]> Git Repo - J-linux.git/blob - drivers/dma/dma-axi-dmac.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / dma / dma-axi-dmac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Analog Devices AXI-DMAC core
4  *
5  * Copyright 2013-2019 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <[email protected]>
7  */
8
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_address.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/slab.h>
25 #include <linux/fpga/adi-axi-common.h>
26
27 #include <dt-bindings/dma/axi-dmac.h>
28
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31
32 /*
33  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
34  * various instantiation parameters which decided the exact feature set support
35  * by the core.
36  *
37  * Each channel of the core has a source interface and a destination interface.
38  * The number of channels and the type of the channel interfaces is selected at
39  * configuration time. A interface can either be a connected to a central memory
40  * interconnect, which allows access to system memory, or it can be connected to
41  * a dedicated bus which is directly connected to a data port on a peripheral.
42  * Given that those are configuration options of the core that are selected when
43  * it is instantiated this means that they can not be changed by software at
44  * runtime. By extension this means that each channel is uni-directional. It can
45  * either be device to memory or memory to device, but not both. Also since the
46  * device side is a dedicated data bus only connected to a single peripheral
47  * there is no address than can or needs to be configured for the device side.
48  */
49
50 #define AXI_DMAC_REG_INTERFACE_DESC     0x10
51 #define   AXI_DMAC_DMA_SRC_TYPE_MSK     GENMASK(13, 12)
52 #define   AXI_DMAC_DMA_SRC_TYPE_GET(x)  FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
53 #define   AXI_DMAC_DMA_SRC_WIDTH_MSK    GENMASK(11, 8)
54 #define   AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
55 #define   AXI_DMAC_DMA_DST_TYPE_MSK     GENMASK(5, 4)
56 #define   AXI_DMAC_DMA_DST_TYPE_GET(x)  FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
57 #define   AXI_DMAC_DMA_DST_WIDTH_MSK    GENMASK(3, 0)
58 #define   AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
59 #define AXI_DMAC_REG_COHERENCY_DESC     0x14
60 #define   AXI_DMAC_DST_COHERENT_MSK     BIT(0)
61 #define   AXI_DMAC_DST_COHERENT_GET(x)  FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)
62
63 #define AXI_DMAC_REG_IRQ_MASK           0x80
64 #define AXI_DMAC_REG_IRQ_PENDING        0x84
65 #define AXI_DMAC_REG_IRQ_SOURCE         0x88
66
67 #define AXI_DMAC_REG_CTRL               0x400
68 #define AXI_DMAC_REG_TRANSFER_ID        0x404
69 #define AXI_DMAC_REG_START_TRANSFER     0x408
70 #define AXI_DMAC_REG_FLAGS              0x40c
71 #define AXI_DMAC_REG_DEST_ADDRESS       0x410
72 #define AXI_DMAC_REG_SRC_ADDRESS        0x414
73 #define AXI_DMAC_REG_X_LENGTH           0x418
74 #define AXI_DMAC_REG_Y_LENGTH           0x41c
75 #define AXI_DMAC_REG_DEST_STRIDE        0x420
76 #define AXI_DMAC_REG_SRC_STRIDE         0x424
77 #define AXI_DMAC_REG_TRANSFER_DONE      0x428
78 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
79 #define AXI_DMAC_REG_STATUS             0x430
80 #define AXI_DMAC_REG_CURRENT_SRC_ADDR   0x434
81 #define AXI_DMAC_REG_CURRENT_DEST_ADDR  0x438
82 #define AXI_DMAC_REG_PARTIAL_XFER_LEN   0x44c
83 #define AXI_DMAC_REG_PARTIAL_XFER_ID    0x450
84 #define AXI_DMAC_REG_CURRENT_SG_ID      0x454
85 #define AXI_DMAC_REG_SG_ADDRESS         0x47c
86 #define AXI_DMAC_REG_SG_ADDRESS_HIGH    0x4bc
87
88 #define AXI_DMAC_CTRL_ENABLE            BIT(0)
89 #define AXI_DMAC_CTRL_PAUSE             BIT(1)
90 #define AXI_DMAC_CTRL_ENABLE_SG         BIT(2)
91
92 #define AXI_DMAC_IRQ_SOT                BIT(0)
93 #define AXI_DMAC_IRQ_EOT                BIT(1)
94
95 #define AXI_DMAC_FLAG_CYCLIC            BIT(0)
96 #define AXI_DMAC_FLAG_LAST              BIT(1)
97 #define AXI_DMAC_FLAG_PARTIAL_REPORT    BIT(2)
98
99 #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
100
101 /* The maximum ID allocated by the hardware is 31 */
102 #define AXI_DMAC_SG_UNUSED 32U
103
104 /* Flags for axi_dmac_hw_desc.flags */
105 #define AXI_DMAC_HW_FLAG_LAST           BIT(0)
106 #define AXI_DMAC_HW_FLAG_IRQ            BIT(1)
107
108 struct axi_dmac_hw_desc {
109         u32 flags;
110         u32 id;
111         u64 dest_addr;
112         u64 src_addr;
113         u64 next_sg_addr;
114         u32 y_len;
115         u32 x_len;
116         u32 src_stride;
117         u32 dst_stride;
118         u64 __pad[2];
119 };
120
121 struct axi_dmac_sg {
122         unsigned int partial_len;
123         bool schedule_when_free;
124
125         struct axi_dmac_hw_desc *hw;
126         dma_addr_t hw_phys;
127 };
128
129 struct axi_dmac_desc {
130         struct virt_dma_desc vdesc;
131         struct axi_dmac_chan *chan;
132
133         bool cyclic;
134         bool have_partial_xfer;
135
136         unsigned int num_submitted;
137         unsigned int num_completed;
138         unsigned int num_sgs;
139         struct axi_dmac_sg sg[] __counted_by(num_sgs);
140 };
141
142 struct axi_dmac_chan {
143         struct virt_dma_chan vchan;
144
145         struct axi_dmac_desc *next_desc;
146         struct list_head active_descs;
147         enum dma_transfer_direction direction;
148
149         unsigned int src_width;
150         unsigned int dest_width;
151         unsigned int src_type;
152         unsigned int dest_type;
153
154         unsigned int max_length;
155         unsigned int address_align_mask;
156         unsigned int length_align_mask;
157
158         bool hw_partial_xfer;
159         bool hw_cyclic;
160         bool hw_2d;
161         bool hw_sg;
162 };
163
164 struct axi_dmac {
165         void __iomem *base;
166         int irq;
167
168         struct clk *clk;
169
170         struct dma_device dma_dev;
171         struct axi_dmac_chan chan;
172 };
173
174 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
175 {
176         return container_of(chan->vchan.chan.device, struct axi_dmac,
177                 dma_dev);
178 }
179
180 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
181 {
182         return container_of(c, struct axi_dmac_chan, vchan.chan);
183 }
184
185 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
186 {
187         return container_of(vdesc, struct axi_dmac_desc, vdesc);
188 }
189
190 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
191         unsigned int val)
192 {
193         writel(val, axi_dmac->base + reg);
194 }
195
196 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
197 {
198         return readl(axi_dmac->base + reg);
199 }
200
201 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
202 {
203         return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
204 }
205
206 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
207 {
208         return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
209 }
210
211 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
212 {
213         if (len == 0)
214                 return false;
215         if ((len & chan->length_align_mask) != 0) /* Not aligned */
216                 return false;
217         return true;
218 }
219
220 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
221 {
222         if ((addr & chan->address_align_mask) != 0) /* Not aligned */
223                 return false;
224         return true;
225 }
226
227 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
228 {
229         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
230         struct virt_dma_desc *vdesc;
231         struct axi_dmac_desc *desc;
232         struct axi_dmac_sg *sg;
233         unsigned int flags = 0;
234         unsigned int val;
235
236         if (!chan->hw_sg) {
237                 val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
238                 if (val) /* Queue is full, wait for the next SOT IRQ */
239                         return;
240         }
241
242         desc = chan->next_desc;
243
244         if (!desc) {
245                 vdesc = vchan_next_desc(&chan->vchan);
246                 if (!vdesc)
247                         return;
248                 list_move_tail(&vdesc->node, &chan->active_descs);
249                 desc = to_axi_dmac_desc(vdesc);
250         }
251         sg = &desc->sg[desc->num_submitted];
252
253         /* Already queued in cyclic mode. Wait for it to finish */
254         if (sg->hw->id != AXI_DMAC_SG_UNUSED) {
255                 sg->schedule_when_free = true;
256                 return;
257         }
258
259         if (chan->hw_sg) {
260                 chan->next_desc = NULL;
261         } else if (++desc->num_submitted == desc->num_sgs ||
262                    desc->have_partial_xfer) {
263                 if (desc->cyclic)
264                         desc->num_submitted = 0; /* Start again */
265                 else
266                         chan->next_desc = NULL;
267                 flags |= AXI_DMAC_FLAG_LAST;
268         } else {
269                 chan->next_desc = desc;
270         }
271
272         sg->hw->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
273
274         if (!chan->hw_sg) {
275                 if (axi_dmac_dest_is_mem(chan)) {
276                         axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->hw->dest_addr);
277                         axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->hw->dst_stride);
278                 }
279
280                 if (axi_dmac_src_is_mem(chan)) {
281                         axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->hw->src_addr);
282                         axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->hw->src_stride);
283                 }
284         }
285
286         /*
287          * If the hardware supports cyclic transfers and there is no callback to
288          * call, enable hw cyclic mode to avoid unnecessary interrupts.
289          */
290         if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback) {
291                 if (chan->hw_sg)
292                         desc->sg[desc->num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_IRQ;
293                 else if (desc->num_sgs == 1)
294                         flags |= AXI_DMAC_FLAG_CYCLIC;
295         }
296
297         if (chan->hw_partial_xfer)
298                 flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
299
300         if (chan->hw_sg) {
301                 axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, (u32)sg->hw_phys);
302                 axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS_HIGH,
303                                (u64)sg->hw_phys >> 32);
304         } else {
305                 axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->hw->x_len);
306                 axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->hw->y_len);
307         }
308         axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
309         axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
310 }
311
312 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
313 {
314         return list_first_entry_or_null(&chan->active_descs,
315                 struct axi_dmac_desc, vdesc.node);
316 }
317
318 static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
319         struct axi_dmac_sg *sg)
320 {
321         if (chan->hw_2d)
322                 return (sg->hw->x_len + 1) * (sg->hw->y_len + 1);
323         else
324                 return (sg->hw->x_len + 1);
325 }
326
327 static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
328 {
329         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
330         struct axi_dmac_desc *desc;
331         struct axi_dmac_sg *sg;
332         u32 xfer_done, len, id, i;
333         bool found_sg;
334
335         do {
336                 len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
337                 id  = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
338
339                 found_sg = false;
340                 list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
341                         for (i = 0; i < desc->num_sgs; i++) {
342                                 sg = &desc->sg[i];
343                                 if (sg->hw->id == AXI_DMAC_SG_UNUSED)
344                                         continue;
345                                 if (sg->hw->id == id) {
346                                         desc->have_partial_xfer = true;
347                                         sg->partial_len = len;
348                                         found_sg = true;
349                                         break;
350                                 }
351                         }
352                         if (found_sg)
353                                 break;
354                 }
355
356                 if (found_sg) {
357                         dev_dbg(dmac->dma_dev.dev,
358                                 "Found partial segment id=%u, len=%u\n",
359                                 id, len);
360                 } else {
361                         dev_warn(dmac->dma_dev.dev,
362                                  "Not found partial segment id=%u, len=%u\n",
363                                  id, len);
364                 }
365
366                 /* Check if we have any more partial transfers */
367                 xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
368                 xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
369
370         } while (!xfer_done);
371 }
372
373 static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
374         struct axi_dmac_desc *active)
375 {
376         struct dmaengine_result *rslt = &active->vdesc.tx_result;
377         unsigned int start = active->num_completed - 1;
378         struct axi_dmac_sg *sg;
379         unsigned int i, total;
380
381         rslt->result = DMA_TRANS_NOERROR;
382         rslt->residue = 0;
383
384         if (chan->hw_sg)
385                 return;
386
387         /*
388          * We get here if the last completed segment is partial, which
389          * means we can compute the residue from that segment onwards
390          */
391         for (i = start; i < active->num_sgs; i++) {
392                 sg = &active->sg[i];
393                 total = axi_dmac_total_sg_bytes(chan, sg);
394                 rslt->residue += (total - sg->partial_len);
395         }
396 }
397
398 static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
399         unsigned int completed_transfers)
400 {
401         struct axi_dmac_desc *active;
402         struct axi_dmac_sg *sg;
403         bool start_next = false;
404
405         active = axi_dmac_active_desc(chan);
406         if (!active)
407                 return false;
408
409         if (chan->hw_partial_xfer &&
410             (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
411                 axi_dmac_dequeue_partial_xfers(chan);
412
413         if (chan->hw_sg) {
414                 if (active->cyclic) {
415                         vchan_cyclic_callback(&active->vdesc);
416                 } else {
417                         list_del(&active->vdesc.node);
418                         vchan_cookie_complete(&active->vdesc);
419                         active = axi_dmac_active_desc(chan);
420                         start_next = !!active;
421                 }
422         } else {
423                 do {
424                         sg = &active->sg[active->num_completed];
425                         if (sg->hw->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
426                                 break;
427                         if (!(BIT(sg->hw->id) & completed_transfers))
428                                 break;
429                         active->num_completed++;
430                         sg->hw->id = AXI_DMAC_SG_UNUSED;
431                         if (sg->schedule_when_free) {
432                                 sg->schedule_when_free = false;
433                                 start_next = true;
434                         }
435
436                         if (sg->partial_len)
437                                 axi_dmac_compute_residue(chan, active);
438
439                         if (active->cyclic)
440                                 vchan_cyclic_callback(&active->vdesc);
441
442                         if (active->num_completed == active->num_sgs ||
443                             sg->partial_len) {
444                                 if (active->cyclic) {
445                                         active->num_completed = 0; /* wrap around */
446                                 } else {
447                                         list_del(&active->vdesc.node);
448                                         vchan_cookie_complete(&active->vdesc);
449                                         active = axi_dmac_active_desc(chan);
450                                 }
451                         }
452                 } while (active);
453         }
454
455         return start_next;
456 }
457
458 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
459 {
460         struct axi_dmac *dmac = devid;
461         unsigned int pending;
462         bool start_next = false;
463
464         pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
465         if (!pending)
466                 return IRQ_NONE;
467
468         axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
469
470         spin_lock(&dmac->chan.vchan.lock);
471         /* One or more transfers have finished */
472         if (pending & AXI_DMAC_IRQ_EOT) {
473                 unsigned int completed;
474
475                 completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
476                 start_next = axi_dmac_transfer_done(&dmac->chan, completed);
477         }
478         /* Space has become available in the descriptor queue */
479         if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
480                 axi_dmac_start_transfer(&dmac->chan);
481         spin_unlock(&dmac->chan.vchan.lock);
482
483         return IRQ_HANDLED;
484 }
485
486 static int axi_dmac_terminate_all(struct dma_chan *c)
487 {
488         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
489         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
490         unsigned long flags;
491         LIST_HEAD(head);
492
493         spin_lock_irqsave(&chan->vchan.lock, flags);
494         axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
495         chan->next_desc = NULL;
496         vchan_get_all_descriptors(&chan->vchan, &head);
497         list_splice_tail_init(&chan->active_descs, &head);
498         spin_unlock_irqrestore(&chan->vchan.lock, flags);
499
500         vchan_dma_desc_free_list(&chan->vchan, &head);
501
502         return 0;
503 }
504
505 static void axi_dmac_synchronize(struct dma_chan *c)
506 {
507         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
508
509         vchan_synchronize(&chan->vchan);
510 }
511
512 static void axi_dmac_issue_pending(struct dma_chan *c)
513 {
514         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
515         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
516         unsigned long flags;
517         u32 ctrl = AXI_DMAC_CTRL_ENABLE;
518
519         if (chan->hw_sg)
520                 ctrl |= AXI_DMAC_CTRL_ENABLE_SG;
521
522         axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, ctrl);
523
524         spin_lock_irqsave(&chan->vchan.lock, flags);
525         if (vchan_issue_pending(&chan->vchan))
526                 axi_dmac_start_transfer(chan);
527         spin_unlock_irqrestore(&chan->vchan.lock, flags);
528 }
529
530 static struct axi_dmac_desc *
531 axi_dmac_alloc_desc(struct axi_dmac_chan *chan, unsigned int num_sgs)
532 {
533         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
534         struct device *dev = dmac->dma_dev.dev;
535         struct axi_dmac_hw_desc *hws;
536         struct axi_dmac_desc *desc;
537         dma_addr_t hw_phys;
538         unsigned int i;
539
540         desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
541         if (!desc)
542                 return NULL;
543         desc->num_sgs = num_sgs;
544         desc->chan = chan;
545
546         hws = dma_alloc_coherent(dev, PAGE_ALIGN(num_sgs * sizeof(*hws)),
547                                 &hw_phys, GFP_ATOMIC);
548         if (!hws) {
549                 kfree(desc);
550                 return NULL;
551         }
552
553         for (i = 0; i < num_sgs; i++) {
554                 desc->sg[i].hw = &hws[i];
555                 desc->sg[i].hw_phys = hw_phys + i * sizeof(*hws);
556
557                 hws[i].id = AXI_DMAC_SG_UNUSED;
558                 hws[i].flags = 0;
559
560                 /* Link hardware descriptors */
561                 hws[i].next_sg_addr = hw_phys + (i + 1) * sizeof(*hws);
562         }
563
564         /* The last hardware descriptor will trigger an interrupt */
565         desc->sg[num_sgs - 1].hw->flags = AXI_DMAC_HW_FLAG_LAST | AXI_DMAC_HW_FLAG_IRQ;
566
567         return desc;
568 }
569
570 static void axi_dmac_free_desc(struct axi_dmac_desc *desc)
571 {
572         struct axi_dmac *dmac = chan_to_axi_dmac(desc->chan);
573         struct device *dev = dmac->dma_dev.dev;
574         struct axi_dmac_hw_desc *hw = desc->sg[0].hw;
575         dma_addr_t hw_phys = desc->sg[0].hw_phys;
576
577         dma_free_coherent(dev, PAGE_ALIGN(desc->num_sgs * sizeof(*hw)),
578                           hw, hw_phys);
579         kfree(desc);
580 }
581
582 static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
583         enum dma_transfer_direction direction, dma_addr_t addr,
584         unsigned int num_periods, unsigned int period_len,
585         struct axi_dmac_sg *sg)
586 {
587         unsigned int num_segments, i;
588         unsigned int segment_size;
589         unsigned int len;
590
591         /* Split into multiple equally sized segments if necessary */
592         num_segments = DIV_ROUND_UP(period_len, chan->max_length);
593         segment_size = DIV_ROUND_UP(period_len, num_segments);
594         /* Take care of alignment */
595         segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
596
597         for (i = 0; i < num_periods; i++) {
598                 for (len = period_len; len > segment_size; sg++) {
599                         if (direction == DMA_DEV_TO_MEM)
600                                 sg->hw->dest_addr = addr;
601                         else
602                                 sg->hw->src_addr = addr;
603                         sg->hw->x_len = segment_size - 1;
604                         sg->hw->y_len = 0;
605                         sg->hw->flags = 0;
606                         addr += segment_size;
607                         len -= segment_size;
608                 }
609
610                 if (direction == DMA_DEV_TO_MEM)
611                         sg->hw->dest_addr = addr;
612                 else
613                         sg->hw->src_addr = addr;
614                 sg->hw->x_len = len - 1;
615                 sg->hw->y_len = 0;
616                 sg++;
617                 addr += len;
618         }
619
620         return sg;
621 }
622
623 static struct dma_async_tx_descriptor *
624 axi_dmac_prep_peripheral_dma_vec(struct dma_chan *c, const struct dma_vec *vecs,
625                                  size_t nb, enum dma_transfer_direction direction,
626                                  unsigned long flags)
627 {
628         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
629         struct axi_dmac_desc *desc;
630         unsigned int num_sgs = 0;
631         struct axi_dmac_sg *dsg;
632         size_t i;
633
634         if (direction != chan->direction)
635                 return NULL;
636
637         for (i = 0; i < nb; i++)
638                 num_sgs += DIV_ROUND_UP(vecs[i].len, chan->max_length);
639
640         desc = axi_dmac_alloc_desc(chan, num_sgs);
641         if (!desc)
642                 return NULL;
643
644         dsg = desc->sg;
645
646         for (i = 0; i < nb; i++) {
647                 if (!axi_dmac_check_addr(chan, vecs[i].addr) ||
648                     !axi_dmac_check_len(chan, vecs[i].len)) {
649                         kfree(desc);
650                         return NULL;
651                 }
652
653                 dsg = axi_dmac_fill_linear_sg(chan, direction, vecs[i].addr, 1,
654                                               vecs[i].len, dsg);
655         }
656
657         desc->cyclic = false;
658
659         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
660 }
661
662 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
663         struct dma_chan *c, struct scatterlist *sgl,
664         unsigned int sg_len, enum dma_transfer_direction direction,
665         unsigned long flags, void *context)
666 {
667         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
668         struct axi_dmac_desc *desc;
669         struct axi_dmac_sg *dsg;
670         struct scatterlist *sg;
671         unsigned int num_sgs;
672         unsigned int i;
673
674         if (direction != chan->direction)
675                 return NULL;
676
677         num_sgs = 0;
678         for_each_sg(sgl, sg, sg_len, i)
679                 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
680
681         desc = axi_dmac_alloc_desc(chan, num_sgs);
682         if (!desc)
683                 return NULL;
684
685         dsg = desc->sg;
686
687         for_each_sg(sgl, sg, sg_len, i) {
688                 if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
689                     !axi_dmac_check_len(chan, sg_dma_len(sg))) {
690                         axi_dmac_free_desc(desc);
691                         return NULL;
692                 }
693
694                 dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
695                         sg_dma_len(sg), dsg);
696         }
697
698         desc->cyclic = false;
699
700         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
701 }
702
703 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
704         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
705         size_t period_len, enum dma_transfer_direction direction,
706         unsigned long flags)
707 {
708         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
709         struct axi_dmac_desc *desc;
710         unsigned int num_periods, num_segments, num_sgs;
711
712         if (direction != chan->direction)
713                 return NULL;
714
715         if (!axi_dmac_check_len(chan, buf_len) ||
716             !axi_dmac_check_addr(chan, buf_addr))
717                 return NULL;
718
719         if (period_len == 0 || buf_len % period_len)
720                 return NULL;
721
722         num_periods = buf_len / period_len;
723         num_segments = DIV_ROUND_UP(period_len, chan->max_length);
724         num_sgs = num_periods * num_segments;
725
726         desc = axi_dmac_alloc_desc(chan, num_sgs);
727         if (!desc)
728                 return NULL;
729
730         /* Chain the last descriptor to the first, and remove its "last" flag */
731         desc->sg[num_sgs - 1].hw->next_sg_addr = desc->sg[0].hw_phys;
732         desc->sg[num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_LAST;
733
734         axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
735                 period_len, desc->sg);
736
737         desc->cyclic = true;
738
739         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
740 }
741
742 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
743         struct dma_chan *c, struct dma_interleaved_template *xt,
744         unsigned long flags)
745 {
746         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
747         struct axi_dmac_desc *desc;
748         size_t dst_icg, src_icg;
749
750         if (xt->frame_size != 1)
751                 return NULL;
752
753         if (xt->dir != chan->direction)
754                 return NULL;
755
756         if (axi_dmac_src_is_mem(chan)) {
757                 if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
758                         return NULL;
759         }
760
761         if (axi_dmac_dest_is_mem(chan)) {
762                 if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
763                         return NULL;
764         }
765
766         dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
767         src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
768
769         if (chan->hw_2d) {
770                 if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
771                     xt->numf == 0)
772                         return NULL;
773                 if (xt->sgl[0].size + dst_icg > chan->max_length ||
774                     xt->sgl[0].size + src_icg > chan->max_length)
775                         return NULL;
776         } else {
777                 if (dst_icg != 0 || src_icg != 0)
778                         return NULL;
779                 if (chan->max_length / xt->sgl[0].size < xt->numf)
780                         return NULL;
781                 if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
782                         return NULL;
783         }
784
785         desc = axi_dmac_alloc_desc(chan, 1);
786         if (!desc)
787                 return NULL;
788
789         if (axi_dmac_src_is_mem(chan)) {
790                 desc->sg[0].hw->src_addr = xt->src_start;
791                 desc->sg[0].hw->src_stride = xt->sgl[0].size + src_icg;
792         }
793
794         if (axi_dmac_dest_is_mem(chan)) {
795                 desc->sg[0].hw->dest_addr = xt->dst_start;
796                 desc->sg[0].hw->dst_stride = xt->sgl[0].size + dst_icg;
797         }
798
799         if (chan->hw_2d) {
800                 desc->sg[0].hw->x_len = xt->sgl[0].size - 1;
801                 desc->sg[0].hw->y_len = xt->numf - 1;
802         } else {
803                 desc->sg[0].hw->x_len = xt->sgl[0].size * xt->numf - 1;
804                 desc->sg[0].hw->y_len = 0;
805         }
806
807         if (flags & DMA_CYCLIC)
808                 desc->cyclic = true;
809
810         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
811 }
812
813 static void axi_dmac_free_chan_resources(struct dma_chan *c)
814 {
815         vchan_free_chan_resources(to_virt_chan(c));
816 }
817
818 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
819 {
820         axi_dmac_free_desc(to_axi_dmac_desc(vdesc));
821 }
822
823 static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
824 {
825         switch (reg) {
826         case AXI_DMAC_REG_IRQ_MASK:
827         case AXI_DMAC_REG_IRQ_SOURCE:
828         case AXI_DMAC_REG_IRQ_PENDING:
829         case AXI_DMAC_REG_CTRL:
830         case AXI_DMAC_REG_TRANSFER_ID:
831         case AXI_DMAC_REG_START_TRANSFER:
832         case AXI_DMAC_REG_FLAGS:
833         case AXI_DMAC_REG_DEST_ADDRESS:
834         case AXI_DMAC_REG_SRC_ADDRESS:
835         case AXI_DMAC_REG_X_LENGTH:
836         case AXI_DMAC_REG_Y_LENGTH:
837         case AXI_DMAC_REG_DEST_STRIDE:
838         case AXI_DMAC_REG_SRC_STRIDE:
839         case AXI_DMAC_REG_TRANSFER_DONE:
840         case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
841         case AXI_DMAC_REG_STATUS:
842         case AXI_DMAC_REG_CURRENT_SRC_ADDR:
843         case AXI_DMAC_REG_CURRENT_DEST_ADDR:
844         case AXI_DMAC_REG_PARTIAL_XFER_LEN:
845         case AXI_DMAC_REG_PARTIAL_XFER_ID:
846         case AXI_DMAC_REG_CURRENT_SG_ID:
847         case AXI_DMAC_REG_SG_ADDRESS:
848         case AXI_DMAC_REG_SG_ADDRESS_HIGH:
849                 return true;
850         default:
851                 return false;
852         }
853 }
854
855 static const struct regmap_config axi_dmac_regmap_config = {
856         .reg_bits = 32,
857         .val_bits = 32,
858         .reg_stride = 4,
859         .max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
860         .readable_reg = axi_dmac_regmap_rdwr,
861         .writeable_reg = axi_dmac_regmap_rdwr,
862 };
863
864 static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
865 {
866         chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
867
868         if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
869                 chan->direction = DMA_MEM_TO_MEM;
870         else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
871                 chan->direction = DMA_MEM_TO_DEV;
872         else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
873                 chan->direction = DMA_DEV_TO_MEM;
874         else
875                 chan->direction = DMA_DEV_TO_DEV;
876 }
877
878 /*
879  * The configuration stored in the devicetree matches the configuration
880  * parameters of the peripheral instance and allows the driver to know which
881  * features are implemented and how it should behave.
882  */
883 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
884         struct axi_dmac_chan *chan)
885 {
886         u32 val;
887         int ret;
888
889         ret = of_property_read_u32(of_chan, "reg", &val);
890         if (ret)
891                 return ret;
892
893         /* We only support 1 channel for now */
894         if (val != 0)
895                 return -EINVAL;
896
897         ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
898         if (ret)
899                 return ret;
900         if (val > AXI_DMAC_BUS_TYPE_FIFO)
901                 return -EINVAL;
902         chan->src_type = val;
903
904         ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
905         if (ret)
906                 return ret;
907         if (val > AXI_DMAC_BUS_TYPE_FIFO)
908                 return -EINVAL;
909         chan->dest_type = val;
910
911         ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
912         if (ret)
913                 return ret;
914         chan->src_width = val / 8;
915
916         ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
917         if (ret)
918                 return ret;
919         chan->dest_width = val / 8;
920
921         axi_dmac_adjust_chan_params(chan);
922
923         return 0;
924 }
925
926 static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
927 {
928         struct device_node *of_channels, *of_chan;
929         int ret;
930
931         of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
932         if (of_channels == NULL)
933                 return -ENODEV;
934
935         for_each_child_of_node(of_channels, of_chan) {
936                 ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
937                 if (ret) {
938                         of_node_put(of_chan);
939                         of_node_put(of_channels);
940                         return -EINVAL;
941                 }
942         }
943         of_node_put(of_channels);
944
945         return 0;
946 }
947
948 static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
949 {
950         struct axi_dmac_chan *chan = &dmac->chan;
951         unsigned int val, desc;
952
953         desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
954         if (desc == 0) {
955                 dev_err(dev, "DMA interface register reads zero\n");
956                 return -EFAULT;
957         }
958
959         val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
960         if (val > AXI_DMAC_BUS_TYPE_FIFO) {
961                 dev_err(dev, "Invalid source bus type read: %d\n", val);
962                 return -EINVAL;
963         }
964         chan->src_type = val;
965
966         val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
967         if (val > AXI_DMAC_BUS_TYPE_FIFO) {
968                 dev_err(dev, "Invalid destination bus type read: %d\n", val);
969                 return -EINVAL;
970         }
971         chan->dest_type = val;
972
973         val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
974         if (val == 0) {
975                 dev_err(dev, "Source bus width is zero\n");
976                 return -EINVAL;
977         }
978         /* widths are stored in log2 */
979         chan->src_width = 1 << val;
980
981         val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
982         if (val == 0) {
983                 dev_err(dev, "Destination bus width is zero\n");
984                 return -EINVAL;
985         }
986         chan->dest_width = 1 << val;
987
988         axi_dmac_adjust_chan_params(chan);
989
990         return 0;
991 }
992
993 static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
994 {
995         struct axi_dmac_chan *chan = &dmac->chan;
996
997         axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
998         if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
999                 chan->hw_cyclic = true;
1000
1001         axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, 0xffffffff);
1002         if (axi_dmac_read(dmac, AXI_DMAC_REG_SG_ADDRESS))
1003                 chan->hw_sg = true;
1004
1005         axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
1006         if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
1007                 chan->hw_2d = true;
1008
1009         axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
1010         chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
1011         if (chan->max_length != UINT_MAX)
1012                 chan->max_length++;
1013
1014         axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
1015         if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
1016             chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
1017                 dev_err(dmac->dma_dev.dev,
1018                         "Destination memory-mapped interface not supported.");
1019                 return -ENODEV;
1020         }
1021
1022         axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
1023         if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
1024             chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
1025                 dev_err(dmac->dma_dev.dev,
1026                         "Source memory-mapped interface not supported.");
1027                 return -ENODEV;
1028         }
1029
1030         if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
1031                 chan->hw_partial_xfer = true;
1032
1033         if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
1034                 axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
1035                 chan->length_align_mask =
1036                         axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
1037         } else {
1038                 chan->length_align_mask = chan->address_align_mask;
1039         }
1040
1041         return 0;
1042 }
1043
1044 static void axi_dmac_tasklet_kill(void *task)
1045 {
1046         tasklet_kill(task);
1047 }
1048
1049 static void axi_dmac_free_dma_controller(void *of_node)
1050 {
1051         of_dma_controller_free(of_node);
1052 }
1053
1054 static int axi_dmac_probe(struct platform_device *pdev)
1055 {
1056         struct dma_device *dma_dev;
1057         struct axi_dmac *dmac;
1058         struct regmap *regmap;
1059         unsigned int version;
1060         u32 irq_mask = 0;
1061         int ret;
1062
1063         dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1064         if (!dmac)
1065                 return -ENOMEM;
1066
1067         dmac->irq = platform_get_irq(pdev, 0);
1068         if (dmac->irq < 0)
1069                 return dmac->irq;
1070         if (dmac->irq == 0)
1071                 return -EINVAL;
1072
1073         dmac->base = devm_platform_ioremap_resource(pdev, 0);
1074         if (IS_ERR(dmac->base))
1075                 return PTR_ERR(dmac->base);
1076
1077         dmac->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1078         if (IS_ERR(dmac->clk))
1079                 return PTR_ERR(dmac->clk);
1080
1081         version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
1082
1083         if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
1084                 ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
1085         else
1086                 ret = axi_dmac_parse_dt(&pdev->dev, dmac);
1087
1088         if (ret < 0)
1089                 return ret;
1090
1091         INIT_LIST_HEAD(&dmac->chan.active_descs);
1092
1093         dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1094
1095         dma_dev = &dmac->dma_dev;
1096         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1097         dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1098         dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
1099         dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
1100         dma_dev->device_tx_status = dma_cookie_status;
1101         dma_dev->device_issue_pending = axi_dmac_issue_pending;
1102         dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
1103         dma_dev->device_prep_peripheral_dma_vec = axi_dmac_prep_peripheral_dma_vec;
1104         dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
1105         dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
1106         dma_dev->device_terminate_all = axi_dmac_terminate_all;
1107         dma_dev->device_synchronize = axi_dmac_synchronize;
1108         dma_dev->dev = &pdev->dev;
1109         dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
1110         dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
1111         dma_dev->directions = BIT(dmac->chan.direction);
1112         dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1113         dma_dev->max_sg_burst = 31; /* 31 SGs maximum in one burst */
1114         INIT_LIST_HEAD(&dma_dev->channels);
1115
1116         dmac->chan.vchan.desc_free = axi_dmac_desc_free;
1117         vchan_init(&dmac->chan.vchan, dma_dev);
1118
1119         ret = axi_dmac_detect_caps(dmac, version);
1120         if (ret)
1121                 return ret;
1122
1123         dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
1124
1125         if (dmac->chan.hw_sg)
1126                 irq_mask |= AXI_DMAC_IRQ_SOT;
1127
1128         axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, irq_mask);
1129
1130         if (of_dma_is_coherent(pdev->dev.of_node)) {
1131                 ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC);
1132
1133                 if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
1134                     !AXI_DMAC_DST_COHERENT_GET(ret)) {
1135                         dev_err(dmac->dma_dev.dev,
1136                                 "Coherent DMA not supported in hardware");
1137                         return -EINVAL;
1138                 }
1139         }
1140
1141         ret = dmaenginem_async_device_register(dma_dev);
1142         if (ret)
1143                 return ret;
1144
1145         /*
1146          * Put the action in here so it get's done before unregistering the DMA
1147          * device.
1148          */
1149         ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_tasklet_kill,
1150                                        &dmac->chan.vchan.task);
1151         if (ret)
1152                 return ret;
1153
1154         ret = of_dma_controller_register(pdev->dev.of_node,
1155                 of_dma_xlate_by_chan_id, dma_dev);
1156         if (ret)
1157                 return ret;
1158
1159         ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_free_dma_controller,
1160                                        pdev->dev.of_node);
1161         if (ret)
1162                 return ret;
1163
1164         ret = devm_request_irq(&pdev->dev, dmac->irq, axi_dmac_interrupt_handler,
1165                                IRQF_SHARED, dev_name(&pdev->dev), dmac);
1166         if (ret)
1167                 return ret;
1168
1169         regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
1170                  &axi_dmac_regmap_config);
1171
1172         return PTR_ERR_OR_ZERO(regmap);
1173 }
1174
1175 static const struct of_device_id axi_dmac_of_match_table[] = {
1176         { .compatible = "adi,axi-dmac-1.00.a" },
1177         { },
1178 };
1179 MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
1180
1181 static struct platform_driver axi_dmac_driver = {
1182         .driver = {
1183                 .name = "dma-axi-dmac",
1184                 .of_match_table = axi_dmac_of_match_table,
1185         },
1186         .probe = axi_dmac_probe,
1187 };
1188 module_platform_driver(axi_dmac_driver);
1189
1190 MODULE_AUTHOR("Lars-Peter Clausen <[email protected]>");
1191 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
1192 MODULE_LICENSE("GPL v2");
This page took 0.09973 seconds and 4 git commands to generate.