]> Git Repo - J-linux.git/blob - drivers/crypto/amcc/crypto4xx_core.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / crypto / amcc / crypto4xx_core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <[email protected]>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha1.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44
45 #define PPC4XX_SEC_VERSION_STR                  "0.5"
46
47 /*
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52         union ce_ring_size ring_size;
53         union ce_ring_control ring_ctrl;
54         union ce_part_ring_size part_ring_size;
55         union ce_io_threshold io_threshold;
56         u32 rand_num;
57         union ce_pe_dma_cfg pe_dma_cfg;
58         u32 device_ctrl;
59
60         writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61         /* setup pe dma, include reset sg, pdr and pe, then release reset */
62         pe_dma_cfg.w = 0;
63         pe_dma_cfg.bf.bo_sgpd_en = 1;
64         pe_dma_cfg.bf.bo_data_en = 0;
65         pe_dma_cfg.bf.bo_sa_en = 1;
66         pe_dma_cfg.bf.bo_pd_en = 1;
67         pe_dma_cfg.bf.dynamic_sa_en = 1;
68         pe_dma_cfg.bf.reset_sg = 1;
69         pe_dma_cfg.bf.reset_pdr = 1;
70         pe_dma_cfg.bf.reset_pe = 1;
71         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72         /* un reset pe,sg and pdr */
73         pe_dma_cfg.bf.pe_mode = 0;
74         pe_dma_cfg.bf.reset_sg = 0;
75         pe_dma_cfg.bf.reset_pdr = 0;
76         pe_dma_cfg.bf.reset_pe = 0;
77         pe_dma_cfg.bf.bo_td_en = 0;
78         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80         writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81         writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82         get_random_bytes(&rand_num, sizeof(rand_num));
83         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84         get_random_bytes(&rand_num, sizeof(rand_num));
85         writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86         ring_size.w = 0;
87         ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88         ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89         writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90         ring_ctrl.w = 0;
91         writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92         device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93         device_ctrl |= PPC4XX_DC_3DES_EN;
94         writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95         writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96         writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97         part_ring_size.w = 0;
98         part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99         part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100         writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101         writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102         io_threshold.w = 0;
103         io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104         io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105         writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106         writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107         writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108         writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109         writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110         writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111         writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112         writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113         /* un reset pe,sg and pdr */
114         pe_dma_cfg.bf.pe_mode = 1;
115         pe_dma_cfg.bf.reset_sg = 0;
116         pe_dma_cfg.bf.reset_pdr = 0;
117         pe_dma_cfg.bf.reset_pe = 0;
118         pe_dma_cfg.bf.bo_td_en = 0;
119         writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120         /*clear all pending interrupt*/
121         writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123         writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124         writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125         if (dev->is_revb) {
126                 writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127                        dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128                 writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129                        dev->ce_base + CRYPTO4XX_INT_EN);
130         } else {
131                 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132         }
133 }
134
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137         ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138         if (ctx->sa_in == NULL)
139                 return -ENOMEM;
140
141         ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142         if (ctx->sa_out == NULL) {
143                 kfree(ctx->sa_in);
144                 ctx->sa_in = NULL;
145                 return -ENOMEM;
146         }
147
148         ctx->sa_len = size;
149
150         return 0;
151 }
152
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155         kfree(ctx->sa_in);
156         ctx->sa_in = NULL;
157         kfree(ctx->sa_out);
158         ctx->sa_out = NULL;
159         ctx->sa_len = 0;
160 }
161
162 /*
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169         int i;
170         dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171                                       sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172                                       &dev->pdr_pa, GFP_KERNEL);
173         if (!dev->pdr)
174                 return -ENOMEM;
175
176         dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177                                  GFP_KERNEL);
178         if (!dev->pdr_uinfo) {
179                 dma_free_coherent(dev->core_dev->device,
180                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181                                   dev->pdr,
182                                   dev->pdr_pa);
183                 return -ENOMEM;
184         }
185         dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186                                    sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187                                    &dev->shadow_sa_pool_pa,
188                                    GFP_KERNEL);
189         if (!dev->shadow_sa_pool)
190                 return -ENOMEM;
191
192         dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193                          sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194                          &dev->shadow_sr_pool_pa, GFP_KERNEL);
195         if (!dev->shadow_sr_pool)
196                 return -ENOMEM;
197         for (i = 0; i < PPC4XX_NUM_PD; i++) {
198                 struct ce_pd *pd = &dev->pdr[i];
199                 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200
201                 pd->sa = dev->shadow_sa_pool_pa +
202                         sizeof(union shadow_sa_buf) * i;
203
204                 /* alloc 256 bytes which is enough for any kind of dynamic sa */
205                 pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206
207                 /* alloc state record */
208                 pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209                 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210                     sizeof(struct sa_state_record) * i;
211         }
212
213         return 0;
214 }
215
216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218         if (dev->pdr)
219                 dma_free_coherent(dev->core_dev->device,
220                                   sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221                                   dev->pdr, dev->pdr_pa);
222
223         if (dev->shadow_sa_pool)
224                 dma_free_coherent(dev->core_dev->device,
225                         sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226                         dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227
228         if (dev->shadow_sr_pool)
229                 dma_free_coherent(dev->core_dev->device,
230                         sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231                         dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232
233         kfree(dev->pdr_uinfo);
234 }
235
236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238         u32 retval;
239         u32 tmp;
240
241         retval = dev->pdr_head;
242         tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243
244         if (tmp == dev->pdr_tail)
245                 return ERING_WAS_FULL;
246
247         dev->pdr_head = tmp;
248
249         return retval;
250 }
251
252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255         u32 tail;
256         unsigned long flags;
257
258         spin_lock_irqsave(&dev->core_dev->lock, flags);
259         pd_uinfo->state = PD_ENTRY_FREE;
260
261         if (dev->pdr_tail != PPC4XX_LAST_PD)
262                 dev->pdr_tail++;
263         else
264                 dev->pdr_tail = 0;
265         tail = dev->pdr_tail;
266         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267
268         return tail;
269 }
270
271 /*
272  * alloc memory for the gather ring
273  * no need to alloc buf for the ring
274  * gdr_tail, gdr_head and gdr_count are initialized by this function
275  */
276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278         dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279                                       sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280                                       &dev->gdr_pa, GFP_KERNEL);
281         if (!dev->gdr)
282                 return -ENOMEM;
283
284         return 0;
285 }
286
287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289         if (dev->gdr)
290                 dma_free_coherent(dev->core_dev->device,
291                           sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292                           dev->gdr, dev->gdr_pa);
293 }
294
295 /*
296  * when this function is called.
297  * preemption or interrupt must be disabled
298  */
299 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300 {
301         u32 retval;
302         u32 tmp;
303
304         if (n >= PPC4XX_NUM_GD)
305                 return ERING_WAS_FULL;
306
307         retval = dev->gdr_head;
308         tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309         if (dev->gdr_head > dev->gdr_tail) {
310                 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311                         return ERING_WAS_FULL;
312         } else if (dev->gdr_head < dev->gdr_tail) {
313                 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314                         return ERING_WAS_FULL;
315         }
316         dev->gdr_head = tmp;
317
318         return retval;
319 }
320
321 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322 {
323         unsigned long flags;
324
325         spin_lock_irqsave(&dev->core_dev->lock, flags);
326         if (dev->gdr_tail == dev->gdr_head) {
327                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328                 return 0;
329         }
330
331         if (dev->gdr_tail != PPC4XX_LAST_GD)
332                 dev->gdr_tail++;
333         else
334                 dev->gdr_tail = 0;
335
336         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337
338         return 0;
339 }
340
341 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342                                               dma_addr_t *gd_dma, u32 idx)
343 {
344         *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345
346         return &dev->gdr[idx];
347 }
348
349 /*
350  * alloc memory for the scatter ring
351  * need to alloc buf for the ring
352  * sdr_tail, sdr_head and sdr_count are initialized by this function
353  */
354 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355 {
356         int i;
357
358         dev->scatter_buffer_va =
359                 dma_alloc_coherent(dev->core_dev->device,
360                         PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
361                         &dev->scatter_buffer_pa, GFP_KERNEL);
362         if (!dev->scatter_buffer_va)
363                 return -ENOMEM;
364
365         /* alloc memory for scatter descriptor ring */
366         dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367                                       sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368                                       &dev->sdr_pa, GFP_KERNEL);
369         if (!dev->sdr)
370                 return -ENOMEM;
371
372         for (i = 0; i < PPC4XX_NUM_SD; i++) {
373                 dev->sdr[i].ptr = dev->scatter_buffer_pa +
374                                   PPC4XX_SD_BUFFER_SIZE * i;
375         }
376
377         return 0;
378 }
379
380 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
381 {
382         if (dev->sdr)
383                 dma_free_coherent(dev->core_dev->device,
384                                   sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385                                   dev->sdr, dev->sdr_pa);
386
387         if (dev->scatter_buffer_va)
388                 dma_free_coherent(dev->core_dev->device,
389                                   PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
390                                   dev->scatter_buffer_va,
391                                   dev->scatter_buffer_pa);
392 }
393
394 /*
395  * when this function is called.
396  * preemption or interrupt must be disabled
397  */
398 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
399 {
400         u32 retval;
401         u32 tmp;
402
403         if (n >= PPC4XX_NUM_SD)
404                 return ERING_WAS_FULL;
405
406         retval = dev->sdr_head;
407         tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
408         if (dev->sdr_head > dev->gdr_tail) {
409                 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
410                         return ERING_WAS_FULL;
411         } else if (dev->sdr_head < dev->sdr_tail) {
412                 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
413                         return ERING_WAS_FULL;
414         } /* the head = tail, or empty case is already take cared */
415         dev->sdr_head = tmp;
416
417         return retval;
418 }
419
420 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
421 {
422         unsigned long flags;
423
424         spin_lock_irqsave(&dev->core_dev->lock, flags);
425         if (dev->sdr_tail == dev->sdr_head) {
426                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
427                 return 0;
428         }
429         if (dev->sdr_tail != PPC4XX_LAST_SD)
430                 dev->sdr_tail++;
431         else
432                 dev->sdr_tail = 0;
433         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
434
435         return 0;
436 }
437
438 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
439                                               dma_addr_t *sd_dma, u32 idx)
440 {
441         *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
442
443         return &dev->sdr[idx];
444 }
445
446 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
447                                       struct ce_pd *pd,
448                                       struct pd_uinfo *pd_uinfo,
449                                       u32 nbytes,
450                                       struct scatterlist *dst)
451 {
452         unsigned int first_sd = pd_uinfo->first_sd;
453         unsigned int last_sd;
454         unsigned int overflow = 0;
455         unsigned int to_copy;
456         unsigned int dst_start = 0;
457
458         /*
459          * Because the scatter buffers are all neatly organized in one
460          * big continuous ringbuffer; scatterwalk_map_and_copy() can
461          * be instructed to copy a range of buffers in one go.
462          */
463
464         last_sd = (first_sd + pd_uinfo->num_sd);
465         if (last_sd > PPC4XX_LAST_SD) {
466                 last_sd = PPC4XX_LAST_SD;
467                 overflow = last_sd % PPC4XX_NUM_SD;
468         }
469
470         while (nbytes) {
471                 void *buf = dev->scatter_buffer_va +
472                         first_sd * PPC4XX_SD_BUFFER_SIZE;
473
474                 to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
475                                       (1 + last_sd - first_sd));
476                 scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
477                 nbytes -= to_copy;
478
479                 if (overflow) {
480                         first_sd = 0;
481                         last_sd = overflow;
482                         dst_start += to_copy;
483                         overflow = 0;
484                 }
485         }
486 }
487
488 static void crypto4xx_copy_digest_to_dst(void *dst,
489                                         struct pd_uinfo *pd_uinfo,
490                                         struct crypto4xx_ctx *ctx)
491 {
492         struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
493
494         if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
495                 memcpy(dst, pd_uinfo->sr_va->save_digest,
496                        SA_HASH_ALG_SHA1_DIGEST_SIZE);
497         }
498 }
499
500 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
501                                   struct pd_uinfo *pd_uinfo)
502 {
503         int i;
504         if (pd_uinfo->num_gd) {
505                 for (i = 0; i < pd_uinfo->num_gd; i++)
506                         crypto4xx_put_gd_to_gdr(dev);
507                 pd_uinfo->first_gd = 0xffffffff;
508                 pd_uinfo->num_gd = 0;
509         }
510         if (pd_uinfo->num_sd) {
511                 for (i = 0; i < pd_uinfo->num_sd; i++)
512                         crypto4xx_put_sd_to_sdr(dev);
513
514                 pd_uinfo->first_sd = 0xffffffff;
515                 pd_uinfo->num_sd = 0;
516         }
517 }
518
519 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
520                                      struct pd_uinfo *pd_uinfo,
521                                      struct ce_pd *pd)
522 {
523         struct skcipher_request *req;
524         struct scatterlist *dst;
525
526         req = skcipher_request_cast(pd_uinfo->async_req);
527
528         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
529                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
530                                           req->cryptlen, req->dst);
531         } else {
532                 dst = pd_uinfo->dest_va;
533                 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
534                                DMA_FROM_DEVICE);
535         }
536
537         if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
538                 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
539
540                 crypto4xx_memcpy_from_le32((u32 *)req->iv,
541                         pd_uinfo->sr_va->save_iv,
542                         crypto_skcipher_ivsize(skcipher));
543         }
544
545         crypto4xx_ret_sg_desc(dev, pd_uinfo);
546
547         if (pd_uinfo->state & PD_ENTRY_BUSY)
548                 skcipher_request_complete(req, -EINPROGRESS);
549         skcipher_request_complete(req, 0);
550 }
551
552 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
553                                 struct pd_uinfo *pd_uinfo)
554 {
555         struct crypto4xx_ctx *ctx;
556         struct ahash_request *ahash_req;
557
558         ahash_req = ahash_request_cast(pd_uinfo->async_req);
559         ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));
560
561         crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
562         crypto4xx_ret_sg_desc(dev, pd_uinfo);
563
564         if (pd_uinfo->state & PD_ENTRY_BUSY)
565                 ahash_request_complete(ahash_req, -EINPROGRESS);
566         ahash_request_complete(ahash_req, 0);
567 }
568
569 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
570                                 struct pd_uinfo *pd_uinfo,
571                                 struct ce_pd *pd)
572 {
573         struct aead_request *aead_req = container_of(pd_uinfo->async_req,
574                 struct aead_request, base);
575         struct scatterlist *dst = pd_uinfo->dest_va;
576         size_t cp_len = crypto_aead_authsize(
577                 crypto_aead_reqtfm(aead_req));
578         u32 icv[AES_BLOCK_SIZE];
579         int err = 0;
580
581         if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
582                 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
583                                           pd->pd_ctl_len.bf.pkt_len,
584                                           dst);
585         } else {
586                 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
587                                 DMA_FROM_DEVICE);
588         }
589
590         if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
591                 /* append icv at the end */
592                 crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
593                                            sizeof(icv));
594
595                 scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
596                                          cp_len, 1);
597         } else {
598                 /* check icv at the end */
599                 scatterwalk_map_and_copy(icv, aead_req->src,
600                         aead_req->assoclen + aead_req->cryptlen -
601                         cp_len, cp_len, 0);
602
603                 crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
604
605                 if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
606                         err = -EBADMSG;
607         }
608
609         crypto4xx_ret_sg_desc(dev, pd_uinfo);
610
611         if (pd->pd_ctl.bf.status & 0xff) {
612                 if (!__ratelimit(&dev->aead_ratelimit)) {
613                         if (pd->pd_ctl.bf.status & 2)
614                                 pr_err("pad fail error\n");
615                         if (pd->pd_ctl.bf.status & 4)
616                                 pr_err("seqnum fail\n");
617                         if (pd->pd_ctl.bf.status & 8)
618                                 pr_err("error _notify\n");
619                         pr_err("aead return err status = 0x%02x\n",
620                                 pd->pd_ctl.bf.status & 0xff);
621                         pr_err("pd pad_ctl = 0x%08x\n",
622                                 pd->pd_ctl.bf.pd_pad_ctl);
623                 }
624                 err = -EINVAL;
625         }
626
627         if (pd_uinfo->state & PD_ENTRY_BUSY)
628                 aead_request_complete(aead_req, -EINPROGRESS);
629
630         aead_request_complete(aead_req, err);
631 }
632
633 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
634 {
635         struct ce_pd *pd = &dev->pdr[idx];
636         struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
637
638         switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
639         case CRYPTO_ALG_TYPE_SKCIPHER:
640                 crypto4xx_cipher_done(dev, pd_uinfo, pd);
641                 break;
642         case CRYPTO_ALG_TYPE_AEAD:
643                 crypto4xx_aead_done(dev, pd_uinfo, pd);
644                 break;
645         case CRYPTO_ALG_TYPE_AHASH:
646                 crypto4xx_ahash_done(dev, pd_uinfo);
647                 break;
648         }
649 }
650
651 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
652 {
653         crypto4xx_destroy_pdr(core_dev->dev);
654         crypto4xx_destroy_gdr(core_dev->dev);
655         crypto4xx_destroy_sdr(core_dev->dev);
656 }
657
658 static u32 get_next_gd(u32 current)
659 {
660         if (current != PPC4XX_LAST_GD)
661                 return current + 1;
662         else
663                 return 0;
664 }
665
666 static u32 get_next_sd(u32 current)
667 {
668         if (current != PPC4XX_LAST_SD)
669                 return current + 1;
670         else
671                 return 0;
672 }
673
674 int crypto4xx_build_pd(struct crypto_async_request *req,
675                        struct crypto4xx_ctx *ctx,
676                        struct scatterlist *src,
677                        struct scatterlist *dst,
678                        const unsigned int datalen,
679                        const __le32 *iv, const u32 iv_len,
680                        const struct dynamic_sa_ctl *req_sa,
681                        const unsigned int sa_len,
682                        const unsigned int assoclen,
683                        struct scatterlist *_dst)
684 {
685         struct crypto4xx_device *dev = ctx->dev;
686         struct dynamic_sa_ctl *sa;
687         struct ce_gd *gd;
688         struct ce_pd *pd;
689         u32 num_gd, num_sd;
690         u32 fst_gd = 0xffffffff;
691         u32 fst_sd = 0xffffffff;
692         u32 pd_entry;
693         unsigned long flags;
694         struct pd_uinfo *pd_uinfo;
695         unsigned int nbytes = datalen;
696         size_t offset_to_sr_ptr;
697         u32 gd_idx = 0;
698         int tmp;
699         bool is_busy, force_sd;
700
701         /*
702          * There's a very subtile/disguised "bug" in the hardware that
703          * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
704          * of the hardware spec:
705          * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
706          * operation modes for >>> "Block ciphers" <<<.
707          *
708          * To workaround this issue and stop the hardware from causing
709          * "overran dst buffer" on crypttexts that are not a multiple
710          * of 16 (AES_BLOCK_SIZE), we force the driver to use the
711          * scatter buffers.
712          */
713         force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
714                 || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
715                 && (datalen % AES_BLOCK_SIZE);
716
717         /* figure how many gd are needed */
718         tmp = sg_nents_for_len(src, assoclen + datalen);
719         if (tmp < 0) {
720                 dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
721                 return tmp;
722         }
723         if (tmp == 1)
724                 tmp = 0;
725         num_gd = tmp;
726
727         if (assoclen) {
728                 nbytes += assoclen;
729                 dst = scatterwalk_ffwd(_dst, dst, assoclen);
730         }
731
732         /* figure how many sd are needed */
733         if (sg_is_last(dst) && force_sd == false) {
734                 num_sd = 0;
735         } else {
736                 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
737                         num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
738                         if (datalen % PPC4XX_SD_BUFFER_SIZE)
739                                 num_sd++;
740                 } else {
741                         num_sd = 1;
742                 }
743         }
744
745         /*
746          * The follow section of code needs to be protected
747          * The gather ring and scatter ring needs to be consecutive
748          * In case of run out of any kind of descriptor, the descriptor
749          * already got must be return the original place.
750          */
751         spin_lock_irqsave(&dev->core_dev->lock, flags);
752         /*
753          * Let the caller know to slow down, once more than 13/16ths = 81%
754          * of the available data contexts are being used simultaneously.
755          *
756          * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
757          * 31 more contexts. Before new requests have to be rejected.
758          */
759         if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
760                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
761                         ((PPC4XX_NUM_PD * 13) / 16);
762         } else {
763                 /*
764                  * To fix contention issues between ipsec (no blacklog) and
765                  * dm-crypto (backlog) reserve 32 entries for "no backlog"
766                  * data contexts.
767                  */
768                 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
769                         ((PPC4XX_NUM_PD * 15) / 16);
770
771                 if (is_busy) {
772                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
773                         return -EBUSY;
774                 }
775         }
776
777         if (num_gd) {
778                 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
779                 if (fst_gd == ERING_WAS_FULL) {
780                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
781                         return -EAGAIN;
782                 }
783         }
784         if (num_sd) {
785                 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
786                 if (fst_sd == ERING_WAS_FULL) {
787                         if (num_gd)
788                                 dev->gdr_head = fst_gd;
789                         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
790                         return -EAGAIN;
791                 }
792         }
793         pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
794         if (pd_entry == ERING_WAS_FULL) {
795                 if (num_gd)
796                         dev->gdr_head = fst_gd;
797                 if (num_sd)
798                         dev->sdr_head = fst_sd;
799                 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
800                 return -EAGAIN;
801         }
802         spin_unlock_irqrestore(&dev->core_dev->lock, flags);
803
804         pd = &dev->pdr[pd_entry];
805         pd->sa_len = sa_len;
806
807         pd_uinfo = &dev->pdr_uinfo[pd_entry];
808         pd_uinfo->num_gd = num_gd;
809         pd_uinfo->num_sd = num_sd;
810         pd_uinfo->dest_va = dst;
811         pd_uinfo->async_req = req;
812
813         if (iv_len)
814                 memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
815
816         sa = pd_uinfo->sa_va;
817         memcpy(sa, req_sa, sa_len * 4);
818
819         sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
820         offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
821         *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
822
823         if (num_gd) {
824                 dma_addr_t gd_dma;
825                 struct scatterlist *sg;
826
827                 /* get first gd we are going to use */
828                 gd_idx = fst_gd;
829                 pd_uinfo->first_gd = fst_gd;
830                 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
831                 pd->src = gd_dma;
832                 /* enable gather */
833                 sa->sa_command_0.bf.gather = 1;
834                 /* walk the sg, and setup gather array */
835
836                 sg = src;
837                 while (nbytes) {
838                         size_t len;
839
840                         len = min(sg->length, nbytes);
841                         gd->ptr = dma_map_page(dev->core_dev->device,
842                                 sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
843                         gd->ctl_len.len = len;
844                         gd->ctl_len.done = 0;
845                         gd->ctl_len.ready = 1;
846                         if (len >= nbytes)
847                                 break;
848
849                         nbytes -= sg->length;
850                         gd_idx = get_next_gd(gd_idx);
851                         gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
852                         sg = sg_next(sg);
853                 }
854         } else {
855                 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
856                                 src->offset, min(nbytes, src->length),
857                                 DMA_TO_DEVICE);
858                 /*
859                  * Disable gather in sa command
860                  */
861                 sa->sa_command_0.bf.gather = 0;
862                 /*
863                  * Indicate gather array is not used
864                  */
865                 pd_uinfo->first_gd = 0xffffffff;
866         }
867         if (!num_sd) {
868                 /*
869                  * we know application give us dst a whole piece of memory
870                  * no need to use scatter ring.
871                  */
872                 pd_uinfo->first_sd = 0xffffffff;
873                 sa->sa_command_0.bf.scatter = 0;
874                 pd->dest = (u32)dma_map_page(dev->core_dev->device,
875                                              sg_page(dst), dst->offset,
876                                              min(datalen, dst->length),
877                                              DMA_TO_DEVICE);
878         } else {
879                 dma_addr_t sd_dma;
880                 struct ce_sd *sd = NULL;
881
882                 u32 sd_idx = fst_sd;
883                 nbytes = datalen;
884                 sa->sa_command_0.bf.scatter = 1;
885                 pd_uinfo->first_sd = fst_sd;
886                 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
887                 pd->dest = sd_dma;
888                 /* setup scatter descriptor */
889                 sd->ctl.done = 0;
890                 sd->ctl.rdy = 1;
891                 /* sd->ptr should be setup by sd_init routine*/
892                 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
893                         nbytes -= PPC4XX_SD_BUFFER_SIZE;
894                 else
895                         nbytes = 0;
896                 while (nbytes) {
897                         sd_idx = get_next_sd(sd_idx);
898                         sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
899                         /* setup scatter descriptor */
900                         sd->ctl.done = 0;
901                         sd->ctl.rdy = 1;
902                         if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
903                                 nbytes -= PPC4XX_SD_BUFFER_SIZE;
904                         } else {
905                                 /*
906                                  * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
907                                  * which is more than nbytes, so done.
908                                  */
909                                 nbytes = 0;
910                         }
911                 }
912         }
913
914         pd->pd_ctl.w = PD_CTL_HOST_READY |
915                 ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
916                  (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
917                         PD_CTL_HASH_FINAL : 0);
918         pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
919         pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
920
921         wmb();
922         /* write any value to push engine to read a pd */
923         writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
924         writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
925         return is_busy ? -EBUSY : -EINPROGRESS;
926 }
927
928 /*
929  * Algorithm Registration Functions
930  */
931 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
932                                struct crypto4xx_ctx *ctx)
933 {
934         ctx->dev = amcc_alg->dev;
935         ctx->sa_in = NULL;
936         ctx->sa_out = NULL;
937         ctx->sa_len = 0;
938 }
939
940 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
941 {
942         struct skcipher_alg *alg = crypto_skcipher_alg(sk);
943         struct crypto4xx_alg *amcc_alg;
944         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
945
946         if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
947                 ctx->sw_cipher.cipher =
948                         crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
949                                               CRYPTO_ALG_NEED_FALLBACK);
950                 if (IS_ERR(ctx->sw_cipher.cipher))
951                         return PTR_ERR(ctx->sw_cipher.cipher);
952         }
953
954         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
955         crypto4xx_ctx_init(amcc_alg, ctx);
956         return 0;
957 }
958
959 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
960 {
961         crypto4xx_free_sa(ctx);
962 }
963
964 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
965 {
966         struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
967
968         crypto4xx_common_exit(ctx);
969         if (ctx->sw_cipher.cipher)
970                 crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
971 }
972
973 static int crypto4xx_aead_init(struct crypto_aead *tfm)
974 {
975         struct aead_alg *alg = crypto_aead_alg(tfm);
976         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
977         struct crypto4xx_alg *amcc_alg;
978
979         ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
980                                                 CRYPTO_ALG_NEED_FALLBACK |
981                                                 CRYPTO_ALG_ASYNC);
982         if (IS_ERR(ctx->sw_cipher.aead))
983                 return PTR_ERR(ctx->sw_cipher.aead);
984
985         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
986         crypto4xx_ctx_init(amcc_alg, ctx);
987         crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
988                                 crypto_aead_reqsize(ctx->sw_cipher.aead),
989                                 sizeof(struct crypto4xx_aead_reqctx)));
990         return 0;
991 }
992
993 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
994 {
995         struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
996
997         crypto4xx_common_exit(ctx);
998         crypto_free_aead(ctx->sw_cipher.aead);
999 }
1000
1001 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1002                                   struct crypto4xx_alg_common *crypto_alg,
1003                                   int array_size)
1004 {
1005         struct crypto4xx_alg *alg;
1006         int i;
1007         int rc = 0;
1008
1009         for (i = 0; i < array_size; i++) {
1010                 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1011                 if (!alg)
1012                         return -ENOMEM;
1013
1014                 alg->alg = crypto_alg[i];
1015                 alg->dev = sec_dev;
1016
1017                 switch (alg->alg.type) {
1018                 case CRYPTO_ALG_TYPE_AEAD:
1019                         rc = crypto_register_aead(&alg->alg.u.aead);
1020                         break;
1021
1022                 case CRYPTO_ALG_TYPE_AHASH:
1023                         rc = crypto_register_ahash(&alg->alg.u.hash);
1024                         break;
1025
1026                 case CRYPTO_ALG_TYPE_RNG:
1027                         rc = crypto_register_rng(&alg->alg.u.rng);
1028                         break;
1029
1030                 default:
1031                         rc = crypto_register_skcipher(&alg->alg.u.cipher);
1032                         break;
1033                 }
1034
1035                 if (rc)
1036                         kfree(alg);
1037                 else
1038                         list_add_tail(&alg->entry, &sec_dev->alg_list);
1039         }
1040
1041         return 0;
1042 }
1043
1044 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1045 {
1046         struct crypto4xx_alg *alg, *tmp;
1047
1048         list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1049                 list_del(&alg->entry);
1050                 switch (alg->alg.type) {
1051                 case CRYPTO_ALG_TYPE_AHASH:
1052                         crypto_unregister_ahash(&alg->alg.u.hash);
1053                         break;
1054
1055                 case CRYPTO_ALG_TYPE_AEAD:
1056                         crypto_unregister_aead(&alg->alg.u.aead);
1057                         break;
1058
1059                 case CRYPTO_ALG_TYPE_RNG:
1060                         crypto_unregister_rng(&alg->alg.u.rng);
1061                         break;
1062
1063                 default:
1064                         crypto_unregister_skcipher(&alg->alg.u.cipher);
1065                 }
1066                 kfree(alg);
1067         }
1068 }
1069
1070 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1071 {
1072         struct device *dev = (struct device *)data;
1073         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1074         struct pd_uinfo *pd_uinfo;
1075         struct ce_pd *pd;
1076         u32 tail = core_dev->dev->pdr_tail;
1077         u32 head = core_dev->dev->pdr_head;
1078
1079         do {
1080                 pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1081                 pd = &core_dev->dev->pdr[tail];
1082                 if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1083                      ((READ_ONCE(pd->pd_ctl.w) &
1084                        (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1085                        PD_CTL_PE_DONE)) {
1086                         crypto4xx_pd_done(core_dev->dev, tail);
1087                         tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1088                 } else {
1089                         /* if tail not done, break */
1090                         break;
1091                 }
1092         } while (head != tail);
1093 }
1094
1095 /*
1096  * Top Half of isr.
1097  */
1098 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1099                                                       u32 clr_val)
1100 {
1101         struct device *dev = data;
1102         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1103
1104         writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1105         tasklet_schedule(&core_dev->tasklet);
1106
1107         return IRQ_HANDLED;
1108 }
1109
1110 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1111 {
1112         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1113 }
1114
1115 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1116 {
1117         return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1118                 PPC4XX_TMO_ERR_INT);
1119 }
1120
1121 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1122                                  u8 *data, unsigned int max)
1123 {
1124         unsigned int i, curr = 0;
1125         u32 val[2];
1126
1127         do {
1128                 /* trigger PRN generation */
1129                 writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1130                        dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1131
1132                 for (i = 0; i < 1024; i++) {
1133                         /* usually 19 iterations are enough */
1134                         if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1135                              CRYPTO4XX_PRNG_STAT_BUSY))
1136                                 continue;
1137
1138                         val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1139                         val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1140                         break;
1141                 }
1142                 if (i == 1024)
1143                         return -ETIMEDOUT;
1144
1145                 if ((max - curr) >= 8) {
1146                         memcpy(data, &val, 8);
1147                         data += 8;
1148                         curr += 8;
1149                 } else {
1150                         /* copy only remaining bytes */
1151                         memcpy(data, &val, max - curr);
1152                         break;
1153                 }
1154         } while (curr < max);
1155
1156         return curr;
1157 }
1158
1159 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1160                                    const u8 *src, unsigned int slen,
1161                                    u8 *dstn, unsigned int dlen)
1162 {
1163         struct rng_alg *alg = crypto_rng_alg(tfm);
1164         struct crypto4xx_alg *amcc_alg;
1165         struct crypto4xx_device *dev;
1166         int ret;
1167
1168         amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1169         dev = amcc_alg->dev;
1170
1171         mutex_lock(&dev->core_dev->rng_lock);
1172         ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1173         mutex_unlock(&dev->core_dev->rng_lock);
1174         return ret;
1175 }
1176
1177
1178 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1179                         unsigned int slen)
1180 {
1181         return 0;
1182 }
1183
1184 /*
1185  * Supported Crypto Algorithms
1186  */
1187 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1188         /* Crypto AES modes */
1189         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1190                 .base = {
1191                         .cra_name = "cbc(aes)",
1192                         .cra_driver_name = "cbc-aes-ppc4xx",
1193                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1194                         .cra_flags = CRYPTO_ALG_ASYNC |
1195                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1196                         .cra_blocksize = AES_BLOCK_SIZE,
1197                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1198                         .cra_module = THIS_MODULE,
1199                 },
1200                 .min_keysize = AES_MIN_KEY_SIZE,
1201                 .max_keysize = AES_MAX_KEY_SIZE,
1202                 .ivsize = AES_IV_SIZE,
1203                 .setkey = crypto4xx_setkey_aes_cbc,
1204                 .encrypt = crypto4xx_encrypt_iv_block,
1205                 .decrypt = crypto4xx_decrypt_iv_block,
1206                 .init = crypto4xx_sk_init,
1207                 .exit = crypto4xx_sk_exit,
1208         } },
1209         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1210                 .base = {
1211                         .cra_name = "ctr(aes)",
1212                         .cra_driver_name = "ctr-aes-ppc4xx",
1213                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1214                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1215                                 CRYPTO_ALG_ASYNC |
1216                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1217                         .cra_blocksize = 1,
1218                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1219                         .cra_module = THIS_MODULE,
1220                 },
1221                 .min_keysize = AES_MIN_KEY_SIZE,
1222                 .max_keysize = AES_MAX_KEY_SIZE,
1223                 .ivsize = AES_IV_SIZE,
1224                 .setkey = crypto4xx_setkey_aes_ctr,
1225                 .encrypt = crypto4xx_encrypt_ctr,
1226                 .decrypt = crypto4xx_decrypt_ctr,
1227                 .init = crypto4xx_sk_init,
1228                 .exit = crypto4xx_sk_exit,
1229         } },
1230         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1231                 .base = {
1232                         .cra_name = "rfc3686(ctr(aes))",
1233                         .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1234                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1235                         .cra_flags = CRYPTO_ALG_ASYNC |
1236                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1237                         .cra_blocksize = 1,
1238                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1239                         .cra_module = THIS_MODULE,
1240                 },
1241                 .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1242                 .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1243                 .ivsize = CTR_RFC3686_IV_SIZE,
1244                 .setkey = crypto4xx_setkey_rfc3686,
1245                 .encrypt = crypto4xx_rfc3686_encrypt,
1246                 .decrypt = crypto4xx_rfc3686_decrypt,
1247                 .init = crypto4xx_sk_init,
1248                 .exit = crypto4xx_sk_exit,
1249         } },
1250         { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1251                 .base = {
1252                         .cra_name = "ecb(aes)",
1253                         .cra_driver_name = "ecb-aes-ppc4xx",
1254                         .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1255                         .cra_flags = CRYPTO_ALG_ASYNC |
1256                                 CRYPTO_ALG_KERN_DRIVER_ONLY,
1257                         .cra_blocksize = AES_BLOCK_SIZE,
1258                         .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1259                         .cra_module = THIS_MODULE,
1260                 },
1261                 .min_keysize = AES_MIN_KEY_SIZE,
1262                 .max_keysize = AES_MAX_KEY_SIZE,
1263                 .setkey = crypto4xx_setkey_aes_ecb,
1264                 .encrypt = crypto4xx_encrypt_noiv_block,
1265                 .decrypt = crypto4xx_decrypt_noiv_block,
1266                 .init = crypto4xx_sk_init,
1267                 .exit = crypto4xx_sk_exit,
1268         } },
1269
1270         /* AEAD */
1271         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1272                 .setkey         = crypto4xx_setkey_aes_ccm,
1273                 .setauthsize    = crypto4xx_setauthsize_aead,
1274                 .encrypt        = crypto4xx_encrypt_aes_ccm,
1275                 .decrypt        = crypto4xx_decrypt_aes_ccm,
1276                 .init           = crypto4xx_aead_init,
1277                 .exit           = crypto4xx_aead_exit,
1278                 .ivsize         = AES_BLOCK_SIZE,
1279                 .maxauthsize    = 16,
1280                 .base = {
1281                         .cra_name       = "ccm(aes)",
1282                         .cra_driver_name = "ccm-aes-ppc4xx",
1283                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1284                         .cra_flags      = CRYPTO_ALG_ASYNC |
1285                                           CRYPTO_ALG_NEED_FALLBACK |
1286                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1287                         .cra_blocksize  = 1,
1288                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1289                         .cra_module     = THIS_MODULE,
1290                 },
1291         } },
1292         { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1293                 .setkey         = crypto4xx_setkey_aes_gcm,
1294                 .setauthsize    = crypto4xx_setauthsize_aead,
1295                 .encrypt        = crypto4xx_encrypt_aes_gcm,
1296                 .decrypt        = crypto4xx_decrypt_aes_gcm,
1297                 .init           = crypto4xx_aead_init,
1298                 .exit           = crypto4xx_aead_exit,
1299                 .ivsize         = GCM_AES_IV_SIZE,
1300                 .maxauthsize    = 16,
1301                 .base = {
1302                         .cra_name       = "gcm(aes)",
1303                         .cra_driver_name = "gcm-aes-ppc4xx",
1304                         .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1305                         .cra_flags      = CRYPTO_ALG_ASYNC |
1306                                           CRYPTO_ALG_NEED_FALLBACK |
1307                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
1308                         .cra_blocksize  = 1,
1309                         .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1310                         .cra_module     = THIS_MODULE,
1311                 },
1312         } },
1313         { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1314                 .base = {
1315                         .cra_name               = "stdrng",
1316                         .cra_driver_name        = "crypto4xx_rng",
1317                         .cra_priority           = 300,
1318                         .cra_ctxsize            = 0,
1319                         .cra_module             = THIS_MODULE,
1320                 },
1321                 .generate               = crypto4xx_prng_generate,
1322                 .seed                   = crypto4xx_prng_seed,
1323                 .seedsize               = 0,
1324         } },
1325 };
1326
1327 /*
1328  * Module Initialization Routine
1329  */
1330 static int crypto4xx_probe(struct platform_device *ofdev)
1331 {
1332         int rc;
1333         struct device *dev = &ofdev->dev;
1334         struct crypto4xx_core_device *core_dev;
1335         struct device_node *np;
1336         u32 pvr;
1337         bool is_revb = true;
1338
1339         np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
1340         if (np) {
1341                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1342                        mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1343                 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1344                        mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1345         } else {
1346                 np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
1347                 if (np) {
1348                         mtdcri(SDR0, PPC405EX_SDR0_SRST,
1349                                    mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1350                         mtdcri(SDR0, PPC405EX_SDR0_SRST,
1351                                    mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1352                         is_revb = false;
1353                 } else {
1354                         np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
1355                         if (np) {
1356                                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1357                                         mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1358                                 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1359                                         mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1360                         } else {
1361                                 printk(KERN_ERR "Crypto Function Not supported!\n");
1362                                 return -EINVAL;
1363                         }
1364                 }
1365         }
1366
1367         of_node_put(np);
1368
1369         core_dev = devm_kzalloc(
1370                 &ofdev->dev, sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1371         if (!core_dev)
1372                 return -ENOMEM;
1373
1374         dev_set_drvdata(dev, core_dev);
1375         core_dev->ofdev = ofdev;
1376         core_dev->dev = devm_kzalloc(
1377                 &ofdev->dev, sizeof(struct crypto4xx_device), GFP_KERNEL);
1378         if (!core_dev->dev)
1379                 return -ENOMEM;
1380
1381         /*
1382          * Older version of 460EX/GT have a hardware bug.
1383          * Hence they do not support H/W based security intr coalescing
1384          */
1385         pvr = mfspr(SPRN_PVR);
1386         if (is_revb && ((pvr >> 4) == 0x130218A)) {
1387                 u32 min = PVR_MIN(pvr);
1388
1389                 if (min < 4) {
1390                         dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1391                         is_revb = false;
1392                 }
1393         }
1394
1395         core_dev->dev->core_dev = core_dev;
1396         core_dev->dev->is_revb = is_revb;
1397         core_dev->device = dev;
1398         rc = devm_mutex_init(&ofdev->dev, &core_dev->rng_lock);
1399         if (rc)
1400                 return rc;
1401         spin_lock_init(&core_dev->lock);
1402         INIT_LIST_HEAD(&core_dev->dev->alg_list);
1403         ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1404         rc = crypto4xx_build_sdr(core_dev->dev);
1405         if (rc)
1406                 goto err_build_sdr;
1407         rc = crypto4xx_build_pdr(core_dev->dev);
1408         if (rc)
1409                 goto err_build_sdr;
1410
1411         rc = crypto4xx_build_gdr(core_dev->dev);
1412         if (rc)
1413                 goto err_build_sdr;
1414
1415         /* Init tasklet for bottom half processing */
1416         tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1417                      (unsigned long) dev);
1418
1419         core_dev->dev->ce_base = devm_platform_ioremap_resource(ofdev, 0);
1420         if (IS_ERR(core_dev->dev->ce_base)) {
1421                 dev_err(&ofdev->dev, "failed to ioremap resource");
1422                 rc = PTR_ERR(core_dev->dev->ce_base);
1423                 goto err_build_sdr;
1424         }
1425
1426         /* Register for Crypto isr, Crypto Engine IRQ */
1427         core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1428         rc = devm_request_irq(&ofdev->dev, core_dev->irq,
1429                               is_revb ? crypto4xx_ce_interrupt_handler_revb :
1430                                         crypto4xx_ce_interrupt_handler,
1431                               0, KBUILD_MODNAME, dev);
1432         if (rc)
1433                 goto err_iomap;
1434
1435         /* need to setup pdr, rdr, gdr and sdr before this */
1436         crypto4xx_hw_init(core_dev->dev);
1437
1438         /* Register security algorithms with Linux CryptoAPI */
1439         rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1440                                ARRAY_SIZE(crypto4xx_alg));
1441         if (rc)
1442                 goto err_iomap;
1443
1444         ppc4xx_trng_probe(core_dev);
1445         return 0;
1446
1447 err_iomap:
1448         tasklet_kill(&core_dev->tasklet);
1449 err_build_sdr:
1450         crypto4xx_destroy_sdr(core_dev->dev);
1451         crypto4xx_destroy_gdr(core_dev->dev);
1452         crypto4xx_destroy_pdr(core_dev->dev);
1453         return rc;
1454 }
1455
1456 static void crypto4xx_remove(struct platform_device *ofdev)
1457 {
1458         struct device *dev = &ofdev->dev;
1459         struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1460
1461         ppc4xx_trng_remove(core_dev);
1462
1463         tasklet_kill(&core_dev->tasklet);
1464         /* Un-register with Linux CryptoAPI */
1465         crypto4xx_unregister_alg(core_dev->dev);
1466         /* Free all allocated memory */
1467         crypto4xx_stop_all(core_dev);
1468 }
1469
1470 static const struct of_device_id crypto4xx_match[] = {
1471         { .compatible      = "amcc,ppc4xx-crypto",},
1472         { },
1473 };
1474 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1475
1476 static struct platform_driver crypto4xx_driver = {
1477         .driver = {
1478                 .name = KBUILD_MODNAME,
1479                 .of_match_table = crypto4xx_match,
1480         },
1481         .probe          = crypto4xx_probe,
1482         .remove         = crypto4xx_remove,
1483 };
1484
1485 module_platform_driver(crypto4xx_driver);
1486
1487 MODULE_LICENSE("GPL");
1488 MODULE_AUTHOR("James Hsiao <[email protected]>");
1489 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
This page took 0.120351 seconds and 4 git commands to generate.