]> Git Repo - J-linux.git/blob - drivers/crypto/hifn_795x.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / crypto / hifn_795x.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * 2007+ Copyright (c) Evgeniy Polyakov <[email protected]>
4  * All rights reserved.
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
26
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30                  "PLL reference clock (pci[freq] or ext[freq], default ext)");
31
32 static atomic_t hifn_dev_number;
33
34 #define ACRYPTO_OP_DECRYPT      0
35 #define ACRYPTO_OP_ENCRYPT      1
36 #define ACRYPTO_OP_HMAC         2
37 #define ACRYPTO_OP_RNG          3
38
39 #define ACRYPTO_MODE_ECB                0
40 #define ACRYPTO_MODE_CBC                1
41 #define ACRYPTO_MODE_CFB                2
42 #define ACRYPTO_MODE_OFB                3
43
44 #define ACRYPTO_TYPE_AES_128    0
45 #define ACRYPTO_TYPE_AES_192    1
46 #define ACRYPTO_TYPE_AES_256    2
47 #define ACRYPTO_TYPE_3DES       3
48 #define ACRYPTO_TYPE_DES        4
49
50 #define PCI_VENDOR_ID_HIFN              0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955         0x0020
52 #define PCI_DEVICE_ID_HIFN_7956         0x001d
53
54 /* I/O region sizes */
55
56 #define HIFN_BAR0_SIZE                  0x1000
57 #define HIFN_BAR1_SIZE                  0x2000
58 #define HIFN_BAR2_SIZE                  0x8000
59
60 /* DMA registres */
61
62 #define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
67 #define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
70 #define HIFN_CHIP_ID                    0x98    /* Chip ID */
71
72 /*
73  * Processing Unit Registers (offset from BASEREG0)
74  */
75 #define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
76 #define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
77 #define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
78 #define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
79 #define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
80 #define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
81 #define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
82 #define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
83 #define HIFN_0_SPACESIZE        0x20    /* Register space size */
84
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
87 #define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
88 #define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
89 #define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
90 #define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
91
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
94 #define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
95 #define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
96 #define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
97 #define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
98 #define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
99 #define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
100 #define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
101 #define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
102 #define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
103
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
106 #define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
107 #define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
108 #define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
109 #define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
110 #define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
111 #define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
112 #define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
113 #define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
114 #define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
115 #define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
116 #define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
117 #define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
118 #define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
119 #define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
120 #define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
121 #define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
122 #define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
123 #define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
124 #define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
125 #define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
126 #define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
127 #define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
128
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
131 #define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
132 #define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
133 #define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
134 #define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
135 #define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
136 #define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
137 #define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
138 #define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
139 #define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
140
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
143 #define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
144 #define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
145 #define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
146 #define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
147 #define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
148 #define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
149 #define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
150 #define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
151 #define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
152 #define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
153 #define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
154 #define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
155 #define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
156 #define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
157 #define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
158 #define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
159
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
162 #define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
163
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
166
167 /*
168  * DMA Interface Registers (offset from BASEREG1)
169  */
170 #define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
171 #define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
172 #define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
173 #define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
174 #define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
175 #define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
176 #define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
177 #define HIFN_1_PLL              0x4c    /* 795x: PLL config */
178 #define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
179 #define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
180 #define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
181 #define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
182 #define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
183 #define HIFN_1_REVID            0x98    /* Revision ID */
184 #define HIFN_1_UNLOCK_SECRET1   0xf4
185 #define HIFN_1_UNLOCK_SECRET2   0xfc
186 #define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
187 #define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
188 #define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
189 #define HIFN_1_PUB_OP           0x308   /* Public Operand */
190 #define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
191 #define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
192 #define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
193 #define HIFN_1_RNG_DATA         0x318   /* RNG data */
194 #define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
195 #define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
196
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
199 #define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
200 #define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
201 #define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
202 #define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
203 #define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
204 #define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
205 #define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
206 #define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
207 #define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
208 #define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
209 #define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
210 #define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
211 #define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
212 #define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
213 #define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
214 #define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
215 #define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
216 #define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
217 #define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
218 #define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
219 #define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
220 #define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
221 #define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
222 #define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
223 #define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
224 #define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
225 #define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
226 #define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
227 #define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
228 #define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
229 #define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
230 #define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
231 #define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
232 #define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
233 #define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
234 #define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
235 #define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
236
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
239 #define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
240 #define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
241 #define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
242 #define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
243 #define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
244 #define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
245 #define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
246 #define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
247 #define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
248 #define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
249 #define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
250 #define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
251 #define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
252 #define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
253 #define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
254 #define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
255 #define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
256 #define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
257 #define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
258 #define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
259 #define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
260
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
263 #define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
264 #define HIFN_DMACNFG_UNLOCK     0x00000800
265 #define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
266 #define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
267 #define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
268 #define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
269 #define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
270
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
274 #define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
289
290 #define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
291
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
294
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
297
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
300 #define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
301 #define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
302 #define HIFN_PUBOPLEN_EXP_S     7               /* exponent length shift */
303 #define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
304 #define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
305
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
308 #define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
309 #define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
310 #define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
311 #define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
312 #define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
313 #define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
314 #define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
315 #define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
316 #define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
317 #define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
318 #define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
319 #define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
320 #define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
321 #define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
322 #define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
323 #define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
324 #define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
325 #define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
326 #define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
327
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
330 #define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
331
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
334
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
337
338 #define HIFN_NAMESIZE                   32
339 #define HIFN_MAX_RESULT_ORDER           5
340
341 #define HIFN_D_CMD_RSIZE                (24 * 1)
342 #define HIFN_D_SRC_RSIZE                (80 * 1)
343 #define HIFN_D_DST_RSIZE                (80 * 1)
344 #define HIFN_D_RES_RSIZE                (24 * 1)
345
346 #define HIFN_D_DST_DALIGN               4
347
348 #define HIFN_QUEUE_LENGTH               (HIFN_D_CMD_RSIZE - 1)
349
350 #define AES_MIN_KEY_SIZE                16
351 #define AES_MAX_KEY_SIZE                32
352
353 #define HIFN_DES_KEY_LENGTH             8
354 #define HIFN_3DES_KEY_LENGTH            24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH                  8
357 #define HIFN_AES_IV_LENGTH              16
358 #define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
359
360 #define HIFN_MAC_KEY_LENGTH             64
361 #define HIFN_MD5_LENGTH                 16
362 #define HIFN_SHA1_LENGTH                20
363 #define HIFN_MAC_TRUNC_LENGTH           12
364
365 #define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
366 #define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT                12
368
369 struct hifn_desc {
370         volatile __le32         l;
371         volatile __le32         p;
372 };
373
374 struct hifn_dma {
375         struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE + 1];
376         struct hifn_desc        srcr[HIFN_D_SRC_RSIZE + 1];
377         struct hifn_desc        dstr[HIFN_D_DST_RSIZE + 1];
378         struct hifn_desc        resr[HIFN_D_RES_RSIZE + 1];
379
380         u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381         u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382
383         /*
384          *  Our current positions for insertion and removal from the descriptor
385          *  rings.
386          */
387         volatile int            cmdi, srci, dsti, resi;
388         volatile int            cmdu, srcu, dstu, resu;
389         int                     cmdk, srck, dstk, resk;
390 };
391
392 #define HIFN_FLAG_CMD_BUSY      (1 << 0)
393 #define HIFN_FLAG_SRC_BUSY      (1 << 1)
394 #define HIFN_FLAG_DST_BUSY      (1 << 2)
395 #define HIFN_FLAG_RES_BUSY      (1 << 3)
396 #define HIFN_FLAG_OLD_KEY       (1 << 4)
397
398 #define HIFN_DEFAULT_ACTIVE_NUM 5
399
400 struct hifn_device {
401         char                    name[HIFN_NAMESIZE];
402
403         int                     irq;
404
405         struct pci_dev          *pdev;
406         void __iomem            *bar[3];
407
408         void                    *desc_virt;
409         dma_addr_t              desc_dma;
410
411         u32                     dmareg;
412
413         void                    *sa[HIFN_D_RES_RSIZE];
414
415         spinlock_t              lock;
416
417         u32                     flags;
418         int                     active, started;
419         struct delayed_work     work;
420         unsigned long           reset;
421         unsigned long           success;
422         unsigned long           prev_success;
423
424         u8                      snum;
425
426         struct tasklet_struct   tasklet;
427
428         struct crypto_queue     queue;
429         struct list_head        alg_list;
430
431         unsigned int            pk_clk_freq;
432
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434         unsigned int            rng_wait_time;
435         ktime_t                 rngtime;
436         struct hwrng            rng;
437 #endif
438 };
439
440 #define HIFN_D_LENGTH                   0x0000ffff
441 #define HIFN_D_NOINVALID                0x01000000
442 #define HIFN_D_MASKDONEIRQ              0x02000000
443 #define HIFN_D_DESTOVER                 0x04000000
444 #define HIFN_D_OVER                     0x08000000
445 #define HIFN_D_LAST                     0x20000000
446 #define HIFN_D_JUMP                     0x40000000
447 #define HIFN_D_VALID                    0x80000000
448
449 struct hifn_base_command {
450         volatile __le16         masks;
451         volatile __le16         session_num;
452         volatile __le16         total_source_count;
453         volatile __le16         total_dest_count;
454 };
455
456 #define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
457 #define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
458 #define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
459 #define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
460 #define HIFN_BASE_CMD_DECODE            0x2000
461 #define HIFN_BASE_CMD_SRCLEN_M          0xc000
462 #define HIFN_BASE_CMD_SRCLEN_S          14
463 #define HIFN_BASE_CMD_DSTLEN_M          0x3000
464 #define HIFN_BASE_CMD_DSTLEN_S          12
465 #define HIFN_BASE_CMD_LENMASK_HI        0x30000
466 #define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
467
468 /*
469  * Structure to help build up the command data structure.
470  */
471 struct hifn_crypt_command {
472         volatile __le16         masks;
473         volatile __le16         header_skip;
474         volatile __le16         source_count;
475         volatile __le16         reserved;
476 };
477
478 #define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
479 #define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
480 #define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
481 #define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
482 #define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
483 #define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
484 #define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
485 #define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
486 #define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
487 #define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
488 #define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
489 #define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
490 #define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
491 #define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
492 #define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
493 #define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
494 #define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
495 #define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
496 #define HIFN_CRYPT_CMD_SRCLEN_S         14
497
498 #define HIFN_MAC_CMD_ALG_MASK           0x0001
499 #define HIFN_MAC_CMD_ALG_SHA1           0x0000
500 #define HIFN_MAC_CMD_ALG_MD5            0x0001
501 #define HIFN_MAC_CMD_MODE_MASK          0x000c
502 #define HIFN_MAC_CMD_MODE_HMAC          0x0000
503 #define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
504 #define HIFN_MAC_CMD_MODE_HASH          0x0008
505 #define HIFN_MAC_CMD_MODE_FULL          0x0004
506 #define HIFN_MAC_CMD_TRUNC              0x0010
507 #define HIFN_MAC_CMD_RESULT             0x0020
508 #define HIFN_MAC_CMD_APPEND             0x0040
509 #define HIFN_MAC_CMD_SRCLEN_M           0xc000
510 #define HIFN_MAC_CMD_SRCLEN_S           14
511
512 /*
513  * MAC POS IPsec initiates authentication after encryption on encodes
514  * and before decryption on decodes.
515  */
516 #define HIFN_MAC_CMD_POS_IPSEC          0x0200
517 #define HIFN_MAC_CMD_NEW_KEY            0x0800
518
519 #define HIFN_COMP_CMD_SRCLEN_M          0xc000
520 #define HIFN_COMP_CMD_SRCLEN_S          14
521 #define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
522 #define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
523 #define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
524 #define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
525 #define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
526 #define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
527 #define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
528 #define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
529
530 struct hifn_base_result {
531         volatile __le16         flags;
532         volatile __le16         session;
533         volatile __le16         src_cnt;                /* 15:0 of source count */
534         volatile __le16         dst_cnt;                /* 15:0 of dest count */
535 };
536
537 #define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
538 #define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
539 #define HIFN_BASE_RES_SRCLEN_S          14
540 #define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
541 #define HIFN_BASE_RES_DSTLEN_S          12
542
543 struct hifn_comp_result {
544         volatile __le16         flags;
545         volatile __le16         crc;
546 };
547
548 #define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
549 #define HIFN_COMP_RES_LCB_S             8
550 #define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
551 #define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
552 #define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
553
554 struct hifn_mac_result {
555         volatile __le16         flags;
556         volatile __le16         reserved;
557         /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
558 };
559
560 #define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
561 #define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
562
563 struct hifn_crypt_result {
564         volatile __le16         flags;
565         volatile __le16         reserved;
566 };
567
568 #define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
569
570 #ifndef HIFN_POLL_FREQUENCY
571 #define HIFN_POLL_FREQUENCY     0x1
572 #endif
573
574 #ifndef HIFN_POLL_SCALAR
575 #define HIFN_POLL_SCALAR        0x0
576 #endif
577
578 #define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
579 #define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
580
581 struct hifn_crypto_alg {
582         struct list_head        entry;
583         struct skcipher_alg     alg;
584         struct hifn_device      *dev;
585 };
586
587 #define ASYNC_SCATTERLIST_CACHE 16
588
589 #define ASYNC_FLAGS_MISALIGNED  (1 << 0)
590
591 struct hifn_cipher_walk {
592         struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
593         u32                     flags;
594         int                     num;
595 };
596
597 struct hifn_context {
598         u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH];
599         struct hifn_device      *dev;
600         unsigned int            keysize;
601 };
602
603 struct hifn_request_context {
604         u8                      *iv;
605         unsigned int            ivsize;
606         u8                      op, type, mode, unused;
607         struct hifn_cipher_walk walk;
608 };
609
610 #define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
611
612 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
613 {
614         return readl(dev->bar[0] + reg);
615 }
616
617 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
618 {
619         return readl(dev->bar[1] + reg);
620 }
621
622 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
623 {
624         writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
625 }
626
627 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
628 {
629         writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
630 }
631
632 static void hifn_wait_puc(struct hifn_device *dev)
633 {
634         int i;
635         u32 ret;
636
637         for (i = 10000; i > 0; --i) {
638                 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
639                 if (!(ret & HIFN_PUCTRL_RESET))
640                         break;
641
642                 udelay(1);
643         }
644
645         if (!i)
646                 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
647 }
648
649 static void hifn_reset_puc(struct hifn_device *dev)
650 {
651         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
652         hifn_wait_puc(dev);
653 }
654
655 static void hifn_stop_device(struct hifn_device *dev)
656 {
657         hifn_write_1(dev, HIFN_1_DMA_CSR,
658                 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
659                 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
660         hifn_write_0(dev, HIFN_0_PUIER, 0);
661         hifn_write_1(dev, HIFN_1_DMA_IER, 0);
662 }
663
664 static void hifn_reset_dma(struct hifn_device *dev, int full)
665 {
666         hifn_stop_device(dev);
667
668         /*
669          * Setting poll frequency and others to 0.
670          */
671         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
672                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
673         mdelay(1);
674
675         /*
676          * Reset DMA.
677          */
678         if (full) {
679                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
680                 mdelay(1);
681         } else {
682                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
683                                 HIFN_DMACNFG_MSTRESET);
684                 hifn_reset_puc(dev);
685         }
686
687         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689
690         hifn_reset_puc(dev);
691 }
692
693 static u32 hifn_next_signature(u32 a, u_int cnt)
694 {
695         int i;
696         u32 v;
697
698         for (i = 0; i < cnt; i++) {
699                 /* get the parity */
700                 v = a & 0x80080125;
701                 v ^= v >> 16;
702                 v ^= v >> 8;
703                 v ^= v >> 4;
704                 v ^= v >> 2;
705                 v ^= v >> 1;
706
707                 a = (v & 1) ^ (a << 1);
708         }
709
710         return a;
711 }
712
713 static struct pci2id {
714         u_short         pci_vendor;
715         u_short         pci_prod;
716         char            card_id[13];
717 } pci2id[] = {
718         {
719                 PCI_VENDOR_ID_HIFN,
720                 PCI_DEVICE_ID_HIFN_7955,
721                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
722                   0x00, 0x00, 0x00, 0x00, 0x00 }
723         },
724         {
725                 PCI_VENDOR_ID_HIFN,
726                 PCI_DEVICE_ID_HIFN_7956,
727                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
728                   0x00, 0x00, 0x00, 0x00, 0x00 }
729         }
730 };
731
732 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
733 static int hifn_rng_data_present(struct hwrng *rng, int wait)
734 {
735         struct hifn_device *dev = (struct hifn_device *)rng->priv;
736         s64 nsec;
737
738         nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
739         nsec -= dev->rng_wait_time;
740         if (nsec <= 0)
741                 return 1;
742         if (!wait)
743                 return 0;
744         ndelay(nsec);
745         return 1;
746 }
747
748 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
749 {
750         struct hifn_device *dev = (struct hifn_device *)rng->priv;
751
752         *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
753         dev->rngtime = ktime_get();
754         return 4;
755 }
756
757 static int hifn_register_rng(struct hifn_device *dev)
758 {
759         /*
760          * We must wait at least 256 Pk_clk cycles between two reads of the rng.
761          */
762         dev->rng_wait_time      = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
763                                                    dev->pk_clk_freq) * 256;
764
765         dev->rng.name           = dev->name;
766         dev->rng.data_present   = hifn_rng_data_present;
767         dev->rng.data_read      = hifn_rng_data_read;
768         dev->rng.priv           = (unsigned long)dev;
769
770         return hwrng_register(&dev->rng);
771 }
772
773 static void hifn_unregister_rng(struct hifn_device *dev)
774 {
775         hwrng_unregister(&dev->rng);
776 }
777 #else
778 #define hifn_register_rng(dev)          0
779 #define hifn_unregister_rng(dev)
780 #endif
781
782 static int hifn_init_pubrng(struct hifn_device *dev)
783 {
784         int i;
785
786         hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
787                         HIFN_PUBRST_RESET);
788
789         for (i = 100; i > 0; --i) {
790                 mdelay(1);
791
792                 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
793                         break;
794         }
795
796         if (!i) {
797                 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
798         } else {
799                 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
800                 dev->dmareg |= HIFN_DMAIER_PUBDONE;
801                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
802
803                 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
804         }
805
806         /* Enable RNG engine. */
807
808         hifn_write_1(dev, HIFN_1_RNG_CONFIG,
809                         hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
810         dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
811
812 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
813         /* First value must be discarded */
814         hifn_read_1(dev, HIFN_1_RNG_DATA);
815         dev->rngtime = ktime_get();
816 #endif
817         return 0;
818 }
819
820 static int hifn_enable_crypto(struct hifn_device *dev)
821 {
822         u32 dmacfg, addr;
823         char *offtbl = NULL;
824         int i;
825
826         for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
827                 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
828                                 pci2id[i].pci_prod == dev->pdev->device) {
829                         offtbl = pci2id[i].card_id;
830                         break;
831                 }
832         }
833
834         if (!offtbl) {
835                 dev_err(&dev->pdev->dev, "Unknown card!\n");
836                 return -ENODEV;
837         }
838
839         dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
840
841         hifn_write_1(dev, HIFN_1_DMA_CNFG,
842                         HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
843                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
844         mdelay(1);
845         addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
846         mdelay(1);
847         hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
848         mdelay(1);
849
850         for (i = 0; i < 12; ++i) {
851                 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
852                 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
853
854                 mdelay(1);
855         }
856         hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
857
858         dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
859
860         return 0;
861 }
862
863 static void hifn_init_dma(struct hifn_device *dev)
864 {
865         struct hifn_dma *dma = dev->desc_virt;
866         u32 dptr = dev->desc_dma;
867         int i;
868
869         for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
870                 dma->cmdr[i].p = __cpu_to_le32(dptr +
871                                 offsetof(struct hifn_dma, command_bufs[i][0]));
872         for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
873                 dma->resr[i].p = __cpu_to_le32(dptr +
874                                 offsetof(struct hifn_dma, result_bufs[i][0]));
875
876         /* Setup LAST descriptors. */
877         dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
878                         offsetof(struct hifn_dma, cmdr[0]));
879         dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
880                         offsetof(struct hifn_dma, srcr[0]));
881         dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
882                         offsetof(struct hifn_dma, dstr[0]));
883         dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
884                         offsetof(struct hifn_dma, resr[0]));
885
886         dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
887         dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
888         dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
889 }
890
891 /*
892  * Initialize the PLL. We need to know the frequency of the reference clock
893  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
894  * allows us to operate without the risk of overclocking the chip. If it
895  * actually uses 33MHz, the chip will operate at half the speed, this can be
896  * overridden by specifying the frequency as module parameter (pci33).
897  *
898  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
899  * stable clock and the PCI clock frequency may vary, so the default is the
900  * external clock. There is no way to find out its frequency, we default to
901  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
902  * has an external crystal populated at 66MHz.
903  */
904 static void hifn_init_pll(struct hifn_device *dev)
905 {
906         unsigned int freq, m;
907         u32 pllcfg;
908
909         pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
910
911         if (strncmp(hifn_pll_ref, "ext", 3) == 0)
912                 pllcfg |= HIFN_PLL_REF_CLK_PLL;
913         else
914                 pllcfg |= HIFN_PLL_REF_CLK_HBI;
915
916         if (hifn_pll_ref[3] != '\0')
917                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
918         else {
919                 freq = 66;
920                 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
921                          freq, hifn_pll_ref);
922         }
923
924         m = HIFN_PLL_FCK_MAX / freq;
925
926         pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
927         if (m <= 8)
928                 pllcfg |= HIFN_PLL_IS_1_8;
929         else
930                 pllcfg |= HIFN_PLL_IS_9_12;
931
932         /* Select clock source and enable clock bypass */
933         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
934                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
935
936         /* Let the chip lock to the input clock */
937         mdelay(10);
938
939         /* Disable clock bypass */
940         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
941                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
942
943         /* Switch the engines to the PLL */
944         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
945                      HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
946
947         /*
948          * The Fpk_clk runs at half the total speed. Its frequency is needed to
949          * calculate the minimum time between two reads of the rng. Since 33MHz
950          * is actually 33.333... we overestimate the frequency here, resulting
951          * in slightly larger intervals.
952          */
953         dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
954 }
955
956 static void hifn_init_registers(struct hifn_device *dev)
957 {
958         u32 dptr = dev->desc_dma;
959
960         /* Initialization magic... */
961         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
962         hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
963         hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
964
965         /* write all 4 ring address registers */
966         hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
967                                 offsetof(struct hifn_dma, cmdr[0]));
968         hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
969                                 offsetof(struct hifn_dma, srcr[0]));
970         hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
971                                 offsetof(struct hifn_dma, dstr[0]));
972         hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
973                                 offsetof(struct hifn_dma, resr[0]));
974
975         mdelay(2);
976 #if 0
977         hifn_write_1(dev, HIFN_1_DMA_CSR,
978             HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
979             HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
980             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
981             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
982             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
983             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
984             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
985             HIFN_DMACSR_S_WAIT |
986             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
987             HIFN_DMACSR_C_WAIT |
988             HIFN_DMACSR_ENGINE |
989             HIFN_DMACSR_PUBDONE);
990 #else
991         hifn_write_1(dev, HIFN_1_DMA_CSR,
992             HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
993             HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
994             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
995             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
996             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
997             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
998             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
999             HIFN_DMACSR_S_WAIT |
1000             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1001             HIFN_DMACSR_C_WAIT |
1002             HIFN_DMACSR_ENGINE |
1003             HIFN_DMACSR_PUBDONE);
1004 #endif
1005         hifn_read_1(dev, HIFN_1_DMA_CSR);
1006
1007         dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1008             HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1009             HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1010             HIFN_DMAIER_ENGINE;
1011         dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1012
1013         hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1014         hifn_read_1(dev, HIFN_1_DMA_IER);
1015 #if 0
1016         hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1017                     HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1018                     HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1019                     HIFN_PUCNFG_DRAM);
1020 #else
1021         hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1022 #endif
1023         hifn_init_pll(dev);
1024
1025         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1026         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1027             HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1028             ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1029             ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1030 }
1031
1032 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1033                 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1034 {
1035         struct hifn_base_command *base_cmd;
1036         u8 *buf_pos = buf;
1037
1038         base_cmd = (struct hifn_base_command *)buf_pos;
1039         base_cmd->masks = __cpu_to_le16(mask);
1040         base_cmd->total_source_count =
1041                 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1042         base_cmd->total_dest_count =
1043                 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1044
1045         dlen >>= 16;
1046         slen >>= 16;
1047         base_cmd->session_num = __cpu_to_le16(snum |
1048             ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1049             ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1050
1051         return sizeof(struct hifn_base_command);
1052 }
1053
1054 static int hifn_setup_crypto_command(struct hifn_device *dev,
1055                 u8 *buf, unsigned dlen, unsigned slen,
1056                 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1057 {
1058         struct hifn_dma *dma = dev->desc_virt;
1059         struct hifn_crypt_command *cry_cmd;
1060         u8 *buf_pos = buf;
1061         u16 cmd_len;
1062
1063         cry_cmd = (struct hifn_crypt_command *)buf_pos;
1064
1065         cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1066         dlen >>= 16;
1067         cry_cmd->masks = __cpu_to_le16(mode |
1068                         ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1069                          HIFN_CRYPT_CMD_SRCLEN_M));
1070         cry_cmd->header_skip = 0;
1071         cry_cmd->reserved = 0;
1072
1073         buf_pos += sizeof(struct hifn_crypt_command);
1074
1075         dma->cmdu++;
1076         if (dma->cmdu > 1) {
1077                 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1078                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1079         }
1080
1081         if (keylen) {
1082                 memcpy(buf_pos, key, keylen);
1083                 buf_pos += keylen;
1084         }
1085         if (ivsize) {
1086                 memcpy(buf_pos, iv, ivsize);
1087                 buf_pos += ivsize;
1088         }
1089
1090         cmd_len = buf_pos - buf;
1091
1092         return cmd_len;
1093 }
1094
1095 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1096                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1097                 void *priv, unsigned int nbytes)
1098 {
1099         struct hifn_dma *dma = dev->desc_virt;
1100         int cmd_len, sa_idx;
1101         u8 *buf, *buf_pos;
1102         u16 mask;
1103
1104         sa_idx = dma->cmdi;
1105         buf_pos = buf = dma->command_bufs[dma->cmdi];
1106
1107         mask = 0;
1108         switch (rctx->op) {
1109         case ACRYPTO_OP_DECRYPT:
1110                 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1111                 break;
1112         case ACRYPTO_OP_ENCRYPT:
1113                 mask = HIFN_BASE_CMD_CRYPT;
1114                 break;
1115         case ACRYPTO_OP_HMAC:
1116                 mask = HIFN_BASE_CMD_MAC;
1117                 break;
1118         default:
1119                 goto err_out;
1120         }
1121
1122         buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1123                         nbytes, mask, dev->snum);
1124
1125         if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1126                 u16 md = 0;
1127
1128                 if (ctx->keysize)
1129                         md |= HIFN_CRYPT_CMD_NEW_KEY;
1130                 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1131                         md |= HIFN_CRYPT_CMD_NEW_IV;
1132
1133                 switch (rctx->mode) {
1134                 case ACRYPTO_MODE_ECB:
1135                         md |= HIFN_CRYPT_CMD_MODE_ECB;
1136                         break;
1137                 case ACRYPTO_MODE_CBC:
1138                         md |= HIFN_CRYPT_CMD_MODE_CBC;
1139                         break;
1140                 case ACRYPTO_MODE_CFB:
1141                         md |= HIFN_CRYPT_CMD_MODE_CFB;
1142                         break;
1143                 case ACRYPTO_MODE_OFB:
1144                         md |= HIFN_CRYPT_CMD_MODE_OFB;
1145                         break;
1146                 default:
1147                         goto err_out;
1148                 }
1149
1150                 switch (rctx->type) {
1151                 case ACRYPTO_TYPE_AES_128:
1152                         if (ctx->keysize != 16)
1153                                 goto err_out;
1154                         md |= HIFN_CRYPT_CMD_KSZ_128 |
1155                                 HIFN_CRYPT_CMD_ALG_AES;
1156                         break;
1157                 case ACRYPTO_TYPE_AES_192:
1158                         if (ctx->keysize != 24)
1159                                 goto err_out;
1160                         md |= HIFN_CRYPT_CMD_KSZ_192 |
1161                                 HIFN_CRYPT_CMD_ALG_AES;
1162                         break;
1163                 case ACRYPTO_TYPE_AES_256:
1164                         if (ctx->keysize != 32)
1165                                 goto err_out;
1166                         md |= HIFN_CRYPT_CMD_KSZ_256 |
1167                                 HIFN_CRYPT_CMD_ALG_AES;
1168                         break;
1169                 case ACRYPTO_TYPE_3DES:
1170                         if (ctx->keysize != 24)
1171                                 goto err_out;
1172                         md |= HIFN_CRYPT_CMD_ALG_3DES;
1173                         break;
1174                 case ACRYPTO_TYPE_DES:
1175                         if (ctx->keysize != 8)
1176                                 goto err_out;
1177                         md |= HIFN_CRYPT_CMD_ALG_DES;
1178                         break;
1179                 default:
1180                         goto err_out;
1181                 }
1182
1183                 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1184                                 nbytes, nbytes, ctx->key, ctx->keysize,
1185                                 rctx->iv, rctx->ivsize, md);
1186         }
1187
1188         dev->sa[sa_idx] = priv;
1189         dev->started++;
1190
1191         cmd_len = buf_pos - buf;
1192         dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1193                         HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1194
1195         if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1196                 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1197                         HIFN_D_VALID | HIFN_D_LAST |
1198                         HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1199                 dma->cmdi = 0;
1200         } else {
1201                 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1202         }
1203
1204         if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1205                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1206                 dev->flags |= HIFN_FLAG_CMD_BUSY;
1207         }
1208         return 0;
1209
1210 err_out:
1211         return -EINVAL;
1212 }
1213
1214 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1215                 unsigned int offset, unsigned int size, int last)
1216 {
1217         struct hifn_dma *dma = dev->desc_virt;
1218         int idx;
1219         dma_addr_t addr;
1220
1221         addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1222                             DMA_TO_DEVICE);
1223
1224         idx = dma->srci;
1225
1226         dma->srcr[idx].p = __cpu_to_le32(addr);
1227         dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1228                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1229
1230         if (++idx == HIFN_D_SRC_RSIZE) {
1231                 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1232                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1233                                 (last ? HIFN_D_LAST : 0));
1234                 idx = 0;
1235         }
1236
1237         dma->srci = idx;
1238         dma->srcu++;
1239
1240         if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1241                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1242                 dev->flags |= HIFN_FLAG_SRC_BUSY;
1243         }
1244
1245         return size;
1246 }
1247
1248 static void hifn_setup_res_desc(struct hifn_device *dev)
1249 {
1250         struct hifn_dma *dma = dev->desc_virt;
1251
1252         dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1253                         HIFN_D_VALID | HIFN_D_LAST);
1254         /*
1255          * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1256          *                                      HIFN_D_LAST);
1257          */
1258
1259         if (++dma->resi == HIFN_D_RES_RSIZE) {
1260                 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1261                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1262                 dma->resi = 0;
1263         }
1264
1265         dma->resu++;
1266
1267         if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1268                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1269                 dev->flags |= HIFN_FLAG_RES_BUSY;
1270         }
1271 }
1272
1273 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1274                 unsigned offset, unsigned size, int last)
1275 {
1276         struct hifn_dma *dma = dev->desc_virt;
1277         int idx;
1278         dma_addr_t addr;
1279
1280         addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1281                             DMA_FROM_DEVICE);
1282
1283         idx = dma->dsti;
1284         dma->dstr[idx].p = __cpu_to_le32(addr);
1285         dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1286                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1287
1288         if (++idx == HIFN_D_DST_RSIZE) {
1289                 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1290                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1291                                 (last ? HIFN_D_LAST : 0));
1292                 idx = 0;
1293         }
1294         dma->dsti = idx;
1295         dma->dstu++;
1296
1297         if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1298                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1299                 dev->flags |= HIFN_FLAG_DST_BUSY;
1300         }
1301 }
1302
1303 static int hifn_setup_dma(struct hifn_device *dev,
1304                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1305                 struct scatterlist *src, struct scatterlist *dst,
1306                 unsigned int nbytes, void *priv)
1307 {
1308         struct scatterlist *t;
1309         struct page *spage, *dpage;
1310         unsigned int soff, doff;
1311         unsigned int n, len;
1312
1313         n = nbytes;
1314         while (n) {
1315                 spage = sg_page(src);
1316                 soff = src->offset;
1317                 len = min(src->length, n);
1318
1319                 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1320
1321                 src++;
1322                 n -= len;
1323         }
1324
1325         t = &rctx->walk.cache[0];
1326         n = nbytes;
1327         while (n) {
1328                 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1329                         BUG_ON(!sg_page(t));
1330                         dpage = sg_page(t);
1331                         doff = 0;
1332                         len = t->length;
1333                 } else {
1334                         BUG_ON(!sg_page(dst));
1335                         dpage = sg_page(dst);
1336                         doff = dst->offset;
1337                         len = dst->length;
1338                 }
1339                 len = min(len, n);
1340
1341                 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1342
1343                 dst++;
1344                 t++;
1345                 n -= len;
1346         }
1347
1348         hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1349         hifn_setup_res_desc(dev);
1350         return 0;
1351 }
1352
1353 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1354                 int num, gfp_t gfp_flags)
1355 {
1356         int i;
1357
1358         num = min(ASYNC_SCATTERLIST_CACHE, num);
1359         sg_init_table(w->cache, num);
1360
1361         w->num = 0;
1362         for (i = 0; i < num; ++i) {
1363                 struct page *page = alloc_page(gfp_flags);
1364                 struct scatterlist *s;
1365
1366                 if (!page)
1367                         break;
1368
1369                 s = &w->cache[i];
1370
1371                 sg_set_page(s, page, PAGE_SIZE, 0);
1372                 w->num++;
1373         }
1374
1375         return i;
1376 }
1377
1378 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1379 {
1380         int i;
1381
1382         for (i = 0; i < w->num; ++i) {
1383                 struct scatterlist *s = &w->cache[i];
1384
1385                 __free_page(sg_page(s));
1386
1387                 s->length = 0;
1388         }
1389
1390         w->num = 0;
1391 }
1392
1393 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1394                 unsigned int size, unsigned int *nbytesp)
1395 {
1396         unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1397         int idx = 0;
1398
1399         if (drest < size || size > nbytes)
1400                 return -EINVAL;
1401
1402         while (size) {
1403                 copy = min3(drest, size, dst->length);
1404
1405                 size -= copy;
1406                 drest -= copy;
1407                 nbytes -= copy;
1408
1409                 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1410                          __func__, copy, size, drest, nbytes);
1411
1412                 dst++;
1413                 idx++;
1414         }
1415
1416         *nbytesp = nbytes;
1417         *drestp = drest;
1418
1419         return idx;
1420 }
1421
1422 static int hifn_cipher_walk(struct skcipher_request *req,
1423                 struct hifn_cipher_walk *w)
1424 {
1425         struct scatterlist *dst, *t;
1426         unsigned int nbytes = req->cryptlen, offset, copy, diff;
1427         int idx, tidx, err;
1428
1429         tidx = idx = 0;
1430         offset = 0;
1431         while (nbytes) {
1432                 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1433                         return -EINVAL;
1434
1435                 dst = &req->dst[idx];
1436
1437                 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1438                          __func__, dst->length, dst->offset, offset, nbytes);
1439
1440                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1441                     !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1442                     offset) {
1443                         unsigned slen = min(dst->length - offset, nbytes);
1444                         unsigned dlen = PAGE_SIZE;
1445
1446                         t = &w->cache[idx];
1447
1448                         err = skcipher_add(&dlen, dst, slen, &nbytes);
1449                         if (err < 0)
1450                                 return err;
1451
1452                         idx += err;
1453
1454                         copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1455                         diff = slen & (HIFN_D_DST_DALIGN - 1);
1456
1457                         if (dlen < nbytes) {
1458                                 /*
1459                                  * Destination page does not have enough space
1460                                  * to put there additional blocksized chunk,
1461                                  * so we mark that page as containing only
1462                                  * blocksize aligned chunks:
1463                                  *      t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1464                                  * and increase number of bytes to be processed
1465                                  * in next chunk:
1466                                  *      nbytes += diff;
1467                                  */
1468                                 nbytes += diff;
1469
1470                                 /*
1471                                  * Temporary of course...
1472                                  * Kick author if you will catch this one.
1473                                  */
1474                                 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1475                                        __func__, dlen, nbytes, slen, offset);
1476                                 pr_err("%s: please contact author to fix this "
1477                                        "issue, generally you should not catch "
1478                                        "this path under any condition but who "
1479                                        "knows how did you use crypto code.\n"
1480                                        "Thank you.\n",  __func__);
1481                                 BUG();
1482                         } else {
1483                                 copy += diff + nbytes;
1484
1485                                 dst = &req->dst[idx];
1486
1487                                 err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1488                                 if (err < 0)
1489                                         return err;
1490
1491                                 idx += err;
1492                         }
1493
1494                         t->length = copy;
1495                         t->offset = offset;
1496                 } else {
1497                         nbytes -= min(dst->length, nbytes);
1498                         idx++;
1499                 }
1500
1501                 tidx++;
1502         }
1503
1504         return tidx;
1505 }
1506
1507 static int hifn_setup_session(struct skcipher_request *req)
1508 {
1509         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1510         struct hifn_request_context *rctx = skcipher_request_ctx(req);
1511         struct hifn_device *dev = ctx->dev;
1512         unsigned long dlen, flags;
1513         unsigned int nbytes = req->cryptlen, idx = 0;
1514         int err = -EINVAL, sg_num;
1515         struct scatterlist *dst;
1516
1517         if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1518                 goto err_out_exit;
1519
1520         rctx->walk.flags = 0;
1521
1522         while (nbytes) {
1523                 dst = &req->dst[idx];
1524                 dlen = min(dst->length, nbytes);
1525
1526                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1527                     !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1528                         rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1529
1530                 nbytes -= dlen;
1531                 idx++;
1532         }
1533
1534         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1535                 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1536                 if (err < 0)
1537                         return err;
1538         }
1539
1540         sg_num = hifn_cipher_walk(req, &rctx->walk);
1541         if (sg_num < 0) {
1542                 err = sg_num;
1543                 goto err_out_exit;
1544         }
1545
1546         spin_lock_irqsave(&dev->lock, flags);
1547         if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1548                 err = -EAGAIN;
1549                 goto err_out;
1550         }
1551
1552         err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1553         if (err)
1554                 goto err_out;
1555
1556         dev->snum++;
1557
1558         dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1559         spin_unlock_irqrestore(&dev->lock, flags);
1560
1561         return 0;
1562
1563 err_out:
1564         spin_unlock_irqrestore(&dev->lock, flags);
1565 err_out_exit:
1566         if (err) {
1567                 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1568                          "type: %u, err: %d.\n",
1569                          rctx->iv, rctx->ivsize,
1570                          ctx->key, ctx->keysize,
1571                          rctx->mode, rctx->op, rctx->type, err);
1572         }
1573
1574         return err;
1575 }
1576
1577 static int hifn_start_device(struct hifn_device *dev)
1578 {
1579         int err;
1580
1581         dev->started = dev->active = 0;
1582         hifn_reset_dma(dev, 1);
1583
1584         err = hifn_enable_crypto(dev);
1585         if (err)
1586                 return err;
1587
1588         hifn_reset_puc(dev);
1589
1590         hifn_init_dma(dev);
1591
1592         hifn_init_registers(dev);
1593
1594         hifn_init_pubrng(dev);
1595
1596         return 0;
1597 }
1598
1599 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1600                 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1601 {
1602         unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1603         void *daddr;
1604         int idx = 0;
1605
1606         if (srest < size || size > nbytes)
1607                 return -EINVAL;
1608
1609         while (size) {
1610                 copy = min3(srest, dst->length, size);
1611
1612                 daddr = kmap_atomic(sg_page(dst));
1613                 memcpy(daddr + dst->offset + offset, saddr, copy);
1614                 kunmap_atomic(daddr);
1615
1616                 nbytes -= copy;
1617                 size -= copy;
1618                 srest -= copy;
1619                 saddr += copy;
1620                 offset = 0;
1621
1622                 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1623                          __func__, copy, size, srest, nbytes);
1624
1625                 dst++;
1626                 idx++;
1627         }
1628
1629         *nbytesp = nbytes;
1630         *srestp = srest;
1631
1632         return idx;
1633 }
1634
1635 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1636 {
1637         unsigned long flags;
1638
1639         spin_lock_irqsave(&dev->lock, flags);
1640         dev->sa[i] = NULL;
1641         dev->started--;
1642         if (dev->started < 0)
1643                 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1644                          dev->started);
1645         spin_unlock_irqrestore(&dev->lock, flags);
1646         BUG_ON(dev->started < 0);
1647 }
1648
1649 static void hifn_process_ready(struct skcipher_request *req, int error)
1650 {
1651         struct hifn_request_context *rctx = skcipher_request_ctx(req);
1652
1653         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1654                 unsigned int nbytes = req->cryptlen;
1655                 int idx = 0, err;
1656                 struct scatterlist *dst, *t;
1657                 void *saddr;
1658
1659                 while (nbytes) {
1660                         t = &rctx->walk.cache[idx];
1661                         dst = &req->dst[idx];
1662
1663                         pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1664                                 "sg_page(dst): %p, dst->length: %u, "
1665                                 "nbytes: %u.\n",
1666                                 __func__, sg_page(t), t->length,
1667                                 sg_page(dst), dst->length, nbytes);
1668
1669                         if (!t->length) {
1670                                 nbytes -= min(dst->length, nbytes);
1671                                 idx++;
1672                                 continue;
1673                         }
1674
1675                         saddr = kmap_atomic(sg_page(t));
1676
1677                         err = skcipher_get(saddr, &t->length, t->offset,
1678                                         dst, nbytes, &nbytes);
1679                         if (err < 0) {
1680                                 kunmap_atomic(saddr);
1681                                 break;
1682                         }
1683
1684                         idx += err;
1685                         kunmap_atomic(saddr);
1686                 }
1687
1688                 hifn_cipher_walk_exit(&rctx->walk);
1689         }
1690
1691         skcipher_request_complete(req, error);
1692 }
1693
1694 static void hifn_clear_rings(struct hifn_device *dev, int error)
1695 {
1696         struct hifn_dma *dma = dev->desc_virt;
1697         int i, u;
1698
1699         dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1700                         "k: %d.%d.%d.%d.\n",
1701                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1702                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1703                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1704
1705         i = dma->resk; u = dma->resu;
1706         while (u != 0) {
1707                 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1708                         break;
1709
1710                 if (dev->sa[i]) {
1711                         dev->success++;
1712                         dev->reset = 0;
1713                         hifn_process_ready(dev->sa[i], error);
1714                         hifn_complete_sa(dev, i);
1715                 }
1716
1717                 if (++i == HIFN_D_RES_RSIZE)
1718                         i = 0;
1719                 u--;
1720         }
1721         dma->resk = i; dma->resu = u;
1722
1723         i = dma->srck; u = dma->srcu;
1724         while (u != 0) {
1725                 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1726                         break;
1727                 if (++i == HIFN_D_SRC_RSIZE)
1728                         i = 0;
1729                 u--;
1730         }
1731         dma->srck = i; dma->srcu = u;
1732
1733         i = dma->cmdk; u = dma->cmdu;
1734         while (u != 0) {
1735                 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1736                         break;
1737                 if (++i == HIFN_D_CMD_RSIZE)
1738                         i = 0;
1739                 u--;
1740         }
1741         dma->cmdk = i; dma->cmdu = u;
1742
1743         i = dma->dstk; u = dma->dstu;
1744         while (u != 0) {
1745                 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1746                         break;
1747                 if (++i == HIFN_D_DST_RSIZE)
1748                         i = 0;
1749                 u--;
1750         }
1751         dma->dstk = i; dma->dstu = u;
1752
1753         dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1754                         "k: %d.%d.%d.%d.\n",
1755                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1756                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1757                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1758 }
1759
1760 static void hifn_work(struct work_struct *work)
1761 {
1762         struct delayed_work *dw = to_delayed_work(work);
1763         struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1764         unsigned long flags;
1765         int reset = 0;
1766         u32 r = 0;
1767
1768         spin_lock_irqsave(&dev->lock, flags);
1769         if (dev->active == 0) {
1770                 struct hifn_dma *dma = dev->desc_virt;
1771
1772                 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1773                         dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1774                         r |= HIFN_DMACSR_C_CTRL_DIS;
1775                 }
1776                 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1777                         dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1778                         r |= HIFN_DMACSR_S_CTRL_DIS;
1779                 }
1780                 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1781                         dev->flags &= ~HIFN_FLAG_DST_BUSY;
1782                         r |= HIFN_DMACSR_D_CTRL_DIS;
1783                 }
1784                 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1785                         dev->flags &= ~HIFN_FLAG_RES_BUSY;
1786                         r |= HIFN_DMACSR_R_CTRL_DIS;
1787                 }
1788                 if (r)
1789                         hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1790         } else
1791                 dev->active--;
1792
1793         if ((dev->prev_success == dev->success) && dev->started)
1794                 reset = 1;
1795         dev->prev_success = dev->success;
1796         spin_unlock_irqrestore(&dev->lock, flags);
1797
1798         if (reset) {
1799                 if (++dev->reset >= 5) {
1800                         int i;
1801                         struct hifn_dma *dma = dev->desc_virt;
1802
1803                         dev_info(&dev->pdev->dev,
1804                                  "r: %08x, active: %d, started: %d, "
1805                                  "success: %lu: qlen: %u/%u, reset: %d.\n",
1806                                  r, dev->active, dev->started,
1807                                  dev->success, dev->queue.qlen, dev->queue.max_qlen,
1808                                  reset);
1809
1810                         dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1811                         for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1812                                 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1813                                 if (dev->sa[i]) {
1814                                         hifn_process_ready(dev->sa[i], -ENODEV);
1815                                         hifn_complete_sa(dev, i);
1816                                 }
1817                         }
1818                         pr_info("\n");
1819
1820                         hifn_reset_dma(dev, 1);
1821                         hifn_stop_device(dev);
1822                         hifn_start_device(dev);
1823                         dev->reset = 0;
1824                 }
1825
1826                 tasklet_schedule(&dev->tasklet);
1827         }
1828
1829         schedule_delayed_work(&dev->work, HZ);
1830 }
1831
1832 static irqreturn_t hifn_interrupt(int irq, void *data)
1833 {
1834         struct hifn_device *dev = data;
1835         struct hifn_dma *dma = dev->desc_virt;
1836         u32 dmacsr, restart;
1837
1838         dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1839
1840         dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1841                         "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1842                 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1843                 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1844                 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1845
1846         if ((dmacsr & dev->dmareg) == 0)
1847                 return IRQ_NONE;
1848
1849         hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1850
1851         if (dmacsr & HIFN_DMACSR_ENGINE)
1852                 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1853         if (dmacsr & HIFN_DMACSR_PUBDONE)
1854                 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1855                         hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1856
1857         restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1858         if (restart) {
1859                 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1860
1861                 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1862                          !!(dmacsr & HIFN_DMACSR_R_OVER),
1863                          !!(dmacsr & HIFN_DMACSR_D_OVER),
1864                         puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1865                 if (!!(puisr & HIFN_PUISR_DSTOVER))
1866                         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1867                 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1868                                         HIFN_DMACSR_D_OVER));
1869         }
1870
1871         restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1872                         HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1873         if (restart) {
1874                 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1875                          !!(dmacsr & HIFN_DMACSR_C_ABORT),
1876                          !!(dmacsr & HIFN_DMACSR_S_ABORT),
1877                          !!(dmacsr & HIFN_DMACSR_D_ABORT),
1878                          !!(dmacsr & HIFN_DMACSR_R_ABORT));
1879                 hifn_reset_dma(dev, 1);
1880                 hifn_init_dma(dev);
1881                 hifn_init_registers(dev);
1882         }
1883
1884         if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1885                 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1886                 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1887                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1888         }
1889
1890         tasklet_schedule(&dev->tasklet);
1891
1892         return IRQ_HANDLED;
1893 }
1894
1895 static void hifn_flush(struct hifn_device *dev)
1896 {
1897         unsigned long flags;
1898         struct crypto_async_request *async_req;
1899         struct skcipher_request *req;
1900         struct hifn_dma *dma = dev->desc_virt;
1901         int i;
1902
1903         for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1904                 struct hifn_desc *d = &dma->resr[i];
1905
1906                 if (dev->sa[i]) {
1907                         hifn_process_ready(dev->sa[i],
1908                                 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1909                         hifn_complete_sa(dev, i);
1910                 }
1911         }
1912
1913         spin_lock_irqsave(&dev->lock, flags);
1914         while ((async_req = crypto_dequeue_request(&dev->queue))) {
1915                 req = skcipher_request_cast(async_req);
1916                 spin_unlock_irqrestore(&dev->lock, flags);
1917
1918                 hifn_process_ready(req, -ENODEV);
1919
1920                 spin_lock_irqsave(&dev->lock, flags);
1921         }
1922         spin_unlock_irqrestore(&dev->lock, flags);
1923 }
1924
1925 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1926                 unsigned int len)
1927 {
1928         struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1929         struct hifn_device *dev = ctx->dev;
1930         int err;
1931
1932         err = verify_skcipher_des_key(cipher, key);
1933         if (err)
1934                 return err;
1935
1936         dev->flags &= ~HIFN_FLAG_OLD_KEY;
1937
1938         memcpy(ctx->key, key, len);
1939         ctx->keysize = len;
1940
1941         return 0;
1942 }
1943
1944 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1945                             unsigned int len)
1946 {
1947         struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1948         struct hifn_device *dev = ctx->dev;
1949         int err;
1950
1951         err = verify_skcipher_des3_key(cipher, key);
1952         if (err)
1953                 return err;
1954
1955         dev->flags &= ~HIFN_FLAG_OLD_KEY;
1956
1957         memcpy(ctx->key, key, len);
1958         ctx->keysize = len;
1959
1960         return 0;
1961 }
1962
1963 static int hifn_handle_req(struct skcipher_request *req)
1964 {
1965         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1966         struct hifn_device *dev = ctx->dev;
1967         int err = -EAGAIN;
1968
1969         if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1970                 err = hifn_setup_session(req);
1971
1972         if (err == -EAGAIN) {
1973                 unsigned long flags;
1974
1975                 spin_lock_irqsave(&dev->lock, flags);
1976                 err = crypto_enqueue_request(&dev->queue, &req->base);
1977                 spin_unlock_irqrestore(&dev->lock, flags);
1978         }
1979
1980         return err;
1981 }
1982
1983 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1984                 u8 type, u8 mode)
1985 {
1986         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1987         struct hifn_request_context *rctx = skcipher_request_ctx(req);
1988         unsigned ivsize;
1989
1990         ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1991
1992         if (req->iv && mode != ACRYPTO_MODE_ECB) {
1993                 if (type == ACRYPTO_TYPE_AES_128)
1994                         ivsize = HIFN_AES_IV_LENGTH;
1995                 else if (type == ACRYPTO_TYPE_DES)
1996                         ivsize = HIFN_DES_KEY_LENGTH;
1997                 else if (type == ACRYPTO_TYPE_3DES)
1998                         ivsize = HIFN_3DES_KEY_LENGTH;
1999         }
2000
2001         if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2002                 if (ctx->keysize == 24)
2003                         type = ACRYPTO_TYPE_AES_192;
2004                 else if (ctx->keysize == 32)
2005                         type = ACRYPTO_TYPE_AES_256;
2006         }
2007
2008         rctx->op = op;
2009         rctx->mode = mode;
2010         rctx->type = type;
2011         rctx->iv = req->iv;
2012         rctx->ivsize = ivsize;
2013
2014         /*
2015          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2016          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2017          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2018          */
2019
2020         return hifn_handle_req(req);
2021 }
2022
2023 static int hifn_process_queue(struct hifn_device *dev)
2024 {
2025         struct crypto_async_request *async_req, *backlog;
2026         struct skcipher_request *req;
2027         unsigned long flags;
2028         int err = 0;
2029
2030         while (dev->started < HIFN_QUEUE_LENGTH) {
2031                 spin_lock_irqsave(&dev->lock, flags);
2032                 backlog = crypto_get_backlog(&dev->queue);
2033                 async_req = crypto_dequeue_request(&dev->queue);
2034                 spin_unlock_irqrestore(&dev->lock, flags);
2035
2036                 if (!async_req)
2037                         break;
2038
2039                 if (backlog)
2040                         crypto_request_complete(backlog, -EINPROGRESS);
2041
2042                 req = skcipher_request_cast(async_req);
2043
2044                 err = hifn_handle_req(req);
2045                 if (err)
2046                         break;
2047         }
2048
2049         return err;
2050 }
2051
2052 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2053                 u8 type, u8 mode)
2054 {
2055         int err;
2056         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2057         struct hifn_device *dev = ctx->dev;
2058
2059         err = hifn_setup_crypto_req(req, op, type, mode);
2060         if (err)
2061                 return err;
2062
2063         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2064                 hifn_process_queue(dev);
2065
2066         return -EINPROGRESS;
2067 }
2068
2069 /*
2070  * AES ecryption functions.
2071  */
2072 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2073 {
2074         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2075                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2076 }
2077 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2078 {
2079         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2080                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2081 }
2082
2083 /*
2084  * AES decryption functions.
2085  */
2086 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2087 {
2088         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2089                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2090 }
2091 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2092 {
2093         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2094                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2095 }
2096
2097 /*
2098  * DES ecryption functions.
2099  */
2100 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2101 {
2102         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2103                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2104 }
2105 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2106 {
2107         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2108                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2109 }
2110
2111 /*
2112  * DES decryption functions.
2113  */
2114 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2115 {
2116         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2117                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2118 }
2119 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2120 {
2121         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2122                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2123 }
2124
2125 /*
2126  * 3DES ecryption functions.
2127  */
2128 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2129 {
2130         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2131                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2132 }
2133 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2134 {
2135         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2136                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2137 }
2138
2139 /* 3DES decryption functions. */
2140 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2141 {
2142         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2143                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2144 }
2145 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2146 {
2147         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2148                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2149 }
2150
2151 struct hifn_alg_template {
2152         char name[CRYPTO_MAX_ALG_NAME];
2153         char drv_name[CRYPTO_MAX_ALG_NAME];
2154         unsigned int bsize;
2155         struct skcipher_alg skcipher;
2156 };
2157
2158 static const struct hifn_alg_template hifn_alg_templates[] = {
2159         /*
2160          * 3DES ECB and CBC modes.
2161          */
2162         {
2163                 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2164                 .skcipher = {
2165                         .ivsize         =       HIFN_IV_LENGTH,
2166                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2167                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2168                         .setkey         =       hifn_des3_setkey,
2169                         .encrypt        =       hifn_encrypt_3des_cbc,
2170                         .decrypt        =       hifn_decrypt_3des_cbc,
2171                 },
2172         },
2173         {
2174                 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2175                 .skcipher = {
2176                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2177                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2178                         .setkey         =       hifn_des3_setkey,
2179                         .encrypt        =       hifn_encrypt_3des_ecb,
2180                         .decrypt        =       hifn_decrypt_3des_ecb,
2181                 },
2182         },
2183
2184         /*
2185          * DES ECB and CBC modes.
2186          */
2187         {
2188                 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2189                 .skcipher = {
2190                         .ivsize         =       HIFN_IV_LENGTH,
2191                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2192                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2193                         .setkey         =       hifn_setkey,
2194                         .encrypt        =       hifn_encrypt_des_cbc,
2195                         .decrypt        =       hifn_decrypt_des_cbc,
2196                 },
2197         },
2198         {
2199                 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2200                 .skcipher = {
2201                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2202                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2203                         .setkey         =       hifn_setkey,
2204                         .encrypt        =       hifn_encrypt_des_ecb,
2205                         .decrypt        =       hifn_decrypt_des_ecb,
2206                 },
2207         },
2208
2209         /*
2210          * AES ECB and CBC modes.
2211          */
2212         {
2213                 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2214                 .skcipher = {
2215                         .min_keysize    =       AES_MIN_KEY_SIZE,
2216                         .max_keysize    =       AES_MAX_KEY_SIZE,
2217                         .setkey         =       hifn_setkey,
2218                         .encrypt        =       hifn_encrypt_aes_ecb,
2219                         .decrypt        =       hifn_decrypt_aes_ecb,
2220                 },
2221         },
2222         {
2223                 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2224                 .skcipher = {
2225                         .ivsize         =       HIFN_AES_IV_LENGTH,
2226                         .min_keysize    =       AES_MIN_KEY_SIZE,
2227                         .max_keysize    =       AES_MAX_KEY_SIZE,
2228                         .setkey         =       hifn_setkey,
2229                         .encrypt        =       hifn_encrypt_aes_cbc,
2230                         .decrypt        =       hifn_decrypt_aes_cbc,
2231                 },
2232         },
2233 };
2234
2235 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2236 {
2237         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2238         struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2239         struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2240
2241         ctx->dev = ha->dev;
2242         crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2243
2244         return 0;
2245 }
2246
2247 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2248 {
2249         struct hifn_crypto_alg *alg;
2250         int err;
2251
2252         alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2253         if (!alg)
2254                 return -ENOMEM;
2255
2256         alg->alg = t->skcipher;
2257         alg->alg.init = hifn_init_tfm;
2258
2259         err = -EINVAL;
2260         if (snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
2261                      "%s", t->name) >= CRYPTO_MAX_ALG_NAME)
2262                 goto out_free_alg;
2263         if (snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
2264                      "%s-%s", t->drv_name, dev->name) >= CRYPTO_MAX_ALG_NAME)
2265                 goto out_free_alg;
2266
2267         alg->alg.base.cra_priority = 300;
2268         alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2269         alg->alg.base.cra_blocksize = t->bsize;
2270         alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2271         alg->alg.base.cra_alignmask = 0;
2272         alg->alg.base.cra_module = THIS_MODULE;
2273
2274         alg->dev = dev;
2275
2276         list_add_tail(&alg->entry, &dev->alg_list);
2277
2278         err = crypto_register_skcipher(&alg->alg);
2279         if (err) {
2280                 list_del(&alg->entry);
2281 out_free_alg:
2282                 kfree(alg);
2283         }
2284
2285         return err;
2286 }
2287
2288 static void hifn_unregister_alg(struct hifn_device *dev)
2289 {
2290         struct hifn_crypto_alg *a, *n;
2291
2292         list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2293                 list_del(&a->entry);
2294                 crypto_unregister_skcipher(&a->alg);
2295                 kfree(a);
2296         }
2297 }
2298
2299 static int hifn_register_alg(struct hifn_device *dev)
2300 {
2301         int i, err;
2302
2303         for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2304                 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2305                 if (err)
2306                         goto err_out_exit;
2307         }
2308
2309         return 0;
2310
2311 err_out_exit:
2312         hifn_unregister_alg(dev);
2313         return err;
2314 }
2315
2316 static void hifn_tasklet_callback(unsigned long data)
2317 {
2318         struct hifn_device *dev = (struct hifn_device *)data;
2319
2320         /*
2321          * This is ok to call this without lock being held,
2322          * althogh it modifies some parameters used in parallel,
2323          * (like dev->success), but they are used in process
2324          * context or update is atomic (like setting dev->sa[i] to NULL).
2325          */
2326         hifn_clear_rings(dev, 0);
2327
2328         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2329                 hifn_process_queue(dev);
2330 }
2331
2332 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2333 {
2334         int err, i;
2335         struct hifn_device *dev;
2336         char name[8];
2337
2338         err = pci_enable_device(pdev);
2339         if (err)
2340                 return err;
2341         pci_set_master(pdev);
2342
2343         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2344         if (err)
2345                 goto err_out_disable_pci_device;
2346
2347         snprintf(name, sizeof(name), "hifn%d",
2348                         atomic_inc_return(&hifn_dev_number) - 1);
2349
2350         err = pci_request_regions(pdev, name);
2351         if (err)
2352                 goto err_out_disable_pci_device;
2353
2354         if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2355             pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2356             pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2357                 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2358                 err = -ENODEV;
2359                 goto err_out_free_regions;
2360         }
2361
2362         dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2363                         GFP_KERNEL);
2364         if (!dev) {
2365                 err = -ENOMEM;
2366                 goto err_out_free_regions;
2367         }
2368
2369         INIT_LIST_HEAD(&dev->alg_list);
2370
2371         snprintf(dev->name, sizeof(dev->name), "%s", name);
2372         spin_lock_init(&dev->lock);
2373
2374         for (i = 0; i < 3; ++i) {
2375                 unsigned long addr, size;
2376
2377                 addr = pci_resource_start(pdev, i);
2378                 size = pci_resource_len(pdev, i);
2379
2380                 dev->bar[i] = ioremap(addr, size);
2381                 if (!dev->bar[i]) {
2382                         err = -ENOMEM;
2383                         goto err_out_unmap_bars;
2384                 }
2385         }
2386
2387         dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2388                                             sizeof(struct hifn_dma),
2389                                             &dev->desc_dma, GFP_KERNEL);
2390         if (!dev->desc_virt) {
2391                 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2392                 err = -ENOMEM;
2393                 goto err_out_unmap_bars;
2394         }
2395
2396         dev->pdev = pdev;
2397         dev->irq = pdev->irq;
2398
2399         for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2400                 dev->sa[i] = NULL;
2401
2402         pci_set_drvdata(pdev, dev);
2403
2404         tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2405
2406         crypto_init_queue(&dev->queue, 1);
2407
2408         err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2409         if (err) {
2410                 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2411                         dev->irq, err);
2412                 dev->irq = 0;
2413                 goto err_out_free_desc;
2414         }
2415
2416         err = hifn_start_device(dev);
2417         if (err)
2418                 goto err_out_free_irq;
2419
2420         err = hifn_register_rng(dev);
2421         if (err)
2422                 goto err_out_stop_device;
2423
2424         err = hifn_register_alg(dev);
2425         if (err)
2426                 goto err_out_unregister_rng;
2427
2428         INIT_DELAYED_WORK(&dev->work, hifn_work);
2429         schedule_delayed_work(&dev->work, HZ);
2430
2431         dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2432                 "successfully registered as %s.\n",
2433                 pci_name(pdev), dev->name);
2434
2435         return 0;
2436
2437 err_out_unregister_rng:
2438         hifn_unregister_rng(dev);
2439 err_out_stop_device:
2440         hifn_reset_dma(dev, 1);
2441         hifn_stop_device(dev);
2442 err_out_free_irq:
2443         free_irq(dev->irq, dev);
2444         tasklet_kill(&dev->tasklet);
2445 err_out_free_desc:
2446         dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2447                           dev->desc_dma);
2448
2449 err_out_unmap_bars:
2450         for (i = 0; i < 3; ++i)
2451                 if (dev->bar[i])
2452                         iounmap(dev->bar[i]);
2453         kfree(dev);
2454
2455 err_out_free_regions:
2456         pci_release_regions(pdev);
2457
2458 err_out_disable_pci_device:
2459         pci_disable_device(pdev);
2460
2461         return err;
2462 }
2463
2464 static void hifn_remove(struct pci_dev *pdev)
2465 {
2466         int i;
2467         struct hifn_device *dev;
2468
2469         dev = pci_get_drvdata(pdev);
2470
2471         if (dev) {
2472                 cancel_delayed_work_sync(&dev->work);
2473
2474                 hifn_unregister_rng(dev);
2475                 hifn_unregister_alg(dev);
2476                 hifn_reset_dma(dev, 1);
2477                 hifn_stop_device(dev);
2478
2479                 free_irq(dev->irq, dev);
2480                 tasklet_kill(&dev->tasklet);
2481
2482                 hifn_flush(dev);
2483
2484                 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2485                                   dev->desc_virt, dev->desc_dma);
2486                 for (i = 0; i < 3; ++i)
2487                         if (dev->bar[i])
2488                                 iounmap(dev->bar[i]);
2489
2490                 kfree(dev);
2491         }
2492
2493         pci_release_regions(pdev);
2494         pci_disable_device(pdev);
2495 }
2496
2497 static struct pci_device_id hifn_pci_tbl[] = {
2498         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2499         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2500         { 0 }
2501 };
2502 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2503
2504 static struct pci_driver hifn_pci_driver = {
2505         .name     = "hifn795x",
2506         .id_table = hifn_pci_tbl,
2507         .probe    = hifn_probe,
2508         .remove   = hifn_remove,
2509 };
2510
2511 static int __init hifn_init(void)
2512 {
2513         unsigned int freq;
2514         int err;
2515
2516         if (strncmp(hifn_pll_ref, "ext", 3) &&
2517             strncmp(hifn_pll_ref, "pci", 3)) {
2518                 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2519                 return -EINVAL;
2520         }
2521
2522         /*
2523          * For the 7955/7956 the reference clock frequency must be in the
2524          * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2525          * but this chip is currently not supported.
2526          */
2527         if (hifn_pll_ref[3] != '\0') {
2528                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2529                 if (freq < 20 || freq > 100) {
2530                         pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2531                                "be in the range of 20-100");
2532                         return -EINVAL;
2533                 }
2534         }
2535
2536         err = pci_register_driver(&hifn_pci_driver);
2537         if (err < 0) {
2538                 pr_err("Failed to register PCI driver for %s device.\n",
2539                        hifn_pci_driver.name);
2540                 return -ENODEV;
2541         }
2542
2543         pr_info("Driver for HIFN 795x crypto accelerator chip "
2544                 "has been successfully registered.\n");
2545
2546         return 0;
2547 }
2548
2549 static void __exit hifn_fini(void)
2550 {
2551         pci_unregister_driver(&hifn_pci_driver);
2552
2553         pr_info("Driver for HIFN 795x crypto accelerator chip "
2554                 "has been successfully unregistered.\n");
2555 }
2556
2557 module_init(hifn_init);
2558 module_exit(hifn_fini);
2559
2560 MODULE_LICENSE("GPL");
2561 MODULE_AUTHOR("Evgeniy Polyakov <[email protected]>");
2562 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
This page took 0.165491 seconds and 4 git commands to generate.