]> Git Repo - J-linux.git/blob - drivers/dma/imx-sdma.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <[email protected]>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/genalloc.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/firmware.h>
30 #include <linux/slab.h>
31 #include <linux/platform_device.h>
32 #include <linux/dmaengine.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_dma.h>
36 #include <linux/workqueue.h>
37
38 #include <asm/irq.h>
39 #include <linux/dma/imx-dma.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77 #define SDMA_DONE0_CONFIG       0x1000
78
79 /*
80  * Buffer descriptor status values.
81  */
82 #define BD_DONE  0x01
83 #define BD_WRAP  0x02
84 #define BD_CONT  0x04
85 #define BD_INTR  0x08
86 #define BD_RROR  0x10
87 #define BD_LAST  0x20
88 #define BD_EXTD  0x80
89
90 /*
91  * Data Node descriptor status values.
92  */
93 #define DND_END_OF_FRAME  0x80
94 #define DND_END_OF_XFER   0x40
95 #define DND_DONE          0x20
96 #define DND_UNUSED        0x01
97
98 /*
99  * IPCV2 descriptor status values.
100  */
101 #define BD_IPCV2_END_OF_FRAME  0x40
102
103 #define IPCV2_MAX_NODES        50
104 /*
105  * Error bit set in the CCB status field by the SDMA,
106  * in setbd routine, in case of a transfer error
107  */
108 #define DATA_ERROR  0x10000000
109
110 /*
111  * Buffer descriptor commands.
112  */
113 #define C0_ADDR             0x01
114 #define C0_LOAD             0x02
115 #define C0_DUMP             0x03
116 #define C0_SETCTX           0x07
117 #define C0_GETCTX           0x03
118 #define C0_SETDM            0x01
119 #define C0_SETPM            0x04
120 #define C0_GETDM            0x02
121 #define C0_GETPM            0x08
122 /*
123  * Change endianness indicator in the BD command field
124  */
125 #define CHANGE_ENDIANNESS   0x80
126
127 /*
128  *  p_2_p watermark_level description
129  *      Bits            Name                    Description
130  *      0-7             Lower WML               Lower watermark level
131  *      8               PS                      1: Pad Swallowing
132  *                                              0: No Pad Swallowing
133  *      9               PA                      1: Pad Adding
134  *                                              0: No Pad Adding
135  *      10              SPDIF                   If this bit is set both source
136  *                                              and destination are on SPBA
137  *      11              Source Bit(SP)          1: Source on SPBA
138  *                                              0: Source on AIPS
139  *      12              Destination Bit(DP)     1: Destination on SPBA
140  *                                              0: Destination on AIPS
141  *      13              Source FIFO             1: Source is dual FIFO
142  *                                              0: Source is single FIFO
143  *      14              Destination FIFO        1: Destination is dual FIFO
144  *                                              0: Destination is single FIFO
145  *      15              ---------               MUST BE 0
146  *      16-23           Higher WML              HWML
147  *      24-27           N                       Total number of samples after
148  *                                              which Pad adding/Swallowing
149  *                                              must be done. It must be odd.
150  *      28              Lower WML Event(LWE)    SDMA events reg to check for
151  *                                              LWML event mask
152  *                                              0: LWE in EVENTS register
153  *                                              1: LWE in EVENTS2 register
154  *      29              Higher WML Event(HWE)   SDMA events reg to check for
155  *                                              HWML event mask
156  *                                              0: HWE in EVENTS register
157  *                                              1: HWE in EVENTS2 register
158  *      30              ---------               MUST BE 0
159  *      31              CONT                    1: Amount of samples to be
160  *                                              transferred is unknown and
161  *                                              script will keep on
162  *                                              transferring samples as long as
163  *                                              both events are detected and
164  *                                              script must be manually stopped
165  *                                              by the application
166  *                                              0: The amount of samples to be
167  *                                              transferred is equal to the
168  *                                              count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
171 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
176 #define SDMA_WATERMARK_LEVEL_SD         BIT(13)
177 #define SDMA_WATERMARK_LEVEL_DD         BIT(14)
178 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
179 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
180 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
181 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
182
183 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
184                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
185                                  BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
186                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
187
188 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
189                                  BIT(DMA_MEM_TO_DEV) | \
190                                  BIT(DMA_DEV_TO_DEV))
191
192 #define SDMA_WATERMARK_LEVEL_N_FIFOS    GENMASK(15, 12)
193 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
194 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
195 #define SDMA_WATERMARK_LEVEL_SW_DONE    BIT(23)
196
197 #define SDMA_DONE0_CONFIG_DONE_SEL      BIT(7)
198 #define SDMA_DONE0_CONFIG_DONE_DIS      BIT(6)
199
200 /*
201  * struct sdma_script_start_addrs - SDMA script start pointers
202  *
203  * start addresses of the different functions in the physical
204  * address space of the SDMA engine.
205  */
206 struct sdma_script_start_addrs {
207         s32 ap_2_ap_addr;
208         s32 ap_2_bp_addr;
209         s32 ap_2_ap_fixed_addr;
210         s32 bp_2_ap_addr;
211         s32 loopback_on_dsp_side_addr;
212         s32 mcu_interrupt_only_addr;
213         s32 firi_2_per_addr;
214         s32 firi_2_mcu_addr;
215         s32 per_2_firi_addr;
216         s32 mcu_2_firi_addr;
217         s32 uart_2_per_addr;
218         s32 uart_2_mcu_addr;
219         s32 per_2_app_addr;
220         s32 mcu_2_app_addr;
221         s32 per_2_per_addr;
222         s32 uartsh_2_per_addr;
223         s32 uartsh_2_mcu_addr;
224         s32 per_2_shp_addr;
225         s32 mcu_2_shp_addr;
226         s32 ata_2_mcu_addr;
227         s32 mcu_2_ata_addr;
228         s32 app_2_per_addr;
229         s32 app_2_mcu_addr;
230         s32 shp_2_per_addr;
231         s32 shp_2_mcu_addr;
232         s32 mshc_2_mcu_addr;
233         s32 mcu_2_mshc_addr;
234         s32 spdif_2_mcu_addr;
235         s32 mcu_2_spdif_addr;
236         s32 asrc_2_mcu_addr;
237         s32 ext_mem_2_ipu_addr;
238         s32 descrambler_addr;
239         s32 dptc_dvfs_addr;
240         s32 utra_addr;
241         s32 ram_code_start_addr;
242         /* End of v1 array */
243         union { s32 v1_end; s32 mcu_2_ssish_addr; };
244         s32 ssish_2_mcu_addr;
245         s32 hdmi_dma_addr;
246         /* End of v2 array */
247         union { s32 v2_end; s32 zcanfd_2_mcu_addr; };
248         s32 zqspi_2_mcu_addr;
249         s32 mcu_2_ecspi_addr;
250         s32 mcu_2_sai_addr;
251         s32 sai_2_mcu_addr;
252         s32 uart_2_mcu_rom_addr;
253         s32 uartsh_2_mcu_rom_addr;
254         s32 i2c_2_mcu_addr;
255         s32 mcu_2_i2c_addr;
256         /* End of v3 array */
257         union { s32 v3_end; s32 mcu_2_zqspi_addr; };
258         /* End of v4 array */
259         s32 v4_end[0];
260 };
261
262 /*
263  * Mode/Count of data node descriptors - IPCv2
264  */
265 struct sdma_mode_count {
266 #define SDMA_BD_MAX_CNT 0xffff
267         u32 count   : 16; /* size of the buffer pointed by this BD */
268         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
269         u32 command :  8; /* command mostly used for channel 0 */
270 };
271
272 /*
273  * Buffer descriptor
274  */
275 struct sdma_buffer_descriptor {
276         struct sdma_mode_count  mode;
277         u32 buffer_addr;        /* address of the buffer described */
278         u32 ext_buffer_addr;    /* extended buffer address */
279 } __attribute__ ((packed));
280
281 /**
282  * struct sdma_channel_control - Channel control Block
283  *
284  * @current_bd_ptr:     current buffer descriptor processed
285  * @base_bd_ptr:        first element of buffer descriptor array
286  * @unused:             padding. The SDMA engine expects an array of 128 byte
287  *                      control blocks
288  */
289 struct sdma_channel_control {
290         u32 current_bd_ptr;
291         u32 base_bd_ptr;
292         u32 unused[2];
293 } __attribute__ ((packed));
294
295 /**
296  * struct sdma_state_registers - SDMA context for a channel
297  *
298  * @pc:         program counter
299  * @unused1:    unused
300  * @t:          test bit: status of arithmetic & test instruction
301  * @rpc:        return program counter
302  * @unused0:    unused
303  * @sf:         source fault while loading data
304  * @spc:        loop start program counter
305  * @unused2:    unused
306  * @df:         destination fault while storing data
307  * @epc:        loop end program counter
308  * @lm:         loop mode
309  */
310 struct sdma_state_registers {
311         u32 pc     :14;
312         u32 unused1: 1;
313         u32 t      : 1;
314         u32 rpc    :14;
315         u32 unused0: 1;
316         u32 sf     : 1;
317         u32 spc    :14;
318         u32 unused2: 1;
319         u32 df     : 1;
320         u32 epc    :14;
321         u32 lm     : 2;
322 } __attribute__ ((packed));
323
324 /**
325  * struct sdma_context_data - sdma context specific to a channel
326  *
327  * @channel_state:      channel state bits
328  * @gReg:               general registers
329  * @mda:                burst dma destination address register
330  * @msa:                burst dma source address register
331  * @ms:                 burst dma status register
332  * @md:                 burst dma data register
333  * @pda:                peripheral dma destination address register
334  * @psa:                peripheral dma source address register
335  * @ps:                 peripheral dma status register
336  * @pd:                 peripheral dma data register
337  * @ca:                 CRC polynomial register
338  * @cs:                 CRC accumulator register
339  * @dda:                dedicated core destination address register
340  * @dsa:                dedicated core source address register
341  * @ds:                 dedicated core status register
342  * @dd:                 dedicated core data register
343  * @scratch0:           1st word of dedicated ram for context switch
344  * @scratch1:           2nd word of dedicated ram for context switch
345  * @scratch2:           3rd word of dedicated ram for context switch
346  * @scratch3:           4th word of dedicated ram for context switch
347  * @scratch4:           5th word of dedicated ram for context switch
348  * @scratch5:           6th word of dedicated ram for context switch
349  * @scratch6:           7th word of dedicated ram for context switch
350  * @scratch7:           8th word of dedicated ram for context switch
351  */
352 struct sdma_context_data {
353         struct sdma_state_registers  channel_state;
354         u32  gReg[8];
355         u32  mda;
356         u32  msa;
357         u32  ms;
358         u32  md;
359         u32  pda;
360         u32  psa;
361         u32  ps;
362         u32  pd;
363         u32  ca;
364         u32  cs;
365         u32  dda;
366         u32  dsa;
367         u32  ds;
368         u32  dd;
369         u32  scratch0;
370         u32  scratch1;
371         u32  scratch2;
372         u32  scratch3;
373         u32  scratch4;
374         u32  scratch5;
375         u32  scratch6;
376         u32  scratch7;
377 } __attribute__ ((packed));
378
379
380 struct sdma_engine;
381
382 /**
383  * struct sdma_desc - descriptor structor for one transfer
384  * @vd:                 descriptor for virt dma
385  * @num_bd:             number of descriptors currently handling
386  * @bd_phys:            physical address of bd
387  * @buf_tail:           ID of the buffer that was processed
388  * @buf_ptail:          ID of the previous buffer that was processed
389  * @period_len:         period length, used in cyclic.
390  * @chn_real_count:     the real count updated from bd->mode.count
391  * @chn_count:          the transfer count set
392  * @sdmac:              sdma_channel pointer
393  * @bd:                 pointer of allocate bd
394  */
395 struct sdma_desc {
396         struct virt_dma_desc    vd;
397         unsigned int            num_bd;
398         dma_addr_t              bd_phys;
399         unsigned int            buf_tail;
400         unsigned int            buf_ptail;
401         unsigned int            period_len;
402         unsigned int            chn_real_count;
403         unsigned int            chn_count;
404         struct sdma_channel     *sdmac;
405         struct sdma_buffer_descriptor *bd;
406 };
407
408 /**
409  * struct sdma_channel - housekeeping for a SDMA channel
410  *
411  * @vc:                 virt_dma base structure
412  * @desc:               sdma description including vd and other special member
413  * @sdma:               pointer to the SDMA engine for this channel
414  * @channel:            the channel number, matches dmaengine chan_id + 1
415  * @direction:          transfer type. Needed for setting SDMA script
416  * @slave_config:       Slave configuration
417  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
418  * @event_id0:          aka dma request line
419  * @event_id1:          for channels that use 2 events
420  * @word_size:          peripheral access size
421  * @pc_from_device:     script address for those device_2_memory
422  * @pc_to_device:       script address for those memory_2_device
423  * @device_to_device:   script address for those device_2_device
424  * @pc_to_pc:           script address for those memory_2_memory
425  * @flags:              loop mode or not
426  * @per_address:        peripheral source or destination address in common case
427  *                      destination address in p_2_p case
428  * @per_address2:       peripheral source address in p_2_p case
429  * @event_mask:         event mask used in p_2_p script
430  * @watermark_level:    value for gReg[7], some script will extend it from
431  *                      basic watermark such as p_2_p
432  * @shp_addr:           value for gReg[6]
433  * @per_addr:           value for gReg[2]
434  * @status:             status of dma channel
435  * @data:               specific sdma interface structure
436  * @terminate_worker:   used to call back into terminate work function
437  * @terminated:         terminated list
438  * @is_ram_script:      flag for script in ram
439  * @n_fifos_src:        number of source device fifos
440  * @n_fifos_dst:        number of destination device fifos
441  * @sw_done:            software done flag
442  * @stride_fifos_src:   stride for source device FIFOs
443  * @stride_fifos_dst:   stride for destination device FIFOs
444  * @words_per_fifo:     copy number of words one time for one FIFO
445  */
446 struct sdma_channel {
447         struct virt_dma_chan            vc;
448         struct sdma_desc                *desc;
449         struct sdma_engine              *sdma;
450         unsigned int                    channel;
451         enum dma_transfer_direction             direction;
452         struct dma_slave_config         slave_config;
453         enum sdma_peripheral_type       peripheral_type;
454         unsigned int                    event_id0;
455         unsigned int                    event_id1;
456         enum dma_slave_buswidth         word_size;
457         unsigned int                    pc_from_device, pc_to_device;
458         unsigned int                    device_to_device;
459         unsigned int                    pc_to_pc;
460         unsigned long                   flags;
461         dma_addr_t                      per_address, per_address2;
462         unsigned long                   event_mask[2];
463         unsigned long                   watermark_level;
464         u32                             shp_addr, per_addr;
465         enum dma_status                 status;
466         struct imx_dma_data             data;
467         struct work_struct              terminate_worker;
468         struct list_head                terminated;
469         bool                            is_ram_script;
470         unsigned int                    n_fifos_src;
471         unsigned int                    n_fifos_dst;
472         unsigned int                    stride_fifos_src;
473         unsigned int                    stride_fifos_dst;
474         unsigned int                    words_per_fifo;
475         bool                            sw_done;
476 };
477
478 #define IMX_DMA_SG_LOOP         BIT(0)
479
480 #define MAX_DMA_CHANNELS 32
481 #define MXC_SDMA_DEFAULT_PRIORITY 1
482 #define MXC_SDMA_MIN_PRIORITY 1
483 #define MXC_SDMA_MAX_PRIORITY 7
484
485 #define SDMA_FIRMWARE_MAGIC 0x414d4453
486
487 /**
488  * struct sdma_firmware_header - Layout of the firmware image
489  *
490  * @magic:              "SDMA"
491  * @version_major:      increased whenever layout of struct
492  *                      sdma_script_start_addrs changes.
493  * @version_minor:      firmware minor version (for binary compatible changes)
494  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
495  * @num_script_addrs:   Number of script addresses in this image
496  * @ram_code_start:     offset of SDMA ram image in this firmware image
497  * @ram_code_size:      size of SDMA ram image
498  */
499 struct sdma_firmware_header {
500         u32     magic;
501         u32     version_major;
502         u32     version_minor;
503         u32     script_addrs_start;
504         u32     num_script_addrs;
505         u32     ram_code_start;
506         u32     ram_code_size;
507 };
508
509 struct sdma_driver_data {
510         int chnenbl0;
511         int num_events;
512         struct sdma_script_start_addrs  *script_addrs;
513         bool check_ratio;
514         /*
515          * ecspi ERR009165 fixed should be done in sdma script
516          * and it has been fixed in soc from i.mx6ul.
517          * please get more information from the below link:
518          * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
519          */
520         bool ecspi_fixed;
521 };
522
523 struct sdma_engine {
524         struct device                   *dev;
525         struct sdma_channel             channel[MAX_DMA_CHANNELS];
526         struct sdma_channel_control     *channel_control;
527         void __iomem                    *regs;
528         struct sdma_context_data        *context;
529         dma_addr_t                      context_phys;
530         struct dma_device               dma_device;
531         struct clk                      *clk_ipg;
532         struct clk                      *clk_ahb;
533         spinlock_t                      channel_0_lock;
534         u32                             script_number;
535         struct sdma_script_start_addrs  *script_addrs;
536         const struct sdma_driver_data   *drvdata;
537         u32                             spba_start_addr;
538         u32                             spba_end_addr;
539         unsigned int                    irq;
540         dma_addr_t                      bd0_phys;
541         struct sdma_buffer_descriptor   *bd0;
542         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
543         bool                            clk_ratio;
544         bool                            fw_loaded;
545         struct gen_pool                 *iram_pool;
546 };
547
548 static int sdma_config_write(struct dma_chan *chan,
549                        struct dma_slave_config *dmaengine_cfg,
550                        enum dma_transfer_direction direction);
551
552 static struct sdma_driver_data sdma_imx31 = {
553         .chnenbl0 = SDMA_CHNENBL0_IMX31,
554         .num_events = 32,
555 };
556
557 static struct sdma_script_start_addrs sdma_script_imx25 = {
558         .ap_2_ap_addr = 729,
559         .uart_2_mcu_addr = 904,
560         .per_2_app_addr = 1255,
561         .mcu_2_app_addr = 834,
562         .uartsh_2_mcu_addr = 1120,
563         .per_2_shp_addr = 1329,
564         .mcu_2_shp_addr = 1048,
565         .ata_2_mcu_addr = 1560,
566         .mcu_2_ata_addr = 1479,
567         .app_2_per_addr = 1189,
568         .app_2_mcu_addr = 770,
569         .shp_2_per_addr = 1407,
570         .shp_2_mcu_addr = 979,
571 };
572
573 static struct sdma_driver_data sdma_imx25 = {
574         .chnenbl0 = SDMA_CHNENBL0_IMX35,
575         .num_events = 48,
576         .script_addrs = &sdma_script_imx25,
577 };
578
579 static struct sdma_driver_data sdma_imx35 = {
580         .chnenbl0 = SDMA_CHNENBL0_IMX35,
581         .num_events = 48,
582 };
583
584 static struct sdma_script_start_addrs sdma_script_imx51 = {
585         .ap_2_ap_addr = 642,
586         .uart_2_mcu_addr = 817,
587         .mcu_2_app_addr = 747,
588         .mcu_2_shp_addr = 961,
589         .ata_2_mcu_addr = 1473,
590         .mcu_2_ata_addr = 1392,
591         .app_2_per_addr = 1033,
592         .app_2_mcu_addr = 683,
593         .shp_2_per_addr = 1251,
594         .shp_2_mcu_addr = 892,
595 };
596
597 static struct sdma_driver_data sdma_imx51 = {
598         .chnenbl0 = SDMA_CHNENBL0_IMX35,
599         .num_events = 48,
600         .script_addrs = &sdma_script_imx51,
601 };
602
603 static struct sdma_script_start_addrs sdma_script_imx53 = {
604         .ap_2_ap_addr = 642,
605         .app_2_mcu_addr = 683,
606         .mcu_2_app_addr = 747,
607         .uart_2_mcu_addr = 817,
608         .shp_2_mcu_addr = 891,
609         .mcu_2_shp_addr = 960,
610         .uartsh_2_mcu_addr = 1032,
611         .spdif_2_mcu_addr = 1100,
612         .mcu_2_spdif_addr = 1134,
613         .firi_2_mcu_addr = 1193,
614         .mcu_2_firi_addr = 1290,
615 };
616
617 static struct sdma_driver_data sdma_imx53 = {
618         .chnenbl0 = SDMA_CHNENBL0_IMX35,
619         .num_events = 48,
620         .script_addrs = &sdma_script_imx53,
621 };
622
623 static struct sdma_script_start_addrs sdma_script_imx6q = {
624         .ap_2_ap_addr = 642,
625         .uart_2_mcu_addr = 817,
626         .mcu_2_app_addr = 747,
627         .per_2_per_addr = 6331,
628         .uartsh_2_mcu_addr = 1032,
629         .mcu_2_shp_addr = 960,
630         .app_2_mcu_addr = 683,
631         .shp_2_mcu_addr = 891,
632         .spdif_2_mcu_addr = 1100,
633         .mcu_2_spdif_addr = 1134,
634 };
635
636 static struct sdma_driver_data sdma_imx6q = {
637         .chnenbl0 = SDMA_CHNENBL0_IMX35,
638         .num_events = 48,
639         .script_addrs = &sdma_script_imx6q,
640 };
641
642 static struct sdma_driver_data sdma_imx6ul = {
643         .chnenbl0 = SDMA_CHNENBL0_IMX35,
644         .num_events = 48,
645         .script_addrs = &sdma_script_imx6q,
646         .ecspi_fixed = true,
647 };
648
649 static struct sdma_script_start_addrs sdma_script_imx7d = {
650         .ap_2_ap_addr = 644,
651         .uart_2_mcu_addr = 819,
652         .mcu_2_app_addr = 749,
653         .uartsh_2_mcu_addr = 1034,
654         .mcu_2_shp_addr = 962,
655         .app_2_mcu_addr = 685,
656         .shp_2_mcu_addr = 893,
657         .spdif_2_mcu_addr = 1102,
658         .mcu_2_spdif_addr = 1136,
659 };
660
661 static struct sdma_driver_data sdma_imx7d = {
662         .chnenbl0 = SDMA_CHNENBL0_IMX35,
663         .num_events = 48,
664         .script_addrs = &sdma_script_imx7d,
665 };
666
667 static struct sdma_driver_data sdma_imx8mq = {
668         .chnenbl0 = SDMA_CHNENBL0_IMX35,
669         .num_events = 48,
670         .script_addrs = &sdma_script_imx7d,
671         .check_ratio = 1,
672 };
673
674 static const struct of_device_id sdma_dt_ids[] = {
675         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
676         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
677         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
678         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
679         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
680         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
681         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
682         { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
683         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
684         { /* sentinel */ }
685 };
686 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
687
688 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
689 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
690 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
691 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
692
693 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
694 {
695         u32 chnenbl0 = sdma->drvdata->chnenbl0;
696         return chnenbl0 + event * 4;
697 }
698
699 static int sdma_config_ownership(struct sdma_channel *sdmac,
700                 bool event_override, bool mcu_override, bool dsp_override)
701 {
702         struct sdma_engine *sdma = sdmac->sdma;
703         int channel = sdmac->channel;
704         unsigned long evt, mcu, dsp;
705
706         if (event_override && mcu_override && dsp_override)
707                 return -EINVAL;
708
709         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
710         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
711         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
712
713         if (dsp_override)
714                 __clear_bit(channel, &dsp);
715         else
716                 __set_bit(channel, &dsp);
717
718         if (event_override)
719                 __clear_bit(channel, &evt);
720         else
721                 __set_bit(channel, &evt);
722
723         if (mcu_override)
724                 __clear_bit(channel, &mcu);
725         else
726                 __set_bit(channel, &mcu);
727
728         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
729         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
730         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
731
732         return 0;
733 }
734
735 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
736 {
737         return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
738 }
739
740 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
741 {
742         writel(BIT(channel), sdma->regs + SDMA_H_START);
743 }
744
745 /*
746  * sdma_run_channel0 - run a channel and wait till it's done
747  */
748 static int sdma_run_channel0(struct sdma_engine *sdma)
749 {
750         int ret;
751         u32 reg;
752
753         sdma_enable_channel(sdma, 0);
754
755         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
756                                                 reg, !(reg & 1), 1, 500);
757         if (ret)
758                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
759
760         /* Set bits of CONFIG register with dynamic context switching */
761         reg = readl(sdma->regs + SDMA_H_CONFIG);
762         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
763                 reg |= SDMA_H_CONFIG_CSM;
764                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
765         }
766
767         return ret;
768 }
769
770 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
771                 u32 address)
772 {
773         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
774         void *buf_virt;
775         dma_addr_t buf_phys;
776         int ret;
777         unsigned long flags;
778
779         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
780         if (!buf_virt)
781                 return -ENOMEM;
782
783         spin_lock_irqsave(&sdma->channel_0_lock, flags);
784
785         bd0->mode.command = C0_SETPM;
786         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
787         bd0->mode.count = size / 2;
788         bd0->buffer_addr = buf_phys;
789         bd0->ext_buffer_addr = address;
790
791         memcpy(buf_virt, buf, size);
792
793         ret = sdma_run_channel0(sdma);
794
795         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
796
797         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
798
799         return ret;
800 }
801
802 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
803 {
804         struct sdma_engine *sdma = sdmac->sdma;
805         int channel = sdmac->channel;
806         unsigned long val;
807         u32 chnenbl = chnenbl_ofs(sdma, event);
808
809         val = readl_relaxed(sdma->regs + chnenbl);
810         __set_bit(channel, &val);
811         writel_relaxed(val, sdma->regs + chnenbl);
812
813         /* Set SDMA_DONEx_CONFIG is sw_done enabled */
814         if (sdmac->sw_done) {
815                 val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
816                 val |= SDMA_DONE0_CONFIG_DONE_SEL;
817                 val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
818                 writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
819         }
820 }
821
822 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
823 {
824         struct sdma_engine *sdma = sdmac->sdma;
825         int channel = sdmac->channel;
826         u32 chnenbl = chnenbl_ofs(sdma, event);
827         unsigned long val;
828
829         val = readl_relaxed(sdma->regs + chnenbl);
830         __clear_bit(channel, &val);
831         writel_relaxed(val, sdma->regs + chnenbl);
832 }
833
834 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
835 {
836         return container_of(t, struct sdma_desc, vd.tx);
837 }
838
839 static void sdma_start_desc(struct sdma_channel *sdmac)
840 {
841         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
842         struct sdma_desc *desc;
843         struct sdma_engine *sdma = sdmac->sdma;
844         int channel = sdmac->channel;
845
846         if (!vd) {
847                 sdmac->desc = NULL;
848                 return;
849         }
850         sdmac->desc = desc = to_sdma_desc(&vd->tx);
851
852         list_del(&vd->node);
853
854         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
855         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
856         sdma_enable_channel(sdma, sdmac->channel);
857 }
858
859 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
860 {
861         struct sdma_buffer_descriptor *bd;
862         int error = 0;
863         enum dma_status old_status = sdmac->status;
864
865         /*
866          * loop mode. Iterate over descriptors, re-setup them and
867          * call callback function.
868          */
869         while (sdmac->desc) {
870                 struct sdma_desc *desc = sdmac->desc;
871
872                 bd = &desc->bd[desc->buf_tail];
873
874                 if (bd->mode.status & BD_DONE)
875                         break;
876
877                 if (bd->mode.status & BD_RROR) {
878                         bd->mode.status &= ~BD_RROR;
879                         sdmac->status = DMA_ERROR;
880                         error = -EIO;
881                 }
882
883                /*
884                 * We use bd->mode.count to calculate the residue, since contains
885                 * the number of bytes present in the current buffer descriptor.
886                 */
887
888                 desc->chn_real_count = bd->mode.count;
889                 bd->mode.count = desc->period_len;
890                 desc->buf_ptail = desc->buf_tail;
891                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
892
893                 /*
894                  * The callback is called from the interrupt context in order
895                  * to reduce latency and to avoid the risk of altering the
896                  * SDMA transaction status by the time the client tasklet is
897                  * executed.
898                  */
899                 spin_unlock(&sdmac->vc.lock);
900                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
901                 spin_lock(&sdmac->vc.lock);
902
903                 /* Assign buffer ownership to SDMA */
904                 bd->mode.status |= BD_DONE;
905
906                 if (error)
907                         sdmac->status = old_status;
908         }
909
910         /*
911          * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
912          * owned buffer is available (i.e. BD_DONE was set too late).
913          */
914         if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
915                 dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
916                 sdma_enable_channel(sdmac->sdma, sdmac->channel);
917         }
918 }
919
920 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
921 {
922         struct sdma_channel *sdmac = (struct sdma_channel *) data;
923         struct sdma_buffer_descriptor *bd;
924         int i, error = 0;
925
926         sdmac->desc->chn_real_count = 0;
927         /*
928          * non loop mode. Iterate over all descriptors, collect
929          * errors and call callback function
930          */
931         for (i = 0; i < sdmac->desc->num_bd; i++) {
932                 bd = &sdmac->desc->bd[i];
933
934                 if (bd->mode.status & (BD_DONE | BD_RROR))
935                         error = -EIO;
936                 sdmac->desc->chn_real_count += bd->mode.count;
937         }
938
939         if (error)
940                 sdmac->status = DMA_ERROR;
941         else
942                 sdmac->status = DMA_COMPLETE;
943 }
944
945 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
946 {
947         struct sdma_engine *sdma = dev_id;
948         unsigned long stat;
949
950         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
951         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
952         /* channel 0 is special and not handled here, see run_channel0() */
953         stat &= ~1;
954
955         while (stat) {
956                 int channel = fls(stat) - 1;
957                 struct sdma_channel *sdmac = &sdma->channel[channel];
958                 struct sdma_desc *desc;
959
960                 spin_lock(&sdmac->vc.lock);
961                 desc = sdmac->desc;
962                 if (desc) {
963                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
964                                 if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
965                                         sdma_update_channel_loop(sdmac);
966                                 else
967                                         vchan_cyclic_callback(&desc->vd);
968                         } else {
969                                 mxc_sdma_handle_channel_normal(sdmac);
970                                 vchan_cookie_complete(&desc->vd);
971                                 sdma_start_desc(sdmac);
972                         }
973                 }
974
975                 spin_unlock(&sdmac->vc.lock);
976                 __clear_bit(channel, &stat);
977         }
978
979         return IRQ_HANDLED;
980 }
981
982 /*
983  * sets the pc of SDMA script according to the peripheral type
984  */
985 static int sdma_get_pc(struct sdma_channel *sdmac,
986                 enum sdma_peripheral_type peripheral_type)
987 {
988         struct sdma_engine *sdma = sdmac->sdma;
989         int per_2_emi = 0, emi_2_per = 0;
990         /*
991          * These are needed once we start to support transfers between
992          * two peripherals or memory-to-memory transfers
993          */
994         int per_2_per = 0, emi_2_emi = 0;
995
996         sdmac->pc_from_device = 0;
997         sdmac->pc_to_device = 0;
998         sdmac->device_to_device = 0;
999         sdmac->pc_to_pc = 0;
1000         sdmac->is_ram_script = false;
1001
1002         switch (peripheral_type) {
1003         case IMX_DMATYPE_MEMORY:
1004                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
1005                 break;
1006         case IMX_DMATYPE_DSP:
1007                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
1008                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1009                 break;
1010         case IMX_DMATYPE_FIRI:
1011                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1012                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1013                 break;
1014         case IMX_DMATYPE_UART:
1015                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1016                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1017                 break;
1018         case IMX_DMATYPE_UART_SP:
1019                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1020                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1021                 break;
1022         case IMX_DMATYPE_ATA:
1023                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1024                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1025                 break;
1026         case IMX_DMATYPE_CSPI:
1027                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1028
1029                 /* Use rom script mcu_2_app if ERR009165 fixed */
1030                 if (sdmac->sdma->drvdata->ecspi_fixed) {
1031                         emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1032                 } else {
1033                         emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1034                         sdmac->is_ram_script = true;
1035                 }
1036
1037                 break;
1038         case IMX_DMATYPE_EXT:
1039         case IMX_DMATYPE_SSI:
1040         case IMX_DMATYPE_SAI:
1041                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1042                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1043                 break;
1044         case IMX_DMATYPE_SSI_DUAL:
1045                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1046                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1047                 sdmac->is_ram_script = true;
1048                 break;
1049         case IMX_DMATYPE_SSI_SP:
1050         case IMX_DMATYPE_MMC:
1051         case IMX_DMATYPE_SDHC:
1052         case IMX_DMATYPE_CSPI_SP:
1053         case IMX_DMATYPE_ESAI:
1054         case IMX_DMATYPE_MSHC_SP:
1055                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1056                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1057                 break;
1058         case IMX_DMATYPE_ASRC:
1059                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1060                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1061                 per_2_per = sdma->script_addrs->per_2_per_addr;
1062                 sdmac->is_ram_script = true;
1063                 break;
1064         case IMX_DMATYPE_ASRC_SP:
1065                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1066                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1067                 per_2_per = sdma->script_addrs->per_2_per_addr;
1068                 break;
1069         case IMX_DMATYPE_MSHC:
1070                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1071                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1072                 break;
1073         case IMX_DMATYPE_CCM:
1074                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1075                 break;
1076         case IMX_DMATYPE_SPDIF:
1077                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1078                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1079                 break;
1080         case IMX_DMATYPE_IPU_MEMORY:
1081                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1082                 break;
1083         case IMX_DMATYPE_MULTI_SAI:
1084                 per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1085                 emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1086                 break;
1087         case IMX_DMATYPE_I2C:
1088                 per_2_emi = sdma->script_addrs->i2c_2_mcu_addr;
1089                 emi_2_per = sdma->script_addrs->mcu_2_i2c_addr;
1090                 sdmac->is_ram_script = true;
1091                 break;
1092         case IMX_DMATYPE_HDMI:
1093                 emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1094                 sdmac->is_ram_script = true;
1095                 break;
1096         default:
1097                 dev_err(sdma->dev, "Unsupported transfer type %d\n",
1098                         peripheral_type);
1099                 return -EINVAL;
1100         }
1101
1102         sdmac->pc_from_device = per_2_emi;
1103         sdmac->pc_to_device = emi_2_per;
1104         sdmac->device_to_device = per_2_per;
1105         sdmac->pc_to_pc = emi_2_emi;
1106
1107         return 0;
1108 }
1109
1110 static int sdma_load_context(struct sdma_channel *sdmac)
1111 {
1112         struct sdma_engine *sdma = sdmac->sdma;
1113         int channel = sdmac->channel;
1114         int load_address;
1115         struct sdma_context_data *context = sdma->context;
1116         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1117         int ret;
1118         unsigned long flags;
1119
1120         if (sdmac->direction == DMA_DEV_TO_MEM)
1121                 load_address = sdmac->pc_from_device;
1122         else if (sdmac->direction == DMA_DEV_TO_DEV)
1123                 load_address = sdmac->device_to_device;
1124         else if (sdmac->direction == DMA_MEM_TO_MEM)
1125                 load_address = sdmac->pc_to_pc;
1126         else
1127                 load_address = sdmac->pc_to_device;
1128
1129         if (load_address < 0)
1130                 return load_address;
1131
1132         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1133         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1134         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1135         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1136         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1137         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1138
1139         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1140
1141         memset(context, 0, sizeof(*context));
1142         context->channel_state.pc = load_address;
1143
1144         /* Send by context the event mask,base address for peripheral
1145          * and watermark level
1146          */
1147         if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1148                 context->gReg[4] = sdmac->per_addr;
1149                 context->gReg[6] = sdmac->shp_addr;
1150         } else {
1151                 context->gReg[0] = sdmac->event_mask[1];
1152                 context->gReg[1] = sdmac->event_mask[0];
1153                 context->gReg[2] = sdmac->per_addr;
1154                 context->gReg[6] = sdmac->shp_addr;
1155                 context->gReg[7] = sdmac->watermark_level;
1156         }
1157
1158         bd0->mode.command = C0_SETDM;
1159         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1160         bd0->mode.count = sizeof(*context) / 4;
1161         bd0->buffer_addr = sdma->context_phys;
1162         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1163         ret = sdma_run_channel0(sdma);
1164
1165         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1166
1167         return ret;
1168 }
1169
1170 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1171 {
1172         return container_of(chan, struct sdma_channel, vc.chan);
1173 }
1174
1175 static int sdma_disable_channel(struct dma_chan *chan)
1176 {
1177         struct sdma_channel *sdmac = to_sdma_chan(chan);
1178         struct sdma_engine *sdma = sdmac->sdma;
1179         int channel = sdmac->channel;
1180
1181         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1182         sdmac->status = DMA_ERROR;
1183
1184         return 0;
1185 }
1186 static void sdma_channel_terminate_work(struct work_struct *work)
1187 {
1188         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1189                                                   terminate_worker);
1190         /*
1191          * According to NXP R&D team a delay of one BD SDMA cost time
1192          * (maximum is 1ms) should be added after disable of the channel
1193          * bit, to ensure SDMA core has really been stopped after SDMA
1194          * clients call .device_terminate_all.
1195          */
1196         usleep_range(1000, 2000);
1197
1198         vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1199 }
1200
1201 static int sdma_terminate_all(struct dma_chan *chan)
1202 {
1203         struct sdma_channel *sdmac = to_sdma_chan(chan);
1204         unsigned long flags;
1205
1206         spin_lock_irqsave(&sdmac->vc.lock, flags);
1207
1208         sdma_disable_channel(chan);
1209
1210         if (sdmac->desc) {
1211                 vchan_terminate_vdesc(&sdmac->desc->vd);
1212                 /*
1213                  * move out current descriptor into terminated list so that
1214                  * it could be free in sdma_channel_terminate_work alone
1215                  * later without potential involving next descriptor raised
1216                  * up before the last descriptor terminated.
1217                  */
1218                 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1219                 sdmac->desc = NULL;
1220                 schedule_work(&sdmac->terminate_worker);
1221         }
1222
1223         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1224
1225         return 0;
1226 }
1227
1228 static void sdma_channel_synchronize(struct dma_chan *chan)
1229 {
1230         struct sdma_channel *sdmac = to_sdma_chan(chan);
1231
1232         vchan_synchronize(&sdmac->vc);
1233
1234         flush_work(&sdmac->terminate_worker);
1235 }
1236
1237 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1238 {
1239         struct sdma_engine *sdma = sdmac->sdma;
1240
1241         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1242         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1243
1244         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1245         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1246
1247         if (sdmac->event_id0 > 31)
1248                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1249
1250         if (sdmac->event_id1 > 31)
1251                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1252
1253         /*
1254          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1255          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1256          * r0(event_mask[1]) and r1(event_mask[0]).
1257          */
1258         if (lwml > hwml) {
1259                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1260                                                 SDMA_WATERMARK_LEVEL_HWML);
1261                 sdmac->watermark_level |= hwml;
1262                 sdmac->watermark_level |= lwml << 16;
1263                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1264         }
1265
1266         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1267                         sdmac->per_address2 <= sdma->spba_end_addr)
1268                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1269
1270         if (sdmac->per_address >= sdma->spba_start_addr &&
1271                         sdmac->per_address <= sdma->spba_end_addr)
1272                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1273
1274         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1275
1276         /*
1277          * Limitation: The p2p script support dual fifos in maximum,
1278          * So when fifo number is larger than 1, force enable dual
1279          * fifos.
1280          */
1281         if (sdmac->n_fifos_src > 1)
1282                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SD;
1283         if (sdmac->n_fifos_dst > 1)
1284                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DD;
1285 }
1286
1287 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1288 {
1289         unsigned int n_fifos;
1290         unsigned int stride_fifos;
1291         unsigned int words_per_fifo;
1292
1293         if (sdmac->sw_done)
1294                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1295
1296         if (sdmac->direction == DMA_DEV_TO_MEM) {
1297                 n_fifos = sdmac->n_fifos_src;
1298                 stride_fifos = sdmac->stride_fifos_src;
1299         } else {
1300                 n_fifos = sdmac->n_fifos_dst;
1301                 stride_fifos = sdmac->stride_fifos_dst;
1302         }
1303
1304         words_per_fifo = sdmac->words_per_fifo;
1305
1306         sdmac->watermark_level |=
1307                         FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1308         sdmac->watermark_level |=
1309                         FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1310         if (words_per_fifo)
1311                 sdmac->watermark_level |=
1312                         FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1313 }
1314
1315 static int sdma_config_channel(struct dma_chan *chan)
1316 {
1317         struct sdma_channel *sdmac = to_sdma_chan(chan);
1318         int ret;
1319
1320         sdma_disable_channel(chan);
1321
1322         sdmac->event_mask[0] = 0;
1323         sdmac->event_mask[1] = 0;
1324         sdmac->shp_addr = 0;
1325         sdmac->per_addr = 0;
1326
1327         switch (sdmac->peripheral_type) {
1328         case IMX_DMATYPE_DSP:
1329                 sdma_config_ownership(sdmac, false, true, true);
1330                 break;
1331         case IMX_DMATYPE_MEMORY:
1332                 sdma_config_ownership(sdmac, false, true, false);
1333                 break;
1334         default:
1335                 sdma_config_ownership(sdmac, true, true, false);
1336                 break;
1337         }
1338
1339         ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1340         if (ret)
1341                 return ret;
1342
1343         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1344                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1345                 /* Handle multiple event channels differently */
1346                 if (sdmac->event_id1) {
1347                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1348                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1349                                 sdma_set_watermarklevel_for_p2p(sdmac);
1350                 } else {
1351                         if (sdmac->peripheral_type ==
1352                                         IMX_DMATYPE_MULTI_SAI)
1353                                 sdma_set_watermarklevel_for_sais(sdmac);
1354
1355                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1356                 }
1357
1358                 /* Address */
1359                 sdmac->shp_addr = sdmac->per_address;
1360                 sdmac->per_addr = sdmac->per_address2;
1361         } else {
1362                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1363         }
1364
1365         return 0;
1366 }
1367
1368 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1369                                      unsigned int priority)
1370 {
1371         struct sdma_engine *sdma = sdmac->sdma;
1372         int channel = sdmac->channel;
1373
1374         if (priority < MXC_SDMA_MIN_PRIORITY
1375             || priority > MXC_SDMA_MAX_PRIORITY) {
1376                 return -EINVAL;
1377         }
1378
1379         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1380
1381         return 0;
1382 }
1383
1384 static int sdma_request_channel0(struct sdma_engine *sdma)
1385 {
1386         int ret = -EBUSY;
1387
1388         if (sdma->iram_pool)
1389                 sdma->bd0 = gen_pool_dma_alloc(sdma->iram_pool,
1390                                         sizeof(struct sdma_buffer_descriptor),
1391                                         &sdma->bd0_phys);
1392         else
1393                 sdma->bd0 = dma_alloc_coherent(sdma->dev,
1394                                         sizeof(struct sdma_buffer_descriptor),
1395                                         &sdma->bd0_phys, GFP_NOWAIT);
1396         if (!sdma->bd0) {
1397                 ret = -ENOMEM;
1398                 goto out;
1399         }
1400
1401         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1402         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1403
1404         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1405         return 0;
1406 out:
1407
1408         return ret;
1409 }
1410
1411
1412 static int sdma_alloc_bd(struct sdma_desc *desc)
1413 {
1414         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1415         struct sdma_engine *sdma = desc->sdmac->sdma;
1416         int ret = 0;
1417
1418         if (sdma->iram_pool)
1419                 desc->bd = gen_pool_dma_alloc(sdma->iram_pool, bd_size, &desc->bd_phys);
1420         else
1421                 desc->bd = dma_alloc_coherent(sdma->dev, bd_size, &desc->bd_phys, GFP_NOWAIT);
1422
1423         if (!desc->bd) {
1424                 ret = -ENOMEM;
1425                 goto out;
1426         }
1427 out:
1428         return ret;
1429 }
1430
1431 static void sdma_free_bd(struct sdma_desc *desc)
1432 {
1433         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1434         struct sdma_engine *sdma = desc->sdmac->sdma;
1435
1436         if (sdma->iram_pool)
1437                 gen_pool_free(sdma->iram_pool, (unsigned long)desc->bd, bd_size);
1438         else
1439                 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, desc->bd_phys);
1440 }
1441
1442 static void sdma_desc_free(struct virt_dma_desc *vd)
1443 {
1444         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1445
1446         sdma_free_bd(desc);
1447         kfree(desc);
1448 }
1449
1450 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1451 {
1452         struct sdma_channel *sdmac = to_sdma_chan(chan);
1453         struct imx_dma_data *data = chan->private;
1454         struct imx_dma_data mem_data;
1455         int prio, ret;
1456
1457         /*
1458          * MEMCPY may never setup chan->private by filter function such as
1459          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1460          * Please note in any other slave case, you have to setup chan->private
1461          * with 'struct imx_dma_data' in your own filter function if you want to
1462          * request dma channel by dma_request_channel() rather than
1463          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1464          * to warn you to correct your filter function.
1465          */
1466         if (!data) {
1467                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1468                 mem_data.priority = 2;
1469                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1470                 mem_data.dma_request = 0;
1471                 mem_data.dma_request2 = 0;
1472                 data = &mem_data;
1473
1474                 ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1475                 if (ret)
1476                         return ret;
1477         }
1478
1479         switch (data->priority) {
1480         case DMA_PRIO_HIGH:
1481                 prio = 3;
1482                 break;
1483         case DMA_PRIO_MEDIUM:
1484                 prio = 2;
1485                 break;
1486         case DMA_PRIO_LOW:
1487         default:
1488                 prio = 1;
1489                 break;
1490         }
1491
1492         sdmac->peripheral_type = data->peripheral_type;
1493         sdmac->event_id0 = data->dma_request;
1494         sdmac->event_id1 = data->dma_request2;
1495
1496         ret = clk_enable(sdmac->sdma->clk_ipg);
1497         if (ret)
1498                 return ret;
1499         ret = clk_enable(sdmac->sdma->clk_ahb);
1500         if (ret)
1501                 goto disable_clk_ipg;
1502
1503         ret = sdma_set_channel_priority(sdmac, prio);
1504         if (ret)
1505                 goto disable_clk_ahb;
1506
1507         return 0;
1508
1509 disable_clk_ahb:
1510         clk_disable(sdmac->sdma->clk_ahb);
1511 disable_clk_ipg:
1512         clk_disable(sdmac->sdma->clk_ipg);
1513         return ret;
1514 }
1515
1516 static void sdma_free_chan_resources(struct dma_chan *chan)
1517 {
1518         struct sdma_channel *sdmac = to_sdma_chan(chan);
1519         struct sdma_engine *sdma = sdmac->sdma;
1520
1521         sdma_terminate_all(chan);
1522
1523         sdma_channel_synchronize(chan);
1524
1525         sdma_event_disable(sdmac, sdmac->event_id0);
1526         if (sdmac->event_id1)
1527                 sdma_event_disable(sdmac, sdmac->event_id1);
1528
1529         sdmac->event_id0 = 0;
1530         sdmac->event_id1 = 0;
1531
1532         sdma_set_channel_priority(sdmac, 0);
1533
1534         clk_disable(sdma->clk_ipg);
1535         clk_disable(sdma->clk_ahb);
1536 }
1537
1538 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1539                                 enum dma_transfer_direction direction, u32 bds)
1540 {
1541         struct sdma_desc *desc;
1542
1543         if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1544                 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1545                 goto err_out;
1546         }
1547
1548         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1549         if (!desc)
1550                 goto err_out;
1551
1552         sdmac->status = DMA_IN_PROGRESS;
1553         sdmac->direction = direction;
1554         sdmac->flags = 0;
1555
1556         desc->chn_count = 0;
1557         desc->chn_real_count = 0;
1558         desc->buf_tail = 0;
1559         desc->buf_ptail = 0;
1560         desc->sdmac = sdmac;
1561         desc->num_bd = bds;
1562
1563         if (bds && sdma_alloc_bd(desc))
1564                 goto err_desc_out;
1565
1566         /* No slave_config called in MEMCPY case, so do here */
1567         if (direction == DMA_MEM_TO_MEM)
1568                 sdma_config_ownership(sdmac, false, true, false);
1569
1570         if (sdma_load_context(sdmac))
1571                 goto err_bd_out;
1572
1573         return desc;
1574
1575 err_bd_out:
1576         sdma_free_bd(desc);
1577 err_desc_out:
1578         kfree(desc);
1579 err_out:
1580         return NULL;
1581 }
1582
1583 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1584                 struct dma_chan *chan, dma_addr_t dma_dst,
1585                 dma_addr_t dma_src, size_t len, unsigned long flags)
1586 {
1587         struct sdma_channel *sdmac = to_sdma_chan(chan);
1588         struct sdma_engine *sdma = sdmac->sdma;
1589         int channel = sdmac->channel;
1590         size_t count;
1591         int i = 0, param;
1592         struct sdma_buffer_descriptor *bd;
1593         struct sdma_desc *desc;
1594
1595         if (!chan || !len)
1596                 return NULL;
1597
1598         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1599                 &dma_src, &dma_dst, len, channel);
1600
1601         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1602                                         len / SDMA_BD_MAX_CNT + 1);
1603         if (!desc)
1604                 return NULL;
1605
1606         do {
1607                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1608                 bd = &desc->bd[i];
1609                 bd->buffer_addr = dma_src;
1610                 bd->ext_buffer_addr = dma_dst;
1611                 bd->mode.count = count;
1612                 desc->chn_count += count;
1613                 bd->mode.command = 0;
1614
1615                 dma_src += count;
1616                 dma_dst += count;
1617                 len -= count;
1618                 i++;
1619
1620                 param = BD_DONE | BD_EXTD | BD_CONT;
1621                 /* last bd */
1622                 if (!len) {
1623                         param |= BD_INTR;
1624                         param |= BD_LAST;
1625                         param &= ~BD_CONT;
1626                 }
1627
1628                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1629                                 i, count, bd->buffer_addr,
1630                                 param & BD_WRAP ? "wrap" : "",
1631                                 param & BD_INTR ? " intr" : "");
1632
1633                 bd->mode.status = param;
1634         } while (len);
1635
1636         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1637 }
1638
1639 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1640                 struct dma_chan *chan, struct scatterlist *sgl,
1641                 unsigned int sg_len, enum dma_transfer_direction direction,
1642                 unsigned long flags, void *context)
1643 {
1644         struct sdma_channel *sdmac = to_sdma_chan(chan);
1645         struct sdma_engine *sdma = sdmac->sdma;
1646         int i, count;
1647         int channel = sdmac->channel;
1648         struct scatterlist *sg;
1649         struct sdma_desc *desc;
1650
1651         sdma_config_write(chan, &sdmac->slave_config, direction);
1652
1653         desc = sdma_transfer_init(sdmac, direction, sg_len);
1654         if (!desc)
1655                 goto err_out;
1656
1657         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1658                         sg_len, channel);
1659
1660         for_each_sg(sgl, sg, sg_len, i) {
1661                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1662                 int param;
1663
1664                 bd->buffer_addr = sg->dma_address;
1665
1666                 count = sg_dma_len(sg);
1667
1668                 if (count > SDMA_BD_MAX_CNT) {
1669                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1670                                         channel, count, SDMA_BD_MAX_CNT);
1671                         goto err_bd_out;
1672                 }
1673
1674                 bd->mode.count = count;
1675                 desc->chn_count += count;
1676
1677                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1678                         goto err_bd_out;
1679
1680                 switch (sdmac->word_size) {
1681                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1682                         bd->mode.command = 0;
1683                         if (count & 3 || sg->dma_address & 3)
1684                                 goto err_bd_out;
1685                         break;
1686                 case DMA_SLAVE_BUSWIDTH_3_BYTES:
1687                         bd->mode.command = 3;
1688                         break;
1689                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1690                         bd->mode.command = 2;
1691                         if (count & 1 || sg->dma_address & 1)
1692                                 goto err_bd_out;
1693                         break;
1694                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1695                         bd->mode.command = 1;
1696                         break;
1697                 default:
1698                         goto err_bd_out;
1699                 }
1700
1701                 param = BD_DONE | BD_EXTD | BD_CONT;
1702
1703                 if (i + 1 == sg_len) {
1704                         param |= BD_INTR;
1705                         param |= BD_LAST;
1706                         param &= ~BD_CONT;
1707                 }
1708
1709                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1710                                 i, count, (u64)sg->dma_address,
1711                                 param & BD_WRAP ? "wrap" : "",
1712                                 param & BD_INTR ? " intr" : "");
1713
1714                 bd->mode.status = param;
1715         }
1716
1717         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1718 err_bd_out:
1719         sdma_free_bd(desc);
1720         kfree(desc);
1721 err_out:
1722         sdmac->status = DMA_ERROR;
1723         return NULL;
1724 }
1725
1726 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1727                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1728                 size_t period_len, enum dma_transfer_direction direction,
1729                 unsigned long flags)
1730 {
1731         struct sdma_channel *sdmac = to_sdma_chan(chan);
1732         struct sdma_engine *sdma = sdmac->sdma;
1733         int num_periods = 0;
1734         int channel = sdmac->channel;
1735         int i = 0, buf = 0;
1736         struct sdma_desc *desc;
1737
1738         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1739
1740         if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1741                 num_periods = buf_len / period_len;
1742
1743         sdma_config_write(chan, &sdmac->slave_config, direction);
1744
1745         desc = sdma_transfer_init(sdmac, direction, num_periods);
1746         if (!desc)
1747                 goto err_out;
1748
1749         desc->period_len = period_len;
1750
1751         sdmac->flags |= IMX_DMA_SG_LOOP;
1752
1753         if (period_len > SDMA_BD_MAX_CNT) {
1754                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1755                                 channel, period_len, SDMA_BD_MAX_CNT);
1756                 goto err_bd_out;
1757         }
1758
1759         if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1760                 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1761
1762         while (buf < buf_len) {
1763                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1764                 int param;
1765
1766                 bd->buffer_addr = dma_addr;
1767
1768                 bd->mode.count = period_len;
1769
1770                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1771                         goto err_bd_out;
1772                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1773                         bd->mode.command = 0;
1774                 else
1775                         bd->mode.command = sdmac->word_size;
1776
1777                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1778                 if (i + 1 == num_periods)
1779                         param |= BD_WRAP;
1780
1781                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1782                                 i, period_len, (u64)dma_addr,
1783                                 param & BD_WRAP ? "wrap" : "",
1784                                 param & BD_INTR ? " intr" : "");
1785
1786                 bd->mode.status = param;
1787
1788                 dma_addr += period_len;
1789                 buf += period_len;
1790
1791                 i++;
1792         }
1793
1794         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1795 err_bd_out:
1796         sdma_free_bd(desc);
1797         kfree(desc);
1798 err_out:
1799         sdmac->status = DMA_ERROR;
1800         return NULL;
1801 }
1802
1803 static int sdma_config_write(struct dma_chan *chan,
1804                        struct dma_slave_config *dmaengine_cfg,
1805                        enum dma_transfer_direction direction)
1806 {
1807         struct sdma_channel *sdmac = to_sdma_chan(chan);
1808
1809         if (direction == DMA_DEV_TO_MEM) {
1810                 sdmac->per_address = dmaengine_cfg->src_addr;
1811                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1812                         dmaengine_cfg->src_addr_width;
1813                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1814         } else if (direction == DMA_DEV_TO_DEV) {
1815                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1816                 sdmac->per_address = dmaengine_cfg->dst_addr;
1817                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1818                         SDMA_WATERMARK_LEVEL_LWML;
1819                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1820                         SDMA_WATERMARK_LEVEL_HWML;
1821                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1822         } else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1823                 sdmac->per_address = dmaengine_cfg->dst_addr;
1824                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1825                 sdmac->watermark_level = 0;
1826         } else {
1827                 sdmac->per_address = dmaengine_cfg->dst_addr;
1828                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1829                         dmaengine_cfg->dst_addr_width;
1830                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1831         }
1832         sdmac->direction = direction;
1833         return sdma_config_channel(chan);
1834 }
1835
1836 static int sdma_config(struct dma_chan *chan,
1837                        struct dma_slave_config *dmaengine_cfg)
1838 {
1839         struct sdma_channel *sdmac = to_sdma_chan(chan);
1840         struct sdma_engine *sdma = sdmac->sdma;
1841
1842         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1843
1844         if (dmaengine_cfg->peripheral_config) {
1845                 struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1846                 if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1847                         dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1848                                 dmaengine_cfg->peripheral_size,
1849                                 sizeof(struct sdma_peripheral_config));
1850                         return -EINVAL;
1851                 }
1852                 sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1853                 sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1854                 sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1855                 sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1856                 sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1857                 sdmac->sw_done = sdmacfg->sw_done;
1858         }
1859
1860         /* Set ENBLn earlier to make sure dma request triggered after that */
1861         if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1862                 return -EINVAL;
1863         sdma_event_enable(sdmac, sdmac->event_id0);
1864
1865         if (sdmac->event_id1) {
1866                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1867                         return -EINVAL;
1868                 sdma_event_enable(sdmac, sdmac->event_id1);
1869         }
1870
1871         return 0;
1872 }
1873
1874 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1875                                       dma_cookie_t cookie,
1876                                       struct dma_tx_state *txstate)
1877 {
1878         struct sdma_channel *sdmac = to_sdma_chan(chan);
1879         struct sdma_desc *desc = NULL;
1880         u32 residue;
1881         struct virt_dma_desc *vd;
1882         enum dma_status ret;
1883         unsigned long flags;
1884
1885         ret = dma_cookie_status(chan, cookie, txstate);
1886         if (ret == DMA_COMPLETE || !txstate)
1887                 return ret;
1888
1889         spin_lock_irqsave(&sdmac->vc.lock, flags);
1890
1891         vd = vchan_find_desc(&sdmac->vc, cookie);
1892         if (vd)
1893                 desc = to_sdma_desc(&vd->tx);
1894         else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1895                 desc = sdmac->desc;
1896
1897         if (desc) {
1898                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1899                         residue = (desc->num_bd - desc->buf_ptail) *
1900                                 desc->period_len - desc->chn_real_count;
1901                 else
1902                         residue = desc->chn_count - desc->chn_real_count;
1903         } else {
1904                 residue = 0;
1905         }
1906
1907         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1908
1909         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1910                          residue);
1911
1912         return sdmac->status;
1913 }
1914
1915 static void sdma_issue_pending(struct dma_chan *chan)
1916 {
1917         struct sdma_channel *sdmac = to_sdma_chan(chan);
1918         unsigned long flags;
1919
1920         spin_lock_irqsave(&sdmac->vc.lock, flags);
1921         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1922                 sdma_start_desc(sdmac);
1923         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1924 }
1925
1926 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 \
1927 (offsetof(struct sdma_script_start_addrs, v1_end) / sizeof(s32))
1928
1929 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 \
1930 (offsetof(struct sdma_script_start_addrs, v2_end) / sizeof(s32))
1931
1932 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 \
1933 (offsetof(struct sdma_script_start_addrs, v3_end) / sizeof(s32))
1934
1935 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 \
1936 (offsetof(struct sdma_script_start_addrs, v4_end) / sizeof(s32))
1937
1938 static void sdma_add_scripts(struct sdma_engine *sdma,
1939                              const struct sdma_script_start_addrs *addr)
1940 {
1941         s32 *addr_arr = (u32 *)addr;
1942         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1943         int i;
1944
1945         /* use the default firmware in ROM if missing external firmware */
1946         if (!sdma->script_number)
1947                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1948
1949         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1950                                   / sizeof(s32)) {
1951                 dev_err(sdma->dev,
1952                         "SDMA script number %d not match with firmware.\n",
1953                         sdma->script_number);
1954                 return;
1955         }
1956
1957         for (i = 0; i < sdma->script_number; i++)
1958                 if (addr_arr[i] > 0)
1959                         saddr_arr[i] = addr_arr[i];
1960
1961         /*
1962          * For compatibility with NXP internal legacy kernel before 4.19 which
1963          * is based on uart ram script and mainline kernel based on uart rom
1964          * script, both uart ram/rom scripts are present in newer sdma
1965          * firmware. Use the rom versions if they are present (V3 or newer).
1966          */
1967         if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1968                 if (addr->uart_2_mcu_rom_addr)
1969                         sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1970                 if (addr->uartsh_2_mcu_rom_addr)
1971                         sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1972         }
1973 }
1974
1975 static void sdma_load_firmware(const struct firmware *fw, void *context)
1976 {
1977         struct sdma_engine *sdma = context;
1978         const struct sdma_firmware_header *header;
1979         const struct sdma_script_start_addrs *addr;
1980         unsigned short *ram_code;
1981
1982         if (!fw) {
1983                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1984                 /* In this case we just use the ROM firmware. */
1985                 return;
1986         }
1987
1988         if (fw->size < sizeof(*header))
1989                 goto err_firmware;
1990
1991         header = (struct sdma_firmware_header *)fw->data;
1992
1993         if (header->magic != SDMA_FIRMWARE_MAGIC)
1994                 goto err_firmware;
1995         if (header->ram_code_start + header->ram_code_size > fw->size)
1996                 goto err_firmware;
1997         switch (header->version_major) {
1998         case 1:
1999                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
2000                 break;
2001         case 2:
2002                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
2003                 break;
2004         case 3:
2005                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
2006                 break;
2007         case 4:
2008                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
2009                 break;
2010         default:
2011                 dev_err(sdma->dev, "unknown firmware version\n");
2012                 goto err_firmware;
2013         }
2014
2015         addr = (void *)header + header->script_addrs_start;
2016         ram_code = (void *)header + header->ram_code_start;
2017
2018         clk_enable(sdma->clk_ipg);
2019         clk_enable(sdma->clk_ahb);
2020         /* download the RAM image for SDMA */
2021         sdma_load_script(sdma, ram_code,
2022                          header->ram_code_size,
2023                          addr->ram_code_start_addr);
2024         clk_disable(sdma->clk_ipg);
2025         clk_disable(sdma->clk_ahb);
2026
2027         sdma_add_scripts(sdma, addr);
2028
2029         sdma->fw_loaded = true;
2030
2031         dev_info(sdma->dev, "loaded firmware %d.%d\n",
2032                  header->version_major,
2033                  header->version_minor);
2034
2035 err_firmware:
2036         release_firmware(fw);
2037 }
2038
2039 #define EVENT_REMAP_CELLS 3
2040
2041 static int sdma_event_remap(struct sdma_engine *sdma)
2042 {
2043         struct device_node *np = sdma->dev->of_node;
2044         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
2045         struct property *event_remap;
2046         struct regmap *gpr;
2047         char propname[] = "fsl,sdma-event-remap";
2048         u32 reg, val, shift, num_map, i;
2049         int ret = 0;
2050
2051         if (IS_ERR(np) || !gpr_np)
2052                 goto out;
2053
2054         event_remap = of_find_property(np, propname, NULL);
2055         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2056         if (!num_map) {
2057                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
2058                 goto out;
2059         } else if (num_map % EVENT_REMAP_CELLS) {
2060                 dev_err(sdma->dev, "the property %s must modulo %d\n",
2061                                 propname, EVENT_REMAP_CELLS);
2062                 ret = -EINVAL;
2063                 goto out;
2064         }
2065
2066         gpr = syscon_node_to_regmap(gpr_np);
2067         if (IS_ERR(gpr)) {
2068                 dev_err(sdma->dev, "failed to get gpr regmap\n");
2069                 ret = PTR_ERR(gpr);
2070                 goto out;
2071         }
2072
2073         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2074                 ret = of_property_read_u32_index(np, propname, i, &reg);
2075                 if (ret) {
2076                         dev_err(sdma->dev, "failed to read property %s index %d\n",
2077                                         propname, i);
2078                         goto out;
2079                 }
2080
2081                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2082                 if (ret) {
2083                         dev_err(sdma->dev, "failed to read property %s index %d\n",
2084                                         propname, i + 1);
2085                         goto out;
2086                 }
2087
2088                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
2089                 if (ret) {
2090                         dev_err(sdma->dev, "failed to read property %s index %d\n",
2091                                         propname, i + 2);
2092                         goto out;
2093                 }
2094
2095                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2096         }
2097
2098 out:
2099         if (gpr_np)
2100                 of_node_put(gpr_np);
2101
2102         return ret;
2103 }
2104
2105 static int sdma_get_firmware(struct sdma_engine *sdma,
2106                 const char *fw_name)
2107 {
2108         int ret;
2109
2110         ret = firmware_request_nowait_nowarn(THIS_MODULE, fw_name, sdma->dev,
2111                                         GFP_KERNEL, sdma, sdma_load_firmware);
2112
2113         return ret;
2114 }
2115
2116 static int sdma_init(struct sdma_engine *sdma)
2117 {
2118         int i, ret;
2119         dma_addr_t ccb_phys;
2120         int ccbsize;
2121
2122         ret = clk_enable(sdma->clk_ipg);
2123         if (ret)
2124                 return ret;
2125         ret = clk_enable(sdma->clk_ahb);
2126         if (ret)
2127                 goto disable_clk_ipg;
2128
2129         if (sdma->drvdata->check_ratio &&
2130             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2131                 sdma->clk_ratio = 1;
2132
2133         /* Be sure SDMA has not started yet */
2134         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2135
2136         ccbsize = MAX_DMA_CHANNELS * (sizeof(struct sdma_channel_control)
2137                   + sizeof(struct sdma_context_data));
2138
2139         if (sdma->iram_pool)
2140                 sdma->channel_control = gen_pool_dma_alloc(sdma->iram_pool, ccbsize, &ccb_phys);
2141         else
2142                 sdma->channel_control = dma_alloc_coherent(sdma->dev, ccbsize, &ccb_phys,
2143                                                            GFP_KERNEL);
2144
2145         if (!sdma->channel_control) {
2146                 ret = -ENOMEM;
2147                 goto err_dma_alloc;
2148         }
2149
2150         sdma->context = (void *)sdma->channel_control +
2151                 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2152         sdma->context_phys = ccb_phys +
2153                 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2154
2155         /* disable all channels */
2156         for (i = 0; i < sdma->drvdata->num_events; i++)
2157                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2158
2159         /* All channels have priority 0 */
2160         for (i = 0; i < MAX_DMA_CHANNELS; i++)
2161                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2162
2163         ret = sdma_request_channel0(sdma);
2164         if (ret)
2165                 goto err_dma_alloc;
2166
2167         sdma_config_ownership(&sdma->channel[0], false, true, false);
2168
2169         /* Set Command Channel (Channel Zero) */
2170         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2171
2172         /* Set bits of CONFIG register but with static context switching */
2173         if (sdma->clk_ratio)
2174                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2175         else
2176                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2177
2178         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2179
2180         /* Initializes channel's priorities */
2181         sdma_set_channel_priority(&sdma->channel[0], 7);
2182
2183         clk_disable(sdma->clk_ipg);
2184         clk_disable(sdma->clk_ahb);
2185
2186         return 0;
2187
2188 err_dma_alloc:
2189         clk_disable(sdma->clk_ahb);
2190 disable_clk_ipg:
2191         clk_disable(sdma->clk_ipg);
2192         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2193         return ret;
2194 }
2195
2196 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2197 {
2198         struct sdma_channel *sdmac = to_sdma_chan(chan);
2199         struct imx_dma_data *data = fn_param;
2200
2201         if (!imx_dma_is_general_purpose(chan))
2202                 return false;
2203
2204         sdmac->data = *data;
2205         chan->private = &sdmac->data;
2206
2207         return true;
2208 }
2209
2210 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2211                                    struct of_dma *ofdma)
2212 {
2213         struct sdma_engine *sdma = ofdma->of_dma_data;
2214         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2215         struct imx_dma_data data;
2216
2217         if (dma_spec->args_count != 3)
2218                 return NULL;
2219
2220         data.dma_request = dma_spec->args[0];
2221         data.peripheral_type = dma_spec->args[1];
2222         data.priority = dma_spec->args[2];
2223         /*
2224          * init dma_request2 to zero, which is not used by the dts.
2225          * For P2P, dma_request2 is init from dma_request_channel(),
2226          * chan->private will point to the imx_dma_data, and in
2227          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2228          * be set to sdmac->event_id1.
2229          */
2230         data.dma_request2 = 0;
2231
2232         return __dma_request_channel(&mask, sdma_filter_fn, &data,
2233                                      ofdma->of_node);
2234 }
2235
2236 static int sdma_probe(struct platform_device *pdev)
2237 {
2238         struct device_node *np = pdev->dev.of_node;
2239         struct device_node *spba_bus;
2240         const char *fw_name;
2241         int ret;
2242         int irq;
2243         struct resource spba_res;
2244         int i;
2245         struct sdma_engine *sdma;
2246         s32 *saddr_arr;
2247
2248         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2249         if (ret)
2250                 return ret;
2251
2252         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2253         if (!sdma)
2254                 return -ENOMEM;
2255
2256         spin_lock_init(&sdma->channel_0_lock);
2257
2258         sdma->dev = &pdev->dev;
2259         sdma->drvdata = of_device_get_match_data(sdma->dev);
2260
2261         irq = platform_get_irq(pdev, 0);
2262         if (irq < 0)
2263                 return irq;
2264
2265         sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2266         if (IS_ERR(sdma->regs))
2267                 return PTR_ERR(sdma->regs);
2268
2269         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2270         if (IS_ERR(sdma->clk_ipg))
2271                 return PTR_ERR(sdma->clk_ipg);
2272
2273         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2274         if (IS_ERR(sdma->clk_ahb))
2275                 return PTR_ERR(sdma->clk_ahb);
2276
2277         ret = clk_prepare(sdma->clk_ipg);
2278         if (ret)
2279                 return ret;
2280
2281         ret = clk_prepare(sdma->clk_ahb);
2282         if (ret)
2283                 goto err_clk;
2284
2285         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2286                                 dev_name(&pdev->dev), sdma);
2287         if (ret)
2288                 goto err_irq;
2289
2290         sdma->irq = irq;
2291
2292         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2293         if (!sdma->script_addrs) {
2294                 ret = -ENOMEM;
2295                 goto err_irq;
2296         }
2297
2298         /* initially no scripts available */
2299         saddr_arr = (s32 *)sdma->script_addrs;
2300         for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2301                 saddr_arr[i] = -EINVAL;
2302
2303         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2304         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2305         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2306         dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2307
2308         INIT_LIST_HEAD(&sdma->dma_device.channels);
2309         /* Initialize channel parameters */
2310         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2311                 struct sdma_channel *sdmac = &sdma->channel[i];
2312
2313                 sdmac->sdma = sdma;
2314
2315                 sdmac->channel = i;
2316                 sdmac->vc.desc_free = sdma_desc_free;
2317                 INIT_LIST_HEAD(&sdmac->terminated);
2318                 INIT_WORK(&sdmac->terminate_worker,
2319                                 sdma_channel_terminate_work);
2320                 /*
2321                  * Add the channel to the DMAC list. Do not add channel 0 though
2322                  * because we need it internally in the SDMA driver. This also means
2323                  * that channel 0 in dmaengine counting matches sdma channel 1.
2324                  */
2325                 if (i)
2326                         vchan_init(&sdmac->vc, &sdma->dma_device);
2327         }
2328
2329         if (np) {
2330                 sdma->iram_pool = of_gen_pool_get(np, "iram", 0);
2331                 if (sdma->iram_pool)
2332                         dev_info(&pdev->dev, "alloc bd from iram.\n");
2333         }
2334
2335         ret = sdma_init(sdma);
2336         if (ret)
2337                 goto err_init;
2338
2339         ret = sdma_event_remap(sdma);
2340         if (ret)
2341                 goto err_init;
2342
2343         if (sdma->drvdata->script_addrs)
2344                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2345
2346         sdma->dma_device.dev = &pdev->dev;
2347
2348         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2349         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2350         sdma->dma_device.device_tx_status = sdma_tx_status;
2351         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2352         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2353         sdma->dma_device.device_config = sdma_config;
2354         sdma->dma_device.device_terminate_all = sdma_terminate_all;
2355         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2356         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2357         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2358         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2359         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2360         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2361         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2362         sdma->dma_device.copy_align = 2;
2363         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2364
2365         platform_set_drvdata(pdev, sdma);
2366
2367         ret = dma_async_device_register(&sdma->dma_device);
2368         if (ret) {
2369                 dev_err(&pdev->dev, "unable to register\n");
2370                 goto err_init;
2371         }
2372
2373         if (np) {
2374                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2375                 if (ret) {
2376                         dev_err(&pdev->dev, "failed to register controller\n");
2377                         goto err_register;
2378                 }
2379
2380                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2381                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2382                 if (!ret) {
2383                         sdma->spba_start_addr = spba_res.start;
2384                         sdma->spba_end_addr = spba_res.end;
2385                 }
2386                 of_node_put(spba_bus);
2387         }
2388
2389         /*
2390          * Because that device tree does not encode ROM script address,
2391          * the RAM script in firmware is mandatory for device tree
2392          * probe, otherwise it fails.
2393          */
2394         ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2395                                       &fw_name);
2396         if (ret) {
2397                 dev_warn(&pdev->dev, "failed to get firmware name\n");
2398         } else {
2399                 ret = sdma_get_firmware(sdma, fw_name);
2400                 if (ret)
2401                         dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2402         }
2403
2404         return 0;
2405
2406 err_register:
2407         dma_async_device_unregister(&sdma->dma_device);
2408 err_init:
2409         kfree(sdma->script_addrs);
2410 err_irq:
2411         clk_unprepare(sdma->clk_ahb);
2412 err_clk:
2413         clk_unprepare(sdma->clk_ipg);
2414         return ret;
2415 }
2416
2417 static void sdma_remove(struct platform_device *pdev)
2418 {
2419         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2420         int i;
2421
2422         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2423         dma_async_device_unregister(&sdma->dma_device);
2424         kfree(sdma->script_addrs);
2425         clk_unprepare(sdma->clk_ahb);
2426         clk_unprepare(sdma->clk_ipg);
2427         /* Kill the tasklet */
2428         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2429                 struct sdma_channel *sdmac = &sdma->channel[i];
2430
2431                 tasklet_kill(&sdmac->vc.task);
2432                 sdma_free_chan_resources(&sdmac->vc.chan);
2433         }
2434
2435         platform_set_drvdata(pdev, NULL);
2436 }
2437
2438 static struct platform_driver sdma_driver = {
2439         .driver         = {
2440                 .name   = "imx-sdma",
2441                 .of_match_table = sdma_dt_ids,
2442         },
2443         .remove         = sdma_remove,
2444         .probe          = sdma_probe,
2445 };
2446
2447 module_platform_driver(sdma_driver);
2448
2449 MODULE_AUTHOR("Sascha Hauer, Pengutronix <[email protected]>");
2450 MODULE_DESCRIPTION("i.MX SDMA driver");
2451 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2452 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2453 #endif
2454 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2455 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2456 #endif
2457 MODULE_LICENSE("GPL");
This page took 0.167468 seconds and 4 git commands to generate.