]> Git Repo - J-linux.git/blob - drivers/edac/sb_edac.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / edac / sb_edac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3  *
4  * This driver supports the memory controllers found on the Intel
5  * processor family Sandy Bridge.
6  *
7  * Copyright (c) 2011 by:
8  *       Mauro Carvalho Chehab
9  */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
26 #include <asm/mce.h>
27
28 #include "edac_module.h"
29
30 /* Static vars */
31 static LIST_HEAD(sbridge_edac_list);
32 static char sb_msg[256];
33 static char sb_msg_full[512];
34
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
39 #define EDAC_MOD_STR        "sb_edac"
40
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)                      \
45         edac_printk(level, "sbridge", fmt, ##arg)
46
47 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
48         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi) \
54         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58         0x80, 0x88, 0x90, 0x98, 0xa0,
59         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61
62 static const u32 ibridge_dram_rule[] = {
63         0x60, 0x68, 0x70, 0x78, 0x80,
64         0x88, 0x90, 0x98, 0xa0, 0xa8,
65         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68
69 static const u32 knl_dram_rule[] = {
70         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76
77 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
79
80 static char *show_dram_attr(u32 attr)
81 {
82         switch (attr) {
83                 case 0:
84                         return "DRAM";
85                 case 1:
86                         return "MMCFG";
87                 case 2:
88                         return "NXM";
89                 default:
90                         return "unknown";
91         }
92 }
93
94 static const u32 sbridge_interleave_list[] = {
95         0x84, 0x8c, 0x94, 0x9c, 0xa4,
96         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98
99 static const u32 ibridge_interleave_list[] = {
100         0x64, 0x6c, 0x74, 0x7c, 0x84,
101         0x8c, 0x94, 0x9c, 0xa4, 0xac,
102         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105
106 static const u32 knl_interleave_list[] = {
107         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 #define MAX_INTERLEAVE                                                  \
114         (MAX_T(unsigned int, ARRAY_SIZE(sbridge_interleave_list),       \
115                MAX_T(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
116                      ARRAY_SIZE(knl_interleave_list))))
117
118 struct interleave_pkg {
119         unsigned char start;
120         unsigned char end;
121 };
122
123 static const struct interleave_pkg sbridge_interleave_pkg[] = {
124         { 0, 2 },
125         { 3, 5 },
126         { 8, 10 },
127         { 11, 13 },
128         { 16, 18 },
129         { 19, 21 },
130         { 24, 26 },
131         { 27, 29 },
132 };
133
134 static const struct interleave_pkg ibridge_interleave_pkg[] = {
135         { 0, 3 },
136         { 4, 7 },
137         { 8, 11 },
138         { 12, 15 },
139         { 16, 19 },
140         { 20, 23 },
141         { 24, 27 },
142         { 28, 31 },
143 };
144
145 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
146                           int interleave)
147 {
148         return GET_BITFIELD(reg, table[interleave].start,
149                             table[interleave].end);
150 }
151
152 /* Devices 12 Function 7 */
153
154 #define TOLM            0x80
155 #define TOHM            0x84
156 #define HASWELL_TOLM    0xd0
157 #define HASWELL_TOHM_0  0xd4
158 #define HASWELL_TOHM_1  0xd8
159 #define KNL_TOLM        0xd0
160 #define KNL_TOHM_0      0xd4
161 #define KNL_TOHM_1      0xd8
162
163 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
164 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
165
166 /* Device 13 Function 6 */
167
168 #define SAD_TARGET      0xf0
169
170 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
171
172 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
173
174 #define SAD_CONTROL     0xf4
175
176 /* Device 14 function 0 */
177
178 static const u32 tad_dram_rule[] = {
179         0x40, 0x44, 0x48, 0x4c,
180         0x50, 0x54, 0x58, 0x5c,
181         0x60, 0x64, 0x68, 0x6c,
182 };
183 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
184
185 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
187 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
188 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
189 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
190 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
191 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
192
193 /* Device 15, function 0 */
194
195 #define MCMTR                   0x7c
196 #define KNL_MCMTR               0x624
197
198 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
199 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
200 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
201
202 /* Device 15, function 1 */
203
204 #define RASENABLES              0xac
205 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
206
207 /* Device 15, functions 2-5 */
208
209 static const int mtr_regs[] = {
210         0x80, 0x84, 0x88,
211 };
212
213 static const int knl_mtr_reg = 0xb60;
214
215 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
220
221 static const u32 tad_ch_nilv_offset[] = {
222         0x90, 0x94, 0x98, 0x9c,
223         0xa0, 0xa4, 0xa8, 0xac,
224         0xb0, 0xb4, 0xb8, 0xbc,
225 };
226 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
228
229 static const u32 rir_way_limit[] = {
230         0x108, 0x10c, 0x110, 0x114, 0x118,
231 };
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
233
234 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
236
237 #define MAX_RIR_WAY     8
238
239 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245 };
246
247 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248         GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
249
250 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251         GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
252
253 /* Device 16, functions 2-7 */
254
255 /*
256  * FIXME: Implement the error count reads directly
257  */
258
259 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
263
264 #if 0 /* Currently unused*/
265 static const u32 correrrcnt[] = {
266         0x104, 0x108, 0x10c, 0x110,
267 };
268
269 static const u32 correrrthrsld[] = {
270         0x11c, 0x120, 0x124, 0x128,
271 };
272 #endif
273
274 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
275 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
276
277
278 /* Device 17, function 0 */
279
280 #define SB_RANK_CFG_A           0x0328
281
282 #define IB_RANK_CFG_A           0x0320
283
284 /*
285  * sbridge structs
286  */
287
288 #define NUM_CHANNELS            6       /* Max channels per MC */
289 #define MAX_DIMMS               3       /* Max DIMMS per channel */
290 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
291 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
292 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
293 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
294
295 enum type {
296         SANDY_BRIDGE,
297         IVY_BRIDGE,
298         HASWELL,
299         BROADWELL,
300         KNIGHTS_LANDING,
301 };
302
303 enum domain {
304         IMC0 = 0,
305         IMC1,
306         SOCK,
307 };
308
309 enum mirroring_mode {
310         NON_MIRRORING,
311         ADDR_RANGE_MIRRORING,
312         FULL_MIRRORING,
313 };
314
315 struct sbridge_pvt;
316 struct sbridge_info {
317         enum type       type;
318         u32             mcmtr;
319         u32             rankcfgr;
320         u64             (*get_tolm)(struct sbridge_pvt *pvt);
321         u64             (*get_tohm)(struct sbridge_pvt *pvt);
322         u64             (*rir_limit)(u32 reg);
323         u64             (*sad_limit)(u32 reg);
324         u32             (*interleave_mode)(u32 reg);
325         u32             (*dram_attr)(u32 reg);
326         const u32       *dram_rule;
327         const u32       *interleave_list;
328         const struct interleave_pkg *interleave_pkg;
329         u8              max_sad;
330         u8              (*get_node_id)(struct sbridge_pvt *pvt);
331         u8              (*get_ha)(u8 bank);
332         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
333         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
334         struct pci_dev  *pci_vtd;
335 };
336
337 struct sbridge_channel {
338         u32             ranks;
339         u32             dimms;
340         struct dimm {
341                 u32 rowbits;
342                 u32 colbits;
343                 u32 bank_xor_enable;
344                 u32 amap_fine;
345         } dimm[MAX_DIMMS];
346 };
347
348 struct pci_id_descr {
349         int                     dev_id;
350         int                     optional;
351         enum domain             dom;
352 };
353
354 struct pci_id_table {
355         const struct pci_id_descr       *descr;
356         int                             n_devs_per_imc;
357         int                             n_devs_per_sock;
358         int                             n_imcs_per_sock;
359         enum type                       type;
360 };
361
362 struct sbridge_dev {
363         struct list_head        list;
364         int                     seg;
365         u8                      bus, mc;
366         u8                      node_id, source_id;
367         struct pci_dev          **pdev;
368         enum domain             dom;
369         int                     n_devs;
370         int                     i_devs;
371         struct mem_ctl_info     *mci;
372 };
373
374 struct knl_pvt {
375         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
376         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
377         struct pci_dev          *pci_mc0;
378         struct pci_dev          *pci_mc1;
379         struct pci_dev          *pci_mc0_misc;
380         struct pci_dev          *pci_mc1_misc;
381         struct pci_dev          *pci_mc_info; /* tolm, tohm */
382 };
383
384 struct sbridge_pvt {
385         /* Devices per socket */
386         struct pci_dev          *pci_ddrio;
387         struct pci_dev          *pci_sad0, *pci_sad1;
388         struct pci_dev          *pci_br0, *pci_br1;
389         /* Devices per memory controller */
390         struct pci_dev          *pci_ha, *pci_ta, *pci_ras;
391         struct pci_dev          *pci_tad[NUM_CHANNELS];
392
393         struct sbridge_dev      *sbridge_dev;
394
395         struct sbridge_info     info;
396         struct sbridge_channel  channel[NUM_CHANNELS];
397
398         /* Memory type detection */
399         bool                    is_cur_addr_mirrored, is_lockstep, is_close_pg;
400         bool                    is_chan_hash;
401         enum mirroring_mode     mirror_mode;
402
403         /* Memory description */
404         u64                     tolm, tohm;
405         struct knl_pvt knl;
406 };
407
408 #define PCI_DESCR(device_id, opt, domain)       \
409         .dev_id = (device_id),          \
410         .optional = opt,        \
411         .dom = domain
412
413 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
414                 /* Processor Home Agent */
415         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
416
417                 /* Memory controller */
418         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
419         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
420         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
421         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
422         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
423         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
424         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
425
426                 /* System Address Decoder */
427         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
428         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
429
430                 /* Broadcast Registers */
431         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
432 };
433
434 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {        \
435         .descr = A,                     \
436         .n_devs_per_imc = N,    \
437         .n_devs_per_sock = ARRAY_SIZE(A),       \
438         .n_imcs_per_sock = M,   \
439         .type = T                       \
440 }
441
442 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
443         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
444         { NULL, }
445 };
446
447 /* This changes depending if 1HA or 2HA:
448  * 1HA:
449  *      0x0eb8 (17.0) is DDRIO0
450  * 2HA:
451  *      0x0ebc (17.4) is DDRIO0
452  */
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
455
456 /* pci ids */
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
466 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
467 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
468 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
469 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
470 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
471 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
472 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
473 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
474
475 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
476                 /* Processor Home Agent */
477         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
478         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
479
480                 /* Memory controller */
481         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
485         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
486         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
487
488                 /* Optional, mode 2HA */
489         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
490         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
491         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
492         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
493         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
494         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
495
496         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
497         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
498
499                 /* System Address Decoder */
500         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
501
502                 /* Broadcast Registers */
503         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
504         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
505
506 };
507
508 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
509         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
510         { NULL, }
511 };
512
513 /* Haswell support */
514 /* EN processor:
515  *      - 1 IMC
516  *      - 3 DDR3 channels, 2 DPC per channel
517  * EP processor:
518  *      - 1 or 2 IMC
519  *      - 4 DDR4 channels, 3 DPC per channel
520  * EP 4S processor:
521  *      - 2 IMC
522  *      - 4 DDR4 channels, 3 DPC per channel
523  * EX processor:
524  *      - 2 IMC
525  *      - each IMC interfaces with a SMI 2 channel
526  *      - each SMI channel interfaces with a scalable memory buffer
527  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
528  */
529 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
530 #define HASWELL_HASYSDEFEATURE2 0x84
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
544 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
545 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
546 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
547 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
548 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
549 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
550 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
551 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
552 static const struct pci_id_descr pci_dev_descr_haswell[] = {
553         /* first item must be the HA */
554         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
555         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
556
557         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
558         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
559         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
560         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
561         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
562         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
563
564         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
565         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
566         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
567         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
568         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
569         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
570
571         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
572         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
573         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
574         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
575         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
576         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
577 };
578
579 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
580         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
581         { NULL, }
582 };
583
584 /* Knight's Landing Support */
585 /*
586  * KNL's memory channels are swizzled between memory controllers.
587  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
588  */
589 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
590
591 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
593 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
595 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
597 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
598 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
599 /* SAD target - 1-29-1 (1 of these) */
600 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
601 /* Caching / Home Agent */
602 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
603 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
604 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
605
606 /*
607  * KNL differs from SB, IB, and Haswell in that it has multiple
608  * instances of the same device with the same device ID, so we handle that
609  * by creating as many copies in the table as we expect to find.
610  * (Like device ID must be grouped together.)
611  */
612
613 static const struct pci_id_descr pci_dev_descr_knl[] = {
614         [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
615         [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
616         [8]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
617         [9]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
618         [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
619         [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
620         [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
621 };
622
623 static const struct pci_id_table pci_dev_descr_knl_table[] = {
624         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
625         { NULL, }
626 };
627
628 /*
629  * Broadwell support
630  *
631  * DE processor:
632  *      - 1 IMC
633  *      - 2 DDR3 channels, 2 DPC per channel
634  * EP processor:
635  *      - 1 or 2 IMC
636  *      - 4 DDR4 channels, 3 DPC per channel
637  * EP 4S processor:
638  *      - 2 IMC
639  *      - 4 DDR4 channels, 3 DPC per channel
640  * EX processor:
641  *      - 2 IMC
642  *      - each IMC interfaces with a SMI 2 channel
643  *      - each SMI channel interfaces with a scalable memory buffer
644  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
645  */
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM        0x6f71
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM        0x6f79
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
656 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
657 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
658 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
659 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
660 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
661 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
662 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
663 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
664
665 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
666         /* first item must be the HA */
667         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
668         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
669
670         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
671         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
672         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
673         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
674         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
675         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
676
677         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
678         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
679         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
680         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
681         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
682         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
683
684         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
685         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
686         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
687 };
688
689 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
690         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
691         { NULL, }
692 };
693
694
695 /****************************************************************************
696                         Ancillary status routines
697  ****************************************************************************/
698
699 static inline int numrank(enum type type, u32 mtr)
700 {
701         int ranks = (1 << RANK_CNT_BITS(mtr));
702         int max = 4;
703
704         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
705                 max = 8;
706
707         if (ranks > max) {
708                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
709                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
710                 return -EINVAL;
711         }
712
713         return ranks;
714 }
715
716 static inline int numrow(u32 mtr)
717 {
718         int rows = (RANK_WIDTH_BITS(mtr) + 12);
719
720         if (rows < 13 || rows > 18) {
721                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
722                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
723                 return -EINVAL;
724         }
725
726         return 1 << rows;
727 }
728
729 static inline int numcol(u32 mtr)
730 {
731         int cols = (COL_WIDTH_BITS(mtr) + 10);
732
733         if (cols > 12) {
734                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
735                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
736                 return -EINVAL;
737         }
738
739         return 1 << cols;
740 }
741
742 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
743                                            int multi_bus,
744                                            struct sbridge_dev *prev)
745 {
746         struct sbridge_dev *sbridge_dev;
747
748         /*
749          * If we have devices scattered across several busses that pertain
750          * to the same memory controller, we'll lump them all together.
751          */
752         if (multi_bus) {
753                 return list_first_entry_or_null(&sbridge_edac_list,
754                                 struct sbridge_dev, list);
755         }
756
757         sbridge_dev = list_entry(prev ? prev->list.next
758                                       : sbridge_edac_list.next, struct sbridge_dev, list);
759
760         list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
761                 if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
762                                 (dom == SOCK || dom == sbridge_dev->dom))
763                         return sbridge_dev;
764         }
765
766         return NULL;
767 }
768
769 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
770                                              const struct pci_id_table *table)
771 {
772         struct sbridge_dev *sbridge_dev;
773
774         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
775         if (!sbridge_dev)
776                 return NULL;
777
778         sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
779                                     sizeof(*sbridge_dev->pdev),
780                                     GFP_KERNEL);
781         if (!sbridge_dev->pdev) {
782                 kfree(sbridge_dev);
783                 return NULL;
784         }
785
786         sbridge_dev->seg = seg;
787         sbridge_dev->bus = bus;
788         sbridge_dev->dom = dom;
789         sbridge_dev->n_devs = table->n_devs_per_imc;
790         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
791
792         return sbridge_dev;
793 }
794
795 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
796 {
797         list_del(&sbridge_dev->list);
798         kfree(sbridge_dev->pdev);
799         kfree(sbridge_dev);
800 }
801
802 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
803 {
804         u32 reg;
805
806         /* Address range is 32:28 */
807         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
808         return GET_TOLM(reg);
809 }
810
811 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
812 {
813         u32 reg;
814
815         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
816         return GET_TOHM(reg);
817 }
818
819 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
820 {
821         u32 reg;
822
823         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
824
825         return GET_TOLM(reg);
826 }
827
828 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
829 {
830         u32 reg;
831
832         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
833
834         return GET_TOHM(reg);
835 }
836
837 static u64 rir_limit(u32 reg)
838 {
839         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
840 }
841
842 static u64 sad_limit(u32 reg)
843 {
844         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
845 }
846
847 static u32 interleave_mode(u32 reg)
848 {
849         return GET_BITFIELD(reg, 1, 1);
850 }
851
852 static u32 dram_attr(u32 reg)
853 {
854         return GET_BITFIELD(reg, 2, 3);
855 }
856
857 static u64 knl_sad_limit(u32 reg)
858 {
859         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
860 }
861
862 static u32 knl_interleave_mode(u32 reg)
863 {
864         return GET_BITFIELD(reg, 1, 2);
865 }
866
867 static const char * const knl_intlv_mode[] = {
868         "[8:6]", "[10:8]", "[14:12]", "[32:30]"
869 };
870
871 static const char *get_intlv_mode_str(u32 reg, enum type t)
872 {
873         if (t == KNIGHTS_LANDING)
874                 return knl_intlv_mode[knl_interleave_mode(reg)];
875         else
876                 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
877 }
878
879 static u32 dram_attr_knl(u32 reg)
880 {
881         return GET_BITFIELD(reg, 3, 4);
882 }
883
884
885 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
886 {
887         u32 reg;
888         enum mem_type mtype;
889
890         if (pvt->pci_ddrio) {
891                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
892                                       &reg);
893                 if (GET_BITFIELD(reg, 11, 11))
894                         /* FIXME: Can also be LRDIMM */
895                         mtype = MEM_RDDR3;
896                 else
897                         mtype = MEM_DDR3;
898         } else
899                 mtype = MEM_UNKNOWN;
900
901         return mtype;
902 }
903
904 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
905 {
906         u32 reg;
907         bool registered = false;
908         enum mem_type mtype = MEM_UNKNOWN;
909
910         if (!pvt->pci_ddrio)
911                 goto out;
912
913         pci_read_config_dword(pvt->pci_ddrio,
914                               HASWELL_DDRCRCLKCONTROLS, &reg);
915         /* Is_Rdimm */
916         if (GET_BITFIELD(reg, 16, 16))
917                 registered = true;
918
919         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
920         if (GET_BITFIELD(reg, 14, 14)) {
921                 if (registered)
922                         mtype = MEM_RDDR4;
923                 else
924                         mtype = MEM_DDR4;
925         } else {
926                 if (registered)
927                         mtype = MEM_RDDR3;
928                 else
929                         mtype = MEM_DDR3;
930         }
931
932 out:
933         return mtype;
934 }
935
936 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
937 {
938         /* for KNL value is fixed */
939         return DEV_X16;
940 }
941
942 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
943 {
944         /* there's no way to figure out */
945         return DEV_UNKNOWN;
946 }
947
948 static enum dev_type __ibridge_get_width(u32 mtr)
949 {
950         enum dev_type type = DEV_UNKNOWN;
951
952         switch (mtr) {
953         case 2:
954                 type = DEV_X16;
955                 break;
956         case 1:
957                 type = DEV_X8;
958                 break;
959         case 0:
960                 type = DEV_X4;
961                 break;
962         }
963
964         return type;
965 }
966
967 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
968 {
969         /*
970          * ddr3_width on the documentation but also valid for DDR4 on
971          * Haswell
972          */
973         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
974 }
975
976 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
977 {
978         /* ddr3_width on the documentation but also valid for DDR4 */
979         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
980 }
981
982 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
983 {
984         /* DDR4 RDIMMS and LRDIMMS are supported */
985         return MEM_RDDR4;
986 }
987
988 static u8 get_node_id(struct sbridge_pvt *pvt)
989 {
990         u32 reg;
991         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
992         return GET_BITFIELD(reg, 0, 2);
993 }
994
995 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
996 {
997         u32 reg;
998
999         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1000         return GET_BITFIELD(reg, 0, 3);
1001 }
1002
1003 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
1004 {
1005         u32 reg;
1006
1007         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1008         return GET_BITFIELD(reg, 0, 2);
1009 }
1010
1011 /*
1012  * Use the reporting bank number to determine which memory
1013  * controller (also known as "ha" for "home agent"). Sandy
1014  * Bridge only has one memory controller per socket, so the
1015  * answer is always zero.
1016  */
1017 static u8 sbridge_get_ha(u8 bank)
1018 {
1019         return 0;
1020 }
1021
1022 /*
1023  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1024  * home agent bank (7, 8), or one of the per-channel memory
1025  * controller banks (9 .. 16).
1026  */
1027 static u8 ibridge_get_ha(u8 bank)
1028 {
1029         switch (bank) {
1030         case 7 ... 8:
1031                 return bank - 7;
1032         case 9 ... 16:
1033                 return (bank - 9) / 4;
1034         default:
1035                 return 0xff;
1036         }
1037 }
1038
1039 /* Not used, but included for safety/symmetry */
1040 static u8 knl_get_ha(u8 bank)
1041 {
1042         return 0xff;
1043 }
1044
1045 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1046 {
1047         u32 reg;
1048
1049         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1050         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1051 }
1052
1053 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1054 {
1055         u64 rc;
1056         u32 reg;
1057
1058         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1059         rc = GET_BITFIELD(reg, 26, 31);
1060         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1061         rc = ((reg << 6) | rc) << 26;
1062
1063         return rc | 0x3ffffff;
1064 }
1065
1066 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1067 {
1068         u32 reg;
1069
1070         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1071         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1072 }
1073
1074 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1075 {
1076         u64 rc;
1077         u32 reg_lo, reg_hi;
1078
1079         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1080         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1081         rc = ((u64)reg_hi << 32) | reg_lo;
1082         return rc | 0x3ffffff;
1083 }
1084
1085
1086 static u64 haswell_rir_limit(u32 reg)
1087 {
1088         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1089 }
1090
1091 static inline u8 sad_pkg_socket(u8 pkg)
1092 {
1093         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1094         return ((pkg >> 3) << 2) | (pkg & 0x3);
1095 }
1096
1097 static inline u8 sad_pkg_ha(u8 pkg)
1098 {
1099         return (pkg >> 2) & 0x1;
1100 }
1101
1102 static int haswell_chan_hash(int idx, u64 addr)
1103 {
1104         int i;
1105
1106         /*
1107          * XOR even bits from 12:26 to bit0 of idx,
1108          *     odd bits from 13:27 to bit1
1109          */
1110         for (i = 12; i < 28; i += 2)
1111                 idx ^= (addr >> i) & 3;
1112
1113         return idx;
1114 }
1115
1116 /* Low bits of TAD limit, and some metadata. */
1117 static const u32 knl_tad_dram_limit_lo[] = {
1118         0x400, 0x500, 0x600, 0x700,
1119         0x800, 0x900, 0xa00, 0xb00,
1120 };
1121
1122 /* Low bits of TAD offset. */
1123 static const u32 knl_tad_dram_offset_lo[] = {
1124         0x404, 0x504, 0x604, 0x704,
1125         0x804, 0x904, 0xa04, 0xb04,
1126 };
1127
1128 /* High 16 bits of TAD limit and offset. */
1129 static const u32 knl_tad_dram_hi[] = {
1130         0x408, 0x508, 0x608, 0x708,
1131         0x808, 0x908, 0xa08, 0xb08,
1132 };
1133
1134 /* Number of ways a tad entry is interleaved. */
1135 static const u32 knl_tad_ways[] = {
1136         8, 6, 4, 3, 2, 1,
1137 };
1138
1139 /*
1140  * Retrieve the n'th Target Address Decode table entry
1141  * from the memory controller's TAD table.
1142  *
1143  * @pvt:        driver private data
1144  * @entry:      which entry you want to retrieve
1145  * @mc:         which memory controller (0 or 1)
1146  * @offset:     output tad range offset
1147  * @limit:      output address of first byte above tad range
1148  * @ways:       output number of interleave ways
1149  *
1150  * The offset value has curious semantics.  It's a sort of running total
1151  * of the sizes of all the memory regions that aren't mapped in this
1152  * tad table.
1153  */
1154 static int knl_get_tad(const struct sbridge_pvt *pvt,
1155                 const int entry,
1156                 const int mc,
1157                 u64 *offset,
1158                 u64 *limit,
1159                 int *ways)
1160 {
1161         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1162         struct pci_dev *pci_mc;
1163         int way_id;
1164
1165         switch (mc) {
1166         case 0:
1167                 pci_mc = pvt->knl.pci_mc0;
1168                 break;
1169         case 1:
1170                 pci_mc = pvt->knl.pci_mc1;
1171                 break;
1172         default:
1173                 WARN_ON(1);
1174                 return -EINVAL;
1175         }
1176
1177         pci_read_config_dword(pci_mc,
1178                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1179         pci_read_config_dword(pci_mc,
1180                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1181         pci_read_config_dword(pci_mc,
1182                         knl_tad_dram_hi[entry], &reg_hi);
1183
1184         /* Is this TAD entry enabled? */
1185         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1186                 return -ENODEV;
1187
1188         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1189
1190         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1191                 *ways = knl_tad_ways[way_id];
1192         } else {
1193                 *ways = 0;
1194                 sbridge_printk(KERN_ERR,
1195                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1196                                 way_id);
1197                 return -ENODEV;
1198         }
1199
1200         /*
1201          * The least significant 6 bits of base and limit are truncated.
1202          * For limit, we fill the missing bits with 1s.
1203          */
1204         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1205                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1206         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1207                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1208
1209         return 0;
1210 }
1211
1212 /* Determine which memory controller is responsible for a given channel. */
1213 static int knl_channel_mc(int channel)
1214 {
1215         WARN_ON(channel < 0 || channel >= 6);
1216
1217         return channel < 3 ? 1 : 0;
1218 }
1219
1220 /*
1221  * Get the Nth entry from EDC_ROUTE_TABLE register.
1222  * (This is the per-tile mapping of logical interleave targets to
1223  *  physical EDC modules.)
1224  *
1225  * entry 0: 0:2
1226  *       1: 3:5
1227  *       2: 6:8
1228  *       3: 9:11
1229  *       4: 12:14
1230  *       5: 15:17
1231  *       6: 18:20
1232  *       7: 21:23
1233  * reserved: 24:31
1234  */
1235 static u32 knl_get_edc_route(int entry, u32 reg)
1236 {
1237         WARN_ON(entry >= KNL_MAX_EDCS);
1238         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1239 }
1240
1241 /*
1242  * Get the Nth entry from MC_ROUTE_TABLE register.
1243  * (This is the per-tile mapping of logical interleave targets to
1244  *  physical DRAM channels modules.)
1245  *
1246  * entry 0: mc 0:2   channel 18:19
1247  *       1: mc 3:5   channel 20:21
1248  *       2: mc 6:8   channel 22:23
1249  *       3: mc 9:11  channel 24:25
1250  *       4: mc 12:14 channel 26:27
1251  *       5: mc 15:17 channel 28:29
1252  * reserved: 30:31
1253  *
1254  * Though we have 3 bits to identify the MC, we should only see
1255  * the values 0 or 1.
1256  */
1257
1258 static u32 knl_get_mc_route(int entry, u32 reg)
1259 {
1260         int mc, chan;
1261
1262         WARN_ON(entry >= KNL_MAX_CHANNELS);
1263
1264         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1265         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1266
1267         return knl_channel_remap(mc, chan);
1268 }
1269
1270 /*
1271  * Render the EDC_ROUTE register in human-readable form.
1272  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1273  */
1274 static void knl_show_edc_route(u32 reg, char *s)
1275 {
1276         int i;
1277
1278         for (i = 0; i < KNL_MAX_EDCS; i++) {
1279                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1280                 s[i*2+1] = '-';
1281         }
1282
1283         s[KNL_MAX_EDCS*2 - 1] = '\0';
1284 }
1285
1286 /*
1287  * Render the MC_ROUTE register in human-readable form.
1288  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1289  */
1290 static void knl_show_mc_route(u32 reg, char *s)
1291 {
1292         int i;
1293
1294         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1295                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1296                 s[i*2+1] = '-';
1297         }
1298
1299         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1300 }
1301
1302 #define KNL_EDC_ROUTE 0xb8
1303 #define KNL_MC_ROUTE 0xb4
1304
1305 /* Is this dram rule backed by regular DRAM in flat mode? */
1306 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1307
1308 /* Is this dram rule cached? */
1309 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1310
1311 /* Is this rule backed by edc ? */
1312 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1313
1314 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1315 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1316
1317 /* Is this rule mod3? */
1318 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1319
1320 /*
1321  * Figure out how big our RAM modules are.
1322  *
1323  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1324  * have to figure this out from the SAD rules, interleave lists, route tables,
1325  * and TAD rules.
1326  *
1327  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1328  * inspect the TAD rules to figure out how large the SAD regions really are.
1329  *
1330  * When we know the real size of a SAD region and how many ways it's
1331  * interleaved, we know the individual contribution of each channel to
1332  * TAD is size/ways.
1333  *
1334  * Finally, we have to check whether each channel participates in each SAD
1335  * region.
1336  *
1337  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1338  * much memory the channel uses, we know the DIMM is at least that large.
1339  * (The BIOS might possibly choose not to map all available memory, in which
1340  * case we will underreport the size of the DIMM.)
1341  *
1342  * In theory, we could try to determine the EDC sizes as well, but that would
1343  * only work in flat mode, not in cache mode.
1344  *
1345  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1346  *            elements)
1347  */
1348 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1349 {
1350         u64 sad_base, sad_limit = 0;
1351         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1352         int sad_rule = 0;
1353         int tad_rule = 0;
1354         int intrlv_ways, tad_ways;
1355         u32 first_pkg, pkg;
1356         int i;
1357         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1358         u32 dram_rule, interleave_reg;
1359         u32 mc_route_reg[KNL_MAX_CHAS];
1360         u32 edc_route_reg[KNL_MAX_CHAS];
1361         int edram_only;
1362         char edc_route_string[KNL_MAX_EDCS*2];
1363         char mc_route_string[KNL_MAX_CHANNELS*2];
1364         int cur_reg_start;
1365         int mc;
1366         int channel;
1367         int participants[KNL_MAX_CHANNELS];
1368
1369         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1370                 mc_sizes[i] = 0;
1371
1372         /* Read the EDC route table in each CHA. */
1373         cur_reg_start = 0;
1374         for (i = 0; i < KNL_MAX_CHAS; i++) {
1375                 pci_read_config_dword(pvt->knl.pci_cha[i],
1376                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1377
1378                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1379                         knl_show_edc_route(edc_route_reg[i-1],
1380                                         edc_route_string);
1381                         if (cur_reg_start == i-1)
1382                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1383                                         cur_reg_start, edc_route_string);
1384                         else
1385                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1386                                         cur_reg_start, i-1, edc_route_string);
1387                         cur_reg_start = i;
1388                 }
1389         }
1390         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1391         if (cur_reg_start == i-1)
1392                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1393                         cur_reg_start, edc_route_string);
1394         else
1395                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1396                         cur_reg_start, i-1, edc_route_string);
1397
1398         /* Read the MC route table in each CHA. */
1399         cur_reg_start = 0;
1400         for (i = 0; i < KNL_MAX_CHAS; i++) {
1401                 pci_read_config_dword(pvt->knl.pci_cha[i],
1402                         KNL_MC_ROUTE, &mc_route_reg[i]);
1403
1404                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1405                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1406                         if (cur_reg_start == i-1)
1407                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1408                                         cur_reg_start, mc_route_string);
1409                         else
1410                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1411                                         cur_reg_start, i-1, mc_route_string);
1412                         cur_reg_start = i;
1413                 }
1414         }
1415         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1416         if (cur_reg_start == i-1)
1417                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1418                         cur_reg_start, mc_route_string);
1419         else
1420                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1421                         cur_reg_start, i-1, mc_route_string);
1422
1423         /* Process DRAM rules */
1424         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1425                 /* previous limit becomes the new base */
1426                 sad_base = sad_limit;
1427
1428                 pci_read_config_dword(pvt->pci_sad0,
1429                         pvt->info.dram_rule[sad_rule], &dram_rule);
1430
1431                 if (!DRAM_RULE_ENABLE(dram_rule))
1432                         break;
1433
1434                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1435
1436                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1437
1438                 pci_read_config_dword(pvt->pci_sad0,
1439                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1440
1441                 /*
1442                  * Find out how many ways this dram rule is interleaved.
1443                  * We stop when we see the first channel again.
1444                  */
1445                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1446                                                 interleave_reg, 0);
1447                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1448                         pkg = sad_pkg(pvt->info.interleave_pkg,
1449                                                 interleave_reg, intrlv_ways);
1450
1451                         if ((pkg & 0x8) == 0) {
1452                                 /*
1453                                  * 0 bit means memory is non-local,
1454                                  * which KNL doesn't support
1455                                  */
1456                                 edac_dbg(0, "Unexpected interleave target %d\n",
1457                                         pkg);
1458                                 return -1;
1459                         }
1460
1461                         if (pkg == first_pkg)
1462                                 break;
1463                 }
1464                 if (KNL_MOD3(dram_rule))
1465                         intrlv_ways *= 3;
1466
1467                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1468                         sad_rule,
1469                         sad_base,
1470                         sad_limit,
1471                         intrlv_ways,
1472                         edram_only ? ", EDRAM" : "");
1473
1474                 /*
1475                  * Find out how big the SAD region really is by iterating
1476                  * over TAD tables (SAD regions may contain holes).
1477                  * Each memory controller might have a different TAD table, so
1478                  * we have to look at both.
1479                  *
1480                  * Livespace is the memory that's mapped in this TAD table,
1481                  * deadspace is the holes (this could be the MMIO hole, or it
1482                  * could be memory that's mapped by the other TAD table but
1483                  * not this one).
1484                  */
1485                 for (mc = 0; mc < 2; mc++) {
1486                         sad_actual_size[mc] = 0;
1487                         tad_livespace = 0;
1488                         for (tad_rule = 0;
1489                                         tad_rule < ARRAY_SIZE(
1490                                                 knl_tad_dram_limit_lo);
1491                                         tad_rule++) {
1492                                 if (knl_get_tad(pvt,
1493                                                 tad_rule,
1494                                                 mc,
1495                                                 &tad_deadspace,
1496                                                 &tad_limit,
1497                                                 &tad_ways))
1498                                         break;
1499
1500                                 tad_size = (tad_limit+1) -
1501                                         (tad_livespace + tad_deadspace);
1502                                 tad_livespace += tad_size;
1503                                 tad_base = (tad_limit+1) - tad_size;
1504
1505                                 if (tad_base < sad_base) {
1506                                         if (tad_limit > sad_base)
1507                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1508                                 } else if (tad_base < sad_limit) {
1509                                         if (tad_limit+1 > sad_limit) {
1510                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1511                                         } else {
1512                                                 /* TAD region is completely inside SAD region */
1513                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1514                                                         tad_rule, tad_base,
1515                                                         tad_limit, tad_size,
1516                                                         mc);
1517                                                 sad_actual_size[mc] += tad_size;
1518                                         }
1519                                 }
1520                         }
1521                 }
1522
1523                 for (mc = 0; mc < 2; mc++) {
1524                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1525                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1526                 }
1527
1528                 /* Ignore EDRAM rule */
1529                 if (edram_only)
1530                         continue;
1531
1532                 /* Figure out which channels participate in interleave. */
1533                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1534                         participants[channel] = 0;
1535
1536                 /* For each channel, does at least one CHA have
1537                  * this channel mapped to the given target?
1538                  */
1539                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1540                         int target;
1541                         int cha;
1542
1543                         for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1544                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1545                                         if (knl_get_mc_route(target,
1546                                                 mc_route_reg[cha]) == channel
1547                                                 && !participants[channel]) {
1548                                                 participants[channel] = 1;
1549                                                 break;
1550                                         }
1551                                 }
1552                         }
1553                 }
1554
1555                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1556                         mc = knl_channel_mc(channel);
1557                         if (participants[channel]) {
1558                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1559                                         channel,
1560                                         sad_actual_size[mc]/intrlv_ways,
1561                                         sad_rule);
1562                                 mc_sizes[channel] +=
1563                                         sad_actual_size[mc]/intrlv_ways;
1564                         }
1565                 }
1566         }
1567
1568         return 0;
1569 }
1570
1571 static void get_source_id(struct mem_ctl_info *mci)
1572 {
1573         struct sbridge_pvt *pvt = mci->pvt_info;
1574         u32 reg;
1575
1576         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1577             pvt->info.type == KNIGHTS_LANDING)
1578                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1579         else
1580                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1581
1582         if (pvt->info.type == KNIGHTS_LANDING)
1583                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1584         else
1585                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1586 }
1587
1588 static int __populate_dimms(struct mem_ctl_info *mci,
1589                             u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1590                             enum edac_type mode)
1591 {
1592         struct sbridge_pvt *pvt = mci->pvt_info;
1593         int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1594                                                          : NUM_CHANNELS;
1595         unsigned int i, j, banks, ranks, rows, cols, npages;
1596         struct dimm_info *dimm;
1597         enum mem_type mtype;
1598         u64 size;
1599
1600         mtype = pvt->info.get_memory_type(pvt);
1601         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1602                 edac_dbg(0, "Memory is registered\n");
1603         else if (mtype == MEM_UNKNOWN)
1604                 edac_dbg(0, "Cannot determine memory type\n");
1605         else
1606                 edac_dbg(0, "Memory is unregistered\n");
1607
1608         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1609                 banks = 16;
1610         else
1611                 banks = 8;
1612
1613         for (i = 0; i < channels; i++) {
1614                 u32 mtr, amap = 0;
1615
1616                 int max_dimms_per_channel;
1617
1618                 if (pvt->info.type == KNIGHTS_LANDING) {
1619                         max_dimms_per_channel = 1;
1620                         if (!pvt->knl.pci_channel[i])
1621                                 continue;
1622                 } else {
1623                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1624                         if (!pvt->pci_tad[i])
1625                                 continue;
1626                         pci_read_config_dword(pvt->pci_tad[i], 0x8c, &amap);
1627                 }
1628
1629                 for (j = 0; j < max_dimms_per_channel; j++) {
1630                         dimm = edac_get_dimm(mci, i, j, 0);
1631                         if (pvt->info.type == KNIGHTS_LANDING) {
1632                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1633                                         knl_mtr_reg, &mtr);
1634                         } else {
1635                                 pci_read_config_dword(pvt->pci_tad[i],
1636                                         mtr_regs[j], &mtr);
1637                         }
1638                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1639
1640                         if (IS_DIMM_PRESENT(mtr)) {
1641                                 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1642                                         sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1643                                                        pvt->sbridge_dev->source_id,
1644                                                        pvt->sbridge_dev->dom, i);
1645                                         return -ENODEV;
1646                                 }
1647                                 pvt->channel[i].dimms++;
1648
1649                                 ranks = numrank(pvt->info.type, mtr);
1650
1651                                 if (pvt->info.type == KNIGHTS_LANDING) {
1652                                         /* For DDR4, this is fixed. */
1653                                         cols = 1 << 10;
1654                                         rows = knl_mc_sizes[i] /
1655                                                 ((u64) cols * ranks * banks * 8);
1656                                 } else {
1657                                         rows = numrow(mtr);
1658                                         cols = numcol(mtr);
1659                                 }
1660
1661                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1662                                 npages = MiB_TO_PAGES(size);
1663
1664                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1665                                          pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1666                                          size, npages,
1667                                          banks, ranks, rows, cols);
1668
1669                                 dimm->nr_pages = npages;
1670                                 dimm->grain = 32;
1671                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1672                                 dimm->mtype = mtype;
1673                                 dimm->edac_mode = mode;
1674                                 pvt->channel[i].dimm[j].rowbits = order_base_2(rows);
1675                                 pvt->channel[i].dimm[j].colbits = order_base_2(cols);
1676                                 pvt->channel[i].dimm[j].bank_xor_enable =
1677                                                 GET_BITFIELD(pvt->info.mcmtr, 9, 9);
1678                                 pvt->channel[i].dimm[j].amap_fine = GET_BITFIELD(amap, 0, 0);
1679                                 snprintf(dimm->label, sizeof(dimm->label),
1680                                                  "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1681                                                  pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1682                         }
1683                 }
1684         }
1685
1686         return 0;
1687 }
1688
1689 static int get_dimm_config(struct mem_ctl_info *mci)
1690 {
1691         struct sbridge_pvt *pvt = mci->pvt_info;
1692         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1693         enum edac_type mode;
1694         u32 reg;
1695
1696         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1697         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1698                  pvt->sbridge_dev->mc,
1699                  pvt->sbridge_dev->node_id,
1700                  pvt->sbridge_dev->source_id);
1701
1702         /* KNL doesn't support mirroring or lockstep,
1703          * and is always closed page
1704          */
1705         if (pvt->info.type == KNIGHTS_LANDING) {
1706                 mode = EDAC_S4ECD4ED;
1707                 pvt->mirror_mode = NON_MIRRORING;
1708                 pvt->is_cur_addr_mirrored = false;
1709
1710                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1711                         return -1;
1712                 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1713                         edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1714                         return -ENODEV;
1715                 }
1716         } else {
1717                 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1718                         if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1719                                 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1720                                 return -ENODEV;
1721                         }
1722                         pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1723                         if (GET_BITFIELD(reg, 28, 28)) {
1724                                 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1725                                 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1726                                 goto next;
1727                         }
1728                 }
1729                 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1730                         edac_dbg(0, "Failed to read RASENABLES register\n");
1731                         return -ENODEV;
1732                 }
1733                 if (IS_MIRROR_ENABLED(reg)) {
1734                         pvt->mirror_mode = FULL_MIRRORING;
1735                         edac_dbg(0, "Full memory mirroring is enabled\n");
1736                 } else {
1737                         pvt->mirror_mode = NON_MIRRORING;
1738                         edac_dbg(0, "Memory mirroring is disabled\n");
1739                 }
1740
1741 next:
1742                 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1743                         edac_dbg(0, "Failed to read MCMTR register\n");
1744                         return -ENODEV;
1745                 }
1746                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1747                         edac_dbg(0, "Lockstep is enabled\n");
1748                         mode = EDAC_S8ECD8ED;
1749                         pvt->is_lockstep = true;
1750                 } else {
1751                         edac_dbg(0, "Lockstep is disabled\n");
1752                         mode = EDAC_S4ECD4ED;
1753                         pvt->is_lockstep = false;
1754                 }
1755                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1756                         edac_dbg(0, "address map is on closed page mode\n");
1757                         pvt->is_close_pg = true;
1758                 } else {
1759                         edac_dbg(0, "address map is on open page mode\n");
1760                         pvt->is_close_pg = false;
1761                 }
1762         }
1763
1764         return __populate_dimms(mci, knl_mc_sizes, mode);
1765 }
1766
1767 static void get_memory_layout(const struct mem_ctl_info *mci)
1768 {
1769         struct sbridge_pvt *pvt = mci->pvt_info;
1770         int i, j, k, n_sads, n_tads, sad_interl;
1771         u32 reg;
1772         u64 limit, prv = 0;
1773         u64 tmp_mb;
1774         u32 gb, mb;
1775         u32 rir_way;
1776
1777         /*
1778          * Step 1) Get TOLM/TOHM ranges
1779          */
1780
1781         pvt->tolm = pvt->info.get_tolm(pvt);
1782         tmp_mb = (1 + pvt->tolm) >> 20;
1783
1784         gb = div_u64_rem(tmp_mb, 1024, &mb);
1785         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1786                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1787
1788         /* Address range is already 45:25 */
1789         pvt->tohm = pvt->info.get_tohm(pvt);
1790         tmp_mb = (1 + pvt->tohm) >> 20;
1791
1792         gb = div_u64_rem(tmp_mb, 1024, &mb);
1793         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1794                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1795
1796         /*
1797          * Step 2) Get SAD range and SAD Interleave list
1798          * TAD registers contain the interleave wayness. However, it
1799          * seems simpler to just discover it indirectly, with the
1800          * algorithm bellow.
1801          */
1802         prv = 0;
1803         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1804                 /* SAD_LIMIT Address range is 45:26 */
1805                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1806                                       &reg);
1807                 limit = pvt->info.sad_limit(reg);
1808
1809                 if (!DRAM_RULE_ENABLE(reg))
1810                         continue;
1811
1812                 if (limit <= prv)
1813                         break;
1814
1815                 tmp_mb = (limit + 1) >> 20;
1816                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1817                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1818                          n_sads,
1819                          show_dram_attr(pvt->info.dram_attr(reg)),
1820                          gb, (mb*1000)/1024,
1821                          ((u64)tmp_mb) << 20L,
1822                          get_intlv_mode_str(reg, pvt->info.type),
1823                          reg);
1824                 prv = limit;
1825
1826                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1827                                       &reg);
1828                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1829                 for (j = 0; j < 8; j++) {
1830                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1831                         if (j > 0 && sad_interl == pkg)
1832                                 break;
1833
1834                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1835                                  n_sads, j, pkg);
1836                 }
1837         }
1838
1839         if (pvt->info.type == KNIGHTS_LANDING)
1840                 return;
1841
1842         /*
1843          * Step 3) Get TAD range
1844          */
1845         prv = 0;
1846         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1847                 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1848                 limit = TAD_LIMIT(reg);
1849                 if (limit <= prv)
1850                         break;
1851                 tmp_mb = (limit + 1) >> 20;
1852
1853                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1854                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1855                          n_tads, gb, (mb*1000)/1024,
1856                          ((u64)tmp_mb) << 20L,
1857                          (u32)(1 << TAD_SOCK(reg)),
1858                          (u32)TAD_CH(reg) + 1,
1859                          (u32)TAD_TGT0(reg),
1860                          (u32)TAD_TGT1(reg),
1861                          (u32)TAD_TGT2(reg),
1862                          (u32)TAD_TGT3(reg),
1863                          reg);
1864                 prv = limit;
1865         }
1866
1867         /*
1868          * Step 4) Get TAD offsets, per each channel
1869          */
1870         for (i = 0; i < NUM_CHANNELS; i++) {
1871                 if (!pvt->channel[i].dimms)
1872                         continue;
1873                 for (j = 0; j < n_tads; j++) {
1874                         pci_read_config_dword(pvt->pci_tad[i],
1875                                               tad_ch_nilv_offset[j],
1876                                               &reg);
1877                         tmp_mb = TAD_OFFSET(reg) >> 20;
1878                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1879                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1880                                  i, j,
1881                                  gb, (mb*1000)/1024,
1882                                  ((u64)tmp_mb) << 20L,
1883                                  reg);
1884                 }
1885         }
1886
1887         /*
1888          * Step 6) Get RIR Wayness/Limit, per each channel
1889          */
1890         for (i = 0; i < NUM_CHANNELS; i++) {
1891                 if (!pvt->channel[i].dimms)
1892                         continue;
1893                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1894                         pci_read_config_dword(pvt->pci_tad[i],
1895                                               rir_way_limit[j],
1896                                               &reg);
1897
1898                         if (!IS_RIR_VALID(reg))
1899                                 continue;
1900
1901                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1902                         rir_way = 1 << RIR_WAY(reg);
1903                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1904                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1905                                  i, j,
1906                                  gb, (mb*1000)/1024,
1907                                  ((u64)tmp_mb) << 20L,
1908                                  rir_way,
1909                                  reg);
1910
1911                         for (k = 0; k < rir_way; k++) {
1912                                 pci_read_config_dword(pvt->pci_tad[i],
1913                                                       rir_offset[j][k],
1914                                                       &reg);
1915                                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1916
1917                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1918                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1919                                          i, j, k,
1920                                          gb, (mb*1000)/1024,
1921                                          ((u64)tmp_mb) << 20L,
1922                                          (u32)RIR_RNK_TGT(pvt->info.type, reg),
1923                                          reg);
1924                         }
1925                 }
1926         }
1927 }
1928
1929 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1930 {
1931         struct sbridge_dev *sbridge_dev;
1932
1933         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1934                 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1935                         return sbridge_dev->mci;
1936         }
1937         return NULL;
1938 }
1939
1940 static u8 sb_close_row[] = {
1941         15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
1942 };
1943
1944 static u8 sb_close_column[] = {
1945         3, 4, 5, 14, 19, 23, 24, 25, 26, 27
1946 };
1947
1948 static u8 sb_open_row[] = {
1949         14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
1950 };
1951
1952 static u8 sb_open_column[] = {
1953         3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1954 };
1955
1956 static u8 sb_open_fine_column[] = {
1957         3, 4, 5, 7, 8, 9, 10, 11, 12, 13
1958 };
1959
1960 static int sb_bits(u64 addr, int nbits, u8 *bits)
1961 {
1962         int i, res = 0;
1963
1964         for (i = 0; i < nbits; i++)
1965                 res |= ((addr >> bits[i]) & 1) << i;
1966         return res;
1967 }
1968
1969 static int sb_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
1970 {
1971         int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
1972
1973         if (do_xor)
1974                 ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
1975
1976         return ret;
1977 }
1978
1979 static bool sb_decode_ddr4(struct mem_ctl_info *mci, int ch, u8 rank,
1980                            u64 rank_addr, char *msg)
1981 {
1982         int dimmno = 0;
1983         int row, col, bank_address, bank_group;
1984         struct sbridge_pvt *pvt;
1985         u32 bg0 = 0, rowbits = 0, colbits = 0;
1986         u32 amap_fine = 0, bank_xor_enable = 0;
1987
1988         dimmno = (rank < 12) ? rank / 4 : 2;
1989         pvt = mci->pvt_info;
1990         amap_fine =  pvt->channel[ch].dimm[dimmno].amap_fine;
1991         bg0 = amap_fine ? 6 : 13;
1992         rowbits = pvt->channel[ch].dimm[dimmno].rowbits;
1993         colbits = pvt->channel[ch].dimm[dimmno].colbits;
1994         bank_xor_enable = pvt->channel[ch].dimm[dimmno].bank_xor_enable;
1995
1996         if (pvt->is_lockstep) {
1997                 pr_warn_once("LockStep row/column decode is not supported yet!\n");
1998                 msg[0] = '\0';
1999                 return false;
2000         }
2001
2002         if (pvt->is_close_pg) {
2003                 row = sb_bits(rank_addr, rowbits, sb_close_row);
2004                 col = sb_bits(rank_addr, colbits, sb_close_column);
2005                 col |= 0x400; /* C10 is autoprecharge, always set */
2006                 bank_address = sb_bank_bits(rank_addr, 8, 9, bank_xor_enable, 22, 28);
2007                 bank_group = sb_bank_bits(rank_addr, 6, 7, bank_xor_enable, 20, 21);
2008         } else {
2009                 row = sb_bits(rank_addr, rowbits, sb_open_row);
2010                 if (amap_fine)
2011                         col = sb_bits(rank_addr, colbits, sb_open_fine_column);
2012                 else
2013                         col = sb_bits(rank_addr, colbits, sb_open_column);
2014                 bank_address = sb_bank_bits(rank_addr, 18, 19, bank_xor_enable, 22, 23);
2015                 bank_group = sb_bank_bits(rank_addr, bg0, 17, bank_xor_enable, 20, 21);
2016         }
2017
2018         row &= (1u << rowbits) - 1;
2019
2020         sprintf(msg, "row:0x%x col:0x%x bank_addr:%d bank_group:%d",
2021                 row, col, bank_address, bank_group);
2022         return true;
2023 }
2024
2025 static bool sb_decode_ddr3(struct mem_ctl_info *mci, int ch, u8 rank,
2026                            u64 rank_addr, char *msg)
2027 {
2028         pr_warn_once("DDR3 row/column decode not support yet!\n");
2029         msg[0] = '\0';
2030         return false;
2031 }
2032
2033 static int get_memory_error_data(struct mem_ctl_info *mci,
2034                                  u64 addr,
2035                                  u8 *socket, u8 *ha,
2036                                  long *channel_mask,
2037                                  u8 *rank,
2038                                  char **area_type, char *msg)
2039 {
2040         struct mem_ctl_info     *new_mci;
2041         struct sbridge_pvt *pvt = mci->pvt_info;
2042         struct pci_dev          *pci_ha;
2043         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
2044         int                     sad_interl, idx, base_ch;
2045         int                     interleave_mode, shiftup = 0;
2046         unsigned int            sad_interleave[MAX_INTERLEAVE];
2047         u32                     reg, dram_rule;
2048         u8                      ch_way, sck_way, pkg, sad_ha = 0, rankid = 0;
2049         u32                     tad_offset;
2050         u32                     rir_way;
2051         u32                     mb, gb;
2052         u64                     ch_addr, offset, limit = 0, prv = 0;
2053         u64                     rank_addr;
2054         enum mem_type           mtype;
2055
2056         /*
2057          * Step 0) Check if the address is at special memory ranges
2058          * The check bellow is probably enough to fill all cases where
2059          * the error is not inside a memory, except for the legacy
2060          * range (e. g. VGA addresses). It is unlikely, however, that the
2061          * memory controller would generate an error on that range.
2062          */
2063         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
2064                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
2065                 return -EINVAL;
2066         }
2067         if (addr >= (u64)pvt->tohm) {
2068                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
2069                 return -EINVAL;
2070         }
2071
2072         /*
2073          * Step 1) Get socket
2074          */
2075         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
2076                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
2077                                       &reg);
2078
2079                 if (!DRAM_RULE_ENABLE(reg))
2080                         continue;
2081
2082                 limit = pvt->info.sad_limit(reg);
2083                 if (limit <= prv) {
2084                         sprintf(msg, "Can't discover the memory socket");
2085                         return -EINVAL;
2086                 }
2087                 if  (addr <= limit)
2088                         break;
2089                 prv = limit;
2090         }
2091         if (n_sads == pvt->info.max_sad) {
2092                 sprintf(msg, "Can't discover the memory socket");
2093                 return -EINVAL;
2094         }
2095         dram_rule = reg;
2096         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2097         interleave_mode = pvt->info.interleave_mode(dram_rule);
2098
2099         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2100                               &reg);
2101
2102         if (pvt->info.type == SANDY_BRIDGE) {
2103                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2104                 for (sad_way = 0; sad_way < 8; sad_way++) {
2105                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2106                         if (sad_way > 0 && sad_interl == pkg)
2107                                 break;
2108                         sad_interleave[sad_way] = pkg;
2109                         edac_dbg(0, "SAD interleave #%d: %d\n",
2110                                  sad_way, sad_interleave[sad_way]);
2111                 }
2112                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2113                          pvt->sbridge_dev->mc,
2114                          n_sads,
2115                          addr,
2116                          limit,
2117                          sad_way + 7,
2118                          !interleave_mode ? "" : "XOR[18:16]");
2119                 if (interleave_mode)
2120                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2121                 else
2122                         idx = (addr >> 6) & 7;
2123                 switch (sad_way) {
2124                 case 1:
2125                         idx = 0;
2126                         break;
2127                 case 2:
2128                         idx = idx & 1;
2129                         break;
2130                 case 4:
2131                         idx = idx & 3;
2132                         break;
2133                 case 8:
2134                         break;
2135                 default:
2136                         sprintf(msg, "Can't discover socket interleave");
2137                         return -EINVAL;
2138                 }
2139                 *socket = sad_interleave[idx];
2140                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2141                          idx, sad_way, *socket);
2142         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2143                 int bits, a7mode = A7MODE(dram_rule);
2144
2145                 if (a7mode) {
2146                         /* A7 mode swaps P9 with P6 */
2147                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2148                         bits |= GET_BITFIELD(addr, 9, 9);
2149                 } else
2150                         bits = GET_BITFIELD(addr, 6, 8);
2151
2152                 if (interleave_mode == 0) {
2153                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2154                         idx = GET_BITFIELD(addr, 16, 18);
2155                         idx ^= bits;
2156                 } else
2157                         idx = bits;
2158
2159                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2160                 *socket = sad_pkg_socket(pkg);
2161                 sad_ha = sad_pkg_ha(pkg);
2162
2163                 if (a7mode) {
2164                         /* MCChanShiftUpEnable */
2165                         pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2166                         shiftup = GET_BITFIELD(reg, 22, 22);
2167                 }
2168
2169                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2170                          idx, *socket, sad_ha, shiftup);
2171         } else {
2172                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2173                 idx = (addr >> 6) & 7;
2174                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2175                 *socket = sad_pkg_socket(pkg);
2176                 sad_ha = sad_pkg_ha(pkg);
2177                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2178                          idx, *socket, sad_ha);
2179         }
2180
2181         *ha = sad_ha;
2182
2183         /*
2184          * Move to the proper node structure, in order to access the
2185          * right PCI registers
2186          */
2187         new_mci = get_mci_for_node_id(*socket, sad_ha);
2188         if (!new_mci) {
2189                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2190                         *socket);
2191                 return -EINVAL;
2192         }
2193         mci = new_mci;
2194         pvt = mci->pvt_info;
2195
2196         /*
2197          * Step 2) Get memory channel
2198          */
2199         prv = 0;
2200         pci_ha = pvt->pci_ha;
2201         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2202                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2203                 limit = TAD_LIMIT(reg);
2204                 if (limit <= prv) {
2205                         sprintf(msg, "Can't discover the memory channel");
2206                         return -EINVAL;
2207                 }
2208                 if  (addr <= limit)
2209                         break;
2210                 prv = limit;
2211         }
2212         if (n_tads == MAX_TAD) {
2213                 sprintf(msg, "Can't discover the memory channel");
2214                 return -EINVAL;
2215         }
2216
2217         ch_way = TAD_CH(reg) + 1;
2218         sck_way = TAD_SOCK(reg);
2219
2220         if (ch_way == 3)
2221                 idx = addr >> 6;
2222         else {
2223                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2224                 if (pvt->is_chan_hash)
2225                         idx = haswell_chan_hash(idx, addr);
2226         }
2227         idx = idx % ch_way;
2228
2229         /*
2230          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2231          */
2232         switch (idx) {
2233         case 0:
2234                 base_ch = TAD_TGT0(reg);
2235                 break;
2236         case 1:
2237                 base_ch = TAD_TGT1(reg);
2238                 break;
2239         case 2:
2240                 base_ch = TAD_TGT2(reg);
2241                 break;
2242         case 3:
2243                 base_ch = TAD_TGT3(reg);
2244                 break;
2245         default:
2246                 sprintf(msg, "Can't discover the TAD target");
2247                 return -EINVAL;
2248         }
2249         *channel_mask = 1 << base_ch;
2250
2251         pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2252
2253         if (pvt->mirror_mode == FULL_MIRRORING ||
2254             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2255                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2256                 switch(ch_way) {
2257                 case 2:
2258                 case 4:
2259                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2260                         break;
2261                 default:
2262                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2263                         return -EINVAL;
2264                 }
2265
2266                 pvt->is_cur_addr_mirrored = true;
2267         } else {
2268                 sck_xch = (1 << sck_way) * ch_way;
2269                 pvt->is_cur_addr_mirrored = false;
2270         }
2271
2272         if (pvt->is_lockstep)
2273                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2274
2275         offset = TAD_OFFSET(tad_offset);
2276
2277         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2278                  n_tads,
2279                  addr,
2280                  limit,
2281                  sck_way,
2282                  ch_way,
2283                  offset,
2284                  idx,
2285                  base_ch,
2286                  *channel_mask);
2287
2288         /* Calculate channel address */
2289         /* Remove the TAD offset */
2290
2291         if (offset > addr) {
2292                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2293                         offset, addr);
2294                 return -EINVAL;
2295         }
2296
2297         ch_addr = addr - offset;
2298         ch_addr >>= (6 + shiftup);
2299         ch_addr /= sck_xch;
2300         ch_addr <<= (6 + shiftup);
2301         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2302
2303         /*
2304          * Step 3) Decode rank
2305          */
2306         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2307                 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2308
2309                 if (!IS_RIR_VALID(reg))
2310                         continue;
2311
2312                 limit = pvt->info.rir_limit(reg);
2313                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2314                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2315                          n_rir,
2316                          gb, (mb*1000)/1024,
2317                          limit,
2318                          1 << RIR_WAY(reg));
2319                 if  (ch_addr <= limit)
2320                         break;
2321         }
2322         if (n_rir == MAX_RIR_RANGES) {
2323                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2324                         ch_addr);
2325                 return -EINVAL;
2326         }
2327         rir_way = RIR_WAY(reg);
2328
2329         if (pvt->is_close_pg)
2330                 idx = (ch_addr >> 6);
2331         else
2332                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2333         idx %= 1 << rir_way;
2334
2335         pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2336         *rank = RIR_RNK_TGT(pvt->info.type, reg);
2337
2338         if (pvt->info.type == BROADWELL) {
2339                 if (pvt->is_close_pg)
2340                         shiftup = 6;
2341                 else
2342                         shiftup = 13;
2343
2344                 rank_addr = ch_addr >> shiftup;
2345                 rank_addr /= (1 << rir_way);
2346                 rank_addr <<= shiftup;
2347                 rank_addr |= ch_addr & GENMASK_ULL(shiftup - 1, 0);
2348                 rank_addr -= RIR_OFFSET(pvt->info.type, reg);
2349
2350                 mtype = pvt->info.get_memory_type(pvt);
2351                 rankid = *rank;
2352                 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
2353                         sb_decode_ddr4(mci, base_ch, rankid, rank_addr, msg);
2354                 else
2355                         sb_decode_ddr3(mci, base_ch, rankid, rank_addr, msg);
2356         } else {
2357                 msg[0] = '\0';
2358         }
2359
2360         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2361                  n_rir,
2362                  ch_addr,
2363                  limit,
2364                  rir_way,
2365                  idx);
2366
2367         return 0;
2368 }
2369
2370 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2371                                           const struct mce *m, u8 *socket,
2372                                           u8 *ha, long *channel_mask,
2373                                           char *msg)
2374 {
2375         u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2376         struct mem_ctl_info *new_mci;
2377         struct sbridge_pvt *pvt;
2378         struct pci_dev *pci_ha;
2379         bool tad0;
2380
2381         if (channel >= NUM_CHANNELS) {
2382                 sprintf(msg, "Invalid channel 0x%x", channel);
2383                 return -EINVAL;
2384         }
2385
2386         pvt = mci->pvt_info;
2387         if (!pvt->info.get_ha) {
2388                 sprintf(msg, "No get_ha()");
2389                 return -EINVAL;
2390         }
2391         *ha = pvt->info.get_ha(m->bank);
2392         if (*ha != 0 && *ha != 1) {
2393                 sprintf(msg, "Impossible bank %d", m->bank);
2394                 return -EINVAL;
2395         }
2396
2397         *socket = m->socketid;
2398         new_mci = get_mci_for_node_id(*socket, *ha);
2399         if (!new_mci) {
2400                 strcpy(msg, "mci socket got corrupted!");
2401                 return -EINVAL;
2402         }
2403
2404         pvt = new_mci->pvt_info;
2405         pci_ha = pvt->pci_ha;
2406         pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2407         tad0 = m->addr <= TAD_LIMIT(reg);
2408
2409         *channel_mask = 1 << channel;
2410         if (pvt->mirror_mode == FULL_MIRRORING ||
2411             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2412                 *channel_mask |= 1 << ((channel + 2) % 4);
2413                 pvt->is_cur_addr_mirrored = true;
2414         } else {
2415                 pvt->is_cur_addr_mirrored = false;
2416         }
2417
2418         if (pvt->is_lockstep)
2419                 *channel_mask |= 1 << ((channel + 1) % 4);
2420
2421         return 0;
2422 }
2423
2424 /****************************************************************************
2425         Device initialization routines: put/get, init/exit
2426  ****************************************************************************/
2427
2428 /*
2429  *      sbridge_put_all_devices 'put' all the devices that we have
2430  *                              reserved via 'get'
2431  */
2432 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2433 {
2434         int i;
2435
2436         edac_dbg(0, "\n");
2437         for (i = 0; i < sbridge_dev->n_devs; i++) {
2438                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2439                 if (!pdev)
2440                         continue;
2441                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2442                          pdev->bus->number,
2443                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2444                 pci_dev_put(pdev);
2445         }
2446 }
2447
2448 static void sbridge_put_all_devices(void)
2449 {
2450         struct sbridge_dev *sbridge_dev, *tmp;
2451
2452         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2453                 sbridge_put_devices(sbridge_dev);
2454                 free_sbridge_dev(sbridge_dev);
2455         }
2456 }
2457
2458 static int sbridge_get_onedevice(struct pci_dev **prev,
2459                                  u8 *num_mc,
2460                                  const struct pci_id_table *table,
2461                                  const unsigned devno,
2462                                  const int multi_bus)
2463 {
2464         struct sbridge_dev *sbridge_dev = NULL;
2465         const struct pci_id_descr *dev_descr = &table->descr[devno];
2466         struct pci_dev *pdev = NULL;
2467         int seg = 0;
2468         u8 bus = 0;
2469         int i = 0;
2470
2471         sbridge_printk(KERN_DEBUG,
2472                 "Seeking for: PCI ID %04x:%04x\n",
2473                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2474
2475         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2476                               dev_descr->dev_id, *prev);
2477
2478         if (!pdev) {
2479                 if (*prev) {
2480                         *prev = pdev;
2481                         return 0;
2482                 }
2483
2484                 if (dev_descr->optional)
2485                         return 0;
2486
2487                 /* if the HA wasn't found */
2488                 if (devno == 0)
2489                         return -ENODEV;
2490
2491                 sbridge_printk(KERN_INFO,
2492                         "Device not found: %04x:%04x\n",
2493                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2494
2495                 /* End of list, leave */
2496                 return -ENODEV;
2497         }
2498         seg = pci_domain_nr(pdev->bus);
2499         bus = pdev->bus->number;
2500
2501 next_imc:
2502         sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2503                                       multi_bus, sbridge_dev);
2504         if (!sbridge_dev) {
2505                 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2506                 if (dev_descr->dom == IMC1 && devno != 1) {
2507                         edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2508                                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2509                         pci_dev_put(pdev);
2510                         return 0;
2511                 }
2512
2513                 if (dev_descr->dom == SOCK)
2514                         goto out_imc;
2515
2516                 sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2517                 if (!sbridge_dev) {
2518                         pci_dev_put(pdev);
2519                         return -ENOMEM;
2520                 }
2521                 (*num_mc)++;
2522         }
2523
2524         if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2525                 sbridge_printk(KERN_ERR,
2526                         "Duplicated device for %04x:%04x\n",
2527                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2528                 pci_dev_put(pdev);
2529                 return -ENODEV;
2530         }
2531
2532         sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2533
2534         /* pdev belongs to more than one IMC, do extra gets */
2535         if (++i > 1)
2536                 pci_dev_get(pdev);
2537
2538         if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2539                 goto next_imc;
2540
2541 out_imc:
2542         /* Be sure that the device is enabled */
2543         if (unlikely(pci_enable_device(pdev) < 0)) {
2544                 sbridge_printk(KERN_ERR,
2545                         "Couldn't enable %04x:%04x\n",
2546                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2547                 return -ENODEV;
2548         }
2549
2550         edac_dbg(0, "Detected %04x:%04x\n",
2551                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2552
2553         /*
2554          * As stated on drivers/pci/search.c, the reference count for
2555          * @from is always decremented if it is not %NULL. So, as we need
2556          * to get all devices up to null, we need to do a get for the device
2557          */
2558         pci_dev_get(pdev);
2559
2560         *prev = pdev;
2561
2562         return 0;
2563 }
2564
2565 /*
2566  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2567  *                           devices we want to reference for this driver.
2568  * @num_mc: pointer to the memory controllers count, to be incremented in case
2569  *          of success.
2570  * @table: model specific table
2571  *
2572  * returns 0 in case of success or error code
2573  */
2574 static int sbridge_get_all_devices(u8 *num_mc,
2575                                         const struct pci_id_table *table)
2576 {
2577         int i, rc;
2578         struct pci_dev *pdev = NULL;
2579         int allow_dups = 0;
2580         int multi_bus = 0;
2581
2582         if (table->type == KNIGHTS_LANDING)
2583                 allow_dups = multi_bus = 1;
2584         while (table && table->descr) {
2585                 for (i = 0; i < table->n_devs_per_sock; i++) {
2586                         if (!allow_dups || i == 0 ||
2587                                         table->descr[i].dev_id !=
2588                                                 table->descr[i-1].dev_id) {
2589                                 pdev = NULL;
2590                         }
2591                         do {
2592                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2593                                                            table, i, multi_bus);
2594                                 if (rc < 0) {
2595                                         if (i == 0) {
2596                                                 i = table->n_devs_per_sock;
2597                                                 break;
2598                                         }
2599                                         sbridge_put_all_devices();
2600                                         return -ENODEV;
2601                                 }
2602                         } while (pdev && !allow_dups);
2603                 }
2604                 table++;
2605         }
2606
2607         return 0;
2608 }
2609
2610 /*
2611  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2612  * the format: XXXa. So we can convert from a device to the corresponding
2613  * channel like this
2614  */
2615 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2616
2617 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2618                                  struct sbridge_dev *sbridge_dev)
2619 {
2620         struct sbridge_pvt *pvt = mci->pvt_info;
2621         struct pci_dev *pdev;
2622         u8 saw_chan_mask = 0;
2623         int i;
2624
2625         for (i = 0; i < sbridge_dev->n_devs; i++) {
2626                 pdev = sbridge_dev->pdev[i];
2627                 if (!pdev)
2628                         continue;
2629
2630                 switch (pdev->device) {
2631                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2632                         pvt->pci_sad0 = pdev;
2633                         break;
2634                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2635                         pvt->pci_sad1 = pdev;
2636                         break;
2637                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2638                         pvt->pci_br0 = pdev;
2639                         break;
2640                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2641                         pvt->pci_ha = pdev;
2642                         break;
2643                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2644                         pvt->pci_ta = pdev;
2645                         break;
2646                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2647                         pvt->pci_ras = pdev;
2648                         break;
2649                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2650                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2651                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2652                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2653                 {
2654                         int id = TAD_DEV_TO_CHAN(pdev->device);
2655                         pvt->pci_tad[id] = pdev;
2656                         saw_chan_mask |= 1 << id;
2657                 }
2658                         break;
2659                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2660                         pvt->pci_ddrio = pdev;
2661                         break;
2662                 default:
2663                         goto error;
2664                 }
2665
2666                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2667                          pdev->vendor, pdev->device,
2668                          sbridge_dev->bus,
2669                          pdev);
2670         }
2671
2672         /* Check if everything were registered */
2673         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2674             !pvt->pci_ras || !pvt->pci_ta)
2675                 goto enodev;
2676
2677         if (saw_chan_mask != 0x0f)
2678                 goto enodev;
2679         return 0;
2680
2681 enodev:
2682         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2683         return -ENODEV;
2684
2685 error:
2686         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2687                        PCI_VENDOR_ID_INTEL, pdev->device);
2688         return -EINVAL;
2689 }
2690
2691 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2692                                  struct sbridge_dev *sbridge_dev)
2693 {
2694         struct sbridge_pvt *pvt = mci->pvt_info;
2695         struct pci_dev *pdev;
2696         u8 saw_chan_mask = 0;
2697         int i;
2698
2699         for (i = 0; i < sbridge_dev->n_devs; i++) {
2700                 pdev = sbridge_dev->pdev[i];
2701                 if (!pdev)
2702                         continue;
2703
2704                 switch (pdev->device) {
2705                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2706                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2707                         pvt->pci_ha = pdev;
2708                         break;
2709                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2710                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2711                         pvt->pci_ta = pdev;
2712                         break;
2713                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2714                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2715                         pvt->pci_ras = pdev;
2716                         break;
2717                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2718                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2719                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2720                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2721                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2722                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2723                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2724                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2725                 {
2726                         int id = TAD_DEV_TO_CHAN(pdev->device);
2727                         pvt->pci_tad[id] = pdev;
2728                         saw_chan_mask |= 1 << id;
2729                 }
2730                         break;
2731                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2732                         pvt->pci_ddrio = pdev;
2733                         break;
2734                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2735                         pvt->pci_ddrio = pdev;
2736                         break;
2737                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2738                         pvt->pci_sad0 = pdev;
2739                         break;
2740                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2741                         pvt->pci_br0 = pdev;
2742                         break;
2743                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2744                         pvt->pci_br1 = pdev;
2745                         break;
2746                 default:
2747                         goto error;
2748                 }
2749
2750                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2751                          sbridge_dev->bus,
2752                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2753                          pdev);
2754         }
2755
2756         /* Check if everything were registered */
2757         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2758             !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2759                 goto enodev;
2760
2761         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2762             saw_chan_mask != 0x03)   /* -EP */
2763                 goto enodev;
2764         return 0;
2765
2766 enodev:
2767         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2768         return -ENODEV;
2769
2770 error:
2771         sbridge_printk(KERN_ERR,
2772                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2773                         pdev->device);
2774         return -EINVAL;
2775 }
2776
2777 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2778                                  struct sbridge_dev *sbridge_dev)
2779 {
2780         struct sbridge_pvt *pvt = mci->pvt_info;
2781         struct pci_dev *pdev;
2782         u8 saw_chan_mask = 0;
2783         int i;
2784
2785         /* there's only one device per system; not tied to any bus */
2786         if (pvt->info.pci_vtd == NULL)
2787                 /* result will be checked later */
2788                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2789                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2790                                                    NULL);
2791
2792         for (i = 0; i < sbridge_dev->n_devs; i++) {
2793                 pdev = sbridge_dev->pdev[i];
2794                 if (!pdev)
2795                         continue;
2796
2797                 switch (pdev->device) {
2798                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2799                         pvt->pci_sad0 = pdev;
2800                         break;
2801                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2802                         pvt->pci_sad1 = pdev;
2803                         break;
2804                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2805                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2806                         pvt->pci_ha = pdev;
2807                         break;
2808                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2809                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2810                         pvt->pci_ta = pdev;
2811                         break;
2812                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2813                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2814                         pvt->pci_ras = pdev;
2815                         break;
2816                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2817                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2818                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2819                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2820                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2821                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2822                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2823                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2824                 {
2825                         int id = TAD_DEV_TO_CHAN(pdev->device);
2826                         pvt->pci_tad[id] = pdev;
2827                         saw_chan_mask |= 1 << id;
2828                 }
2829                         break;
2830                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2831                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2832                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2833                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2834                         if (!pvt->pci_ddrio)
2835                                 pvt->pci_ddrio = pdev;
2836                         break;
2837                 default:
2838                         break;
2839                 }
2840
2841                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2842                          sbridge_dev->bus,
2843                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2844                          pdev);
2845         }
2846
2847         /* Check if everything were registered */
2848         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2849             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2850                 goto enodev;
2851
2852         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2853             saw_chan_mask != 0x03)   /* -EP */
2854                 goto enodev;
2855         return 0;
2856
2857 enodev:
2858         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2859         return -ENODEV;
2860 }
2861
2862 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2863                                  struct sbridge_dev *sbridge_dev)
2864 {
2865         struct sbridge_pvt *pvt = mci->pvt_info;
2866         struct pci_dev *pdev;
2867         u8 saw_chan_mask = 0;
2868         int i;
2869
2870         /* there's only one device per system; not tied to any bus */
2871         if (pvt->info.pci_vtd == NULL)
2872                 /* result will be checked later */
2873                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2874                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2875                                                    NULL);
2876
2877         for (i = 0; i < sbridge_dev->n_devs; i++) {
2878                 pdev = sbridge_dev->pdev[i];
2879                 if (!pdev)
2880                         continue;
2881
2882                 switch (pdev->device) {
2883                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2884                         pvt->pci_sad0 = pdev;
2885                         break;
2886                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2887                         pvt->pci_sad1 = pdev;
2888                         break;
2889                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2890                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2891                         pvt->pci_ha = pdev;
2892                         break;
2893                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2894                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2895                         pvt->pci_ta = pdev;
2896                         break;
2897                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2898                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2899                         pvt->pci_ras = pdev;
2900                         break;
2901                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2902                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2903                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2904                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2905                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2906                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2907                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2908                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2909                 {
2910                         int id = TAD_DEV_TO_CHAN(pdev->device);
2911                         pvt->pci_tad[id] = pdev;
2912                         saw_chan_mask |= 1 << id;
2913                 }
2914                         break;
2915                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2916                         pvt->pci_ddrio = pdev;
2917                         break;
2918                 default:
2919                         break;
2920                 }
2921
2922                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2923                          sbridge_dev->bus,
2924                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2925                          pdev);
2926         }
2927
2928         /* Check if everything were registered */
2929         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2930             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2931                 goto enodev;
2932
2933         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2934             saw_chan_mask != 0x03)   /* -EP */
2935                 goto enodev;
2936         return 0;
2937
2938 enodev:
2939         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2940         return -ENODEV;
2941 }
2942
2943 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2944                         struct sbridge_dev *sbridge_dev)
2945 {
2946         struct sbridge_pvt *pvt = mci->pvt_info;
2947         struct pci_dev *pdev;
2948         int dev, func;
2949
2950         int i;
2951         int devidx;
2952
2953         for (i = 0; i < sbridge_dev->n_devs; i++) {
2954                 pdev = sbridge_dev->pdev[i];
2955                 if (!pdev)
2956                         continue;
2957
2958                 /* Extract PCI device and function. */
2959                 dev = (pdev->devfn >> 3) & 0x1f;
2960                 func = pdev->devfn & 0x7;
2961
2962                 switch (pdev->device) {
2963                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2964                         if (dev == 8)
2965                                 pvt->knl.pci_mc0 = pdev;
2966                         else if (dev == 9)
2967                                 pvt->knl.pci_mc1 = pdev;
2968                         else {
2969                                 sbridge_printk(KERN_ERR,
2970                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2971                                         dev, func);
2972                                 continue;
2973                         }
2974                         break;
2975
2976                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2977                         pvt->pci_sad0 = pdev;
2978                         break;
2979
2980                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2981                         pvt->pci_sad1 = pdev;
2982                         break;
2983
2984                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2985                         /* There are one of these per tile, and range from
2986                          * 1.14.0 to 1.18.5.
2987                          */
2988                         devidx = ((dev-14)*8)+func;
2989
2990                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2991                                 sbridge_printk(KERN_ERR,
2992                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2993                                         dev, func);
2994                                 continue;
2995                         }
2996
2997                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2998
2999                         pvt->knl.pci_cha[devidx] = pdev;
3000                         break;
3001
3002                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
3003                         devidx = -1;
3004
3005                         /*
3006                          *  MC0 channels 0-2 are device 9 function 2-4,
3007                          *  MC1 channels 3-5 are device 8 function 2-4.
3008                          */
3009
3010                         if (dev == 9)
3011                                 devidx = func-2;
3012                         else if (dev == 8)
3013                                 devidx = 3 + (func-2);
3014
3015                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
3016                                 sbridge_printk(KERN_ERR,
3017                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
3018                                         dev, func);
3019                                 continue;
3020                         }
3021
3022                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
3023                         pvt->knl.pci_channel[devidx] = pdev;
3024                         break;
3025
3026                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
3027                         pvt->knl.pci_mc_info = pdev;
3028                         break;
3029
3030                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
3031                         pvt->pci_ta = pdev;
3032                         break;
3033
3034                 default:
3035                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
3036                                 pdev->device);
3037                         break;
3038                 }
3039         }
3040
3041         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
3042             !pvt->pci_sad0     || !pvt->pci_sad1    ||
3043             !pvt->pci_ta) {
3044                 goto enodev;
3045         }
3046
3047         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
3048                 if (!pvt->knl.pci_channel[i]) {
3049                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
3050                         goto enodev;
3051                 }
3052         }
3053
3054         for (i = 0; i < KNL_MAX_CHAS; i++) {
3055                 if (!pvt->knl.pci_cha[i]) {
3056                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
3057                         goto enodev;
3058                 }
3059         }
3060
3061         return 0;
3062
3063 enodev:
3064         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
3065         return -ENODEV;
3066 }
3067
3068 /****************************************************************************
3069                         Error check routines
3070  ****************************************************************************/
3071
3072 /*
3073  * While Sandy Bridge has error count registers, SMI BIOS read values from
3074  * and resets the counters. So, they are not reliable for the OS to read
3075  * from them. So, we have no option but to just trust on whatever MCE is
3076  * telling us about the errors.
3077  */
3078 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
3079                                     const struct mce *m)
3080 {
3081         struct mem_ctl_info *new_mci;
3082         struct sbridge_pvt *pvt = mci->pvt_info;
3083         enum hw_event_mc_err_type tp_event;
3084         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
3085         bool overflow = GET_BITFIELD(m->status, 62, 62);
3086         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
3087         bool recoverable;
3088         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
3089         u32 mscod = GET_BITFIELD(m->status, 16, 31);
3090         u32 errcode = GET_BITFIELD(m->status, 0, 15);
3091         u32 channel = GET_BITFIELD(m->status, 0, 3);
3092         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
3093         /*
3094          * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
3095          * A value 6 is for cache line aligned address, a value 12 is for page
3096          * aligned address reported by patrol scrubber.
3097          */
3098         u32 lsb = GET_BITFIELD(m->misc, 0, 5);
3099         char *optype, *area_type = "DRAM";
3100         long channel_mask, first_channel;
3101         u8  rank = 0xff, socket, ha;
3102         int rc, dimm;
3103
3104         if (pvt->info.type != SANDY_BRIDGE)
3105                 recoverable = true;
3106         else
3107                 recoverable = GET_BITFIELD(m->status, 56, 56);
3108
3109         if (uncorrected_error) {
3110                 core_err_cnt = 1;
3111                 if (ripv) {
3112                         tp_event = HW_EVENT_ERR_UNCORRECTED;
3113                 } else {
3114                         tp_event = HW_EVENT_ERR_FATAL;
3115                 }
3116         } else {
3117                 tp_event = HW_EVENT_ERR_CORRECTED;
3118         }
3119
3120         /*
3121          * According with Table 15-9 of the Intel Architecture spec vol 3A,
3122          * memory errors should fit in this mask:
3123          *      000f 0000 1mmm cccc (binary)
3124          * where:
3125          *      f = Correction Report Filtering Bit. If 1, subsequent errors
3126          *          won't be shown
3127          *      mmm = error type
3128          *      cccc = channel
3129          * If the mask doesn't match, report an error to the parsing logic
3130          */
3131         switch (optypenum) {
3132         case 0:
3133                 optype = "generic undef request error";
3134                 break;
3135         case 1:
3136                 optype = "memory read error";
3137                 break;
3138         case 2:
3139                 optype = "memory write error";
3140                 break;
3141         case 3:
3142                 optype = "addr/cmd error";
3143                 break;
3144         case 4:
3145                 optype = "memory scrubbing error";
3146                 break;
3147         default:
3148                 optype = "reserved";
3149                 break;
3150         }
3151
3152         if (pvt->info.type == KNIGHTS_LANDING) {
3153                 if (channel == 14) {
3154                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3155                                 overflow ? " OVERFLOW" : "",
3156                                 (uncorrected_error && recoverable)
3157                                 ? " recoverable" : "",
3158                                 mscod, errcode,
3159                                 m->bank);
3160                 } else {
3161                         char A = *("A");
3162
3163                         /*
3164                          * Reported channel is in range 0-2, so we can't map it
3165                          * back to mc. To figure out mc we check machine check
3166                          * bank register that reported this error.
3167                          * bank15 means mc0 and bank16 means mc1.
3168                          */
3169                         channel = knl_channel_remap(m->bank == 16, channel);
3170                         channel_mask = 1 << channel;
3171
3172                         snprintf(sb_msg, sizeof(sb_msg),
3173                                  "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3174                                  overflow ? " OVERFLOW" : "",
3175                                  (uncorrected_error && recoverable)
3176                                  ? " recoverable" : " ",
3177                                  mscod, errcode, channel, A + channel);
3178                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3179                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3180                                 channel, 0, -1,
3181                                 optype, sb_msg);
3182                 }
3183                 return;
3184         } else if (lsb < 12) {
3185                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3186                                            &channel_mask, &rank,
3187                                            &area_type, sb_msg);
3188         } else {
3189                 rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3190                                                     &channel_mask, sb_msg);
3191         }
3192
3193         if (rc < 0)
3194                 goto err_parsing;
3195         new_mci = get_mci_for_node_id(socket, ha);
3196         if (!new_mci) {
3197                 strscpy(sb_msg, "Error: socket got corrupted!");
3198                 goto err_parsing;
3199         }
3200         mci = new_mci;
3201         pvt = mci->pvt_info;
3202
3203         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3204
3205         if (rank == 0xff)
3206                 dimm = -1;
3207         else if (rank < 4)
3208                 dimm = 0;
3209         else if (rank < 8)
3210                 dimm = 1;
3211         else
3212                 dimm = 2;
3213
3214         /*
3215          * FIXME: On some memory configurations (mirror, lockstep), the
3216          * Memory Controller can't point the error to a single DIMM. The
3217          * EDAC core should be handling the channel mask, in order to point
3218          * to the group of dimm's where the error may be happening.
3219          */
3220         if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3221                 channel = first_channel;
3222         snprintf(sb_msg_full, sizeof(sb_msg_full),
3223                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s",
3224                  overflow ? " OVERFLOW" : "",
3225                  (uncorrected_error && recoverable) ? " recoverable" : "",
3226                  area_type,
3227                  mscod, errcode,
3228                  socket, ha,
3229                  channel_mask,
3230                  rank, sb_msg);
3231
3232         edac_dbg(0, "%s\n", sb_msg_full);
3233
3234         /* FIXME: need support for channel mask */
3235
3236         if (channel == CHANNEL_UNSPECIFIED)
3237                 channel = -1;
3238
3239         /* Call the helper to output message */
3240         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3241                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3242                              channel, dimm, -1,
3243                              optype, sb_msg_full);
3244         return;
3245 err_parsing:
3246         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3247                              -1, -1, -1,
3248                              sb_msg, "");
3249
3250 }
3251
3252 /*
3253  * Check that logging is enabled and that this is the right type
3254  * of error for us to handle.
3255  */
3256 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3257                                    void *data)
3258 {
3259         struct mce *mce = (struct mce *)data;
3260         struct mem_ctl_info *mci;
3261         char *type;
3262
3263         if (mce->kflags & MCE_HANDLED_CEC)
3264                 return NOTIFY_DONE;
3265
3266         /*
3267          * Just let mcelog handle it if the error is
3268          * outside the memory controller. A memory error
3269          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3270          * bit 12 has an special meaning.
3271          */
3272         if ((mce->status & 0xefff) >> 7 != 1)
3273                 return NOTIFY_DONE;
3274
3275         /* Check ADDRV bit in STATUS */
3276         if (!GET_BITFIELD(mce->status, 58, 58))
3277                 return NOTIFY_DONE;
3278
3279         /* Check MISCV bit in STATUS */
3280         if (!GET_BITFIELD(mce->status, 59, 59))
3281                 return NOTIFY_DONE;
3282
3283         /* Check address type in MISC (physical address only) */
3284         if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3285                 return NOTIFY_DONE;
3286
3287         mci = get_mci_for_node_id(mce->socketid, IMC0);
3288         if (!mci)
3289                 return NOTIFY_DONE;
3290
3291         if (mce->mcgstatus & MCG_STATUS_MCIP)
3292                 type = "Exception";
3293         else
3294                 type = "Event";
3295
3296         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3297
3298         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3299                           "Bank %d: %016Lx\n", mce->extcpu, type,
3300                           mce->mcgstatus, mce->bank, mce->status);
3301         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3302         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3303         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3304
3305         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3306                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3307                           mce->time, mce->socketid, mce->apicid);
3308
3309         sbridge_mce_output_error(mci, mce);
3310
3311         /* Advice mcelog that the error were handled */
3312         mce->kflags |= MCE_HANDLED_EDAC;
3313         return NOTIFY_OK;
3314 }
3315
3316 static struct notifier_block sbridge_mce_dec = {
3317         .notifier_call  = sbridge_mce_check_error,
3318         .priority       = MCE_PRIO_EDAC,
3319 };
3320
3321 /****************************************************************************
3322                         EDAC register/unregister logic
3323  ****************************************************************************/
3324
3325 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3326 {
3327         struct mem_ctl_info *mci = sbridge_dev->mci;
3328
3329         if (unlikely(!mci || !mci->pvt_info)) {
3330                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3331
3332                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3333                 return;
3334         }
3335
3336         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3337                  mci, &sbridge_dev->pdev[0]->dev);
3338
3339         /* Remove MC sysfs nodes */
3340         edac_mc_del_mc(mci->pdev);
3341
3342         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3343         kfree(mci->ctl_name);
3344         edac_mc_free(mci);
3345         sbridge_dev->mci = NULL;
3346 }
3347
3348 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3349 {
3350         struct mem_ctl_info *mci;
3351         struct edac_mc_layer layers[2];
3352         struct sbridge_pvt *pvt;
3353         struct pci_dev *pdev = sbridge_dev->pdev[0];
3354         int rc;
3355
3356         /* allocate a new MC control structure */
3357         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3358         layers[0].size = type == KNIGHTS_LANDING ?
3359                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3360         layers[0].is_virt_csrow = false;
3361         layers[1].type = EDAC_MC_LAYER_SLOT;
3362         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3363         layers[1].is_virt_csrow = true;
3364         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3365                             sizeof(*pvt));
3366
3367         if (unlikely(!mci))
3368                 return -ENOMEM;
3369
3370         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3371                  mci, &pdev->dev);
3372
3373         pvt = mci->pvt_info;
3374         memset(pvt, 0, sizeof(*pvt));
3375
3376         /* Associate sbridge_dev and mci for future usage */
3377         pvt->sbridge_dev = sbridge_dev;
3378         sbridge_dev->mci = mci;
3379
3380         mci->mtype_cap = type == KNIGHTS_LANDING ?
3381                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3382         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3383         mci->edac_cap = EDAC_FLAG_NONE;
3384         mci->mod_name = EDAC_MOD_STR;
3385         mci->dev_name = pci_name(pdev);
3386         mci->ctl_page_to_phys = NULL;
3387
3388         pvt->info.type = type;
3389         switch (type) {
3390         case IVY_BRIDGE:
3391                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3392                 pvt->info.get_tolm = ibridge_get_tolm;
3393                 pvt->info.get_tohm = ibridge_get_tohm;
3394                 pvt->info.dram_rule = ibridge_dram_rule;
3395                 pvt->info.get_memory_type = get_memory_type;
3396                 pvt->info.get_node_id = get_node_id;
3397                 pvt->info.get_ha = ibridge_get_ha;
3398                 pvt->info.rir_limit = rir_limit;
3399                 pvt->info.sad_limit = sad_limit;
3400                 pvt->info.interleave_mode = interleave_mode;
3401                 pvt->info.dram_attr = dram_attr;
3402                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3403                 pvt->info.interleave_list = ibridge_interleave_list;
3404                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3405                 pvt->info.get_width = ibridge_get_width;
3406
3407                 /* Store pci devices at mci for faster access */
3408                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3409                 if (unlikely(rc < 0))
3410                         goto fail0;
3411                 get_source_id(mci);
3412                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3413                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3414                 break;
3415         case SANDY_BRIDGE:
3416                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3417                 pvt->info.get_tolm = sbridge_get_tolm;
3418                 pvt->info.get_tohm = sbridge_get_tohm;
3419                 pvt->info.dram_rule = sbridge_dram_rule;
3420                 pvt->info.get_memory_type = get_memory_type;
3421                 pvt->info.get_node_id = get_node_id;
3422                 pvt->info.get_ha = sbridge_get_ha;
3423                 pvt->info.rir_limit = rir_limit;
3424                 pvt->info.sad_limit = sad_limit;
3425                 pvt->info.interleave_mode = interleave_mode;
3426                 pvt->info.dram_attr = dram_attr;
3427                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3428                 pvt->info.interleave_list = sbridge_interleave_list;
3429                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3430                 pvt->info.get_width = sbridge_get_width;
3431
3432                 /* Store pci devices at mci for faster access */
3433                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3434                 if (unlikely(rc < 0))
3435                         goto fail0;
3436                 get_source_id(mci);
3437                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3438                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3439                 break;
3440         case HASWELL:
3441                 /* rankcfgr isn't used */
3442                 pvt->info.get_tolm = haswell_get_tolm;
3443                 pvt->info.get_tohm = haswell_get_tohm;
3444                 pvt->info.dram_rule = ibridge_dram_rule;
3445                 pvt->info.get_memory_type = haswell_get_memory_type;
3446                 pvt->info.get_node_id = haswell_get_node_id;
3447                 pvt->info.get_ha = ibridge_get_ha;
3448                 pvt->info.rir_limit = haswell_rir_limit;
3449                 pvt->info.sad_limit = sad_limit;
3450                 pvt->info.interleave_mode = interleave_mode;
3451                 pvt->info.dram_attr = dram_attr;
3452                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3453                 pvt->info.interleave_list = ibridge_interleave_list;
3454                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3455                 pvt->info.get_width = ibridge_get_width;
3456
3457                 /* Store pci devices at mci for faster access */
3458                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3459                 if (unlikely(rc < 0))
3460                         goto fail0;
3461                 get_source_id(mci);
3462                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3463                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3464                 break;
3465         case BROADWELL:
3466                 /* rankcfgr isn't used */
3467                 pvt->info.get_tolm = haswell_get_tolm;
3468                 pvt->info.get_tohm = haswell_get_tohm;
3469                 pvt->info.dram_rule = ibridge_dram_rule;
3470                 pvt->info.get_memory_type = haswell_get_memory_type;
3471                 pvt->info.get_node_id = haswell_get_node_id;
3472                 pvt->info.get_ha = ibridge_get_ha;
3473                 pvt->info.rir_limit = haswell_rir_limit;
3474                 pvt->info.sad_limit = sad_limit;
3475                 pvt->info.interleave_mode = interleave_mode;
3476                 pvt->info.dram_attr = dram_attr;
3477                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3478                 pvt->info.interleave_list = ibridge_interleave_list;
3479                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3480                 pvt->info.get_width = broadwell_get_width;
3481
3482                 /* Store pci devices at mci for faster access */
3483                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3484                 if (unlikely(rc < 0))
3485                         goto fail0;
3486                 get_source_id(mci);
3487                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3488                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3489                 break;
3490         case KNIGHTS_LANDING:
3491                 /* pvt->info.rankcfgr == ??? */
3492                 pvt->info.get_tolm = knl_get_tolm;
3493                 pvt->info.get_tohm = knl_get_tohm;
3494                 pvt->info.dram_rule = knl_dram_rule;
3495                 pvt->info.get_memory_type = knl_get_memory_type;
3496                 pvt->info.get_node_id = knl_get_node_id;
3497                 pvt->info.get_ha = knl_get_ha;
3498                 pvt->info.rir_limit = NULL;
3499                 pvt->info.sad_limit = knl_sad_limit;
3500                 pvt->info.interleave_mode = knl_interleave_mode;
3501                 pvt->info.dram_attr = dram_attr_knl;
3502                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3503                 pvt->info.interleave_list = knl_interleave_list;
3504                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3505                 pvt->info.get_width = knl_get_width;
3506
3507                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3508                 if (unlikely(rc < 0))
3509                         goto fail0;
3510                 get_source_id(mci);
3511                 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3512                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3513                 break;
3514         }
3515
3516         if (!mci->ctl_name) {
3517                 rc = -ENOMEM;
3518                 goto fail0;
3519         }
3520
3521         /* Get dimm basic config and the memory layout */
3522         rc = get_dimm_config(mci);
3523         if (rc < 0) {
3524                 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3525                 goto fail;
3526         }
3527         get_memory_layout(mci);
3528
3529         /* record ptr to the generic device */
3530         mci->pdev = &pdev->dev;
3531
3532         /* add this new MC control structure to EDAC's list of MCs */
3533         if (unlikely(edac_mc_add_mc(mci))) {
3534                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3535                 rc = -EINVAL;
3536                 goto fail;
3537         }
3538
3539         return 0;
3540
3541 fail:
3542         kfree(mci->ctl_name);
3543 fail0:
3544         edac_mc_free(mci);
3545         sbridge_dev->mci = NULL;
3546         return rc;
3547 }
3548
3549 static const struct x86_cpu_id sbridge_cpuids[] = {
3550         X86_MATCH_VFM(INTEL_SANDYBRIDGE_X,      &pci_dev_descr_sbridge_table),
3551         X86_MATCH_VFM(INTEL_IVYBRIDGE_X,        &pci_dev_descr_ibridge_table),
3552         X86_MATCH_VFM(INTEL_HASWELL_X,          &pci_dev_descr_haswell_table),
3553         X86_MATCH_VFM(INTEL_BROADWELL_X,        &pci_dev_descr_broadwell_table),
3554         X86_MATCH_VFM(INTEL_BROADWELL_D,        &pci_dev_descr_broadwell_table),
3555         X86_MATCH_VFM(INTEL_XEON_PHI_KNL,       &pci_dev_descr_knl_table),
3556         X86_MATCH_VFM(INTEL_XEON_PHI_KNM,       &pci_dev_descr_knl_table),
3557         { }
3558 };
3559 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3560
3561 /*
3562  *      sbridge_probe   Get all devices and register memory controllers
3563  *                      present.
3564  *      return:
3565  *              0 for FOUND a device
3566  *              < 0 for error code
3567  */
3568
3569 static int sbridge_probe(const struct x86_cpu_id *id)
3570 {
3571         int rc;
3572         u8 mc, num_mc = 0;
3573         struct sbridge_dev *sbridge_dev;
3574         struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3575
3576         /* get the pci devices we want to reserve for our use */
3577         rc = sbridge_get_all_devices(&num_mc, ptable);
3578
3579         if (unlikely(rc < 0)) {
3580                 edac_dbg(0, "couldn't get all devices\n");
3581                 goto fail0;
3582         }
3583
3584         mc = 0;
3585
3586         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3587                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3588                          mc, mc + 1, num_mc);
3589
3590                 sbridge_dev->mc = mc++;
3591                 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3592                 if (unlikely(rc < 0))
3593                         goto fail1;
3594         }
3595
3596         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3597
3598         return 0;
3599
3600 fail1:
3601         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3602                 sbridge_unregister_mci(sbridge_dev);
3603
3604         sbridge_put_all_devices();
3605 fail0:
3606         return rc;
3607 }
3608
3609 /*
3610  *      sbridge_remove  cleanup
3611  *
3612  */
3613 static void sbridge_remove(void)
3614 {
3615         struct sbridge_dev *sbridge_dev;
3616
3617         edac_dbg(0, "\n");
3618
3619         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3620                 sbridge_unregister_mci(sbridge_dev);
3621
3622         /* Release PCI resources */
3623         sbridge_put_all_devices();
3624 }
3625
3626 /*
3627  *      sbridge_init            Module entry function
3628  *                      Try to initialize this module for its devices
3629  */
3630 static int __init sbridge_init(void)
3631 {
3632         const struct x86_cpu_id *id;
3633         const char *owner;
3634         int rc;
3635
3636         edac_dbg(2, "\n");
3637
3638         if (ghes_get_devices())
3639                 return -EBUSY;
3640
3641         owner = edac_get_owner();
3642         if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3643                 return -EBUSY;
3644
3645         if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3646                 return -ENODEV;
3647
3648         id = x86_match_cpu(sbridge_cpuids);
3649         if (!id)
3650                 return -ENODEV;
3651
3652         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3653         opstate_init();
3654
3655         rc = sbridge_probe(id);
3656
3657         if (rc >= 0) {
3658                 mce_register_decode_chain(&sbridge_mce_dec);
3659                 return 0;
3660         }
3661
3662         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3663                       rc);
3664
3665         return rc;
3666 }
3667
3668 /*
3669  *      sbridge_exit()  Module exit function
3670  *                      Unregister the driver
3671  */
3672 static void __exit sbridge_exit(void)
3673 {
3674         edac_dbg(2, "\n");
3675         sbridge_remove();
3676         mce_unregister_decode_chain(&sbridge_mce_dec);
3677 }
3678
3679 module_init(sbridge_init);
3680 module_exit(sbridge_exit);
3681
3682 module_param(edac_op_state, int, 0444);
3683 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3684
3685 MODULE_LICENSE("GPL");
3686 MODULE_AUTHOR("Mauro Carvalho Chehab");
3687 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3688 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3689                    SBRIDGE_REVISION);
This page took 0.247969 seconds and 4 git commands to generate.