1 // SPDX-License-Identifier: MIT
3 * Copyright © 2020 Intel Corporation
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
10 #include "intel_atomic.h"
11 #include "intel_crtc.h"
12 #include "intel_cx0_phy.h"
14 #include "intel_display.h"
15 #include "intel_display_types.h"
16 #include "intel_dpio_phy.h"
17 #include "intel_dpll.h"
18 #include "intel_lvds.h"
19 #include "intel_lvds_regs.h"
20 #include "intel_panel.h"
21 #include "intel_pps.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_dpio_phy_regs.h"
24 #include "vlv_sideband.h"
26 struct intel_dpll_funcs {
27 int (*crtc_compute_clock)(struct intel_atomic_state *state,
28 struct intel_crtc *crtc);
29 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
30 struct intel_crtc *crtc);
36 } dot, vco, n, m, m1, m2, p, p1;
43 static const struct intel_limit intel_limits_i8xx_dac = {
44 .dot = { .min = 25000, .max = 350000 },
45 .vco = { .min = 908000, .max = 1512000 },
46 .n = { .min = 2, .max = 16 },
47 .m = { .min = 96, .max = 140 },
48 .m1 = { .min = 18, .max = 26 },
49 .m2 = { .min = 6, .max = 16 },
50 .p = { .min = 4, .max = 128 },
51 .p1 = { .min = 2, .max = 33 },
52 .p2 = { .dot_limit = 165000,
53 .p2_slow = 4, .p2_fast = 2 },
56 static const struct intel_limit intel_limits_i8xx_dvo = {
57 .dot = { .min = 25000, .max = 350000 },
58 .vco = { .min = 908000, .max = 1512000 },
59 .n = { .min = 2, .max = 16 },
60 .m = { .min = 96, .max = 140 },
61 .m1 = { .min = 18, .max = 26 },
62 .m2 = { .min = 6, .max = 16 },
63 .p = { .min = 4, .max = 128 },
64 .p1 = { .min = 2, .max = 33 },
65 .p2 = { .dot_limit = 165000,
66 .p2_slow = 4, .p2_fast = 4 },
69 static const struct intel_limit intel_limits_i8xx_lvds = {
70 .dot = { .min = 25000, .max = 350000 },
71 .vco = { .min = 908000, .max = 1512000 },
72 .n = { .min = 2, .max = 16 },
73 .m = { .min = 96, .max = 140 },
74 .m1 = { .min = 18, .max = 26 },
75 .m2 = { .min = 6, .max = 16 },
76 .p = { .min = 4, .max = 128 },
77 .p1 = { .min = 1, .max = 6 },
78 .p2 = { .dot_limit = 165000,
79 .p2_slow = 14, .p2_fast = 7 },
82 static const struct intel_limit intel_limits_i9xx_sdvo = {
83 .dot = { .min = 20000, .max = 400000 },
84 .vco = { .min = 1400000, .max = 2800000 },
85 .n = { .min = 1, .max = 6 },
86 .m = { .min = 70, .max = 120 },
87 .m1 = { .min = 8, .max = 18 },
88 .m2 = { .min = 3, .max = 7 },
89 .p = { .min = 5, .max = 80 },
90 .p1 = { .min = 1, .max = 8 },
91 .p2 = { .dot_limit = 200000,
92 .p2_slow = 10, .p2_fast = 5 },
95 static const struct intel_limit intel_limits_i9xx_lvds = {
96 .dot = { .min = 20000, .max = 400000 },
97 .vco = { .min = 1400000, .max = 2800000 },
98 .n = { .min = 1, .max = 6 },
99 .m = { .min = 70, .max = 120 },
100 .m1 = { .min = 8, .max = 18 },
101 .m2 = { .min = 3, .max = 7 },
102 .p = { .min = 7, .max = 98 },
103 .p1 = { .min = 1, .max = 8 },
104 .p2 = { .dot_limit = 112000,
105 .p2_slow = 14, .p2_fast = 7 },
109 static const struct intel_limit intel_limits_g4x_sdvo = {
110 .dot = { .min = 25000, .max = 270000 },
111 .vco = { .min = 1750000, .max = 3500000},
112 .n = { .min = 1, .max = 4 },
113 .m = { .min = 104, .max = 138 },
114 .m1 = { .min = 17, .max = 23 },
115 .m2 = { .min = 5, .max = 11 },
116 .p = { .min = 10, .max = 30 },
117 .p1 = { .min = 1, .max = 3},
118 .p2 = { .dot_limit = 270000,
124 static const struct intel_limit intel_limits_g4x_hdmi = {
125 .dot = { .min = 22000, .max = 400000 },
126 .vco = { .min = 1750000, .max = 3500000},
127 .n = { .min = 1, .max = 4 },
128 .m = { .min = 104, .max = 138 },
129 .m1 = { .min = 16, .max = 23 },
130 .m2 = { .min = 5, .max = 11 },
131 .p = { .min = 5, .max = 80 },
132 .p1 = { .min = 1, .max = 8},
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 10, .p2_fast = 5 },
137 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
138 .dot = { .min = 20000, .max = 115000 },
139 .vco = { .min = 1750000, .max = 3500000 },
140 .n = { .min = 1, .max = 3 },
141 .m = { .min = 104, .max = 138 },
142 .m1 = { .min = 17, .max = 23 },
143 .m2 = { .min = 5, .max = 11 },
144 .p = { .min = 28, .max = 112 },
145 .p1 = { .min = 2, .max = 8 },
146 .p2 = { .dot_limit = 0,
147 .p2_slow = 14, .p2_fast = 14
151 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
152 .dot = { .min = 80000, .max = 224000 },
153 .vco = { .min = 1750000, .max = 3500000 },
154 .n = { .min = 1, .max = 3 },
155 .m = { .min = 104, .max = 138 },
156 .m1 = { .min = 17, .max = 23 },
157 .m2 = { .min = 5, .max = 11 },
158 .p = { .min = 14, .max = 42 },
159 .p1 = { .min = 2, .max = 6 },
160 .p2 = { .dot_limit = 0,
161 .p2_slow = 7, .p2_fast = 7
165 static const struct intel_limit pnv_limits_sdvo = {
166 .dot = { .min = 20000, .max = 400000},
167 .vco = { .min = 1700000, .max = 3500000 },
168 /* Pineview's Ncounter is a ring counter */
169 .n = { .min = 3, .max = 6 },
170 .m = { .min = 2, .max = 256 },
171 /* Pineview only has one combined m divider, which we treat as m2. */
172 .m1 = { .min = 0, .max = 0 },
173 .m2 = { .min = 0, .max = 254 },
174 .p = { .min = 5, .max = 80 },
175 .p1 = { .min = 1, .max = 8 },
176 .p2 = { .dot_limit = 200000,
177 .p2_slow = 10, .p2_fast = 5 },
180 static const struct intel_limit pnv_limits_lvds = {
181 .dot = { .min = 20000, .max = 400000 },
182 .vco = { .min = 1700000, .max = 3500000 },
183 .n = { .min = 3, .max = 6 },
184 .m = { .min = 2, .max = 256 },
185 .m1 = { .min = 0, .max = 0 },
186 .m2 = { .min = 0, .max = 254 },
187 .p = { .min = 7, .max = 112 },
188 .p1 = { .min = 1, .max = 8 },
189 .p2 = { .dot_limit = 112000,
190 .p2_slow = 14, .p2_fast = 14 },
193 /* Ironlake / Sandybridge
195 * We calculate clock using (register_value + 2) for N/M1/M2, so here
196 * the range value for them is (actual_value - 2).
198 static const struct intel_limit ilk_limits_dac = {
199 .dot = { .min = 25000, .max = 350000 },
200 .vco = { .min = 1760000, .max = 3510000 },
201 .n = { .min = 1, .max = 5 },
202 .m = { .min = 79, .max = 127 },
203 .m1 = { .min = 12, .max = 22 },
204 .m2 = { .min = 5, .max = 9 },
205 .p = { .min = 5, .max = 80 },
206 .p1 = { .min = 1, .max = 8 },
207 .p2 = { .dot_limit = 225000,
208 .p2_slow = 10, .p2_fast = 5 },
211 static const struct intel_limit ilk_limits_single_lvds = {
212 .dot = { .min = 25000, .max = 350000 },
213 .vco = { .min = 1760000, .max = 3510000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 79, .max = 118 },
216 .m1 = { .min = 12, .max = 22 },
217 .m2 = { .min = 5, .max = 9 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 225000,
221 .p2_slow = 14, .p2_fast = 14 },
224 static const struct intel_limit ilk_limits_dual_lvds = {
225 .dot = { .min = 25000, .max = 350000 },
226 .vco = { .min = 1760000, .max = 3510000 },
227 .n = { .min = 1, .max = 3 },
228 .m = { .min = 79, .max = 127 },
229 .m1 = { .min = 12, .max = 22 },
230 .m2 = { .min = 5, .max = 9 },
231 .p = { .min = 14, .max = 56 },
232 .p1 = { .min = 2, .max = 8 },
233 .p2 = { .dot_limit = 225000,
234 .p2_slow = 7, .p2_fast = 7 },
237 /* LVDS 100mhz refclk limits. */
238 static const struct intel_limit ilk_limits_single_lvds_100m = {
239 .dot = { .min = 25000, .max = 350000 },
240 .vco = { .min = 1760000, .max = 3510000 },
241 .n = { .min = 1, .max = 2 },
242 .m = { .min = 79, .max = 126 },
243 .m1 = { .min = 12, .max = 22 },
244 .m2 = { .min = 5, .max = 9 },
245 .p = { .min = 28, .max = 112 },
246 .p1 = { .min = 2, .max = 8 },
247 .p2 = { .dot_limit = 225000,
248 .p2_slow = 14, .p2_fast = 14 },
251 static const struct intel_limit ilk_limits_dual_lvds_100m = {
252 .dot = { .min = 25000, .max = 350000 },
253 .vco = { .min = 1760000, .max = 3510000 },
254 .n = { .min = 1, .max = 3 },
255 .m = { .min = 79, .max = 126 },
256 .m1 = { .min = 12, .max = 22 },
257 .m2 = { .min = 5, .max = 9 },
258 .p = { .min = 14, .max = 42 },
259 .p1 = { .min = 2, .max = 6 },
260 .p2 = { .dot_limit = 225000,
261 .p2_slow = 7, .p2_fast = 7 },
264 static const struct intel_limit intel_limits_vlv = {
266 * These are based on the data rate limits (measured in fast clocks)
267 * since those are the strictest limits we have. The fast
268 * clock and actual rate limits are more relaxed, so checking
269 * them would make no difference.
271 .dot = { .min = 25000, .max = 270000 },
272 .vco = { .min = 4000000, .max = 6000000 },
273 .n = { .min = 1, .max = 7 },
274 .m1 = { .min = 2, .max = 3 },
275 .m2 = { .min = 11, .max = 156 },
276 .p1 = { .min = 2, .max = 3 },
277 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
280 static const struct intel_limit intel_limits_chv = {
282 * These are based on the data rate limits (measured in fast clocks)
283 * since those are the strictest limits we have. The fast
284 * clock and actual rate limits are more relaxed, so checking
285 * them would make no difference.
287 .dot = { .min = 25000, .max = 540000 },
288 .vco = { .min = 4800000, .max = 6480000 },
289 .n = { .min = 1, .max = 1 },
290 .m1 = { .min = 2, .max = 2 },
291 .m2 = { .min = 24 << 22, .max = 175 << 22 },
292 .p1 = { .min = 2, .max = 4 },
293 .p2 = { .p2_slow = 1, .p2_fast = 14 },
296 static const struct intel_limit intel_limits_bxt = {
297 .dot = { .min = 25000, .max = 594000 },
298 .vco = { .min = 4800000, .max = 6700000 },
299 .n = { .min = 1, .max = 1 },
300 .m1 = { .min = 2, .max = 2 },
301 /* FIXME: find real m2 limits */
302 .m2 = { .min = 2 << 22, .max = 255 << 22 },
303 .p1 = { .min = 2, .max = 4 },
304 .p2 = { .p2_slow = 1, .p2_fast = 20 },
308 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
309 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
310 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
311 * The helpers' return value is the rate of the clock that is fed to the
312 * display engine's pipe which can be the above fast dot clock rate or a
313 * divided-down version of it.
315 /* m1 is reserved as 0 in Pineview, n is a ring counter */
316 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
318 clock->m = clock->m2 + 2;
319 clock->p = clock->p1 * clock->p2;
321 clock->vco = clock->n == 0 ? 0 :
322 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
323 clock->dot = clock->p == 0 ? 0 :
324 DIV_ROUND_CLOSEST(clock->vco, clock->p);
329 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
331 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
334 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
336 clock->m = i9xx_dpll_compute_m(clock);
337 clock->p = clock->p1 * clock->p2;
339 clock->vco = clock->n + 2 == 0 ? 0 :
340 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
341 clock->dot = clock->p == 0 ? 0 :
342 DIV_ROUND_CLOSEST(clock->vco, clock->p);
347 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
349 clock->m = clock->m1 * clock->m2;
350 clock->p = clock->p1 * clock->p2 * 5;
352 clock->vco = clock->n == 0 ? 0 :
353 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
354 clock->dot = clock->p == 0 ? 0 :
355 DIV_ROUND_CLOSEST(clock->vco, clock->p);
360 int chv_calc_dpll_params(int refclk, struct dpll *clock)
362 clock->m = clock->m1 * clock->m2;
363 clock->p = clock->p1 * clock->p2 * 5;
365 clock->vco = clock->n == 0 ? 0 :
366 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
367 clock->dot = clock->p == 0 ? 0 :
368 DIV_ROUND_CLOSEST(clock->vco, clock->p);
373 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state)
375 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
376 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
378 if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
379 return i915->display.vbt.lvds_ssc_freq;
380 else if (HAS_PCH_SPLIT(i915))
382 else if (DISPLAY_VER(i915) != 2)
388 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc,
389 struct intel_dpll_hw_state *dpll_hw_state)
391 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
392 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx;
394 if (DISPLAY_VER(dev_priv) >= 4) {
397 /* No way to read it out on pipes B and C */
398 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
399 tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe];
401 tmp = intel_de_read(dev_priv,
402 DPLL_MD(dev_priv, crtc->pipe));
404 hw_state->dpll_md = tmp;
407 hw_state->dpll = intel_de_read(dev_priv, DPLL(dev_priv, crtc->pipe));
409 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
410 hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe));
411 hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe));
413 /* Mask out read-only status bits. */
414 hw_state->dpll &= ~(DPLL_LOCK_VLV |
415 DPLL_PORTC_READY_MASK |
416 DPLL_PORTB_READY_MASK);
420 /* Returns the clock of the currently programmed mode of the given pipe. */
421 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state)
423 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
424 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
425 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
426 u32 dpll = hw_state->dpll;
430 int refclk = i9xx_pll_refclk(crtc_state);
432 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
437 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
438 if (IS_PINEVIEW(dev_priv)) {
439 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
440 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
442 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
443 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
446 if (DISPLAY_VER(dev_priv) != 2) {
447 if (IS_PINEVIEW(dev_priv))
448 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
449 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
451 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
452 DPLL_FPA01_P1_POST_DIV_SHIFT);
454 switch (dpll & DPLL_MODE_MASK) {
455 case DPLLB_MODE_DAC_SERIAL:
456 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
459 case DPLLB_MODE_LVDS:
460 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
464 drm_dbg_kms(&dev_priv->drm,
465 "Unknown DPLL mode %08x in programmed "
466 "mode\n", (int)(dpll & DPLL_MODE_MASK));
470 if (IS_PINEVIEW(dev_priv))
471 port_clock = pnv_calc_dpll_params(refclk, &clock);
473 port_clock = i9xx_calc_dpll_params(refclk, &clock);
477 if (IS_I85X(dev_priv) &&
478 intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
479 lvds_pipe == crtc->pipe) {
480 u32 lvds = intel_de_read(dev_priv, LVDS);
482 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
483 DPLL_FPA01_P1_POST_DIV_SHIFT);
485 if (lvds & LVDS_CLKB_POWER_UP)
490 if (dpll & PLL_P1_DIVIDE_BY_TWO)
493 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
494 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
496 if (dpll & PLL_P2_DIVIDE_BY_4)
502 port_clock = i9xx_calc_dpll_params(refclk, &clock);
506 * This value includes pixel_multiplier. We will use
507 * port_clock to compute adjusted_mode.crtc_clock in the
508 * encoder's get_config() function.
510 crtc_state->port_clock = port_clock;
513 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state)
515 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
516 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
517 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
518 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
519 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
524 /* In case of DSI, DPLL will not be used */
525 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
528 vlv_dpio_get(dev_priv);
529 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch));
530 vlv_dpio_put(dev_priv);
532 clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp);
533 clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp);
534 clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp);
535 clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp);
536 clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp);
538 crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock);
541 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state)
543 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
544 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
545 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
546 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
547 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
549 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
552 /* In case of DSI, DPLL will not be used */
553 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
556 vlv_dpio_get(dev_priv);
557 cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch));
558 pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch));
559 pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch));
560 pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch));
561 pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
562 vlv_dpio_put(dev_priv);
564 clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
565 clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22;
566 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
567 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2);
568 clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1);
569 clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13);
570 clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13);
572 crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock);
576 * Returns whether the given set of divisors are valid for a given refclk with
577 * the given connectors.
579 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
580 const struct intel_limit *limit,
581 const struct dpll *clock)
583 if (clock->n < limit->n.min || limit->n.max < clock->n)
585 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
587 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
589 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
592 if (!IS_PINEVIEW(dev_priv) &&
593 !IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
594 !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv))
595 if (clock->m1 <= clock->m2)
598 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
599 !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv)) {
600 if (clock->p < limit->p.min || limit->p.max < clock->p)
602 if (clock->m < limit->m.min || limit->m.max < clock->m)
606 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
608 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
609 * connector, etc., rather than just a single range.
611 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
618 i9xx_select_p2_div(const struct intel_limit *limit,
619 const struct intel_crtc_state *crtc_state,
622 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
624 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
626 * For LVDS just rely on its current settings for dual-channel.
627 * We haven't figured out how to reliably set up different
628 * single/dual channel state, if we even can.
630 if (intel_is_dual_link_lvds(dev_priv))
631 return limit->p2.p2_fast;
633 return limit->p2.p2_slow;
635 if (target < limit->p2.dot_limit)
636 return limit->p2.p2_slow;
638 return limit->p2.p2_fast;
643 * Returns a set of divisors for the desired target clock with the given
646 * Target and reference clocks are specified in kHz.
648 * If match_clock is provided, then best_clock P divider must match the P
649 * divider from @match_clock used for LVDS downclocking.
652 i9xx_find_best_dpll(const struct intel_limit *limit,
653 struct intel_crtc_state *crtc_state,
654 int target, int refclk,
655 const struct dpll *match_clock,
656 struct dpll *best_clock)
658 struct drm_device *dev = crtc_state->uapi.crtc->dev;
662 memset(best_clock, 0, sizeof(*best_clock));
664 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
666 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668 for (clock.m2 = limit->m2.min;
669 clock.m2 <= limit->m2.max; clock.m2++) {
670 if (clock.m2 >= clock.m1)
672 for (clock.n = limit->n.min;
673 clock.n <= limit->n.max; clock.n++) {
674 for (clock.p1 = limit->p1.min;
675 clock.p1 <= limit->p1.max; clock.p1++) {
678 i9xx_calc_dpll_params(refclk, &clock);
679 if (!intel_pll_is_valid(to_i915(dev),
684 clock.p != match_clock->p)
687 this_err = abs(clock.dot - target);
688 if (this_err < err) {
697 return (err != target);
701 * Returns a set of divisors for the desired target clock with the given
704 * Target and reference clocks are specified in kHz.
706 * If match_clock is provided, then best_clock P divider must match the P
707 * divider from @match_clock used for LVDS downclocking.
710 pnv_find_best_dpll(const struct intel_limit *limit,
711 struct intel_crtc_state *crtc_state,
712 int target, int refclk,
713 const struct dpll *match_clock,
714 struct dpll *best_clock)
716 struct drm_device *dev = crtc_state->uapi.crtc->dev;
720 memset(best_clock, 0, sizeof(*best_clock));
722 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
724 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
726 for (clock.m2 = limit->m2.min;
727 clock.m2 <= limit->m2.max; clock.m2++) {
728 for (clock.n = limit->n.min;
729 clock.n <= limit->n.max; clock.n++) {
730 for (clock.p1 = limit->p1.min;
731 clock.p1 <= limit->p1.max; clock.p1++) {
734 pnv_calc_dpll_params(refclk, &clock);
735 if (!intel_pll_is_valid(to_i915(dev),
740 clock.p != match_clock->p)
743 this_err = abs(clock.dot - target);
744 if (this_err < err) {
753 return (err != target);
757 * Returns a set of divisors for the desired target clock with the given
760 * Target and reference clocks are specified in kHz.
762 * If match_clock is provided, then best_clock P divider must match the P
763 * divider from @match_clock used for LVDS downclocking.
766 g4x_find_best_dpll(const struct intel_limit *limit,
767 struct intel_crtc_state *crtc_state,
768 int target, int refclk,
769 const struct dpll *match_clock,
770 struct dpll *best_clock)
772 struct drm_device *dev = crtc_state->uapi.crtc->dev;
776 /* approximately equals target * 0.00585 */
777 int err_most = (target >> 8) + (target >> 9);
779 memset(best_clock, 0, sizeof(*best_clock));
781 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
783 max_n = limit->n.max;
784 /* based on hardware requirement, prefer smaller n to precision */
785 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
786 /* based on hardware requirement, prefer larger m1,m2 */
787 for (clock.m1 = limit->m1.max;
788 clock.m1 >= limit->m1.min; clock.m1--) {
789 for (clock.m2 = limit->m2.max;
790 clock.m2 >= limit->m2.min; clock.m2--) {
791 for (clock.p1 = limit->p1.max;
792 clock.p1 >= limit->p1.min; clock.p1--) {
795 i9xx_calc_dpll_params(refclk, &clock);
796 if (!intel_pll_is_valid(to_i915(dev),
801 this_err = abs(clock.dot - target);
802 if (this_err < err_most) {
816 * Check if the calculated PLL configuration is more optimal compared to the
817 * best configuration and error found so far. Return the calculated error.
819 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
820 const struct dpll *calculated_clock,
821 const struct dpll *best_clock,
822 unsigned int best_error_ppm,
823 unsigned int *error_ppm)
826 * For CHV ignore the error and consider only the P value.
827 * Prefer a bigger P value based on HW requirements.
829 if (IS_CHERRYVIEW(to_i915(dev))) {
832 return calculated_clock->p > best_clock->p;
835 if (drm_WARN_ON_ONCE(dev, !target_freq))
838 *error_ppm = div_u64(1000000ULL *
839 abs(target_freq - calculated_clock->dot),
842 * Prefer a better P value over a better (smaller) error if the error
843 * is small. Ensure this preference for future configurations too by
844 * setting the error to 0.
846 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
852 return *error_ppm + 10 < best_error_ppm;
856 * Returns a set of divisors for the desired target clock with the given
860 vlv_find_best_dpll(const struct intel_limit *limit,
861 struct intel_crtc_state *crtc_state,
862 int target, int refclk,
863 const struct dpll *match_clock,
864 struct dpll *best_clock)
866 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
867 struct drm_device *dev = crtc->base.dev;
869 unsigned int bestppm = 1000000;
870 /* min update 19.2 MHz */
871 int max_n = min(limit->n.max, refclk / 19200);
874 memset(best_clock, 0, sizeof(*best_clock));
876 /* based on hardware requirement, prefer smaller n to precision */
877 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
878 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
879 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
880 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
881 clock.p = clock.p1 * clock.p2 * 5;
882 /* based on hardware requirement, prefer bigger m1,m2 values */
883 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
886 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
889 vlv_calc_dpll_params(refclk, &clock);
891 if (!intel_pll_is_valid(to_i915(dev),
896 if (!vlv_PLL_is_optimal(dev, target,
914 * Returns a set of divisors for the desired target clock with the given
918 chv_find_best_dpll(const struct intel_limit *limit,
919 struct intel_crtc_state *crtc_state,
920 int target, int refclk,
921 const struct dpll *match_clock,
922 struct dpll *best_clock)
924 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
925 struct drm_device *dev = crtc->base.dev;
926 unsigned int best_error_ppm;
931 memset(best_clock, 0, sizeof(*best_clock));
932 best_error_ppm = 1000000;
935 * Based on hardware doc, the n always set to 1, and m1 always
936 * set to 2. If requires to support 200Mhz refclk, we need to
937 * revisit this because n may not 1 anymore.
942 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
943 for (clock.p2 = limit->p2.p2_fast;
944 clock.p2 >= limit->p2.p2_slow;
945 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
946 unsigned int error_ppm;
948 clock.p = clock.p1 * clock.p2 * 5;
950 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
953 if (m2 > INT_MAX/clock.m1)
958 chv_calc_dpll_params(refclk, &clock);
960 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
963 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
964 best_error_ppm, &error_ppm))
968 best_error_ppm = error_ppm;
976 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
977 struct dpll *best_clock)
979 const struct intel_limit *limit = &intel_limits_bxt;
982 return chv_find_best_dpll(limit, crtc_state,
983 crtc_state->port_clock, refclk,
987 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
989 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
992 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
994 return (1 << dpll->n) << 16 | dpll->m2;
997 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state)
999 return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1002 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state,
1003 const struct dpll *clock,
1004 const struct dpll *reduced_clock)
1006 struct intel_display *display = to_intel_display(crtc_state);
1007 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1011 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1013 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1014 dpll |= DPLLB_MODE_LVDS;
1016 dpll |= DPLLB_MODE_DAC_SERIAL;
1018 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
1019 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1020 dpll |= (crtc_state->pixel_multiplier - 1)
1021 << SDVO_MULTIPLIER_SHIFT_HIRES;
1024 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1025 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1026 dpll |= DPLL_SDVO_HIGH_SPEED;
1028 if (intel_crtc_has_dp_encoder(crtc_state))
1029 dpll |= DPLL_SDVO_HIGH_SPEED;
1031 /* compute bitmask from p1 value */
1032 if (IS_G4X(dev_priv)) {
1033 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1034 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1035 } else if (IS_PINEVIEW(dev_priv)) {
1036 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1037 WARN_ON(reduced_clock->p1 != clock->p1);
1039 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1040 WARN_ON(reduced_clock->p1 != clock->p1);
1043 switch (clock->p2) {
1045 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1048 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1051 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1054 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1057 WARN_ON(reduced_clock->p2 != clock->p2);
1059 if (DISPLAY_VER(dev_priv) >= 4)
1060 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1062 if (crtc_state->sdvo_tv_clock)
1063 dpll |= PLL_REF_INPUT_TVCLKINBC;
1064 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1065 intel_panel_use_ssc(display))
1066 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1068 dpll |= PLL_REF_INPUT_DREFCLK;
1073 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
1074 const struct dpll *clock,
1075 const struct dpll *reduced_clock)
1077 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1078 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1079 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1081 if (IS_PINEVIEW(dev_priv)) {
1082 hw_state->fp0 = pnv_dpll_compute_fp(clock);
1083 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock);
1085 hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1086 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1089 hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock);
1091 if (DISPLAY_VER(dev_priv) >= 4)
1092 hw_state->dpll_md = i965_dpll_md(crtc_state);
1095 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state,
1096 const struct dpll *clock,
1097 const struct dpll *reduced_clock)
1099 struct intel_display *display = to_intel_display(crtc_state);
1100 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1101 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1104 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1106 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1107 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1110 dpll |= PLL_P1_DIVIDE_BY_TWO;
1112 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1114 dpll |= PLL_P2_DIVIDE_BY_4;
1116 WARN_ON(reduced_clock->p1 != clock->p1);
1117 WARN_ON(reduced_clock->p2 != clock->p2);
1121 * "[Almador Errata}: For the correct operation of the muxed DVO pins
1122 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1123 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1124 * Enable) must be set to “1” in both the DPLL A Control Register
1125 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1127 * For simplicity We simply keep both bits always enabled in
1128 * both DPLLS. The spec says we should disable the DVO 2X clock
1129 * when not needed, but this seems to work fine in practice.
1131 if (IS_I830(dev_priv) ||
1132 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1133 dpll |= DPLL_DVO_2X_MODE;
1135 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1136 intel_panel_use_ssc(display))
1137 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1139 dpll |= PLL_REF_INPUT_DREFCLK;
1144 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1145 const struct dpll *clock,
1146 const struct dpll *reduced_clock)
1148 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1150 hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1151 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1153 hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock);
1156 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1157 struct intel_crtc *crtc)
1159 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1160 struct intel_crtc_state *crtc_state =
1161 intel_atomic_get_new_crtc_state(state, crtc);
1162 struct intel_encoder *encoder =
1163 intel_get_crtc_new_encoder(state, crtc_state);
1166 if (DISPLAY_VER(dev_priv) < 11 &&
1167 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1170 ret = intel_compute_shared_dplls(state, crtc, encoder);
1174 /* FIXME this is a mess */
1175 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1178 /* CRT dotclock is determined via other means */
1179 if (!crtc_state->has_pch_encoder)
1180 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1185 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1186 struct intel_crtc *crtc)
1188 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1189 struct intel_crtc_state *crtc_state =
1190 intel_atomic_get_new_crtc_state(state, crtc);
1191 struct intel_encoder *encoder =
1192 intel_get_crtc_new_encoder(state, crtc_state);
1194 if (DISPLAY_VER(dev_priv) < 11 &&
1195 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1198 return intel_reserve_shared_dplls(state, crtc, encoder);
1201 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1202 struct intel_crtc *crtc)
1204 struct intel_crtc_state *crtc_state =
1205 intel_atomic_get_new_crtc_state(state, crtc);
1206 struct intel_encoder *encoder =
1207 intel_get_crtc_new_encoder(state, crtc_state);
1210 ret = intel_mpllb_calc_state(crtc_state, encoder);
1214 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1219 static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1220 struct intel_crtc *crtc)
1222 struct intel_crtc_state *crtc_state =
1223 intel_atomic_get_new_crtc_state(state, crtc);
1224 struct intel_encoder *encoder =
1225 intel_get_crtc_new_encoder(state, crtc_state);
1228 ret = intel_cx0pll_calc_state(crtc_state, encoder);
1232 /* TODO: Do the readback via intel_compute_shared_dplls() */
1233 crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll);
1235 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1240 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state)
1242 struct intel_display *display = to_intel_display(crtc_state);
1243 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1244 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1246 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1247 ((intel_panel_use_ssc(display) && i915->display.vbt.lvds_ssc_freq == 100000) ||
1248 (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915))))
1251 if (crtc_state->sdvo_tv_clock)
1257 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1259 return dpll->m < factor * dpll->n;
1262 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor)
1266 fp = i9xx_dpll_compute_fp(clock);
1267 if (ilk_needs_fb_cb_tune(clock, factor))
1273 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state,
1274 const struct dpll *clock,
1275 const struct dpll *reduced_clock)
1277 struct intel_display *display = to_intel_display(crtc_state);
1278 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1282 dpll = DPLL_VCO_ENABLE;
1284 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1285 dpll |= DPLLB_MODE_LVDS;
1287 dpll |= DPLLB_MODE_DAC_SERIAL;
1289 dpll |= (crtc_state->pixel_multiplier - 1)
1290 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1292 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1293 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1294 dpll |= DPLL_SDVO_HIGH_SPEED;
1296 if (intel_crtc_has_dp_encoder(crtc_state))
1297 dpll |= DPLL_SDVO_HIGH_SPEED;
1300 * The high speed IO clock is only really required for
1301 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1302 * possible to share the DPLL between CRT and HDMI. Enabling
1303 * the clock needlessly does no real harm, except use up a
1304 * bit of power potentially.
1306 * We'll limit this to IVB with 3 pipes, since it has only two
1307 * DPLLs and so DPLL sharing is the only way to get three pipes
1308 * driving PCH ports at the same time. On SNB we could do this,
1309 * and potentially avoid enabling the second DPLL, but it's not
1310 * clear if it''s a win or loss power wise. No point in doing
1311 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1313 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1314 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1315 dpll |= DPLL_SDVO_HIGH_SPEED;
1317 /* compute bitmask from p1 value */
1318 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1320 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1322 switch (clock->p2) {
1324 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1327 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1330 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1333 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1336 WARN_ON(reduced_clock->p2 != clock->p2);
1338 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1339 intel_panel_use_ssc(display))
1340 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1342 dpll |= PLL_REF_INPUT_DREFCLK;
1347 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1348 const struct dpll *clock,
1349 const struct dpll *reduced_clock)
1351 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1352 int factor = ilk_fb_cb_factor(crtc_state);
1354 hw_state->fp0 = ilk_dpll_compute_fp(clock, factor);
1355 hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor);
1357 hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock);
1360 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1361 struct intel_crtc *crtc)
1363 struct intel_display *display = to_intel_display(state);
1364 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1365 struct intel_crtc_state *crtc_state =
1366 intel_atomic_get_new_crtc_state(state, crtc);
1367 const struct intel_limit *limit;
1368 int refclk = 120000;
1371 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1372 if (!crtc_state->has_pch_encoder)
1375 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1376 if (intel_panel_use_ssc(display)) {
1377 drm_dbg_kms(&dev_priv->drm,
1378 "using SSC reference clock of %d kHz\n",
1379 dev_priv->display.vbt.lvds_ssc_freq);
1380 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1383 if (intel_is_dual_link_lvds(dev_priv)) {
1384 if (refclk == 100000)
1385 limit = &ilk_limits_dual_lvds_100m;
1387 limit = &ilk_limits_dual_lvds;
1389 if (refclk == 100000)
1390 limit = &ilk_limits_single_lvds_100m;
1392 limit = &ilk_limits_single_lvds;
1395 limit = &ilk_limits_dac;
1398 if (!crtc_state->clock_set &&
1399 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1400 refclk, NULL, &crtc_state->dpll))
1403 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1405 ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1408 ret = intel_compute_shared_dplls(state, crtc, NULL);
1412 crtc_state->port_clock = crtc_state->dpll.dot;
1413 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1418 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1419 struct intel_crtc *crtc)
1421 struct intel_crtc_state *crtc_state =
1422 intel_atomic_get_new_crtc_state(state, crtc);
1424 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1425 if (!crtc_state->has_pch_encoder)
1428 return intel_reserve_shared_dplls(state, crtc, NULL);
1431 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state)
1433 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1436 dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1437 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1439 if (crtc->pipe != PIPE_A)
1440 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1442 /* DPLL not used with DSI, but still need the rest set up */
1443 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1444 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
1449 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1451 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1453 hw_state->dpll = vlv_dpll(crtc_state);
1454 hw_state->dpll_md = i965_dpll_md(crtc_state);
1457 static u32 chv_dpll(const struct intel_crtc_state *crtc_state)
1459 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1462 dpll = DPLL_SSC_REF_CLK_CHV |
1463 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1465 if (crtc->pipe != PIPE_A)
1466 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1468 /* DPLL not used with DSI, but still need the rest set up */
1469 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1470 dpll |= DPLL_VCO_ENABLE;
1475 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1477 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1479 hw_state->dpll = chv_dpll(crtc_state);
1480 hw_state->dpll_md = i965_dpll_md(crtc_state);
1483 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1484 struct intel_crtc *crtc)
1486 struct intel_crtc_state *crtc_state =
1487 intel_atomic_get_new_crtc_state(state, crtc);
1488 const struct intel_limit *limit = &intel_limits_chv;
1489 int refclk = 100000;
1491 if (!crtc_state->clock_set &&
1492 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1493 refclk, NULL, &crtc_state->dpll))
1496 chv_calc_dpll_params(refclk, &crtc_state->dpll);
1498 chv_compute_dpll(crtc_state);
1500 /* FIXME this is a mess */
1501 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1504 crtc_state->port_clock = crtc_state->dpll.dot;
1505 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1510 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1511 struct intel_crtc *crtc)
1513 struct intel_crtc_state *crtc_state =
1514 intel_atomic_get_new_crtc_state(state, crtc);
1515 const struct intel_limit *limit = &intel_limits_vlv;
1516 int refclk = 100000;
1518 if (!crtc_state->clock_set &&
1519 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1520 refclk, NULL, &crtc_state->dpll))
1523 vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1525 vlv_compute_dpll(crtc_state);
1527 /* FIXME this is a mess */
1528 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1531 crtc_state->port_clock = crtc_state->dpll.dot;
1532 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1537 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1538 struct intel_crtc *crtc)
1540 struct intel_display *display = to_intel_display(state);
1541 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1542 struct intel_crtc_state *crtc_state =
1543 intel_atomic_get_new_crtc_state(state, crtc);
1544 const struct intel_limit *limit;
1547 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1548 if (intel_panel_use_ssc(display)) {
1549 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1550 drm_dbg_kms(&dev_priv->drm,
1551 "using SSC reference clock of %d kHz\n",
1555 if (intel_is_dual_link_lvds(dev_priv))
1556 limit = &intel_limits_g4x_dual_channel_lvds;
1558 limit = &intel_limits_g4x_single_channel_lvds;
1559 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1560 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1561 limit = &intel_limits_g4x_hdmi;
1562 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1563 limit = &intel_limits_g4x_sdvo;
1565 /* The option is for other outputs */
1566 limit = &intel_limits_i9xx_sdvo;
1569 if (!crtc_state->clock_set &&
1570 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1571 refclk, NULL, &crtc_state->dpll))
1574 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1576 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1579 crtc_state->port_clock = crtc_state->dpll.dot;
1580 /* FIXME this is a mess */
1581 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1582 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1587 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1588 struct intel_crtc *crtc)
1590 struct intel_display *display = to_intel_display(state);
1591 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1592 struct intel_crtc_state *crtc_state =
1593 intel_atomic_get_new_crtc_state(state, crtc);
1594 const struct intel_limit *limit;
1597 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1598 if (intel_panel_use_ssc(display)) {
1599 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1600 drm_dbg_kms(&dev_priv->drm,
1601 "using SSC reference clock of %d kHz\n",
1605 limit = &pnv_limits_lvds;
1607 limit = &pnv_limits_sdvo;
1610 if (!crtc_state->clock_set &&
1611 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1612 refclk, NULL, &crtc_state->dpll))
1615 pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1617 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1620 crtc_state->port_clock = crtc_state->dpll.dot;
1621 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1626 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1627 struct intel_crtc *crtc)
1629 struct intel_display *display = to_intel_display(state);
1630 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1631 struct intel_crtc_state *crtc_state =
1632 intel_atomic_get_new_crtc_state(state, crtc);
1633 const struct intel_limit *limit;
1636 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1637 if (intel_panel_use_ssc(display)) {
1638 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1639 drm_dbg_kms(&dev_priv->drm,
1640 "using SSC reference clock of %d kHz\n",
1644 limit = &intel_limits_i9xx_lvds;
1646 limit = &intel_limits_i9xx_sdvo;
1649 if (!crtc_state->clock_set &&
1650 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1651 refclk, NULL, &crtc_state->dpll))
1654 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1656 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1659 crtc_state->port_clock = crtc_state->dpll.dot;
1660 /* FIXME this is a mess */
1661 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1662 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1667 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1668 struct intel_crtc *crtc)
1670 struct intel_display *display = to_intel_display(state);
1671 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1672 struct intel_crtc_state *crtc_state =
1673 intel_atomic_get_new_crtc_state(state, crtc);
1674 const struct intel_limit *limit;
1677 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1678 if (intel_panel_use_ssc(display)) {
1679 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1680 drm_dbg_kms(&dev_priv->drm,
1681 "using SSC reference clock of %d kHz\n",
1685 limit = &intel_limits_i8xx_lvds;
1686 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1687 limit = &intel_limits_i8xx_dvo;
1689 limit = &intel_limits_i8xx_dac;
1692 if (!crtc_state->clock_set &&
1693 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1694 refclk, NULL, &crtc_state->dpll))
1697 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1699 i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1702 crtc_state->port_clock = crtc_state->dpll.dot;
1703 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1708 static const struct intel_dpll_funcs mtl_dpll_funcs = {
1709 .crtc_compute_clock = mtl_crtc_compute_clock,
1712 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1713 .crtc_compute_clock = dg2_crtc_compute_clock,
1716 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1717 .crtc_compute_clock = hsw_crtc_compute_clock,
1718 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1721 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1722 .crtc_compute_clock = ilk_crtc_compute_clock,
1723 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1726 static const struct intel_dpll_funcs chv_dpll_funcs = {
1727 .crtc_compute_clock = chv_crtc_compute_clock,
1730 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1731 .crtc_compute_clock = vlv_crtc_compute_clock,
1734 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1735 .crtc_compute_clock = g4x_crtc_compute_clock,
1738 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1739 .crtc_compute_clock = pnv_crtc_compute_clock,
1742 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1743 .crtc_compute_clock = i9xx_crtc_compute_clock,
1746 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1747 .crtc_compute_clock = i8xx_crtc_compute_clock,
1750 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1751 struct intel_crtc *crtc)
1753 struct drm_i915_private *i915 = to_i915(state->base.dev);
1754 struct intel_crtc_state *crtc_state =
1755 intel_atomic_get_new_crtc_state(state, crtc);
1758 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1760 memset(&crtc_state->dpll_hw_state, 0,
1761 sizeof(crtc_state->dpll_hw_state));
1763 if (!crtc_state->hw.enable)
1766 ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1768 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1769 crtc->base.base.id, crtc->base.name);
1776 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1777 struct intel_crtc *crtc)
1779 struct drm_i915_private *i915 = to_i915(state->base.dev);
1780 struct intel_crtc_state *crtc_state =
1781 intel_atomic_get_new_crtc_state(state, crtc);
1784 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1785 drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1787 if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1790 if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1793 ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1795 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1796 crtc->base.base.id, crtc->base.name);
1804 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1806 if (DISPLAY_VER(dev_priv) >= 14)
1807 dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1808 else if (IS_DG2(dev_priv))
1809 dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1810 else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1811 dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1812 else if (HAS_PCH_SPLIT(dev_priv))
1813 dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1814 else if (IS_CHERRYVIEW(dev_priv))
1815 dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1816 else if (IS_VALLEYVIEW(dev_priv))
1817 dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1818 else if (IS_G4X(dev_priv))
1819 dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1820 else if (IS_PINEVIEW(dev_priv))
1821 dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1822 else if (DISPLAY_VER(dev_priv) != 2)
1823 dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1825 dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1828 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1830 if (IS_I830(dev_priv))
1833 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1836 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1838 struct intel_display *display = to_intel_display(crtc_state);
1839 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1840 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1841 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1842 enum pipe pipe = crtc->pipe;
1845 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1847 /* PLL is protected by panel, make sure we can write it */
1848 if (i9xx_has_pps(dev_priv))
1849 assert_pps_unlocked(display, pipe);
1851 intel_de_write(dev_priv, FP0(pipe), hw_state->fp0);
1852 intel_de_write(dev_priv, FP1(pipe), hw_state->fp1);
1855 * Apparently we need to have VGA mode enabled prior to changing
1856 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1857 * dividers, even though the register value does change.
1859 intel_de_write(dev_priv, DPLL(dev_priv, pipe),
1860 hw_state->dpll & ~DPLL_VGA_MODE_DIS);
1861 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1863 /* Wait for the clocks to stabilize. */
1864 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1867 if (DISPLAY_VER(dev_priv) >= 4) {
1868 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
1871 /* The pixel multiplier can only be updated once the
1872 * DPLL is enabled and the clocks are stable.
1874 * So write it again.
1876 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1879 /* We do this three times for luck */
1880 for (i = 0; i < 3; i++) {
1881 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1882 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1883 udelay(150); /* wait for warmup */
1887 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1888 enum dpio_phy phy, enum dpio_channel ch)
1893 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1894 * and set it to a reasonable value instead.
1896 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1899 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1901 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1904 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1906 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1908 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1910 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1913 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1916 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1918 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1919 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1920 const struct dpll *clock = &crtc_state->dpll;
1921 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
1922 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1923 enum pipe pipe = crtc->pipe;
1926 vlv_dpio_get(dev_priv);
1928 /* See eDP HDMI DPIO driver vbios notes doc */
1930 /* PLL B needs special handling */
1932 vlv_pllb_recal_opamp(dev_priv, phy, ch);
1934 /* Set up Tx target for periodic Rcomp update */
1935 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f);
1937 /* Disable target IRef on PLL */
1938 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch));
1940 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp);
1942 /* Disable fast lock */
1943 vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1945 /* Set idtafcrecal before PLL is enabled */
1946 tmp = DPIO_M1_DIV(clock->m1) |
1947 DPIO_M2_DIV(clock->m2) |
1948 DPIO_P1_DIV(clock->p1) |
1949 DPIO_P2_DIV(clock->p2) |
1950 DPIO_N_DIV(clock->n) |
1954 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1955 * but we don't support that).
1956 * Note: don't use the DAC post divider as it seems unstable.
1958 tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP);
1959 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1961 tmp |= DPIO_ENABLE_CALIBRATION;
1962 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1964 /* Set HBR and RBR LPF coefficients */
1965 if (crtc_state->port_clock == 162000 ||
1966 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1967 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1968 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1971 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1974 if (intel_crtc_has_dp_encoder(crtc_state)) {
1975 /* Use SSC source */
1977 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1980 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1982 } else { /* HDMI or VGA */
1983 /* Use bend source */
1985 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1988 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1992 coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch));
1993 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1994 if (intel_crtc_has_dp_encoder(crtc_state))
1995 coreclk |= 0x01000000;
1996 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk);
1998 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000);
2000 vlv_dpio_put(dev_priv);
2003 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2005 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2006 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2007 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2008 enum pipe pipe = crtc->pipe;
2010 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
2011 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2014 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2015 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
2018 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2020 struct intel_display *display = to_intel_display(crtc_state);
2021 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2022 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2023 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2024 enum pipe pipe = crtc->pipe;
2026 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2028 /* PLL is protected by panel, make sure we can write it */
2029 assert_pps_unlocked(display, pipe);
2032 intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2033 hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
2035 if (hw_state->dpll & DPLL_VCO_ENABLE) {
2036 vlv_prepare_pll(crtc_state);
2037 _vlv_enable_pll(crtc_state);
2040 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), hw_state->dpll_md);
2041 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2044 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
2046 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2047 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2048 const struct dpll *clock = &crtc_state->dpll;
2049 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2050 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2051 u32 tmp, loopfilter, tribuf_calcntr;
2054 m2_frac = clock->m2 & 0x3fffff;
2056 vlv_dpio_get(dev_priv);
2058 /* p1 and p2 divider */
2059 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch),
2060 DPIO_CHV_S1_DIV(5) |
2061 DPIO_CHV_P1_DIV(clock->p1) |
2062 DPIO_CHV_P2_DIV(clock->p2) |
2065 /* Feedback post-divider - m2 */
2066 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch),
2067 DPIO_CHV_M2_DIV(clock->m2 >> 22));
2069 /* Feedback refclk divider - n and m1 */
2070 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch),
2071 DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) |
2074 /* M2 fraction division */
2075 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch),
2076 DPIO_CHV_M2_FRAC_DIV(m2_frac));
2078 /* M2 fraction division enable */
2079 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
2080 tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2081 tmp |= DPIO_CHV_FEEDFWD_GAIN(2);
2083 tmp |= DPIO_CHV_FRAC_DIV_EN;
2084 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp);
2086 /* Program digital lock detect threshold */
2087 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch));
2088 tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2089 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2090 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5);
2092 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2093 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp);
2096 if (clock->vco == 5400000) {
2097 loopfilter = DPIO_CHV_PROP_COEFF(0x3) |
2098 DPIO_CHV_INT_COEFF(0x8) |
2099 DPIO_CHV_GAIN_CTRL(0x1);
2100 tribuf_calcntr = 0x9;
2101 } else if (clock->vco <= 6200000) {
2102 loopfilter = DPIO_CHV_PROP_COEFF(0x5) |
2103 DPIO_CHV_INT_COEFF(0xB) |
2104 DPIO_CHV_GAIN_CTRL(0x3);
2105 tribuf_calcntr = 0x9;
2106 } else if (clock->vco <= 6480000) {
2107 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2108 DPIO_CHV_INT_COEFF(0x9) |
2109 DPIO_CHV_GAIN_CTRL(0x3);
2110 tribuf_calcntr = 0x8;
2112 /* Not supported. Apply the same limits as in the max case */
2113 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2114 DPIO_CHV_INT_COEFF(0x9) |
2115 DPIO_CHV_GAIN_CTRL(0x3);
2118 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter);
2120 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch));
2121 tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2122 tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr);
2123 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp);
2126 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch),
2127 vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) |
2130 vlv_dpio_put(dev_priv);
2133 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2135 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2136 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2137 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2138 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2139 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2140 enum pipe pipe = crtc->pipe;
2143 vlv_dpio_get(dev_priv);
2145 /* Enable back the 10bit clock to display controller */
2146 tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2147 tmp |= DPIO_DCLKP_EN;
2148 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp);
2150 vlv_dpio_put(dev_priv);
2153 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2158 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
2160 /* Check PLL is locked */
2161 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2162 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2165 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2167 struct intel_display *display = to_intel_display(crtc_state);
2168 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2169 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2170 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2171 enum pipe pipe = crtc->pipe;
2173 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2175 /* PLL is protected by panel, make sure we can write it */
2176 assert_pps_unlocked(display, pipe);
2178 /* Enable Refclk and SSC */
2179 intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2180 hw_state->dpll & ~DPLL_VCO_ENABLE);
2182 if (hw_state->dpll & DPLL_VCO_ENABLE) {
2183 chv_prepare_pll(crtc_state);
2184 _chv_enable_pll(crtc_state);
2187 if (pipe != PIPE_A) {
2189 * WaPixelRepeatModeFixForC0:chv
2191 * DPLLCMD is AWOL. Use chicken bits to propagate
2192 * the value from DPLLBMD to either pipe B or C.
2194 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2195 intel_de_write(dev_priv, DPLL_MD(dev_priv, PIPE_B),
2197 intel_de_write(dev_priv, CBR4_VLV, 0);
2198 dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md;
2201 * DPLLB VGA mode also seems to cause problems.
2202 * We should always have it disabled.
2204 drm_WARN_ON(&dev_priv->drm,
2205 (intel_de_read(dev_priv, DPLL(dev_priv, PIPE_B)) &
2206 DPLL_VGA_MODE_DIS) == 0);
2208 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
2210 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2215 * vlv_force_pll_on - forcibly enable just the PLL
2216 * @dev_priv: i915 private structure
2217 * @pipe: pipe PLL to enable
2218 * @dpll: PLL configuration
2220 * Enable the PLL for @pipe using the supplied @dpll config. To be used
2221 * in cases where we need the PLL enabled even when @pipe is not going to
2224 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2225 const struct dpll *dpll)
2227 struct intel_display *display = &dev_priv->display;
2228 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
2229 struct intel_crtc_state *crtc_state;
2231 crtc_state = intel_crtc_state_alloc(crtc);
2235 crtc_state->cpu_transcoder = (enum transcoder)pipe;
2236 crtc_state->pixel_multiplier = 1;
2237 crtc_state->dpll = *dpll;
2238 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2240 if (IS_CHERRYVIEW(dev_priv)) {
2241 chv_compute_dpll(crtc_state);
2242 chv_enable_pll(crtc_state);
2244 vlv_compute_dpll(crtc_state);
2245 vlv_enable_pll(crtc_state);
2248 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2253 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2257 /* Make sure the pipe isn't still relying on us */
2258 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2260 val = DPLL_INTEGRATED_REF_CLK_VLV |
2261 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2263 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2265 intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2266 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2269 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2271 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
2272 enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2275 /* Make sure the pipe isn't still relying on us */
2276 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2278 val = DPLL_SSC_REF_CLK_CHV |
2279 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2281 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2283 intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2284 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2286 vlv_dpio_get(dev_priv);
2288 /* Disable 10bit clock to display controller */
2289 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2290 val &= ~DPIO_DCLKP_EN;
2291 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val);
2293 vlv_dpio_put(dev_priv);
2296 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2298 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2299 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2300 enum pipe pipe = crtc->pipe;
2302 /* Don't disable pipe or pipe PLLs if needed */
2303 if (IS_I830(dev_priv))
2306 /* Make sure the pipe isn't still relying on us */
2307 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2309 intel_de_write(dev_priv, DPLL(dev_priv, pipe), DPLL_VGA_MODE_DIS);
2310 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2315 * vlv_force_pll_off - forcibly disable just the PLL
2316 * @dev_priv: i915 private structure
2317 * @pipe: pipe PLL to disable
2319 * Disable the PLL for @pipe. To be used in cases where we need
2320 * the PLL enabled even when @pipe is not going to be enabled.
2322 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2324 if (IS_CHERRYVIEW(dev_priv))
2325 chv_disable_pll(dev_priv, pipe);
2327 vlv_disable_pll(dev_priv, pipe);
2330 /* Only for pre-ILK configs */
2331 static void assert_pll(struct drm_i915_private *dev_priv,
2332 enum pipe pipe, bool state)
2334 struct intel_display *display = &dev_priv->display;
2337 cur_state = intel_de_read(display, DPLL(display, pipe)) & DPLL_VCO_ENABLE;
2338 INTEL_DISPLAY_STATE_WARN(display, cur_state != state,
2339 "PLL state assertion failure (expected %s, current %s)\n",
2340 str_on_off(state), str_on_off(cur_state));
2343 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2345 assert_pll(i915, pipe, true);
2348 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2350 assert_pll(i915, pipe, false);