt_invalidate(gvt->gt);
2309         return 0;
2310 }
2311
2312 /*
2313  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2314  * @vgpu: a vGPU
2315  * @off: register offset
2316  * @p_data: data from guest write
2317  * @bytes: data length
2318  *
2319  * This function is used to emulate the GTT MMIO register write
2320  *
2321  * Returns:
2322  * Zero on success, error code if failed.
2323  */
2324 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2325                 unsigned int off, void *p_data, unsigned int bytes)
2326 {
2327         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2328         int ret;
2329         struct intel_vgpu_submission *s = &vgpu->submission;
2330         struct intel_engine_cs *engine;
2331         int i;
2332
2333         if (bytes != 4 && bytes != 8)
2334                 return -EINVAL;
2335
2336         off -= info->gtt_start_offset;
2337         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2338
2339         /* if ggtt of last submitted context is written,
2340          * that context is probably got unpinned.
2341          * Set last shadowed ctx to invalid.
2342          */
2343         for_each_engine(engine, vgpu->gvt->gt, i) {
2344                 if (!s->last_ctx[i].valid)
2345                         continue;
2346
2347                 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2348                         s->last_ctx[i].valid = false;
2349         }
2350         return ret;
2351 }
2352
2353 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2354                 enum intel_gvt_gtt_type type)
2355 {
2356         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2357         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2358         const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2359         int page_entry_num = I915_GTT_PAGE_SIZE >>
2360                                 vgpu->gvt->device_info.gtt_entry_size_shift;
2361         void *scratch_pt;
2362         int i;
2363         struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2364         dma_addr_t daddr;
2365
2366         if (drm_WARN_ON(&i915->drm,
2367                         type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2368                 return -EINVAL;
2369
2370         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2371         if (!scratch_pt) {
2372                 gvt_vgpu_err("fail to allocate scratch page\n");
2373                 return -ENOMEM;
2374         }
2375
2376         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2377         if (dma_mapping_error(dev, daddr)) {
2378                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2379                 __free_page(virt_to_page(scratch_pt));
2380                 return -ENOMEM;
2381         }
2382         gtt->scratch_pt[type].page_mfn =
2383                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2384         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2385         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2386                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2387
2388         /* Build the tree by full filled the scratch pt with the entries which
2389          * point to the next level scratch pt or scratch page. The
2390          * scratch_pt[type] indicate the scratch pt/scratch page used by the
2391          * 'type' pt.
2392          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2393          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2394          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2395          */
2396         if (type > GTT_TYPE_PPGTT_PTE_PT) {
2397                 struct intel_gvt_gtt_entry se;
2398
2399                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2400                 se.type = get_entry_type(type - 1);
2401                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2402
2403                 /* The entry parameters like present/writeable/cache type
2404                  * set to the same as i915's scratch page tree.
2405                  */
2406                 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2407                 if (type == GTT_TYPE_PPGTT_PDE_PT)
2408                         se.val64 |= PPAT_CACHED;
2409
2410                 for (i = 0; i < page_entry_num; i++)
2411                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2412         }
2413
2414         return 0;
2415 }
2416
2417 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2418 {
2419         int i;
2420         struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2421         dma_addr_t daddr;
2422
2423         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2424                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2425                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2426                                         I915_GTT_PAGE_SHIFT);
2427                         dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2428                         __free_page(vgpu->gtt.scratch_pt[i].page);
2429                         vgpu->gtt.scratch_pt[i].page = NULL;
2430                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2431                 }
2432         }
2433
2434         return 0;
2435 }
2436
2437 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2438 {
2439         int i, ret;
2440
2441         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2442                 ret = alloc_scratch_pages(vgpu, i);
2443                 if (ret)
2444                         goto err;
2445         }
2446
2447         return 0;
2448
2449 err:
2450         release_scratch_page_tree(vgpu);
2451         return ret;
2452 }
2453
2454 /**
2455  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2456  * @vgpu: a vGPU
2457  *
2458  * This function is used to initialize per-vGPU graphics memory virtualization
2459  * components.
2460  *
2461  * Returns:
2462  * Zero on success, error code if failed.
2463  */
2464 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2465 {
2466         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2467
2468         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2469
2470         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2471         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2472         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2473
2474         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2475         if (IS_ERR(gtt->ggtt_mm)) {
2476                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2477                 return PTR_ERR(gtt->ggtt_mm);
2478         }
2479
2480         intel_vgpu_reset_ggtt(vgpu, false);
2481
2482         INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2483
2484         return create_scratch_page_tree(vgpu);
2485 }
2486
2487 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2488 {
2489         struct list_head *pos, *n;
2490         struct intel_vgpu_mm *mm;
2491
2492         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2493                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2494                 intel_vgpu_destroy_mm(mm);
2495         }
2496
2497         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2498                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2499
2500         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2501                 gvt_err("Why we still has spt not freed?\n");
2502                 ppgtt_free_all_spt(vgpu);
2503         }
2504 }
2505
2506 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2507 {
2508         struct intel_gvt_partial_pte *pos, *next;
2509
2510         list_for_each_entry_safe(pos, next,
2511                                  &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2512                                  list) {
2513                 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2514                         pos->offset, pos->data);
2515                 kfree(pos);
2516         }
2517         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2518         vgpu->gtt.ggtt_mm = NULL;
2519 }
2520
2521 /**
2522  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2523  * @vgpu: a vGPU
2524  *
2525  * This function is used to clean up per-vGPU graphics memory virtualization
2526  * components.
2527  *
2528  * Returns:
2529  * Zero on success, error code if failed.
2530  */
2531 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2532 {
2533         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2534         intel_vgpu_destroy_ggtt_mm(vgpu);
2535         release_scratch_page_tree(vgpu);
2536 }
2537
2538 static void clean_spt_oos(struct intel_gvt *gvt)
2539 {
2540         struct intel_gvt_gtt *gtt = &gvt->gtt;
2541         struct list_head *pos, *n;
2542         struct intel_vgpu_oos_page *oos_page;
2543
2544         WARN(!list_empty(&gtt->oos_page_use_list_head),
2545                 "someone is still using oos page\n");
2546
2547         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2548                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2549                 list_del(&oos_page->list);
2550                 free_page((unsigned long)oos_page->mem);
2551                 kfree(oos_page);
2552         }
2553 }
2554
2555 static int setup_spt_oos(struct intel_gvt *gvt)
2556 {
2557         struct intel_gvt_gtt *gtt = &gvt->gtt;
2558         struct intel_vgpu_oos_page *oos_page;
2559         int i;
2560         int ret;
2561
2562         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2563         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2564
2565         for (i = 0; i < preallocated_oos_pages; i++) {
2566                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2567                 if (!oos_page) {
2568                         ret = -ENOMEM;
2569                         goto fail;
2570                 }
2571                 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2572                 if (!oos_page->mem) {
2573                         ret = -ENOMEM;
2574                         kfree(oos_page);
2575                         goto fail;
2576                 }
2577
2578                 INIT_LIST_HEAD(&oos_page->list);
2579                 INIT_LIST_HEAD(&oos_page->vm_list);
2580                 oos_page->id = i;
2581                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2582         }
2583
2584         gvt_dbg_mm("%d oos pages preallocated\n", i);
2585
2586         return 0;
2587 fail:
2588         clean_spt_oos(gvt);
2589         return ret;
2590 }
2591
2592 /**
2593  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2594  * @vgpu: a vGPU
2595  * @pdps: pdp root array
2596  *
2597  * This function is used to find a PPGTT mm object from mm object pool
2598  *
2599  * Returns:
2600  * pointer to mm object on success, NULL if failed.
2601  */
2602 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2603                 u64 pdps[])
2604 {
2605         struct intel_vgpu_mm *mm;
2606         struct list_head *pos;
2607
2608         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2609                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2610
2611                 switch (mm->ppgtt_mm.root_entry_type) {
2612                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2613                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2614                                 return mm;
2615                         break;
2616                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2617                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2618                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2619                                 return mm;
2620                         break;
2621                 default:
2622                         GEM_BUG_ON(1);
2623                 }
2624         }
2625         return NULL;
2626 }
2627
2628 /**
2629  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2630  * @vgpu: a vGPU
2631  * @root_entry_type: ppgtt root entry type
2632  * @pdps: guest pdps
2633  *
2634  * This function is used to find or create a PPGTT mm object from a guest.
2635  *
2636  * Returns:
2637  * Zero on success, negative error code if failed.
2638  */
2639 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2640                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2641 {
2642         struct intel_vgpu_mm *mm;
2643
2644         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2645         if (mm) {
2646                 intel_vgpu_mm_get(mm);
2647         } else {
2648                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2649                 if (IS_ERR(mm))
2650                         gvt_vgpu_err("fail to create mm\n");
2651         }
2652         return mm;
2653 }
2654
2655 /**
2656  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2657  * @vgpu: a vGPU
2658  * @pdps: guest pdps
2659  *
2660  * This function is used to find a PPGTT mm object from a guest and destroy it.
2661  *
2662  * Returns:
2663  * Zero on success, negative error code if failed.
2664  */
2665 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2666 {
2667         struct intel_vgpu_mm *mm;
2668
2669         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2670         if (!mm) {
2671                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2672                 return -EINVAL;
2673         }
2674         intel_vgpu_mm_put(mm);
2675         return 0;
2676 }
2677
2678 /**
2679  * intel_gvt_init_gtt - initialize mm components of a GVT device
2680  * @gvt: GVT device
2681  *
2682  * This function is called at the initialization stage, to initialize
2683  * the mm components of a GVT device.
2684  *
2685  * Returns:
2686  * zero on success, negative error code if failed.
2687  */
2688 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2689 {
2690         int ret;
2691         void *page;
2692         struct device *dev = gvt->gt->i915->drm.dev;
2693         dma_addr_t daddr;
2694
2695         gvt_dbg_core("init gtt\n");
2696
2697         gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2698         gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2699
2700         page = (void *)get_zeroed_page(GFP_KERNEL);
2701         if (!page) {
2702                 gvt_err("fail to allocate scratch ggtt page\n");
2703                 return -ENOMEM;
2704         }
2705
2706         daddr = dma_map_page(dev, virt_to_page(page), 0,
2707                         4096, DMA_BIDIRECTIONAL);
2708         if (dma_mapping_error(dev, daddr)) {
2709                 gvt_err("fail to dmamap scratch ggtt page\n");
2710                 __free_page(virt_to_page(page));
2711                 return -ENOMEM;
2712         }
2713
2714         gvt->gtt.scratch_page = virt_to_page(page);
2715         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2716
2717         if (enable_out_of_sync) {
2718                 ret = setup_spt_oos(gvt);
2719                 if (ret) {
2720                         gvt_err("fail to initialize SPT oos\n");
2721                         dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2722                         __free_page(gvt->gtt.scratch_page);
2723                         return ret;
2724                 }
2725         }
2726         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2727         mutex_init(&gvt->gtt.ppgtt_mm_lock);
2728         return 0;
2729 }
2730
2731 /**
2732  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2733  * @gvt: GVT device
2734  *
2735  * This function is called at the driver unloading stage, to clean up
2736  * the mm components of a GVT device.
2737  *
2738  */
2739 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2740 {
2741         struct device *dev = gvt->gt->i915->drm.dev;
2742         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2743                                         I915_GTT_PAGE_SHIFT);
2744
2745         dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2746
2747         __free_page(gvt->gtt.scratch_page);
2748
2749         if (enable_out_of_sync)
2750                 clean_spt_oos(gvt);
2751 }
2752
2753 /**
2754  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2755  * @vgpu: a vGPU
2756  *
2757  * This function is called when invalidate all PPGTT instances of a vGPU.
2758  *
2759  */
2760 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2761 {
2762         struct list_head *pos, *n;
2763         struct intel_vgpu_mm *mm;
2764
2765         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2766                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2767                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2768                         mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2769                         list_del_init(&mm->ppgtt_mm.lru_list);
2770                         mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2771                         if (mm->ppgtt_mm.shadowed)
2772                                 invalidate_ppgtt_mm(mm);
2773                 }
2774         }
2775 }
2776
2777 /**
2778  * intel_vgpu_reset_ggtt - reset the GGTT entry
2779  * @vgpu: a vGPU
2780  * @invalidate_old: invalidate old entries
2781  *
2782  * This function is called at the vGPU create stage
2783  * to reset all the GGTT entries.
2784  *
2785  */
2786 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2787 {
2788         struct intel_gvt *gvt = vgpu->gvt;
2789         const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2790         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2791         struct intel_gvt_gtt_entry old_entry;
2792         u32 index;
2793         u32 num_entries;
2794
2795         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2796         pte_ops->set_present(&entry);
2797
2798         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2799         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2800         while (num_entries--) {
2801                 if (invalidate_old) {
2802                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2803                         ggtt_invalidate_pte(vgpu, &old_entry);
2804                 }
2805                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2806         }
2807
2808         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2809         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2810         while (num_entries--) {
2811                 if (invalidate_old) {
2812                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2813                         ggtt_invalidate_pte(vgpu, &old_entry);
2814                 }
2815                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2816         }
2817
2818         ggtt_invalidate(gvt->gt);
2819 }
2820
2821 /**
2822  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2823  * @gvt: intel gvt device
2824  *
2825  * This function is called at driver resume stage to restore
2826  * GGTT entries of every vGPU.
2827  *
2828  */
2829 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2830 {
2831         struct intel_vgpu *vgpu;
2832         struct intel_vgpu_mm *mm;
2833         int id;
2834         gen8_pte_t pte;
2835         u32 idx, num_low, num_hi, offset;
2836
2837         /* Restore dirty host ggtt for all vGPUs */
2838         idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2839                 mm = vgpu->gtt.ggtt_mm;
2840
2841                 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2842                 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2843                 for (idx = 0; idx < num_low; idx++) {
2844                         pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2845                         if (pte & GEN8_PAGE_PRESENT)
2846                                 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2847                 }
2848
2849                 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2850                 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2851                 for (idx = 0; idx < num_hi; idx++) {
2852                         pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2853                         if (pte & GEN8_PAGE_PRESENT)
2854                                 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2855                 }
2856         }
2857 }
This page took 0.193983 seconds and 4 git commands to generate.