2 * Copyright © 2014-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "bxt_dpio_phy_regs.h"
26 #include "intel_ddi.h"
27 #include "intel_ddi_buf_trans.h"
29 #include "intel_display_power_well.h"
30 #include "intel_display_types.h"
32 #include "intel_dpio_phy.h"
33 #include "vlv_dpio_phy_regs.h"
34 #include "vlv_sideband.h"
39 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
40 * ports. DPIO is the name given to such a display PHY. These PHYs
41 * don't follow the standard programming model using direct MMIO
42 * registers, and instead their registers must be accessed trough IOSF
43 * sideband. VLV has one such PHY for driving ports B and C, and CHV
44 * adds another PHY for driving port D. Each PHY responds to specific
47 * Each display PHY is made up of one or two channels. Each channel
48 * houses a common lane part which contains the PLL and other common
49 * logic. CH0 common lane also contains the IOSF-SB logic for the
50 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
51 * must be running when any DPIO registers are accessed.
53 * In addition to having their own registers, the PHYs are also
54 * controlled through some dedicated signals from the display
55 * controller. These include PLL reference clock enable, PLL enable,
56 * and CRI clock selection, for example.
58 * Eeach channel also has two splines (also called data lanes), and
59 * each spline is made up of one Physical Access Coding Sub-Layer
60 * (PCS) block and two TX lanes. So each channel has two PCS blocks
61 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
62 * data/clock pairs depending on the output type.
64 * Additionally the PHY also contains an AUX lane with AUX blocks
65 * for each channel. This is used for DP AUX communication, but
66 * this fact isn't really relevant for the driver since AUX is
67 * controlled from the display controller side. No DPIO registers
68 * need to be accessed during AUX communication,
70 * Generally on VLV/CHV the common lane corresponds to the pipe and
71 * the spline (PCS/TX) corresponds to the port.
73 * For dual channel PHY (VLV/CHV):
75 * pipe A == CMN/PLL/REF CH0
77 * pipe B == CMN/PLL/REF CH1
79 * port B == PCS/TX CH0
81 * port C == PCS/TX CH1
83 * This is especially important when we cross the streams
84 * ie. drive port B with pipe B, or port C with pipe A.
86 * For single channel PHY (CHV):
88 * pipe C == CMN/PLL/REF CH0
90 * port D == PCS/TX CH0
92 * On BXT the entire PHY channel corresponds to the port. That means
93 * the PLL is also now associated with the port rather than the pipe,
94 * and so the clock needs to be routed to the appropriate transcoder.
95 * Port A PLL is directly connected to transcoder EDP and port B/C
96 * PLLs can be routed to any transcoder A/B/C.
98 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
99 * digital port D (CHV) or port A (BXT). ::
102 * Dual channel PHY (VLV/CHV/BXT)
103 * ---------------------------------
105 * | CMN/PLL/REF | CMN/PLL/REF |
106 * |---------------|---------------| Display PHY
107 * | PCS01 | PCS23 | PCS01 | PCS23 |
108 * |-------|-------|-------|-------|
109 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
110 * ---------------------------------
111 * | DDI0 | DDI1 | DP/HDMI ports
112 * ---------------------------------
114 * Single channel PHY (CHV/BXT)
118 * |---------------| Display PHY
123 * | DDI2 | DP/HDMI port
128 * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy
130 struct bxt_dpio_phy_info {
132 * @dual_channel: true if this phy has a second channel.
137 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
138 * Otherwise the GRC value will be copied from the phy indicated by
141 enum dpio_phy rcomp_phy;
144 * @reset_delay: delay in us to wait before setting the common reset
145 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
150 * @pwron_mask: Mask with the appropriate bit set that would cause the
151 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
156 * @channel: struct containing per channel information.
160 * @channel.port: which port maps to this channel.
166 static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = {
168 .dual_channel = true,
169 .rcomp_phy = DPIO_PHY1,
170 .pwron_mask = BIT(0),
173 [DPIO_CH0] = { .port = PORT_B },
174 [DPIO_CH1] = { .port = PORT_C },
178 .dual_channel = false,
180 .pwron_mask = BIT(1),
183 [DPIO_CH0] = { .port = PORT_A },
188 static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = {
190 .dual_channel = false,
191 .rcomp_phy = DPIO_PHY1,
192 .pwron_mask = BIT(0),
196 [DPIO_CH0] = { .port = PORT_B },
200 .dual_channel = false,
202 .pwron_mask = BIT(3),
206 [DPIO_CH0] = { .port = PORT_A },
210 .dual_channel = false,
211 .rcomp_phy = DPIO_PHY1,
212 .pwron_mask = BIT(1),
216 [DPIO_CH0] = { .port = PORT_C },
221 static const struct bxt_dpio_phy_info *
222 bxt_get_phy_list(struct intel_display *display, int *count)
224 struct drm_i915_private *dev_priv = to_i915(display->drm);
226 if (IS_GEMINILAKE(dev_priv)) {
227 *count = ARRAY_SIZE(glk_dpio_phy_info);
228 return glk_dpio_phy_info;
230 *count = ARRAY_SIZE(bxt_dpio_phy_info);
231 return bxt_dpio_phy_info;
235 static const struct bxt_dpio_phy_info *
236 bxt_get_phy_info(struct intel_display *display, enum dpio_phy phy)
239 const struct bxt_dpio_phy_info *phy_list =
240 bxt_get_phy_list(display, &count);
242 return &phy_list[phy];
245 void bxt_port_to_phy_channel(struct intel_display *display, enum port port,
246 enum dpio_phy *phy, enum dpio_channel *ch)
248 const struct bxt_dpio_phy_info *phy_info, *phys;
251 phys = bxt_get_phy_list(display, &count);
253 for (i = 0; i < count; i++) {
256 if (port == phy_info->channel[DPIO_CH0].port) {
262 if (phy_info->dual_channel &&
263 port == phy_info->channel[DPIO_CH1].port) {
270 drm_WARN(display->drm, 1, "PHY not found for PORT %c",
277 * Like intel_de_rmw() but reads from a single per-lane register and
278 * writes to the group register to write the same value to all the lanes.
280 static u32 bxt_dpio_phy_rmw_grp(struct intel_display *display,
281 i915_reg_t reg_single,
282 i915_reg_t reg_group,
287 old = intel_de_read(display, reg_single);
288 val = (old & ~clear) | set;
289 intel_de_write(display, reg_group, val);
294 void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder,
295 const struct intel_crtc_state *crtc_state)
297 struct intel_display *display = to_intel_display(encoder);
298 const struct intel_ddi_buf_trans *trans;
299 enum dpio_channel ch;
303 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
304 if (drm_WARN_ON_ONCE(display->drm, !trans))
307 bxt_port_to_phy_channel(display, encoder->port, &phy, &ch);
310 * While we write to the group register to program all lanes at once we
311 * can read only lane registers and we pick lanes 0/1 for that.
313 bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
314 BXT_PORT_PCS_DW10_GRP(phy, ch),
315 TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0);
317 for (lane = 0; lane < crtc_state->lane_count; lane++) {
318 int level = intel_ddi_level(encoder, crtc_state, lane);
320 intel_de_rmw(display, BXT_PORT_TX_DW2_LN(phy, ch, lane),
321 MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK,
322 MARGIN_000(trans->entries[level].bxt.margin) |
323 UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale));
326 for (lane = 0; lane < crtc_state->lane_count; lane++) {
327 int level = intel_ddi_level(encoder, crtc_state, lane);
330 intel_de_rmw(display, BXT_PORT_TX_DW3_LN(phy, ch, lane),
332 trans->entries[level].bxt.enable ?
333 SCALE_DCOMP_METHOD : 0);
335 val = intel_de_read(display, BXT_PORT_TX_DW3_LN(phy, ch, lane));
336 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
337 drm_err(display->drm,
338 "Disabled scaling while ouniqetrangenmethod was set");
341 for (lane = 0; lane < crtc_state->lane_count; lane++) {
342 int level = intel_ddi_level(encoder, crtc_state, lane);
344 intel_de_rmw(display, BXT_PORT_TX_DW4_LN(phy, ch, lane),
346 DE_EMPHASIS(trans->entries[level].bxt.deemphasis));
349 bxt_dpio_phy_rmw_grp(display, BXT_PORT_PCS_DW10_LN01(phy, ch),
350 BXT_PORT_PCS_DW10_GRP(phy, ch),
351 0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
354 bool bxt_dpio_phy_is_enabled(struct intel_display *display,
357 const struct bxt_dpio_phy_info *phy_info;
359 phy_info = bxt_get_phy_info(display, phy);
361 if (!(intel_de_read(display, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
364 if ((intel_de_read(display, BXT_PORT_CL1CM_DW0(phy)) &
365 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
366 drm_dbg(display->drm,
367 "DDI PHY %d powered, but power hasn't settled\n", phy);
372 if (!(intel_de_read(display, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
373 drm_dbg(display->drm,
374 "DDI PHY %d powered, but still in reset\n", phy);
382 static u32 bxt_get_grc(struct intel_display *display, enum dpio_phy phy)
384 u32 val = intel_de_read(display, BXT_PORT_REF_DW6(phy));
386 return REG_FIELD_GET(GRC_CODE_MASK, val);
389 static void bxt_phy_wait_grc_done(struct intel_display *display,
392 if (intel_de_wait_for_set(display, BXT_PORT_REF_DW3(phy), GRC_DONE, 10))
393 drm_err(display->drm, "timeout waiting for PHY%d GRC\n", phy);
396 static void _bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
398 const struct bxt_dpio_phy_info *phy_info;
401 phy_info = bxt_get_phy_info(display, phy);
403 if (bxt_dpio_phy_is_enabled(display, phy)) {
404 /* Still read out the GRC value for state verification */
405 if (phy_info->rcomp_phy != -1)
406 display->state.bxt_phy_grc = bxt_get_grc(display, phy);
408 if (bxt_dpio_phy_verify_state(display, phy)) {
409 drm_dbg(display->drm, "DDI PHY %d already enabled, "
410 "won't reprogram it\n", phy);
414 drm_dbg(display->drm,
415 "DDI PHY %d enabled with invalid state, "
416 "force reprogramming it\n", phy);
419 intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask);
422 * The PHY registers start out inaccessible and respond to reads with
423 * all 1s. Eventually they become accessible as they power up, then
424 * the reserved bit will give the default 0. Poll on the reserved bit
425 * becoming 0 to find when the PHY is accessible.
426 * The flag should get set in 100us according to the HW team, but
427 * use 1ms due to occasional timeouts observed with that.
429 if (intel_de_wait_fw(display, BXT_PORT_CL1CM_DW0(phy),
430 PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1))
431 drm_err(display->drm, "timeout during PHY%d power on\n",
434 /* Program PLL Rcomp code offset */
435 intel_de_rmw(display, BXT_PORT_CL1CM_DW9(phy),
436 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4));
438 intel_de_rmw(display, BXT_PORT_CL1CM_DW10(phy),
439 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4));
441 /* Program power gating */
442 intel_de_rmw(display, BXT_PORT_CL1CM_DW28(phy), 0,
443 OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG);
445 if (phy_info->dual_channel)
446 intel_de_rmw(display, BXT_PORT_CL2CM_DW6(phy), 0,
447 DW6_OLDO_DYN_PWR_DOWN_EN);
449 if (phy_info->rcomp_phy != -1) {
452 bxt_phy_wait_grc_done(display, phy_info->rcomp_phy);
455 * PHY0 isn't connected to an RCOMP resistor so copy over
456 * the corresponding calibrated value from PHY1, and disable
457 * the automatic calibration on PHY0.
459 val = bxt_get_grc(display, phy_info->rcomp_phy);
460 display->state.bxt_phy_grc = val;
462 grc_code = GRC_CODE_FAST(val) |
465 intel_de_write(display, BXT_PORT_REF_DW6(phy), grc_code);
466 intel_de_rmw(display, BXT_PORT_REF_DW8(phy),
467 0, GRC_DIS | GRC_RDY_OVRD);
470 if (phy_info->reset_delay)
471 udelay(phy_info->reset_delay);
473 intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS);
476 void bxt_dpio_phy_uninit(struct intel_display *display, enum dpio_phy phy)
478 const struct bxt_dpio_phy_info *phy_info;
480 phy_info = bxt_get_phy_info(display, phy);
482 intel_de_rmw(display, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0);
484 intel_de_rmw(display, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0);
487 void bxt_dpio_phy_init(struct intel_display *display, enum dpio_phy phy)
489 const struct bxt_dpio_phy_info *phy_info = bxt_get_phy_info(display, phy);
490 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
493 lockdep_assert_held(&display->power.domains.lock);
497 was_enabled = bxt_dpio_phy_is_enabled(display, rcomp_phy);
500 * We need to copy the GRC calibration value from rcomp_phy,
501 * so make sure it's powered up.
504 _bxt_dpio_phy_init(display, rcomp_phy);
506 _bxt_dpio_phy_init(display, phy);
509 bxt_dpio_phy_uninit(display, rcomp_phy);
512 static bool __printf(6, 7)
513 __phy_reg_verify_state(struct intel_display *display, enum dpio_phy phy,
514 i915_reg_t reg, u32 mask, u32 expected,
515 const char *reg_fmt, ...)
517 struct va_format vaf;
521 val = intel_de_read(display, reg);
522 if ((val & mask) == expected)
525 va_start(args, reg_fmt);
529 drm_dbg(display->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
530 "current %08x, expected %08x (mask %08x)\n",
531 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
539 bool bxt_dpio_phy_verify_state(struct intel_display *display,
542 const struct bxt_dpio_phy_info *phy_info;
546 phy_info = bxt_get_phy_info(display, phy);
548 #define _CHK(reg, mask, exp, fmt, ...) \
549 __phy_reg_verify_state(display, phy, reg, mask, exp, fmt, \
552 if (!bxt_dpio_phy_is_enabled(display, phy))
557 /* PLL Rcomp code offset */
558 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
559 IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4),
560 "BXT_PORT_CL1CM_DW9(%d)", phy);
561 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
562 IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4),
563 "BXT_PORT_CL1CM_DW10(%d)", phy);
566 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
567 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
568 "BXT_PORT_CL1CM_DW28(%d)", phy);
570 if (phy_info->dual_channel)
571 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
572 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
573 "BXT_PORT_CL2CM_DW6(%d)", phy);
575 if (phy_info->rcomp_phy != -1) {
576 u32 grc_code = display->state.bxt_phy_grc;
578 grc_code = GRC_CODE_FAST(grc_code) |
579 GRC_CODE_SLOW(grc_code) |
580 GRC_CODE_NOM(grc_code);
581 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
583 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
584 "BXT_PORT_REF_DW6(%d)", phy);
586 mask = GRC_DIS | GRC_RDY_OVRD;
587 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
588 "BXT_PORT_REF_DW8(%d)", phy);
596 bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count)
598 switch (lane_count) {
602 return BIT(2) | BIT(0);
604 return BIT(3) | BIT(2) | BIT(0);
606 MISSING_CASE(lane_count);
612 void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder,
613 u8 lane_lat_optim_mask)
615 struct intel_display *display = to_intel_display(encoder);
616 enum port port = encoder->port;
618 enum dpio_channel ch;
621 bxt_port_to_phy_channel(display, port, &phy, &ch);
623 for (lane = 0; lane < 4; lane++) {
625 * Note that on CHV this flag is called UPAR, but has
628 intel_de_rmw(display, BXT_PORT_TX_DW14_LN(phy, ch, lane),
630 lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0);
635 bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
637 struct intel_display *display = to_intel_display(encoder);
638 enum port port = encoder->port;
640 enum dpio_channel ch;
644 bxt_port_to_phy_channel(display, port, &phy, &ch);
647 for (lane = 0; lane < 4; lane++) {
648 u32 val = intel_de_read(display,
649 BXT_PORT_TX_DW14_LN(phy, ch, lane));
651 if (val & LATENCY_OPTIM)
658 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
660 switch (dig_port->base.port) {
662 MISSING_CASE(dig_port->base.port);
672 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
674 switch (dig_port->base.port) {
676 MISSING_CASE(dig_port->base.port);
686 enum dpio_phy vlv_pipe_to_phy(enum pipe pipe)
700 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
714 void chv_set_phy_signal_level(struct intel_encoder *encoder,
715 const struct intel_crtc_state *crtc_state,
716 u32 deemph_reg_value, u32 margin_reg_value,
717 bool uniq_trans_scale)
719 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
720 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
721 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
722 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
726 vlv_dpio_get(dev_priv);
728 /* Clear calc init */
729 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
730 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
731 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
732 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
733 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
735 if (crtc_state->lane_count > 2) {
736 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
737 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
738 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
739 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
740 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
743 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch));
744 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
745 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
746 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val);
748 if (crtc_state->lane_count > 2) {
749 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch));
750 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
751 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
752 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val);
755 /* Program swing deemph */
756 for (i = 0; i < crtc_state->lane_count; i++) {
757 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i));
758 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
759 val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value);
760 vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val);
763 /* Program swing margin */
764 for (i = 0; i < crtc_state->lane_count; i++) {
765 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i));
767 val &= ~DPIO_SWING_MARGIN000_MASK;
768 val |= DPIO_SWING_MARGIN000(margin_reg_value);
771 * Supposedly this value shouldn't matter when unique transition
772 * scale is disabled, but in fact it does matter. Let's just
773 * always program the same value and hope it's OK.
775 val &= ~DPIO_UNIQ_TRANS_SCALE_MASK;
776 val |= DPIO_UNIQ_TRANS_SCALE(0x9a);
778 vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val);
782 * The document said it needs to set bit 27 for ch0 and bit 26
783 * for ch1. Might be a typo in the doc.
784 * For now, for this unique transition scale selection, set bit
785 * 27 for ch0 and ch1.
787 for (i = 0; i < crtc_state->lane_count; i++) {
788 val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i));
789 if (uniq_trans_scale)
790 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
792 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
793 vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val);
796 /* Start swing calculation */
797 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch));
798 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
799 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val);
801 if (crtc_state->lane_count > 2) {
802 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch));
803 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
804 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val);
807 vlv_dpio_put(dev_priv);
810 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
811 const struct intel_crtc_state *crtc_state,
814 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
815 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
816 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
817 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
820 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch));
822 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
824 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
825 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val);
827 if (crtc_state->lane_count > 2) {
828 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch));
830 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
832 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
833 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val);
836 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch));
837 val |= CHV_PCS_REQ_SOFTRESET_EN;
839 val &= ~DPIO_PCS_CLK_SOFT_RESET;
841 val |= DPIO_PCS_CLK_SOFT_RESET;
842 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val);
844 if (crtc_state->lane_count > 2) {
845 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch));
846 val |= CHV_PCS_REQ_SOFTRESET_EN;
848 val &= ~DPIO_PCS_CLK_SOFT_RESET;
850 val |= DPIO_PCS_CLK_SOFT_RESET;
851 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val);
855 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
856 const struct intel_crtc_state *crtc_state)
858 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
859 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
860 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
861 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
862 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
863 enum pipe pipe = crtc->pipe;
864 unsigned int lane_mask =
865 intel_dp_unused_lane_mask(crtc_state->lane_count);
869 * Must trick the second common lane into life.
870 * Otherwise we can't even access the PLL.
872 if (ch == DPIO_CH0 && pipe == PIPE_B)
873 dig_port->release_cl2_override =
874 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
876 chv_phy_powergate_lanes(encoder, true, lane_mask);
878 vlv_dpio_get(dev_priv);
880 /* Assert data lane reset */
881 chv_data_lane_soft_reset(encoder, crtc_state, true);
883 /* program left/right clock distribution */
884 if (pipe != PIPE_B) {
885 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
886 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
888 val |= CHV_BUFLEFTENA1_FORCE;
890 val |= CHV_BUFRIGHTENA1_FORCE;
891 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
893 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
894 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
896 val |= CHV_BUFLEFTENA2_FORCE;
898 val |= CHV_BUFRIGHTENA2_FORCE;
899 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
902 /* program clock channel usage */
903 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch));
904 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
906 val |= DPIO_PCS_USEDCLKCHANNEL;
908 val &= ~DPIO_PCS_USEDCLKCHANNEL;
909 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val);
911 if (crtc_state->lane_count > 2) {
912 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch));
913 val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
915 val |= DPIO_PCS_USEDCLKCHANNEL;
917 val &= ~DPIO_PCS_USEDCLKCHANNEL;
918 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val);
922 * This a a bit weird since generally CL
923 * matches the pipe, but here we need to
924 * pick the CL based on the port.
926 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch));
928 val |= CHV_CMN_USEDCLKCHANNEL;
930 val &= ~CHV_CMN_USEDCLKCHANNEL;
931 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val);
933 vlv_dpio_put(dev_priv);
936 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
937 const struct intel_crtc_state *crtc_state)
939 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
940 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
941 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
942 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
943 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
944 int data, i, stagger;
947 vlv_dpio_get(dev_priv);
949 /* allow hardware to manage TX FIFO reset source */
950 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
951 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
952 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
954 if (crtc_state->lane_count > 2) {
955 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
956 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
957 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
960 /* Program Tx lane latency optimal setting*/
961 for (i = 0; i < crtc_state->lane_count; i++) {
962 /* Set the upar bit */
963 if (crtc_state->lane_count == 1)
966 data = (i == 1) ? 0 : DPIO_UPAR;
967 vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), data);
970 /* Data lane stagger programming */
971 if (crtc_state->port_clock > 270000)
973 else if (crtc_state->port_clock > 135000)
975 else if (crtc_state->port_clock > 67500)
977 else if (crtc_state->port_clock > 33750)
982 val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch));
983 val |= DPIO_TX2_STAGGER_MASK(0x1f);
984 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val);
986 if (crtc_state->lane_count > 2) {
987 val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch));
988 val |= DPIO_TX2_STAGGER_MASK(0x1f);
989 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val);
992 vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch),
993 DPIO_LANESTAGGER_STRAP(stagger) |
994 DPIO_LANESTAGGER_STRAP_OVRD |
995 DPIO_TX1_STAGGER_MASK(0x1f) |
996 DPIO_TX1_STAGGER_MULT(6) |
997 DPIO_TX2_STAGGER_MULT(0));
999 if (crtc_state->lane_count > 2) {
1000 vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch),
1001 DPIO_LANESTAGGER_STRAP(stagger) |
1002 DPIO_LANESTAGGER_STRAP_OVRD |
1003 DPIO_TX1_STAGGER_MASK(0x1f) |
1004 DPIO_TX1_STAGGER_MULT(7) |
1005 DPIO_TX2_STAGGER_MULT(5));
1008 /* Deassert data lane reset */
1009 chv_data_lane_soft_reset(encoder, crtc_state, false);
1011 vlv_dpio_put(dev_priv);
1014 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1016 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1017 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1019 if (dig_port->release_cl2_override) {
1020 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1021 dig_port->release_cl2_override = false;
1025 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1026 const struct intel_crtc_state *old_crtc_state)
1028 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1029 enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder));
1030 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1033 vlv_dpio_get(dev_priv);
1035 /* disable left/right clock distribution */
1036 if (pipe != PIPE_B) {
1037 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0);
1038 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1039 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val);
1041 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1);
1042 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1043 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val);
1046 vlv_dpio_put(dev_priv);
1049 * Leave the power down bit cleared for at least one
1050 * lane so that chv_powergate_phy_ch() will power
1051 * on something when the channel is otherwise unused.
1052 * When the port is off and the override is removed
1053 * the lanes power down anyway, so otherwise it doesn't
1054 * really matter what the state of power down bits is
1057 chv_phy_powergate_lanes(encoder, false, 0x0);
1060 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1061 const struct intel_crtc_state *crtc_state,
1062 u32 demph_reg_value, u32 preemph_reg_value,
1063 u32 uniqtranscale_reg_value, u32 tx3_demph)
1065 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1066 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1067 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1068 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1070 vlv_dpio_get(dev_priv);
1072 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), 0x00000000);
1073 vlv_dpio_write(dev_priv, phy, VLV_TX_DW4_GRP(ch), demph_reg_value);
1074 vlv_dpio_write(dev_priv, phy, VLV_TX_DW2_GRP(ch),
1075 uniqtranscale_reg_value);
1076 vlv_dpio_write(dev_priv, phy, VLV_TX_DW3_GRP(ch), 0x0C782040);
1079 vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(ch, 3), tx3_demph);
1081 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11_GRP(ch), 0x00030000);
1082 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value);
1083 vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN);
1085 vlv_dpio_put(dev_priv);
1088 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1089 const struct intel_crtc_state *crtc_state)
1091 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1092 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1093 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1094 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1096 /* Program Tx lane resets to default */
1097 vlv_dpio_get(dev_priv);
1099 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch),
1100 DPIO_PCS_TX_LANE2_RESET |
1101 DPIO_PCS_TX_LANE1_RESET);
1102 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch),
1103 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1104 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1105 DPIO_PCS_CLK_DATAWIDTH_8_10 |
1106 DPIO_PCS_CLK_SOFT_RESET);
1108 /* Fix up inter-pair skew failure */
1109 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00);
1110 vlv_dpio_write(dev_priv, phy, VLV_TX_DW11_GRP(ch), 0x00001500);
1111 vlv_dpio_write(dev_priv, phy, VLV_TX_DW14_GRP(ch), 0x40400000);
1113 vlv_dpio_put(dev_priv);
1116 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1117 const struct intel_crtc_state *crtc_state)
1119 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1120 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1121 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1122 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1123 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1124 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1125 enum pipe pipe = crtc->pipe;
1128 vlv_dpio_get(dev_priv);
1130 /* Enable clock channels for this port */
1131 val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE;
1133 val |= DPIO_PCS_USEDCLKCHANNEL;
1135 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8_GRP(ch), val);
1137 /* Program lane clock */
1138 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14_GRP(ch), 0x00760018);
1139 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23_GRP(ch), 0x00400888);
1141 vlv_dpio_put(dev_priv);
1144 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1145 const struct intel_crtc_state *old_crtc_state)
1147 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1148 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1149 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
1150 enum dpio_phy phy = vlv_dig_port_to_phy(dig_port);
1152 vlv_dpio_get(dev_priv);
1153 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 0x00000000);
1154 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060);
1155 vlv_dpio_put(dev_priv);