]> Git Repo - J-linux.git/blob - drivers/cpufreq/intel_pstate.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <[email protected]>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/sched/smt.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/cpufreq.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/acpi.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pm_qos.h>
29 #include <linux/bitfield.h>
30 #include <trace/events/power.h>
31
32 #include <asm/cpu.h>
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 #include "../drivers/thermal/intel/thermal_interrupt.h"
39
40 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
41
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
45
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54
55 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
56
57 #define EXT_BITS 6
58 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
59 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
60 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
61
62 static inline int32_t mul_fp(int32_t x, int32_t y)
63 {
64         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
65 }
66
67 static inline int32_t div_fp(s64 x, s64 y)
68 {
69         return div64_s64((int64_t)x << FRAC_BITS, y);
70 }
71
72 static inline int ceiling_fp(int32_t x)
73 {
74         int mask, ret;
75
76         ret = fp_toint(x);
77         mask = (1 << FRAC_BITS) - 1;
78         if (x & mask)
79                 ret += 1;
80         return ret;
81 }
82
83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85         return (x * y) >> EXT_FRAC_BITS;
86 }
87
88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90         return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92
93 /**
94  * struct sample -      Store performance sample
95  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
96  *                      performance during last sample period
97  * @busy_scaled:        Scaled busy value which is used to calculate next
98  *                      P state. This can be different than core_avg_perf
99  *                      to account for cpu idle period
100  * @aperf:              Difference of actual performance frequency clock count
101  *                      read from APERF MSR between last and current sample
102  * @mperf:              Difference of maximum performance frequency clock count
103  *                      read from MPERF MSR between last and current sample
104  * @tsc:                Difference of time stamp counter between last and
105  *                      current sample
106  * @time:               Current time from scheduler
107  *
108  * This structure is used in the cpudata structure to store performance sample
109  * data for choosing next P State.
110  */
111 struct sample {
112         int32_t core_avg_perf;
113         int32_t busy_scaled;
114         u64 aperf;
115         u64 mperf;
116         u64 tsc;
117         u64 time;
118 };
119
120 /**
121  * struct pstate_data - Store P state data
122  * @current_pstate:     Current requested P state
123  * @min_pstate:         Min P state possible for this platform
124  * @max_pstate:         Max P state possible for this platform
125  * @max_pstate_physical:This is physical Max P state for a processor
126  *                      This can be higher than the max_pstate which can
127  *                      be limited by platform thermal design power limits
128  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
129  * @scaling:            Scaling factor between performance and frequency
130  * @turbo_pstate:       Max Turbo P state possible for this platform
131  * @min_freq:           @min_pstate frequency in cpufreq units
132  * @max_freq:           @max_pstate frequency in cpufreq units
133  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
134  *
135  * Stores the per cpu model P state limits and current P state.
136  */
137 struct pstate_data {
138         int     current_pstate;
139         int     min_pstate;
140         int     max_pstate;
141         int     max_pstate_physical;
142         int     perf_ctl_scaling;
143         int     scaling;
144         int     turbo_pstate;
145         unsigned int min_freq;
146         unsigned int max_freq;
147         unsigned int turbo_freq;
148 };
149
150 /**
151  * struct vid_data -    Stores voltage information data
152  * @min:                VID data for this platform corresponding to
153  *                      the lowest P state
154  * @max:                VID data corresponding to the highest P State.
155  * @turbo:              VID data for turbo P state
156  * @ratio:              Ratio of (vid max - vid min) /
157  *                      (max P state - Min P State)
158  *
159  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
160  * This data is used in Atom platforms, where in addition to target P state,
161  * the voltage data needs to be specified to select next P State.
162  */
163 struct vid_data {
164         int min;
165         int max;
166         int turbo;
167         int32_t ratio;
168 };
169
170 /**
171  * struct global_params - Global parameters, mostly tunable via sysfs.
172  * @no_turbo:           Whether or not to use turbo P-states.
173  * @turbo_disabled:     Whether or not turbo P-states are available at all,
174  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
175  *                      not the maximum reported turbo P-state is different from
176  *                      the maximum reported non-turbo one.
177  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
178  *                      P-state capacity.
179  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
180  *                      P-state capacity.
181  */
182 struct global_params {
183         bool no_turbo;
184         bool turbo_disabled;
185         int max_perf_pct;
186         int min_perf_pct;
187 };
188
189 /**
190  * struct cpudata -     Per CPU instance data storage
191  * @cpu:                CPU number for this instance data
192  * @policy:             CPUFreq policy value
193  * @update_util:        CPUFreq utility callback information
194  * @update_util_set:    CPUFreq utility callback is set
195  * @iowait_boost:       iowait-related boost fraction
196  * @last_update:        Time of the last update.
197  * @pstate:             Stores P state limits for this CPU
198  * @vid:                Stores VID limits for this CPU
199  * @last_sample_time:   Last Sample time
200  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
201  * @prev_aperf:         Last APERF value read from APERF MSR
202  * @prev_mperf:         Last MPERF value read from MPERF MSR
203  * @prev_tsc:           Last timestamp counter (TSC) value
204  * @sample:             Storage for storing last Sample data
205  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
206  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
207  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
208  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
209  * @epp_powersave:      Last saved HWP energy performance preference
210  *                      (EPP) or energy performance bias (EPB),
211  *                      when policy switched to performance
212  * @epp_policy:         Last saved policy used to set EPP/EPB
213  * @epp_default:        Power on default HWP energy performance
214  *                      preference/bias
215  * @epp_cached:         Cached HWP energy-performance preference value
216  * @hwp_req_cached:     Cached value of the last HWP Request MSR
217  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
218  * @last_io_update:     Last time when IO wake flag was set
219  * @capacity_perf:      Highest perf used for scale invariance
220  * @sched_flags:        Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:      Last HWP boosted min performance
222  * @suspended:          Whether or not the driver has been suspended.
223  * @hwp_notify_work:    workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228         int cpu;
229
230         unsigned int policy;
231         struct update_util_data update_util;
232         bool   update_util_set;
233
234         struct pstate_data pstate;
235         struct vid_data vid;
236
237         u64     last_update;
238         u64     last_sample_time;
239         u64     aperf_mperf_shift;
240         u64     prev_aperf;
241         u64     prev_mperf;
242         u64     prev_tsc;
243         struct sample sample;
244         int32_t min_perf_ratio;
245         int32_t max_perf_ratio;
246 #ifdef CONFIG_ACPI
247         struct acpi_processor_performance acpi_perf_data;
248         bool valid_pss_table;
249 #endif
250         unsigned int iowait_boost;
251         s16 epp_powersave;
252         s16 epp_policy;
253         s16 epp_default;
254         s16 epp_cached;
255         u64 hwp_req_cached;
256         u64 hwp_cap_cached;
257         u64 last_io_update;
258         unsigned int capacity_perf;
259         unsigned int sched_flags;
260         u32 hwp_boost_min;
261         bool suspended;
262         struct delayed_work hwp_notify_work;
263 };
264
265 static struct cpudata **all_cpu_data;
266
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:            Callback to get maximum non turbo effective P state
270  * @get_max_physical:   Callback to get maximum non turbo physical P state
271  * @get_min:            Callback to get minimum P state
272  * @get_turbo:          Callback to get turbo P state
273  * @get_scaling:        Callback to get frequency scaling factor
274  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
275  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276  * @get_val:            Callback to convert P state to actual MSR write value
277  * @get_vid:            Callback to get VID data for Atom platforms
278  *
279  * Core and Atom CPU models have different way to get P State limits. This
280  * structure is used to store those callbacks.
281  */
282 struct pstate_funcs {
283         int (*get_max)(int cpu);
284         int (*get_max_physical)(int cpu);
285         int (*get_min)(int cpu);
286         int (*get_turbo)(int cpu);
287         int (*get_scaling)(void);
288         int (*get_cpu_scaling)(int cpu);
289         int (*get_aperf_mperf_shift)(void);
290         u64 (*get_val)(struct cpudata*, int pstate);
291         void (*get_vid)(struct cpudata *);
292 };
293
294 static struct pstate_funcs pstate_funcs __read_mostly;
295
296 static bool hwp_active __ro_after_init;
297 static int hwp_mode_bdw __ro_after_init;
298 static bool per_cpu_limits __ro_after_init;
299 static bool hwp_forced __ro_after_init;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_is_hybrid;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #define HYBRID_SCALING_FACTOR           78741
306 #define HYBRID_SCALING_FACTOR_MTL       80000
307 #define HYBRID_SCALING_FACTOR_LNL       86957
308
309 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
310
311 static inline int core_get_scaling(void)
312 {
313         return 100000;
314 }
315
316 #ifdef CONFIG_ACPI
317 static bool acpi_ppc;
318 #endif
319
320 static struct global_params global;
321
322 static DEFINE_MUTEX(intel_pstate_driver_lock);
323 static DEFINE_MUTEX(intel_pstate_limits_lock);
324
325 #ifdef CONFIG_ACPI
326
327 static bool intel_pstate_acpi_pm_profile_server(void)
328 {
329         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
330             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
331                 return true;
332
333         return false;
334 }
335
336 static bool intel_pstate_get_ppc_enable_status(void)
337 {
338         if (intel_pstate_acpi_pm_profile_server())
339                 return true;
340
341         return acpi_ppc;
342 }
343
344 #ifdef CONFIG_ACPI_CPPC_LIB
345
346 /* The work item is needed to avoid CPU hotplug locking issues */
347 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
348 {
349         sched_set_itmt_support();
350 }
351
352 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
353
354 #define CPPC_MAX_PERF   U8_MAX
355
356 static void intel_pstate_set_itmt_prio(int cpu)
357 {
358         struct cppc_perf_caps cppc_perf;
359         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
360         int ret;
361
362         ret = cppc_get_perf_caps(cpu, &cppc_perf);
363         /*
364          * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
365          *
366          * Also, on some systems with overclocking enabled, CPPC.highest_perf is
367          * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
368          * Fall back to MSR_HWP_CAPABILITIES then too.
369          */
370         if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
371                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
372
373         /*
374          * The priorities can be set regardless of whether or not
375          * sched_set_itmt_support(true) has been called and it is valid to
376          * update them at any time after it has been called.
377          */
378         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
379
380         if (max_highest_perf <= min_highest_perf) {
381                 if (cppc_perf.highest_perf > max_highest_perf)
382                         max_highest_perf = cppc_perf.highest_perf;
383
384                 if (cppc_perf.highest_perf < min_highest_perf)
385                         min_highest_perf = cppc_perf.highest_perf;
386
387                 if (max_highest_perf > min_highest_perf) {
388                         /*
389                          * This code can be run during CPU online under the
390                          * CPU hotplug locks, so sched_set_itmt_support()
391                          * cannot be called from here.  Queue up a work item
392                          * to invoke it.
393                          */
394                         schedule_work(&sched_itmt_work);
395                 }
396         }
397 }
398
399 static int intel_pstate_get_cppc_guaranteed(int cpu)
400 {
401         struct cppc_perf_caps cppc_perf;
402         int ret;
403
404         ret = cppc_get_perf_caps(cpu, &cppc_perf);
405         if (ret)
406                 return ret;
407
408         if (cppc_perf.guaranteed_perf)
409                 return cppc_perf.guaranteed_perf;
410
411         return cppc_perf.nominal_perf;
412 }
413
414 static int intel_pstate_cppc_get_scaling(int cpu)
415 {
416         struct cppc_perf_caps cppc_perf;
417         int ret;
418
419         ret = cppc_get_perf_caps(cpu, &cppc_perf);
420
421         /*
422          * If the nominal frequency and the nominal performance are not
423          * zero and the ratio between them is not 100, return the hybrid
424          * scaling factor.
425          */
426         if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
427             cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
428                 return hybrid_scaling_factor;
429
430         return core_get_scaling();
431 }
432
433 #else /* CONFIG_ACPI_CPPC_LIB */
434 static inline void intel_pstate_set_itmt_prio(int cpu)
435 {
436 }
437 #endif /* CONFIG_ACPI_CPPC_LIB */
438
439 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
440 {
441         struct cpudata *cpu;
442         int ret;
443         int i;
444
445         if (hwp_active) {
446                 intel_pstate_set_itmt_prio(policy->cpu);
447                 return;
448         }
449
450         if (!intel_pstate_get_ppc_enable_status())
451                 return;
452
453         cpu = all_cpu_data[policy->cpu];
454
455         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
456                                                   policy->cpu);
457         if (ret)
458                 return;
459
460         /*
461          * Check if the control value in _PSS is for PERF_CTL MSR, which should
462          * guarantee that the states returned by it map to the states in our
463          * list directly.
464          */
465         if (cpu->acpi_perf_data.control_register.space_id !=
466                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
467                 goto err;
468
469         /*
470          * If there is only one entry _PSS, simply ignore _PSS and continue as
471          * usual without taking _PSS into account
472          */
473         if (cpu->acpi_perf_data.state_count < 2)
474                 goto err;
475
476         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
477         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
478                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
479                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
480                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
481                          (u32) cpu->acpi_perf_data.states[i].power,
482                          (u32) cpu->acpi_perf_data.states[i].control);
483         }
484
485         cpu->valid_pss_table = true;
486         pr_debug("_PPC limits will be enforced\n");
487
488         return;
489
490  err:
491         cpu->valid_pss_table = false;
492         acpi_processor_unregister_performance(policy->cpu);
493 }
494
495 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496 {
497         struct cpudata *cpu;
498
499         cpu = all_cpu_data[policy->cpu];
500         if (!cpu->valid_pss_table)
501                 return;
502
503         acpi_processor_unregister_performance(policy->cpu);
504 }
505 #else /* CONFIG_ACPI */
506 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509
510 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
511 {
512 }
513
514 static inline bool intel_pstate_acpi_pm_profile_server(void)
515 {
516         return false;
517 }
518 #endif /* CONFIG_ACPI */
519
520 #ifndef CONFIG_ACPI_CPPC_LIB
521 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
522 {
523         return -ENOTSUPP;
524 }
525
526 static int intel_pstate_cppc_get_scaling(int cpu)
527 {
528         return core_get_scaling();
529 }
530 #endif /* CONFIG_ACPI_CPPC_LIB */
531
532 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
533                                         unsigned int relation)
534 {
535         if (freq == cpu->pstate.turbo_freq)
536                 return cpu->pstate.turbo_pstate;
537
538         if (freq == cpu->pstate.max_freq)
539                 return cpu->pstate.max_pstate;
540
541         switch (relation) {
542         case CPUFREQ_RELATION_H:
543                 return freq / cpu->pstate.scaling;
544         case CPUFREQ_RELATION_C:
545                 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
546         }
547
548         return DIV_ROUND_UP(freq, cpu->pstate.scaling);
549 }
550
551 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
552 {
553         return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
554 }
555
556 /**
557  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
558  * @cpu: Target CPU.
559  *
560  * On hybrid processors, HWP may expose more performance levels than there are
561  * P-states accessible through the PERF_CTL interface.  If that happens, the
562  * scaling factor between HWP performance levels and CPU frequency will be less
563  * than the scaling factor between P-state values and CPU frequency.
564  *
565  * In that case, adjust the CPU parameters used in computations accordingly.
566  */
567 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
568 {
569         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
570         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
571         int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
572         int scaling = cpu->pstate.scaling;
573         int freq;
574
575         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
576         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
577         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
578         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
579         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
580         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
581
582         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
583                                            perf_ctl_scaling);
584         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
585                                          perf_ctl_scaling);
586
587         freq = perf_ctl_max_phys * perf_ctl_scaling;
588         cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
589
590         freq = cpu->pstate.min_pstate * perf_ctl_scaling;
591         cpu->pstate.min_freq = freq;
592         /*
593          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
594          * the effective range of HWP performance levels.
595          */
596         cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
597 }
598
599 static bool turbo_is_disabled(void)
600 {
601         u64 misc_en;
602
603         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
604
605         return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
606 }
607
608 static int min_perf_pct_min(void)
609 {
610         struct cpudata *cpu = all_cpu_data[0];
611         int turbo_pstate = cpu->pstate.turbo_pstate;
612
613         return turbo_pstate ?
614                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
615 }
616
617 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
618 {
619         u64 epb;
620         int ret;
621
622         if (!boot_cpu_has(X86_FEATURE_EPB))
623                 return -ENXIO;
624
625         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626         if (ret)
627                 return (s16)ret;
628
629         return (s16)(epb & 0x0f);
630 }
631
632 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
633 {
634         s16 epp;
635
636         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
637                 /*
638                  * When hwp_req_data is 0, means that caller didn't read
639                  * MSR_HWP_REQUEST, so need to read and get EPP.
640                  */
641                 if (!hwp_req_data) {
642                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
643                                             &hwp_req_data);
644                         if (epp)
645                                 return epp;
646                 }
647                 epp = (hwp_req_data >> 24) & 0xff;
648         } else {
649                 /* When there is no EPP present, HWP uses EPB settings */
650                 epp = intel_pstate_get_epb(cpu_data);
651         }
652
653         return epp;
654 }
655
656 static int intel_pstate_set_epb(int cpu, s16 pref)
657 {
658         u64 epb;
659         int ret;
660
661         if (!boot_cpu_has(X86_FEATURE_EPB))
662                 return -ENXIO;
663
664         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
665         if (ret)
666                 return ret;
667
668         epb = (epb & ~0x0f) | pref;
669         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
670
671         return 0;
672 }
673
674 /*
675  * EPP/EPB display strings corresponding to EPP index in the
676  * energy_perf_strings[]
677  *      index           String
678  *-------------------------------------
679  *      0               default
680  *      1               performance
681  *      2               balance_performance
682  *      3               balance_power
683  *      4               power
684  */
685
686 enum energy_perf_value_index {
687         EPP_INDEX_DEFAULT = 0,
688         EPP_INDEX_PERFORMANCE,
689         EPP_INDEX_BALANCE_PERFORMANCE,
690         EPP_INDEX_BALANCE_POWERSAVE,
691         EPP_INDEX_POWERSAVE,
692 };
693
694 static const char * const energy_perf_strings[] = {
695         [EPP_INDEX_DEFAULT] = "default",
696         [EPP_INDEX_PERFORMANCE] = "performance",
697         [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
698         [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
699         [EPP_INDEX_POWERSAVE] = "power",
700         NULL
701 };
702 static unsigned int epp_values[] = {
703         [EPP_INDEX_DEFAULT] = 0, /* Unused index */
704         [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
705         [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
706         [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
707         [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
708 };
709
710 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
711 {
712         s16 epp;
713         int index = -EINVAL;
714
715         *raw_epp = 0;
716         epp = intel_pstate_get_epp(cpu_data, 0);
717         if (epp < 0)
718                 return epp;
719
720         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
721                 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
722                         return EPP_INDEX_PERFORMANCE;
723                 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
724                         return EPP_INDEX_BALANCE_PERFORMANCE;
725                 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
726                         return EPP_INDEX_BALANCE_POWERSAVE;
727                 if (epp == epp_values[EPP_INDEX_POWERSAVE])
728                         return EPP_INDEX_POWERSAVE;
729                 *raw_epp = epp;
730                 return 0;
731         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
732                 /*
733                  * Range:
734                  *      0x00-0x03       :       Performance
735                  *      0x04-0x07       :       Balance performance
736                  *      0x08-0x0B       :       Balance power
737                  *      0x0C-0x0F       :       Power
738                  * The EPB is a 4 bit value, but our ranges restrict the
739                  * value which can be set. Here only using top two bits
740                  * effectively.
741                  */
742                 index = (epp >> 2) + 1;
743         }
744
745         return index;
746 }
747
748 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
749 {
750         int ret;
751
752         /*
753          * Use the cached HWP Request MSR value, because in the active mode the
754          * register itself may be updated by intel_pstate_hwp_boost_up() or
755          * intel_pstate_hwp_boost_down() at any time.
756          */
757         u64 value = READ_ONCE(cpu->hwp_req_cached);
758
759         value &= ~GENMASK_ULL(31, 24);
760         value |= (u64)epp << 24;
761         /*
762          * The only other updater of hwp_req_cached in the active mode,
763          * intel_pstate_hwp_set(), is called under the same lock as this
764          * function, so it cannot run in parallel with the update below.
765          */
766         WRITE_ONCE(cpu->hwp_req_cached, value);
767         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
768         if (!ret)
769                 cpu->epp_cached = epp;
770
771         return ret;
772 }
773
774 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
775                                               int pref_index, bool use_raw,
776                                               u32 raw_epp)
777 {
778         int epp = -EINVAL;
779         int ret;
780
781         if (!pref_index)
782                 epp = cpu_data->epp_default;
783
784         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
785                 if (use_raw)
786                         epp = raw_epp;
787                 else if (epp == -EINVAL)
788                         epp = epp_values[pref_index];
789
790                 /*
791                  * To avoid confusion, refuse to set EPP to any values different
792                  * from 0 (performance) if the current policy is "performance",
793                  * because those values would be overridden.
794                  */
795                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
796                         return -EBUSY;
797
798                 ret = intel_pstate_set_epp(cpu_data, epp);
799         } else {
800                 if (epp == -EINVAL)
801                         epp = (pref_index - 1) << 2;
802                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
803         }
804
805         return ret;
806 }
807
808 static ssize_t show_energy_performance_available_preferences(
809                                 struct cpufreq_policy *policy, char *buf)
810 {
811         int i = 0;
812         int ret = 0;
813
814         while (energy_perf_strings[i] != NULL)
815                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
816
817         ret += sprintf(&buf[ret], "\n");
818
819         return ret;
820 }
821
822 cpufreq_freq_attr_ro(energy_performance_available_preferences);
823
824 static struct cpufreq_driver intel_pstate;
825
826 static ssize_t store_energy_performance_preference(
827                 struct cpufreq_policy *policy, const char *buf, size_t count)
828 {
829         struct cpudata *cpu = all_cpu_data[policy->cpu];
830         char str_preference[21];
831         bool raw = false;
832         ssize_t ret;
833         u32 epp = 0;
834
835         ret = sscanf(buf, "%20s", str_preference);
836         if (ret != 1)
837                 return -EINVAL;
838
839         ret = match_string(energy_perf_strings, -1, str_preference);
840         if (ret < 0) {
841                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
842                         return ret;
843
844                 ret = kstrtouint(buf, 10, &epp);
845                 if (ret)
846                         return ret;
847
848                 if (epp > 255)
849                         return -EINVAL;
850
851                 raw = true;
852         }
853
854         /*
855          * This function runs with the policy R/W semaphore held, which
856          * guarantees that the driver pointer will not change while it is
857          * running.
858          */
859         if (!intel_pstate_driver)
860                 return -EAGAIN;
861
862         mutex_lock(&intel_pstate_limits_lock);
863
864         if (intel_pstate_driver == &intel_pstate) {
865                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
866         } else {
867                 /*
868                  * In the passive mode the governor needs to be stopped on the
869                  * target CPU before the EPP update and restarted after it,
870                  * which is super-heavy-weight, so make sure it is worth doing
871                  * upfront.
872                  */
873                 if (!raw)
874                         epp = ret ? epp_values[ret] : cpu->epp_default;
875
876                 if (cpu->epp_cached != epp) {
877                         int err;
878
879                         cpufreq_stop_governor(policy);
880                         ret = intel_pstate_set_epp(cpu, epp);
881                         err = cpufreq_start_governor(policy);
882                         if (!ret)
883                                 ret = err;
884                 } else {
885                         ret = 0;
886                 }
887         }
888
889         mutex_unlock(&intel_pstate_limits_lock);
890
891         return ret ?: count;
892 }
893
894 static ssize_t show_energy_performance_preference(
895                                 struct cpufreq_policy *policy, char *buf)
896 {
897         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
898         int preference, raw_epp;
899
900         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
901         if (preference < 0)
902                 return preference;
903
904         if (raw_epp)
905                 return  sprintf(buf, "%d\n", raw_epp);
906         else
907                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
908 }
909
910 cpufreq_freq_attr_rw(energy_performance_preference);
911
912 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
913 {
914         struct cpudata *cpu = all_cpu_data[policy->cpu];
915         int ratio, freq;
916
917         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
918         if (ratio <= 0) {
919                 u64 cap;
920
921                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
922                 ratio = HWP_GUARANTEED_PERF(cap);
923         }
924
925         freq = ratio * cpu->pstate.scaling;
926         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
927                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
928
929         return sprintf(buf, "%d\n", freq);
930 }
931
932 cpufreq_freq_attr_ro(base_frequency);
933
934 static struct freq_attr *hwp_cpufreq_attrs[] = {
935         &energy_performance_preference,
936         &energy_performance_available_preferences,
937         &base_frequency,
938         NULL,
939 };
940
941 static struct cpudata *hybrid_max_perf_cpu __read_mostly;
942 /*
943  * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
944  * and the x86 arch scale-invariance information from concurrent updates.
945  */
946 static DEFINE_MUTEX(hybrid_capacity_lock);
947
948 static void hybrid_set_cpu_capacity(struct cpudata *cpu)
949 {
950         arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
951                               hybrid_max_perf_cpu->capacity_perf,
952                               cpu->capacity_perf,
953                               cpu->pstate.max_pstate_physical);
954
955         pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
956                  cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
957                  cpu->pstate.max_pstate_physical);
958 }
959
960 static void hybrid_clear_cpu_capacity(unsigned int cpunum)
961 {
962         arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
963 }
964
965 static void hybrid_get_capacity_perf(struct cpudata *cpu)
966 {
967         if (READ_ONCE(global.no_turbo)) {
968                 cpu->capacity_perf = cpu->pstate.max_pstate_physical;
969                 return;
970         }
971
972         cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
973 }
974
975 static void hybrid_set_capacity_of_cpus(void)
976 {
977         int cpunum;
978
979         for_each_online_cpu(cpunum) {
980                 struct cpudata *cpu = all_cpu_data[cpunum];
981
982                 if (cpu)
983                         hybrid_set_cpu_capacity(cpu);
984         }
985 }
986
987 static void hybrid_update_cpu_capacity_scaling(void)
988 {
989         struct cpudata *max_perf_cpu = NULL;
990         unsigned int max_cap_perf = 0;
991         int cpunum;
992
993         for_each_online_cpu(cpunum) {
994                 struct cpudata *cpu = all_cpu_data[cpunum];
995
996                 if (!cpu)
997                         continue;
998
999                 /*
1000                  * During initialization, CPU performance at full capacity needs
1001                  * to be determined.
1002                  */
1003                 if (!hybrid_max_perf_cpu)
1004                         hybrid_get_capacity_perf(cpu);
1005
1006                 /*
1007                  * If hybrid_max_perf_cpu is not NULL at this point, it is
1008                  * being replaced, so don't take it into account when looking
1009                  * for the new one.
1010                  */
1011                 if (cpu == hybrid_max_perf_cpu)
1012                         continue;
1013
1014                 if (cpu->capacity_perf > max_cap_perf) {
1015                         max_cap_perf = cpu->capacity_perf;
1016                         max_perf_cpu = cpu;
1017                 }
1018         }
1019
1020         if (max_perf_cpu) {
1021                 hybrid_max_perf_cpu = max_perf_cpu;
1022                 hybrid_set_capacity_of_cpus();
1023         } else {
1024                 pr_info("Found no CPUs with nonzero maximum performance\n");
1025                 /* Revert to the flat CPU capacity structure. */
1026                 for_each_online_cpu(cpunum)
1027                         hybrid_clear_cpu_capacity(cpunum);
1028         }
1029 }
1030
1031 static void __hybrid_refresh_cpu_capacity_scaling(void)
1032 {
1033         hybrid_max_perf_cpu = NULL;
1034         hybrid_update_cpu_capacity_scaling();
1035 }
1036
1037 static void hybrid_refresh_cpu_capacity_scaling(void)
1038 {
1039         guard(mutex)(&hybrid_capacity_lock);
1040
1041         __hybrid_refresh_cpu_capacity_scaling();
1042 }
1043
1044 static void hybrid_init_cpu_capacity_scaling(bool refresh)
1045 {
1046         /*
1047          * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1048          * scaling has been enabled already and the driver is just changing the
1049          * operation mode.
1050          */
1051         if (refresh) {
1052                 hybrid_refresh_cpu_capacity_scaling();
1053                 return;
1054         }
1055
1056         /*
1057          * On hybrid systems, use asym capacity instead of ITMT, but because
1058          * the capacity of SMT threads is not deterministic even approximately,
1059          * do not do that when SMT is in use.
1060          */
1061         if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1062                 hybrid_refresh_cpu_capacity_scaling();
1063                 /*
1064                  * Disabling ITMT causes sched domains to be rebuilt to disable asym
1065                  * packing and enable asym capacity.
1066                  */
1067                 sched_clear_itmt_support();
1068         }
1069 }
1070
1071 static bool hybrid_clear_max_perf_cpu(void)
1072 {
1073         bool ret;
1074
1075         guard(mutex)(&hybrid_capacity_lock);
1076
1077         ret = !!hybrid_max_perf_cpu;
1078         hybrid_max_perf_cpu = NULL;
1079
1080         return ret;
1081 }
1082
1083 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1084 {
1085         u64 cap;
1086
1087         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1088         WRITE_ONCE(cpu->hwp_cap_cached, cap);
1089         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1090         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1091 }
1092
1093 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1094 {
1095         int scaling = cpu->pstate.scaling;
1096
1097         __intel_pstate_get_hwp_cap(cpu);
1098
1099         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1100         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1101         if (scaling != cpu->pstate.perf_ctl_scaling) {
1102                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1103
1104                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1105                                                  perf_ctl_scaling);
1106                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1107                                                    perf_ctl_scaling);
1108         }
1109 }
1110
1111 static void hybrid_update_capacity(struct cpudata *cpu)
1112 {
1113         unsigned int max_cap_perf;
1114
1115         mutex_lock(&hybrid_capacity_lock);
1116
1117         if (!hybrid_max_perf_cpu)
1118                 goto unlock;
1119
1120         /*
1121          * The maximum performance of the CPU may have changed, but assume
1122          * that the performance of the other CPUs has not changed.
1123          */
1124         max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1125
1126         intel_pstate_get_hwp_cap(cpu);
1127
1128         hybrid_get_capacity_perf(cpu);
1129         /* Should hybrid_max_perf_cpu be replaced by this CPU? */
1130         if (cpu->capacity_perf > max_cap_perf) {
1131                 hybrid_max_perf_cpu = cpu;
1132                 hybrid_set_capacity_of_cpus();
1133                 goto unlock;
1134         }
1135
1136         /* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1137         if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1138                 hybrid_update_cpu_capacity_scaling();
1139                 goto unlock;
1140         }
1141
1142         hybrid_set_cpu_capacity(cpu);
1143
1144 unlock:
1145         mutex_unlock(&hybrid_capacity_lock);
1146 }
1147
1148 static void intel_pstate_hwp_set(unsigned int cpu)
1149 {
1150         struct cpudata *cpu_data = all_cpu_data[cpu];
1151         int max, min;
1152         u64 value;
1153         s16 epp;
1154
1155         max = cpu_data->max_perf_ratio;
1156         min = cpu_data->min_perf_ratio;
1157
1158         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1159                 min = max;
1160
1161         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1162
1163         value &= ~HWP_MIN_PERF(~0L);
1164         value |= HWP_MIN_PERF(min);
1165
1166         value &= ~HWP_MAX_PERF(~0L);
1167         value |= HWP_MAX_PERF(max);
1168
1169         if (cpu_data->epp_policy == cpu_data->policy)
1170                 goto skip_epp;
1171
1172         cpu_data->epp_policy = cpu_data->policy;
1173
1174         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1175                 epp = intel_pstate_get_epp(cpu_data, value);
1176                 cpu_data->epp_powersave = epp;
1177                 /* If EPP read was failed, then don't try to write */
1178                 if (epp < 0)
1179                         goto skip_epp;
1180
1181                 epp = 0;
1182         } else {
1183                 /* skip setting EPP, when saved value is invalid */
1184                 if (cpu_data->epp_powersave < 0)
1185                         goto skip_epp;
1186
1187                 /*
1188                  * No need to restore EPP when it is not zero. This
1189                  * means:
1190                  *  - Policy is not changed
1191                  *  - user has manually changed
1192                  *  - Error reading EPB
1193                  */
1194                 epp = intel_pstate_get_epp(cpu_data, value);
1195                 if (epp)
1196                         goto skip_epp;
1197
1198                 epp = cpu_data->epp_powersave;
1199         }
1200         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1201                 value &= ~GENMASK_ULL(31, 24);
1202                 value |= (u64)epp << 24;
1203         } else {
1204                 intel_pstate_set_epb(cpu, epp);
1205         }
1206 skip_epp:
1207         WRITE_ONCE(cpu_data->hwp_req_cached, value);
1208         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1209 }
1210
1211 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1212
1213 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1214 {
1215         u64 value = READ_ONCE(cpu->hwp_req_cached);
1216         int min_perf;
1217
1218         intel_pstate_disable_hwp_interrupt(cpu);
1219
1220         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1221                 /*
1222                  * In case the EPP has been set to "performance" by the
1223                  * active mode "performance" scaling algorithm, replace that
1224                  * temporary value with the cached EPP one.
1225                  */
1226                 value &= ~GENMASK_ULL(31, 24);
1227                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1228                 /*
1229                  * However, make sure that EPP will be set to "performance" when
1230                  * the CPU is brought back online again and the "performance"
1231                  * scaling algorithm is still in effect.
1232                  */
1233                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1234         }
1235
1236         /*
1237          * Clear the desired perf field in the cached HWP request value to
1238          * prevent nonzero desired values from being leaked into the active
1239          * mode.
1240          */
1241         value &= ~HWP_DESIRED_PERF(~0L);
1242         WRITE_ONCE(cpu->hwp_req_cached, value);
1243
1244         value &= ~GENMASK_ULL(31, 0);
1245         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1246
1247         /* Set hwp_max = hwp_min */
1248         value |= HWP_MAX_PERF(min_perf);
1249         value |= HWP_MIN_PERF(min_perf);
1250
1251         /* Set EPP to min */
1252         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1253                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1254
1255         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1256
1257         mutex_lock(&hybrid_capacity_lock);
1258
1259         if (!hybrid_max_perf_cpu) {
1260                 mutex_unlock(&hybrid_capacity_lock);
1261
1262                 return;
1263         }
1264
1265         if (hybrid_max_perf_cpu == cpu)
1266                 hybrid_update_cpu_capacity_scaling();
1267
1268         mutex_unlock(&hybrid_capacity_lock);
1269
1270         /* Reset the capacity of the CPU going offline to the initial value. */
1271         hybrid_clear_cpu_capacity(cpu->cpu);
1272 }
1273
1274 #define POWER_CTL_EE_ENABLE     1
1275 #define POWER_CTL_EE_DISABLE    2
1276
1277 static int power_ctl_ee_state;
1278
1279 static void set_power_ctl_ee_state(bool input)
1280 {
1281         u64 power_ctl;
1282
1283         mutex_lock(&intel_pstate_driver_lock);
1284         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1285         if (input) {
1286                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1287                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1288         } else {
1289                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1290                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1291         }
1292         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1293         mutex_unlock(&intel_pstate_driver_lock);
1294 }
1295
1296 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1297
1298 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1299 {
1300         intel_pstate_hwp_enable(cpu);
1301         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1302 }
1303
1304 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1305 {
1306         struct cpudata *cpu = all_cpu_data[policy->cpu];
1307
1308         pr_debug("CPU %d suspending\n", cpu->cpu);
1309
1310         cpu->suspended = true;
1311
1312         /* disable HWP interrupt and cancel any pending work */
1313         intel_pstate_disable_hwp_interrupt(cpu);
1314
1315         return 0;
1316 }
1317
1318 static int intel_pstate_resume(struct cpufreq_policy *policy)
1319 {
1320         struct cpudata *cpu = all_cpu_data[policy->cpu];
1321
1322         pr_debug("CPU %d resuming\n", cpu->cpu);
1323
1324         /* Only restore if the system default is changed */
1325         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1326                 set_power_ctl_ee_state(true);
1327         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1328                 set_power_ctl_ee_state(false);
1329
1330         if (cpu->suspended && hwp_active) {
1331                 mutex_lock(&intel_pstate_limits_lock);
1332
1333                 /* Re-enable HWP, because "online" has not done that. */
1334                 intel_pstate_hwp_reenable(cpu);
1335
1336                 mutex_unlock(&intel_pstate_limits_lock);
1337         }
1338
1339         cpu->suspended = false;
1340
1341         return 0;
1342 }
1343
1344 static void intel_pstate_update_policies(void)
1345 {
1346         int cpu;
1347
1348         for_each_possible_cpu(cpu)
1349                 cpufreq_update_policy(cpu);
1350 }
1351
1352 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1353                                            struct cpufreq_policy *policy)
1354 {
1355         if (hwp_active)
1356                 intel_pstate_get_hwp_cap(cpudata);
1357
1358         policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1359                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1360
1361         refresh_frequency_limits(policy);
1362 }
1363
1364 static void intel_pstate_update_limits(unsigned int cpu)
1365 {
1366         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1367         struct cpudata *cpudata;
1368
1369         if (!policy)
1370                 return;
1371
1372         cpudata = all_cpu_data[cpu];
1373
1374         __intel_pstate_update_max_freq(cpudata, policy);
1375
1376         /* Prevent the driver from being unregistered now. */
1377         mutex_lock(&intel_pstate_driver_lock);
1378
1379         cpufreq_cpu_release(policy);
1380
1381         hybrid_update_capacity(cpudata);
1382
1383         mutex_unlock(&intel_pstate_driver_lock);
1384 }
1385
1386 static void intel_pstate_update_limits_for_all(void)
1387 {
1388         int cpu;
1389
1390         for_each_possible_cpu(cpu) {
1391                 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1392
1393                 if (!policy)
1394                         continue;
1395
1396                 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1397
1398                 cpufreq_cpu_release(policy);
1399         }
1400
1401         mutex_lock(&hybrid_capacity_lock);
1402
1403         if (hybrid_max_perf_cpu)
1404                 __hybrid_refresh_cpu_capacity_scaling();
1405
1406         mutex_unlock(&hybrid_capacity_lock);
1407 }
1408
1409 /************************** sysfs begin ************************/
1410 #define show_one(file_name, object)                                     \
1411         static ssize_t show_##file_name                                 \
1412         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1413         {                                                               \
1414                 return sprintf(buf, "%u\n", global.object);             \
1415         }
1416
1417 static ssize_t intel_pstate_show_status(char *buf);
1418 static int intel_pstate_update_status(const char *buf, size_t size);
1419
1420 static ssize_t show_status(struct kobject *kobj,
1421                            struct kobj_attribute *attr, char *buf)
1422 {
1423         ssize_t ret;
1424
1425         mutex_lock(&intel_pstate_driver_lock);
1426         ret = intel_pstate_show_status(buf);
1427         mutex_unlock(&intel_pstate_driver_lock);
1428
1429         return ret;
1430 }
1431
1432 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1433                             const char *buf, size_t count)
1434 {
1435         char *p = memchr(buf, '\n', count);
1436         int ret;
1437
1438         mutex_lock(&intel_pstate_driver_lock);
1439         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1440         mutex_unlock(&intel_pstate_driver_lock);
1441
1442         return ret < 0 ? ret : count;
1443 }
1444
1445 static ssize_t show_turbo_pct(struct kobject *kobj,
1446                                 struct kobj_attribute *attr, char *buf)
1447 {
1448         struct cpudata *cpu;
1449         int total, no_turbo, turbo_pct;
1450         uint32_t turbo_fp;
1451
1452         mutex_lock(&intel_pstate_driver_lock);
1453
1454         if (!intel_pstate_driver) {
1455                 mutex_unlock(&intel_pstate_driver_lock);
1456                 return -EAGAIN;
1457         }
1458
1459         cpu = all_cpu_data[0];
1460
1461         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1462         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1463         turbo_fp = div_fp(no_turbo, total);
1464         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1465
1466         mutex_unlock(&intel_pstate_driver_lock);
1467
1468         return sprintf(buf, "%u\n", turbo_pct);
1469 }
1470
1471 static ssize_t show_num_pstates(struct kobject *kobj,
1472                                 struct kobj_attribute *attr, char *buf)
1473 {
1474         struct cpudata *cpu;
1475         int total;
1476
1477         mutex_lock(&intel_pstate_driver_lock);
1478
1479         if (!intel_pstate_driver) {
1480                 mutex_unlock(&intel_pstate_driver_lock);
1481                 return -EAGAIN;
1482         }
1483
1484         cpu = all_cpu_data[0];
1485         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1486
1487         mutex_unlock(&intel_pstate_driver_lock);
1488
1489         return sprintf(buf, "%u\n", total);
1490 }
1491
1492 static ssize_t show_no_turbo(struct kobject *kobj,
1493                              struct kobj_attribute *attr, char *buf)
1494 {
1495         ssize_t ret;
1496
1497         mutex_lock(&intel_pstate_driver_lock);
1498
1499         if (!intel_pstate_driver) {
1500                 mutex_unlock(&intel_pstate_driver_lock);
1501                 return -EAGAIN;
1502         }
1503
1504         ret = sprintf(buf, "%u\n", global.no_turbo);
1505
1506         mutex_unlock(&intel_pstate_driver_lock);
1507
1508         return ret;
1509 }
1510
1511 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1512                               const char *buf, size_t count)
1513 {
1514         unsigned int input;
1515         bool no_turbo;
1516
1517         if (sscanf(buf, "%u", &input) != 1)
1518                 return -EINVAL;
1519
1520         mutex_lock(&intel_pstate_driver_lock);
1521
1522         if (!intel_pstate_driver) {
1523                 count = -EAGAIN;
1524                 goto unlock_driver;
1525         }
1526
1527         no_turbo = !!clamp_t(int, input, 0, 1);
1528
1529         WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1530         if (global.turbo_disabled && !no_turbo) {
1531                 pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1532                 count = -EPERM;
1533                 if (global.no_turbo)
1534                         goto unlock_driver;
1535                 else
1536                         no_turbo = 1;
1537         }
1538
1539         if (no_turbo == global.no_turbo) {
1540                 goto unlock_driver;
1541         }
1542
1543         WRITE_ONCE(global.no_turbo, no_turbo);
1544
1545         mutex_lock(&intel_pstate_limits_lock);
1546
1547         if (no_turbo) {
1548                 struct cpudata *cpu = all_cpu_data[0];
1549                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1550
1551                 /* Squash the global minimum into the permitted range. */
1552                 if (global.min_perf_pct > pct)
1553                         global.min_perf_pct = pct;
1554         }
1555
1556         mutex_unlock(&intel_pstate_limits_lock);
1557
1558         intel_pstate_update_limits_for_all();
1559         arch_set_max_freq_ratio(no_turbo);
1560
1561 unlock_driver:
1562         mutex_unlock(&intel_pstate_driver_lock);
1563
1564         return count;
1565 }
1566
1567 static void update_qos_request(enum freq_qos_req_type type)
1568 {
1569         struct freq_qos_request *req;
1570         struct cpufreq_policy *policy;
1571         int i;
1572
1573         for_each_possible_cpu(i) {
1574                 struct cpudata *cpu = all_cpu_data[i];
1575                 unsigned int freq, perf_pct;
1576
1577                 policy = cpufreq_cpu_get(i);
1578                 if (!policy)
1579                         continue;
1580
1581                 req = policy->driver_data;
1582                 cpufreq_cpu_put(policy);
1583
1584                 if (!req)
1585                         continue;
1586
1587                 if (hwp_active)
1588                         intel_pstate_get_hwp_cap(cpu);
1589
1590                 if (type == FREQ_QOS_MIN) {
1591                         perf_pct = global.min_perf_pct;
1592                 } else {
1593                         req++;
1594                         perf_pct = global.max_perf_pct;
1595                 }
1596
1597                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1598
1599                 if (freq_qos_update_request(req, freq) < 0)
1600                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1601         }
1602 }
1603
1604 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1605                                   const char *buf, size_t count)
1606 {
1607         unsigned int input;
1608         int ret;
1609
1610         ret = sscanf(buf, "%u", &input);
1611         if (ret != 1)
1612                 return -EINVAL;
1613
1614         mutex_lock(&intel_pstate_driver_lock);
1615
1616         if (!intel_pstate_driver) {
1617                 mutex_unlock(&intel_pstate_driver_lock);
1618                 return -EAGAIN;
1619         }
1620
1621         mutex_lock(&intel_pstate_limits_lock);
1622
1623         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1624
1625         mutex_unlock(&intel_pstate_limits_lock);
1626
1627         if (intel_pstate_driver == &intel_pstate)
1628                 intel_pstate_update_policies();
1629         else
1630                 update_qos_request(FREQ_QOS_MAX);
1631
1632         mutex_unlock(&intel_pstate_driver_lock);
1633
1634         return count;
1635 }
1636
1637 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1638                                   const char *buf, size_t count)
1639 {
1640         unsigned int input;
1641         int ret;
1642
1643         ret = sscanf(buf, "%u", &input);
1644         if (ret != 1)
1645                 return -EINVAL;
1646
1647         mutex_lock(&intel_pstate_driver_lock);
1648
1649         if (!intel_pstate_driver) {
1650                 mutex_unlock(&intel_pstate_driver_lock);
1651                 return -EAGAIN;
1652         }
1653
1654         mutex_lock(&intel_pstate_limits_lock);
1655
1656         global.min_perf_pct = clamp_t(int, input,
1657                                       min_perf_pct_min(), global.max_perf_pct);
1658
1659         mutex_unlock(&intel_pstate_limits_lock);
1660
1661         if (intel_pstate_driver == &intel_pstate)
1662                 intel_pstate_update_policies();
1663         else
1664                 update_qos_request(FREQ_QOS_MIN);
1665
1666         mutex_unlock(&intel_pstate_driver_lock);
1667
1668         return count;
1669 }
1670
1671 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1672                                 struct kobj_attribute *attr, char *buf)
1673 {
1674         return sprintf(buf, "%u\n", hwp_boost);
1675 }
1676
1677 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1678                                        struct kobj_attribute *b,
1679                                        const char *buf, size_t count)
1680 {
1681         unsigned int input;
1682         int ret;
1683
1684         ret = kstrtouint(buf, 10, &input);
1685         if (ret)
1686                 return ret;
1687
1688         mutex_lock(&intel_pstate_driver_lock);
1689         hwp_boost = !!input;
1690         intel_pstate_update_policies();
1691         mutex_unlock(&intel_pstate_driver_lock);
1692
1693         return count;
1694 }
1695
1696 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1697                                       char *buf)
1698 {
1699         u64 power_ctl;
1700         int enable;
1701
1702         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1703         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1704         return sprintf(buf, "%d\n", !enable);
1705 }
1706
1707 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1708                                        const char *buf, size_t count)
1709 {
1710         bool input;
1711         int ret;
1712
1713         ret = kstrtobool(buf, &input);
1714         if (ret)
1715                 return ret;
1716
1717         set_power_ctl_ee_state(input);
1718
1719         return count;
1720 }
1721
1722 show_one(max_perf_pct, max_perf_pct);
1723 show_one(min_perf_pct, min_perf_pct);
1724
1725 define_one_global_rw(status);
1726 define_one_global_rw(no_turbo);
1727 define_one_global_rw(max_perf_pct);
1728 define_one_global_rw(min_perf_pct);
1729 define_one_global_ro(turbo_pct);
1730 define_one_global_ro(num_pstates);
1731 define_one_global_rw(hwp_dynamic_boost);
1732 define_one_global_rw(energy_efficiency);
1733
1734 static struct attribute *intel_pstate_attributes[] = {
1735         &status.attr,
1736         &no_turbo.attr,
1737         NULL
1738 };
1739
1740 static const struct attribute_group intel_pstate_attr_group = {
1741         .attrs = intel_pstate_attributes,
1742 };
1743
1744 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1745
1746 static struct kobject *intel_pstate_kobject;
1747
1748 static void __init intel_pstate_sysfs_expose_params(void)
1749 {
1750         struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1751         int rc;
1752
1753         if (dev_root) {
1754                 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1755                 put_device(dev_root);
1756         }
1757         if (WARN_ON(!intel_pstate_kobject))
1758                 return;
1759
1760         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1761         if (WARN_ON(rc))
1762                 return;
1763
1764         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1765                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1766                 WARN_ON(rc);
1767
1768                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1769                 WARN_ON(rc);
1770         }
1771
1772         /*
1773          * If per cpu limits are enforced there are no global limits, so
1774          * return without creating max/min_perf_pct attributes
1775          */
1776         if (per_cpu_limits)
1777                 return;
1778
1779         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1780         WARN_ON(rc);
1781
1782         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1783         WARN_ON(rc);
1784
1785         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1786                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1787                 WARN_ON(rc);
1788         }
1789 }
1790
1791 static void __init intel_pstate_sysfs_remove(void)
1792 {
1793         if (!intel_pstate_kobject)
1794                 return;
1795
1796         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1797
1798         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1799                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1800                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1801         }
1802
1803         if (!per_cpu_limits) {
1804                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1805                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1806
1807                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1808                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1809         }
1810
1811         kobject_put(intel_pstate_kobject);
1812 }
1813
1814 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1815 {
1816         int rc;
1817
1818         if (!hwp_active)
1819                 return;
1820
1821         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1822         WARN_ON_ONCE(rc);
1823 }
1824
1825 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1826 {
1827         if (!hwp_active)
1828                 return;
1829
1830         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1831 }
1832
1833 /************************** sysfs end ************************/
1834
1835 static void intel_pstate_notify_work(struct work_struct *work)
1836 {
1837         struct cpudata *cpudata =
1838                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1839         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1840
1841         if (policy) {
1842                 __intel_pstate_update_max_freq(cpudata, policy);
1843
1844                 cpufreq_cpu_release(policy);
1845
1846                 /*
1847                  * The driver will not be unregistered while this function is
1848                  * running, so update the capacity without acquiring the driver
1849                  * lock.
1850                  */
1851                 hybrid_update_capacity(cpudata);
1852         }
1853
1854         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1855 }
1856
1857 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1858 static cpumask_t hwp_intr_enable_mask;
1859
1860 #define HWP_GUARANTEED_PERF_CHANGE_STATUS      BIT(0)
1861 #define HWP_HIGHEST_PERF_CHANGE_STATUS         BIT(3)
1862
1863 void notify_hwp_interrupt(void)
1864 {
1865         unsigned int this_cpu = smp_processor_id();
1866         u64 value, status_mask;
1867         unsigned long flags;
1868
1869         if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1870                 return;
1871
1872         status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1873         if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1874                 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1875
1876         rdmsrl_safe(MSR_HWP_STATUS, &value);
1877         if (!(value & status_mask))
1878                 return;
1879
1880         raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1881
1882         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1883                 goto ack_intr;
1884
1885         schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1886                               msecs_to_jiffies(10));
1887
1888         raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1889
1890         return;
1891
1892 ack_intr:
1893         wrmsrl_safe(MSR_HWP_STATUS, 0);
1894         raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1895 }
1896
1897 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1898 {
1899         bool cancel_work;
1900
1901         if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1902                 return;
1903
1904         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1905         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1906
1907         raw_spin_lock_irq(&hwp_notify_lock);
1908         cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1909         raw_spin_unlock_irq(&hwp_notify_lock);
1910
1911         if (cancel_work)
1912                 cancel_delayed_work_sync(&cpudata->hwp_notify_work);
1913 }
1914
1915 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
1916 #define HWP_HIGHEST_PERF_CHANGE_REQ    BIT(2)
1917
1918 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1919 {
1920         /* Enable HWP notification interrupt for performance change */
1921         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1922                 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
1923
1924                 raw_spin_lock_irq(&hwp_notify_lock);
1925                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1926                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1927                 raw_spin_unlock_irq(&hwp_notify_lock);
1928
1929                 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1930                         interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
1931
1932                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1933                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
1934                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1935         }
1936 }
1937
1938 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1939 {
1940         cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1941
1942         /*
1943          * If the EPP is set by firmware, which means that firmware enabled HWP
1944          * - Is equal or less than 0x80 (default balance_perf EPP)
1945          * - But less performance oriented than performance EPP
1946          *   then use this as new balance_perf EPP.
1947          */
1948         if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1949             cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1950                 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1951                 return;
1952         }
1953
1954         /*
1955          * If this CPU gen doesn't call for change in balance_perf
1956          * EPP return.
1957          */
1958         if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1959                 return;
1960
1961         /*
1962          * Use hard coded value per gen to update the balance_perf
1963          * and default EPP.
1964          */
1965         cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1966         intel_pstate_set_epp(cpudata, cpudata->epp_default);
1967 }
1968
1969 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1970 {
1971         /* First disable HWP notification interrupt till we activate again */
1972         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1973                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1974
1975         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1976
1977         intel_pstate_enable_hwp_interrupt(cpudata);
1978
1979         if (cpudata->epp_default >= 0)
1980                 return;
1981
1982         intel_pstate_update_epp_defaults(cpudata);
1983 }
1984
1985 static int atom_get_min_pstate(int not_used)
1986 {
1987         u64 value;
1988
1989         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1990         return (value >> 8) & 0x7F;
1991 }
1992
1993 static int atom_get_max_pstate(int not_used)
1994 {
1995         u64 value;
1996
1997         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1998         return (value >> 16) & 0x7F;
1999 }
2000
2001 static int atom_get_turbo_pstate(int not_used)
2002 {
2003         u64 value;
2004
2005         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
2006         return value & 0x7F;
2007 }
2008
2009 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2010 {
2011         u64 val;
2012         int32_t vid_fp;
2013         u32 vid;
2014
2015         val = (u64)pstate << 8;
2016         if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2017                 val |= (u64)1 << 32;
2018
2019         vid_fp = cpudata->vid.min + mul_fp(
2020                 int_tofp(pstate - cpudata->pstate.min_pstate),
2021                 cpudata->vid.ratio);
2022
2023         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2024         vid = ceiling_fp(vid_fp);
2025
2026         if (pstate > cpudata->pstate.max_pstate)
2027                 vid = cpudata->vid.turbo;
2028
2029         return val | vid;
2030 }
2031
2032 static int silvermont_get_scaling(void)
2033 {
2034         u64 value;
2035         int i;
2036         /* Defined in Table 35-6 from SDM (Sept 2015) */
2037         static int silvermont_freq_table[] = {
2038                 83300, 100000, 133300, 116700, 80000};
2039
2040         rdmsrl(MSR_FSB_FREQ, value);
2041         i = value & 0x7;
2042         WARN_ON(i > 4);
2043
2044         return silvermont_freq_table[i];
2045 }
2046
2047 static int airmont_get_scaling(void)
2048 {
2049         u64 value;
2050         int i;
2051         /* Defined in Table 35-10 from SDM (Sept 2015) */
2052         static int airmont_freq_table[] = {
2053                 83300, 100000, 133300, 116700, 80000,
2054                 93300, 90000, 88900, 87500};
2055
2056         rdmsrl(MSR_FSB_FREQ, value);
2057         i = value & 0xF;
2058         WARN_ON(i > 8);
2059
2060         return airmont_freq_table[i];
2061 }
2062
2063 static void atom_get_vid(struct cpudata *cpudata)
2064 {
2065         u64 value;
2066
2067         rdmsrl(MSR_ATOM_CORE_VIDS, value);
2068         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2069         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2070         cpudata->vid.ratio = div_fp(
2071                 cpudata->vid.max - cpudata->vid.min,
2072                 int_tofp(cpudata->pstate.max_pstate -
2073                         cpudata->pstate.min_pstate));
2074
2075         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
2076         cpudata->vid.turbo = value & 0x7f;
2077 }
2078
2079 static int core_get_min_pstate(int cpu)
2080 {
2081         u64 value;
2082
2083         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2084         return (value >> 40) & 0xFF;
2085 }
2086
2087 static int core_get_max_pstate_physical(int cpu)
2088 {
2089         u64 value;
2090
2091         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2092         return (value >> 8) & 0xFF;
2093 }
2094
2095 static int core_get_tdp_ratio(int cpu, u64 plat_info)
2096 {
2097         /* Check how many TDP levels present */
2098         if (plat_info & 0x600000000) {
2099                 u64 tdp_ctrl;
2100                 u64 tdp_ratio;
2101                 int tdp_msr;
2102                 int err;
2103
2104                 /* Get the TDP level (0, 1, 2) to get ratios */
2105                 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2106                 if (err)
2107                         return err;
2108
2109                 /* TDP MSR are continuous starting at 0x648 */
2110                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2111                 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2112                 if (err)
2113                         return err;
2114
2115                 /* For level 1 and 2, bits[23:16] contain the ratio */
2116                 if (tdp_ctrl & 0x03)
2117                         tdp_ratio >>= 16;
2118
2119                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2120                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2121
2122                 return (int)tdp_ratio;
2123         }
2124
2125         return -ENXIO;
2126 }
2127
2128 static int core_get_max_pstate(int cpu)
2129 {
2130         u64 tar;
2131         u64 plat_info;
2132         int max_pstate;
2133         int tdp_ratio;
2134         int err;
2135
2136         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2137         max_pstate = (plat_info >> 8) & 0xFF;
2138
2139         tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2140         if (tdp_ratio <= 0)
2141                 return max_pstate;
2142
2143         if (hwp_active) {
2144                 /* Turbo activation ratio is not used on HWP platforms */
2145                 return tdp_ratio;
2146         }
2147
2148         err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2149         if (!err) {
2150                 int tar_levels;
2151
2152                 /* Do some sanity checking for safety */
2153                 tar_levels = tar & 0xff;
2154                 if (tdp_ratio - 1 == tar_levels) {
2155                         max_pstate = tar_levels;
2156                         pr_debug("max_pstate=TAC %x\n", max_pstate);
2157                 }
2158         }
2159
2160         return max_pstate;
2161 }
2162
2163 static int core_get_turbo_pstate(int cpu)
2164 {
2165         u64 value;
2166         int nont, ret;
2167
2168         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2169         nont = core_get_max_pstate(cpu);
2170         ret = (value) & 255;
2171         if (ret <= nont)
2172                 ret = nont;
2173         return ret;
2174 }
2175
2176 static u64 core_get_val(struct cpudata *cpudata, int pstate)
2177 {
2178         u64 val;
2179
2180         val = (u64)pstate << 8;
2181         if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2182                 val |= (u64)1 << 32;
2183
2184         return val;
2185 }
2186
2187 static int knl_get_aperf_mperf_shift(void)
2188 {
2189         return 10;
2190 }
2191
2192 static int knl_get_turbo_pstate(int cpu)
2193 {
2194         u64 value;
2195         int nont, ret;
2196
2197         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2198         nont = core_get_max_pstate(cpu);
2199         ret = (((value) >> 8) & 0xFF);
2200         if (ret <= nont)
2201                 ret = nont;
2202         return ret;
2203 }
2204
2205 static void hybrid_get_type(void *data)
2206 {
2207         u8 *cpu_type = data;
2208
2209         *cpu_type = get_this_hybrid_cpu_type();
2210 }
2211
2212 static int hwp_get_cpu_scaling(int cpu)
2213 {
2214         u8 cpu_type = 0;
2215
2216         smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
2217         /* P-cores have a smaller perf level-to-freqency scaling factor. */
2218         if (cpu_type == 0x40)
2219                 return hybrid_scaling_factor;
2220
2221         /* Use default core scaling for E-cores */
2222         if (cpu_type == 0x20)
2223                 return core_get_scaling();
2224
2225         /*
2226          * If reached here, this system is either non-hybrid (like Tiger
2227          * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2228          * no E cores (in which case CPUID for hybrid support is 0).
2229          *
2230          * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2231          * so the default core scaling will be used for them.
2232          */
2233         return intel_pstate_cppc_get_scaling(cpu);
2234 }
2235
2236 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2237 {
2238         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2239         cpu->pstate.current_pstate = pstate;
2240         /*
2241          * Generally, there is no guarantee that this code will always run on
2242          * the CPU being updated, so force the register update to run on the
2243          * right CPU.
2244          */
2245         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2246                       pstate_funcs.get_val(cpu, pstate));
2247 }
2248
2249 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2250 {
2251         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2252 }
2253
2254 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2255 {
2256         int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2257         int perf_ctl_scaling = pstate_funcs.get_scaling();
2258
2259         cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2260         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2261         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2262
2263         if (hwp_active && !hwp_mode_bdw) {
2264                 __intel_pstate_get_hwp_cap(cpu);
2265
2266                 if (pstate_funcs.get_cpu_scaling) {
2267                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2268                         if (cpu->pstate.scaling != perf_ctl_scaling) {
2269                                 intel_pstate_hybrid_hwp_adjust(cpu);
2270                                 hwp_is_hybrid = true;
2271                         }
2272                 } else {
2273                         cpu->pstate.scaling = perf_ctl_scaling;
2274                 }
2275                 /*
2276                  * If the CPU is going online for the first time and it was
2277                  * offline initially, asym capacity scaling needs to be updated.
2278                  */
2279                 hybrid_update_capacity(cpu);
2280         } else {
2281                 cpu->pstate.scaling = perf_ctl_scaling;
2282                 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2283                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2284         }
2285
2286         if (cpu->pstate.scaling == perf_ctl_scaling) {
2287                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2288                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2289                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2290         }
2291
2292         if (pstate_funcs.get_aperf_mperf_shift)
2293                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2294
2295         if (pstate_funcs.get_vid)
2296                 pstate_funcs.get_vid(cpu);
2297
2298         intel_pstate_set_min_pstate(cpu);
2299 }
2300
2301 /*
2302  * Long hold time will keep high perf limits for long time,
2303  * which negatively impacts perf/watt for some workloads,
2304  * like specpower. 3ms is based on experiements on some
2305  * workoads.
2306  */
2307 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2308
2309 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2310 {
2311         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2312         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2313         u32 max_limit = (hwp_req & 0xff00) >> 8;
2314         u32 min_limit = (hwp_req & 0xff);
2315         u32 boost_level1;
2316
2317         /*
2318          * Cases to consider (User changes via sysfs or boot time):
2319          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2320          *      No boost, return.
2321          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2322          *     Should result in one level boost only for P0.
2323          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2324          *     Should result in two level boost:
2325          *         (min + p1)/2 and P1.
2326          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2327          *     Should result in three level boost:
2328          *        (min + p1)/2, P1 and P0.
2329          */
2330
2331         /* If max and min are equal or already at max, nothing to boost */
2332         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2333                 return;
2334
2335         if (!cpu->hwp_boost_min)
2336                 cpu->hwp_boost_min = min_limit;
2337
2338         /* level at half way mark between min and guranteed */
2339         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2340
2341         if (cpu->hwp_boost_min < boost_level1)
2342                 cpu->hwp_boost_min = boost_level1;
2343         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2344                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2345         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2346                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2347                 cpu->hwp_boost_min = max_limit;
2348         else
2349                 return;
2350
2351         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2352         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2353         cpu->last_update = cpu->sample.time;
2354 }
2355
2356 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2357 {
2358         if (cpu->hwp_boost_min) {
2359                 bool expired;
2360
2361                 /* Check if we are idle for hold time to boost down */
2362                 expired = time_after64(cpu->sample.time, cpu->last_update +
2363                                        hwp_boost_hold_time_ns);
2364                 if (expired) {
2365                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2366                         cpu->hwp_boost_min = 0;
2367                 }
2368         }
2369         cpu->last_update = cpu->sample.time;
2370 }
2371
2372 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2373                                                       u64 time)
2374 {
2375         cpu->sample.time = time;
2376
2377         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2378                 bool do_io = false;
2379
2380                 cpu->sched_flags = 0;
2381                 /*
2382                  * Set iowait_boost flag and update time. Since IO WAIT flag
2383                  * is set all the time, we can't just conclude that there is
2384                  * some IO bound activity is scheduled on this CPU with just
2385                  * one occurrence. If we receive at least two in two
2386                  * consecutive ticks, then we treat as boost candidate.
2387                  */
2388                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2389                         do_io = true;
2390
2391                 cpu->last_io_update = time;
2392
2393                 if (do_io)
2394                         intel_pstate_hwp_boost_up(cpu);
2395
2396         } else {
2397                 intel_pstate_hwp_boost_down(cpu);
2398         }
2399 }
2400
2401 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2402                                                 u64 time, unsigned int flags)
2403 {
2404         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2405
2406         cpu->sched_flags |= flags;
2407
2408         if (smp_processor_id() == cpu->cpu)
2409                 intel_pstate_update_util_hwp_local(cpu, time);
2410 }
2411
2412 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2413 {
2414         struct sample *sample = &cpu->sample;
2415
2416         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2417 }
2418
2419 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2420 {
2421         u64 aperf, mperf;
2422         unsigned long flags;
2423         u64 tsc;
2424
2425         local_irq_save(flags);
2426         rdmsrl(MSR_IA32_APERF, aperf);
2427         rdmsrl(MSR_IA32_MPERF, mperf);
2428         tsc = rdtsc();
2429         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2430                 local_irq_restore(flags);
2431                 return false;
2432         }
2433         local_irq_restore(flags);
2434
2435         cpu->last_sample_time = cpu->sample.time;
2436         cpu->sample.time = time;
2437         cpu->sample.aperf = aperf;
2438         cpu->sample.mperf = mperf;
2439         cpu->sample.tsc =  tsc;
2440         cpu->sample.aperf -= cpu->prev_aperf;
2441         cpu->sample.mperf -= cpu->prev_mperf;
2442         cpu->sample.tsc -= cpu->prev_tsc;
2443
2444         cpu->prev_aperf = aperf;
2445         cpu->prev_mperf = mperf;
2446         cpu->prev_tsc = tsc;
2447         /*
2448          * First time this function is invoked in a given cycle, all of the
2449          * previous sample data fields are equal to zero or stale and they must
2450          * be populated with meaningful numbers for things to work, so assume
2451          * that sample.time will always be reset before setting the utilization
2452          * update hook and make the caller skip the sample then.
2453          */
2454         if (cpu->last_sample_time) {
2455                 intel_pstate_calc_avg_perf(cpu);
2456                 return true;
2457         }
2458         return false;
2459 }
2460
2461 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2462 {
2463         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2464 }
2465
2466 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2467 {
2468         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2469                           cpu->sample.core_avg_perf);
2470 }
2471
2472 static inline int32_t get_target_pstate(struct cpudata *cpu)
2473 {
2474         struct sample *sample = &cpu->sample;
2475         int32_t busy_frac;
2476         int target, avg_pstate;
2477
2478         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2479                            sample->tsc);
2480
2481         if (busy_frac < cpu->iowait_boost)
2482                 busy_frac = cpu->iowait_boost;
2483
2484         sample->busy_scaled = busy_frac * 100;
2485
2486         target = READ_ONCE(global.no_turbo) ?
2487                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2488         target += target >> 2;
2489         target = mul_fp(target, busy_frac);
2490         if (target < cpu->pstate.min_pstate)
2491                 target = cpu->pstate.min_pstate;
2492
2493         /*
2494          * If the average P-state during the previous cycle was higher than the
2495          * current target, add 50% of the difference to the target to reduce
2496          * possible performance oscillations and offset possible performance
2497          * loss related to moving the workload from one CPU to another within
2498          * a package/module.
2499          */
2500         avg_pstate = get_avg_pstate(cpu);
2501         if (avg_pstate > target)
2502                 target += (avg_pstate - target) >> 1;
2503
2504         return target;
2505 }
2506
2507 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2508 {
2509         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2510         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2511
2512         return clamp_t(int, pstate, min_pstate, max_pstate);
2513 }
2514
2515 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2516 {
2517         if (pstate == cpu->pstate.current_pstate)
2518                 return;
2519
2520         cpu->pstate.current_pstate = pstate;
2521         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2522 }
2523
2524 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2525 {
2526         int from = cpu->pstate.current_pstate;
2527         struct sample *sample;
2528         int target_pstate;
2529
2530         target_pstate = get_target_pstate(cpu);
2531         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2532         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2533         intel_pstate_update_pstate(cpu, target_pstate);
2534
2535         sample = &cpu->sample;
2536         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2537                 fp_toint(sample->busy_scaled),
2538                 from,
2539                 cpu->pstate.current_pstate,
2540                 sample->mperf,
2541                 sample->aperf,
2542                 sample->tsc,
2543                 get_avg_frequency(cpu),
2544                 fp_toint(cpu->iowait_boost * 100));
2545 }
2546
2547 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2548                                      unsigned int flags)
2549 {
2550         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2551         u64 delta_ns;
2552
2553         /* Don't allow remote callbacks */
2554         if (smp_processor_id() != cpu->cpu)
2555                 return;
2556
2557         delta_ns = time - cpu->last_update;
2558         if (flags & SCHED_CPUFREQ_IOWAIT) {
2559                 /* Start over if the CPU may have been idle. */
2560                 if (delta_ns > TICK_NSEC) {
2561                         cpu->iowait_boost = ONE_EIGHTH_FP;
2562                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2563                         cpu->iowait_boost <<= 1;
2564                         if (cpu->iowait_boost > int_tofp(1))
2565                                 cpu->iowait_boost = int_tofp(1);
2566                 } else {
2567                         cpu->iowait_boost = ONE_EIGHTH_FP;
2568                 }
2569         } else if (cpu->iowait_boost) {
2570                 /* Clear iowait_boost if the CPU may have been idle. */
2571                 if (delta_ns > TICK_NSEC)
2572                         cpu->iowait_boost = 0;
2573                 else
2574                         cpu->iowait_boost >>= 1;
2575         }
2576         cpu->last_update = time;
2577         delta_ns = time - cpu->sample.time;
2578         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2579                 return;
2580
2581         if (intel_pstate_sample(cpu, time))
2582                 intel_pstate_adjust_pstate(cpu);
2583 }
2584
2585 static struct pstate_funcs core_funcs = {
2586         .get_max = core_get_max_pstate,
2587         .get_max_physical = core_get_max_pstate_physical,
2588         .get_min = core_get_min_pstate,
2589         .get_turbo = core_get_turbo_pstate,
2590         .get_scaling = core_get_scaling,
2591         .get_val = core_get_val,
2592 };
2593
2594 static const struct pstate_funcs silvermont_funcs = {
2595         .get_max = atom_get_max_pstate,
2596         .get_max_physical = atom_get_max_pstate,
2597         .get_min = atom_get_min_pstate,
2598         .get_turbo = atom_get_turbo_pstate,
2599         .get_val = atom_get_val,
2600         .get_scaling = silvermont_get_scaling,
2601         .get_vid = atom_get_vid,
2602 };
2603
2604 static const struct pstate_funcs airmont_funcs = {
2605         .get_max = atom_get_max_pstate,
2606         .get_max_physical = atom_get_max_pstate,
2607         .get_min = atom_get_min_pstate,
2608         .get_turbo = atom_get_turbo_pstate,
2609         .get_val = atom_get_val,
2610         .get_scaling = airmont_get_scaling,
2611         .get_vid = atom_get_vid,
2612 };
2613
2614 static const struct pstate_funcs knl_funcs = {
2615         .get_max = core_get_max_pstate,
2616         .get_max_physical = core_get_max_pstate_physical,
2617         .get_min = core_get_min_pstate,
2618         .get_turbo = knl_get_turbo_pstate,
2619         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2620         .get_scaling = core_get_scaling,
2621         .get_val = core_get_val,
2622 };
2623
2624 #define X86_MATCH(vfm, policy)                                   \
2625         X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2626
2627 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2628         X86_MATCH(INTEL_SANDYBRIDGE,            core_funcs),
2629         X86_MATCH(INTEL_SANDYBRIDGE_X,          core_funcs),
2630         X86_MATCH(INTEL_ATOM_SILVERMONT,        silvermont_funcs),
2631         X86_MATCH(INTEL_IVYBRIDGE,              core_funcs),
2632         X86_MATCH(INTEL_HASWELL,                core_funcs),
2633         X86_MATCH(INTEL_BROADWELL,              core_funcs),
2634         X86_MATCH(INTEL_IVYBRIDGE_X,            core_funcs),
2635         X86_MATCH(INTEL_HASWELL_X,              core_funcs),
2636         X86_MATCH(INTEL_HASWELL_L,              core_funcs),
2637         X86_MATCH(INTEL_HASWELL_G,              core_funcs),
2638         X86_MATCH(INTEL_BROADWELL_G,            core_funcs),
2639         X86_MATCH(INTEL_ATOM_AIRMONT,           airmont_funcs),
2640         X86_MATCH(INTEL_SKYLAKE_L,              core_funcs),
2641         X86_MATCH(INTEL_BROADWELL_X,            core_funcs),
2642         X86_MATCH(INTEL_SKYLAKE,                core_funcs),
2643         X86_MATCH(INTEL_BROADWELL_D,            core_funcs),
2644         X86_MATCH(INTEL_XEON_PHI_KNL,           knl_funcs),
2645         X86_MATCH(INTEL_XEON_PHI_KNM,           knl_funcs),
2646         X86_MATCH(INTEL_ATOM_GOLDMONT,          core_funcs),
2647         X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS,     core_funcs),
2648         X86_MATCH(INTEL_SKYLAKE_X,              core_funcs),
2649         X86_MATCH(INTEL_COMETLAKE,              core_funcs),
2650         X86_MATCH(INTEL_ICELAKE_X,              core_funcs),
2651         X86_MATCH(INTEL_TIGERLAKE,              core_funcs),
2652         X86_MATCH(INTEL_SAPPHIRERAPIDS_X,       core_funcs),
2653         X86_MATCH(INTEL_EMERALDRAPIDS_X,        core_funcs),
2654         {}
2655 };
2656 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2657
2658 #ifdef CONFIG_ACPI
2659 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2660         X86_MATCH(INTEL_BROADWELL_D,            core_funcs),
2661         X86_MATCH(INTEL_BROADWELL_X,            core_funcs),
2662         X86_MATCH(INTEL_SKYLAKE_X,              core_funcs),
2663         X86_MATCH(INTEL_ICELAKE_X,              core_funcs),
2664         X86_MATCH(INTEL_SAPPHIRERAPIDS_X,       core_funcs),
2665         X86_MATCH(INTEL_EMERALDRAPIDS_X,        core_funcs),
2666         X86_MATCH(INTEL_GRANITERAPIDS_D,        core_funcs),
2667         X86_MATCH(INTEL_GRANITERAPIDS_X,        core_funcs),
2668         X86_MATCH(INTEL_ATOM_CRESTMONT,         core_funcs),
2669         X86_MATCH(INTEL_ATOM_CRESTMONT_X,       core_funcs),
2670         {}
2671 };
2672 #endif
2673
2674 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2675         X86_MATCH(INTEL_KABYLAKE,               core_funcs),
2676         {}
2677 };
2678
2679 static int intel_pstate_init_cpu(unsigned int cpunum)
2680 {
2681         struct cpudata *cpu;
2682
2683         cpu = all_cpu_data[cpunum];
2684
2685         if (!cpu) {
2686                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2687                 if (!cpu)
2688                         return -ENOMEM;
2689
2690                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2691
2692                 cpu->cpu = cpunum;
2693
2694                 cpu->epp_default = -EINVAL;
2695
2696                 if (hwp_active) {
2697                         intel_pstate_hwp_enable(cpu);
2698
2699                         if (intel_pstate_acpi_pm_profile_server())
2700                                 hwp_boost = true;
2701                 }
2702         } else if (hwp_active) {
2703                 /*
2704                  * Re-enable HWP in case this happens after a resume from ACPI
2705                  * S3 if the CPU was offline during the whole system/resume
2706                  * cycle.
2707                  */
2708                 intel_pstate_hwp_reenable(cpu);
2709         }
2710
2711         cpu->epp_powersave = -EINVAL;
2712         cpu->epp_policy = 0;
2713
2714         intel_pstate_get_cpu_pstates(cpu);
2715
2716         pr_debug("controlling: cpu %d\n", cpunum);
2717
2718         return 0;
2719 }
2720
2721 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2722 {
2723         struct cpudata *cpu = all_cpu_data[cpu_num];
2724
2725         if (hwp_active && !hwp_boost)
2726                 return;
2727
2728         if (cpu->update_util_set)
2729                 return;
2730
2731         /* Prevent intel_pstate_update_util() from using stale data. */
2732         cpu->sample.time = 0;
2733         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2734                                      (hwp_active ?
2735                                       intel_pstate_update_util_hwp :
2736                                       intel_pstate_update_util));
2737         cpu->update_util_set = true;
2738 }
2739
2740 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2741 {
2742         struct cpudata *cpu_data = all_cpu_data[cpu];
2743
2744         if (!cpu_data->update_util_set)
2745                 return;
2746
2747         cpufreq_remove_update_util_hook(cpu);
2748         cpu_data->update_util_set = false;
2749         synchronize_rcu();
2750 }
2751
2752 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2753 {
2754         return READ_ONCE(global.no_turbo) ?
2755                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2756 }
2757
2758 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2759                                             unsigned int policy_min,
2760                                             unsigned int policy_max)
2761 {
2762         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2763         int32_t max_policy_perf, min_policy_perf;
2764
2765         max_policy_perf = policy_max / perf_ctl_scaling;
2766         if (policy_max == policy_min) {
2767                 min_policy_perf = max_policy_perf;
2768         } else {
2769                 min_policy_perf = policy_min / perf_ctl_scaling;
2770                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2771                                           0, max_policy_perf);
2772         }
2773
2774         /*
2775          * HWP needs some special consideration, because HWP_REQUEST uses
2776          * abstract values to represent performance rather than pure ratios.
2777          */
2778         if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2779                 int freq;
2780
2781                 freq = max_policy_perf * perf_ctl_scaling;
2782                 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2783                 freq = min_policy_perf * perf_ctl_scaling;
2784                 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2785         }
2786
2787         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2788                  cpu->cpu, min_policy_perf, max_policy_perf);
2789
2790         /* Normalize user input to [min_perf, max_perf] */
2791         if (per_cpu_limits) {
2792                 cpu->min_perf_ratio = min_policy_perf;
2793                 cpu->max_perf_ratio = max_policy_perf;
2794         } else {
2795                 int turbo_max = cpu->pstate.turbo_pstate;
2796                 int32_t global_min, global_max;
2797
2798                 /* Global limits are in percent of the maximum turbo P-state. */
2799                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2800                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2801                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2802
2803                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2804                          global_min, global_max);
2805
2806                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2807                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2808                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2809                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2810
2811                 /* Make sure min_perf <= max_perf */
2812                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2813                                           cpu->max_perf_ratio);
2814
2815         }
2816         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2817                  cpu->max_perf_ratio,
2818                  cpu->min_perf_ratio);
2819 }
2820
2821 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2822 {
2823         struct cpudata *cpu;
2824
2825         if (!policy->cpuinfo.max_freq)
2826                 return -ENODEV;
2827
2828         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2829                  policy->cpuinfo.max_freq, policy->max);
2830
2831         cpu = all_cpu_data[policy->cpu];
2832         cpu->policy = policy->policy;
2833
2834         mutex_lock(&intel_pstate_limits_lock);
2835
2836         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2837
2838         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2839                 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2840
2841                 /*
2842                  * NOHZ_FULL CPUs need this as the governor callback may not
2843                  * be invoked on them.
2844                  */
2845                 intel_pstate_clear_update_util_hook(policy->cpu);
2846                 intel_pstate_set_pstate(cpu, pstate);
2847         } else {
2848                 intel_pstate_set_update_util_hook(policy->cpu);
2849         }
2850
2851         if (hwp_active) {
2852                 /*
2853                  * When hwp_boost was active before and dynamically it
2854                  * was turned off, in that case we need to clear the
2855                  * update util hook.
2856                  */
2857                 if (!hwp_boost)
2858                         intel_pstate_clear_update_util_hook(policy->cpu);
2859                 intel_pstate_hwp_set(policy->cpu);
2860         }
2861         /*
2862          * policy->cur is never updated with the intel_pstate driver, but it
2863          * is used as a stale frequency value. So, keep it within limits.
2864          */
2865         policy->cur = policy->min;
2866
2867         mutex_unlock(&intel_pstate_limits_lock);
2868
2869         return 0;
2870 }
2871
2872 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2873                                            struct cpufreq_policy_data *policy)
2874 {
2875         if (!hwp_active &&
2876             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2877             policy->max < policy->cpuinfo.max_freq &&
2878             policy->max > cpu->pstate.max_freq) {
2879                 pr_debug("policy->max > max non turbo frequency\n");
2880                 policy->max = policy->cpuinfo.max_freq;
2881         }
2882 }
2883
2884 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2885                                            struct cpufreq_policy_data *policy)
2886 {
2887         int max_freq;
2888
2889         if (hwp_active) {
2890                 intel_pstate_get_hwp_cap(cpu);
2891                 max_freq = READ_ONCE(global.no_turbo) ?
2892                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2893         } else {
2894                 max_freq = intel_pstate_get_max_freq(cpu);
2895         }
2896         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2897
2898         intel_pstate_adjust_policy_max(cpu, policy);
2899 }
2900
2901 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2902 {
2903         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2904
2905         return 0;
2906 }
2907
2908 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2909 {
2910         struct cpudata *cpu = all_cpu_data[policy->cpu];
2911
2912         pr_debug("CPU %d going offline\n", cpu->cpu);
2913
2914         if (cpu->suspended)
2915                 return 0;
2916
2917         /*
2918          * If the CPU is an SMT thread and it goes offline with the performance
2919          * settings different from the minimum, it will prevent its sibling
2920          * from getting to lower performance levels, so force the minimum
2921          * performance on CPU offline to prevent that from happening.
2922          */
2923         if (hwp_active)
2924                 intel_pstate_hwp_offline(cpu);
2925         else
2926                 intel_pstate_set_min_pstate(cpu);
2927
2928         intel_pstate_exit_perf_limits(policy);
2929
2930         return 0;
2931 }
2932
2933 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2934 {
2935         struct cpudata *cpu = all_cpu_data[policy->cpu];
2936
2937         pr_debug("CPU %d going online\n", cpu->cpu);
2938
2939         intel_pstate_init_acpi_perf_limits(policy);
2940
2941         if (hwp_active) {
2942                 /*
2943                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2944                  * know that it need not do that.
2945                  */
2946                 intel_pstate_hwp_reenable(cpu);
2947                 cpu->suspended = false;
2948
2949                 hybrid_update_capacity(cpu);
2950         }
2951
2952         return 0;
2953 }
2954
2955 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2956 {
2957         intel_pstate_clear_update_util_hook(policy->cpu);
2958
2959         return intel_cpufreq_cpu_offline(policy);
2960 }
2961
2962 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2963 {
2964         pr_debug("CPU %d exiting\n", policy->cpu);
2965
2966         policy->fast_switch_possible = false;
2967 }
2968
2969 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2970 {
2971         struct cpudata *cpu;
2972         int rc;
2973
2974         rc = intel_pstate_init_cpu(policy->cpu);
2975         if (rc)
2976                 return rc;
2977
2978         cpu = all_cpu_data[policy->cpu];
2979
2980         cpu->max_perf_ratio = 0xFF;
2981         cpu->min_perf_ratio = 0;
2982
2983         /* cpuinfo and default policy values */
2984         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2985         policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
2986                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2987
2988         policy->min = policy->cpuinfo.min_freq;
2989         policy->max = policy->cpuinfo.max_freq;
2990
2991         intel_pstate_init_acpi_perf_limits(policy);
2992
2993         policy->fast_switch_possible = true;
2994
2995         return 0;
2996 }
2997
2998 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2999 {
3000         int ret = __intel_pstate_cpu_init(policy);
3001
3002         if (ret)
3003                 return ret;
3004
3005         /*
3006          * Set the policy to powersave to provide a valid fallback value in case
3007          * the default cpufreq governor is neither powersave nor performance.
3008          */
3009         policy->policy = CPUFREQ_POLICY_POWERSAVE;
3010
3011         if (hwp_active) {
3012                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3013
3014                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3015         }
3016
3017         return 0;
3018 }
3019
3020 static struct cpufreq_driver intel_pstate = {
3021         .flags          = CPUFREQ_CONST_LOOPS,
3022         .verify         = intel_pstate_verify_policy,
3023         .setpolicy      = intel_pstate_set_policy,
3024         .suspend        = intel_pstate_suspend,
3025         .resume         = intel_pstate_resume,
3026         .init           = intel_pstate_cpu_init,
3027         .exit           = intel_pstate_cpu_exit,
3028         .offline        = intel_pstate_cpu_offline,
3029         .online         = intel_pstate_cpu_online,
3030         .update_limits  = intel_pstate_update_limits,
3031         .name           = "intel_pstate",
3032 };
3033
3034 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3035 {
3036         struct cpudata *cpu = all_cpu_data[policy->cpu];
3037
3038         intel_pstate_verify_cpu_policy(cpu, policy);
3039         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3040
3041         return 0;
3042 }
3043
3044 /* Use of trace in passive mode:
3045  *
3046  * In passive mode the trace core_busy field (also known as the
3047  * performance field, and lablelled as such on the graphs; also known as
3048  * core_avg_perf) is not needed and so is re-assigned to indicate if the
3049  * driver call was via the normal or fast switch path. Various graphs
3050  * output from the intel_pstate_tracer.py utility that include core_busy
3051  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3052  * so we use 10 to indicate the normal path through the driver, and
3053  * 90 to indicate the fast switch path through the driver.
3054  * The scaled_busy field is not used, and is set to 0.
3055  */
3056
3057 #define INTEL_PSTATE_TRACE_TARGET 10
3058 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
3059
3060 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3061 {
3062         struct sample *sample;
3063
3064         if (!trace_pstate_sample_enabled())
3065                 return;
3066
3067         if (!intel_pstate_sample(cpu, ktime_get()))
3068                 return;
3069
3070         sample = &cpu->sample;
3071         trace_pstate_sample(trace_type,
3072                 0,
3073                 old_pstate,
3074                 cpu->pstate.current_pstate,
3075                 sample->mperf,
3076                 sample->aperf,
3077                 sample->tsc,
3078                 get_avg_frequency(cpu),
3079                 fp_toint(cpu->iowait_boost * 100));
3080 }
3081
3082 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3083                                      u32 desired, bool fast_switch)
3084 {
3085         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3086
3087         value &= ~HWP_MIN_PERF(~0L);
3088         value |= HWP_MIN_PERF(min);
3089
3090         value &= ~HWP_MAX_PERF(~0L);
3091         value |= HWP_MAX_PERF(max);
3092
3093         value &= ~HWP_DESIRED_PERF(~0L);
3094         value |= HWP_DESIRED_PERF(desired);
3095
3096         if (value == prev)
3097                 return;
3098
3099         WRITE_ONCE(cpu->hwp_req_cached, value);
3100         if (fast_switch)
3101                 wrmsrl(MSR_HWP_REQUEST, value);
3102         else
3103                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3104 }
3105
3106 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3107                                           u32 target_pstate, bool fast_switch)
3108 {
3109         if (fast_switch)
3110                 wrmsrl(MSR_IA32_PERF_CTL,
3111                        pstate_funcs.get_val(cpu, target_pstate));
3112         else
3113                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3114                               pstate_funcs.get_val(cpu, target_pstate));
3115 }
3116
3117 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3118                                        int target_pstate, bool fast_switch)
3119 {
3120         struct cpudata *cpu = all_cpu_data[policy->cpu];
3121         int old_pstate = cpu->pstate.current_pstate;
3122
3123         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3124         if (hwp_active) {
3125                 int max_pstate = policy->strict_target ?
3126                                         target_pstate : cpu->max_perf_ratio;
3127
3128                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
3129                                          fast_switch);
3130         } else if (target_pstate != old_pstate) {
3131                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3132         }
3133
3134         cpu->pstate.current_pstate = target_pstate;
3135
3136         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3137                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
3138
3139         return target_pstate;
3140 }
3141
3142 static int intel_cpufreq_target(struct cpufreq_policy *policy,
3143                                 unsigned int target_freq,
3144                                 unsigned int relation)
3145 {
3146         struct cpudata *cpu = all_cpu_data[policy->cpu];
3147         struct cpufreq_freqs freqs;
3148         int target_pstate;
3149
3150         freqs.old = policy->cur;
3151         freqs.new = target_freq;
3152
3153         cpufreq_freq_transition_begin(policy, &freqs);
3154
3155         target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3156         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3157
3158         freqs.new = target_pstate * cpu->pstate.scaling;
3159
3160         cpufreq_freq_transition_end(policy, &freqs, false);
3161
3162         return 0;
3163 }
3164
3165 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3166                                               unsigned int target_freq)
3167 {
3168         struct cpudata *cpu = all_cpu_data[policy->cpu];
3169         int target_pstate;
3170
3171         target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3172
3173         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3174
3175         return target_pstate * cpu->pstate.scaling;
3176 }
3177
3178 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3179                                       unsigned long min_perf,
3180                                       unsigned long target_perf,
3181                                       unsigned long capacity)
3182 {
3183         struct cpudata *cpu = all_cpu_data[cpunum];
3184         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3185         int old_pstate = cpu->pstate.current_pstate;
3186         int cap_pstate, min_pstate, max_pstate, target_pstate;
3187
3188         cap_pstate = READ_ONCE(global.no_turbo) ?
3189                                         HWP_GUARANTEED_PERF(hwp_cap) :
3190                                         HWP_HIGHEST_PERF(hwp_cap);
3191
3192         /* Optimization: Avoid unnecessary divisions. */
3193
3194         target_pstate = cap_pstate;
3195         if (target_perf < capacity)
3196                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3197
3198         min_pstate = cap_pstate;
3199         if (min_perf < capacity)
3200                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3201
3202         if (min_pstate < cpu->pstate.min_pstate)
3203                 min_pstate = cpu->pstate.min_pstate;
3204
3205         if (min_pstate < cpu->min_perf_ratio)
3206                 min_pstate = cpu->min_perf_ratio;
3207
3208         if (min_pstate > cpu->max_perf_ratio)
3209                 min_pstate = cpu->max_perf_ratio;
3210
3211         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3212         if (max_pstate < min_pstate)
3213                 max_pstate = min_pstate;
3214
3215         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3216
3217         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3218
3219         cpu->pstate.current_pstate = target_pstate;
3220         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3221 }
3222
3223 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3224 {
3225         struct freq_qos_request *req;
3226         struct cpudata *cpu;
3227         struct device *dev;
3228         int ret, freq;
3229
3230         dev = get_cpu_device(policy->cpu);
3231         if (!dev)
3232                 return -ENODEV;
3233
3234         ret = __intel_pstate_cpu_init(policy);
3235         if (ret)
3236                 return ret;
3237
3238         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3239         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3240         policy->cur = policy->cpuinfo.min_freq;
3241
3242         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3243         if (!req) {
3244                 ret = -ENOMEM;
3245                 goto pstate_exit;
3246         }
3247
3248         cpu = all_cpu_data[policy->cpu];
3249
3250         if (hwp_active) {
3251                 u64 value;
3252
3253                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3254
3255                 intel_pstate_get_hwp_cap(cpu);
3256
3257                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3258                 WRITE_ONCE(cpu->hwp_req_cached, value);
3259
3260                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3261         } else {
3262                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3263         }
3264
3265         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3266
3267         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3268                                    freq);
3269         if (ret < 0) {
3270                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3271                 goto free_req;
3272         }
3273
3274         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3275
3276         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3277                                    freq);
3278         if (ret < 0) {
3279                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3280                 goto remove_min_req;
3281         }
3282
3283         policy->driver_data = req;
3284
3285         return 0;
3286
3287 remove_min_req:
3288         freq_qos_remove_request(req);
3289 free_req:
3290         kfree(req);
3291 pstate_exit:
3292         intel_pstate_exit_perf_limits(policy);
3293
3294         return ret;
3295 }
3296
3297 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3298 {
3299         struct freq_qos_request *req;
3300
3301         req = policy->driver_data;
3302
3303         freq_qos_remove_request(req + 1);
3304         freq_qos_remove_request(req);
3305         kfree(req);
3306
3307         intel_pstate_cpu_exit(policy);
3308 }
3309
3310 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3311 {
3312         intel_pstate_suspend(policy);
3313
3314         if (hwp_active) {
3315                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3316                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3317
3318                 /*
3319                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3320                  * intel_cpufreq_adjust_perf() is in use and the last value
3321                  * written by it may not be suitable.
3322                  */
3323                 value &= ~HWP_DESIRED_PERF(~0L);
3324                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3325                 WRITE_ONCE(cpu->hwp_req_cached, value);
3326         }
3327
3328         return 0;
3329 }
3330
3331 static struct cpufreq_driver intel_cpufreq = {
3332         .flags          = CPUFREQ_CONST_LOOPS,
3333         .verify         = intel_cpufreq_verify_policy,
3334         .target         = intel_cpufreq_target,
3335         .fast_switch    = intel_cpufreq_fast_switch,
3336         .init           = intel_cpufreq_cpu_init,
3337         .exit           = intel_cpufreq_cpu_exit,
3338         .offline        = intel_cpufreq_cpu_offline,
3339         .online         = intel_pstate_cpu_online,
3340         .suspend        = intel_cpufreq_suspend,
3341         .resume         = intel_pstate_resume,
3342         .update_limits  = intel_pstate_update_limits,
3343         .name           = "intel_cpufreq",
3344 };
3345
3346 static struct cpufreq_driver *default_driver;
3347
3348 static void intel_pstate_driver_cleanup(void)
3349 {
3350         unsigned int cpu;
3351
3352         cpus_read_lock();
3353         for_each_online_cpu(cpu) {
3354                 if (all_cpu_data[cpu]) {
3355                         if (intel_pstate_driver == &intel_pstate)
3356                                 intel_pstate_clear_update_util_hook(cpu);
3357
3358                         kfree(all_cpu_data[cpu]);
3359                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3360                 }
3361         }
3362         cpus_read_unlock();
3363
3364         intel_pstate_driver = NULL;
3365 }
3366
3367 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3368 {
3369         bool refresh_cpu_cap_scaling;
3370         int ret;
3371
3372         if (driver == &intel_pstate)
3373                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3374
3375         memset(&global, 0, sizeof(global));
3376         global.max_perf_pct = 100;
3377         global.turbo_disabled = turbo_is_disabled();
3378         global.no_turbo = global.turbo_disabled;
3379
3380         arch_set_max_freq_ratio(global.turbo_disabled);
3381
3382         refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu();
3383
3384         intel_pstate_driver = driver;
3385         ret = cpufreq_register_driver(intel_pstate_driver);
3386         if (ret) {
3387                 intel_pstate_driver_cleanup();
3388                 return ret;
3389         }
3390
3391         global.min_perf_pct = min_perf_pct_min();
3392
3393         hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling);
3394
3395         return 0;
3396 }
3397
3398 static ssize_t intel_pstate_show_status(char *buf)
3399 {
3400         if (!intel_pstate_driver)
3401                 return sprintf(buf, "off\n");
3402
3403         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3404                                         "active" : "passive");
3405 }
3406
3407 static int intel_pstate_update_status(const char *buf, size_t size)
3408 {
3409         if (size == 3 && !strncmp(buf, "off", size)) {
3410                 if (!intel_pstate_driver)
3411                         return -EINVAL;
3412
3413                 if (hwp_active)
3414                         return -EBUSY;
3415
3416                 cpufreq_unregister_driver(intel_pstate_driver);
3417                 intel_pstate_driver_cleanup();
3418                 return 0;
3419         }
3420
3421         if (size == 6 && !strncmp(buf, "active", size)) {
3422                 if (intel_pstate_driver) {
3423                         if (intel_pstate_driver == &intel_pstate)
3424                                 return 0;
3425
3426                         cpufreq_unregister_driver(intel_pstate_driver);
3427                 }
3428
3429                 return intel_pstate_register_driver(&intel_pstate);
3430         }
3431
3432         if (size == 7 && !strncmp(buf, "passive", size)) {
3433                 if (intel_pstate_driver) {
3434                         if (intel_pstate_driver == &intel_cpufreq)
3435                                 return 0;
3436
3437                         cpufreq_unregister_driver(intel_pstate_driver);
3438                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3439                 }
3440
3441                 return intel_pstate_register_driver(&intel_cpufreq);
3442         }
3443
3444         return -EINVAL;
3445 }
3446
3447 static int no_load __initdata;
3448 static int no_hwp __initdata;
3449 static int hwp_only __initdata;
3450 static unsigned int force_load __initdata;
3451
3452 static int __init intel_pstate_msrs_not_valid(void)
3453 {
3454         if (!pstate_funcs.get_max(0) ||
3455             !pstate_funcs.get_min(0) ||
3456             !pstate_funcs.get_turbo(0))
3457                 return -ENODEV;
3458
3459         return 0;
3460 }
3461
3462 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3463 {
3464         pstate_funcs.get_max   = funcs->get_max;
3465         pstate_funcs.get_max_physical = funcs->get_max_physical;
3466         pstate_funcs.get_min   = funcs->get_min;
3467         pstate_funcs.get_turbo = funcs->get_turbo;
3468         pstate_funcs.get_scaling = funcs->get_scaling;
3469         pstate_funcs.get_val   = funcs->get_val;
3470         pstate_funcs.get_vid   = funcs->get_vid;
3471         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3472 }
3473
3474 #ifdef CONFIG_ACPI
3475
3476 static bool __init intel_pstate_no_acpi_pss(void)
3477 {
3478         int i;
3479
3480         for_each_possible_cpu(i) {
3481                 acpi_status status;
3482                 union acpi_object *pss;
3483                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3484                 struct acpi_processor *pr = per_cpu(processors, i);
3485
3486                 if (!pr)
3487                         continue;
3488
3489                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3490                 if (ACPI_FAILURE(status))
3491                         continue;
3492
3493                 pss = buffer.pointer;
3494                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3495                         kfree(pss);
3496                         return false;
3497                 }
3498
3499                 kfree(pss);
3500         }
3501
3502         pr_debug("ACPI _PSS not found\n");
3503         return true;
3504 }
3505
3506 static bool __init intel_pstate_no_acpi_pcch(void)
3507 {
3508         acpi_status status;
3509         acpi_handle handle;
3510
3511         status = acpi_get_handle(NULL, "\\_SB", &handle);
3512         if (ACPI_FAILURE(status))
3513                 goto not_found;
3514
3515         if (acpi_has_method(handle, "PCCH"))
3516                 return false;
3517
3518 not_found:
3519         pr_debug("ACPI PCCH not found\n");
3520         return true;
3521 }
3522
3523 static bool __init intel_pstate_has_acpi_ppc(void)
3524 {
3525         int i;
3526
3527         for_each_possible_cpu(i) {
3528                 struct acpi_processor *pr = per_cpu(processors, i);
3529
3530                 if (!pr)
3531                         continue;
3532                 if (acpi_has_method(pr->handle, "_PPC"))
3533                         return true;
3534         }
3535         pr_debug("ACPI _PPC not found\n");
3536         return false;
3537 }
3538
3539 enum {
3540         PSS,
3541         PPC,
3542 };
3543
3544 /* Hardware vendor-specific info that has its own power management modes */
3545 static struct acpi_platform_list plat_info[] __initdata = {
3546         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3547         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3548         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3549         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3550         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3551         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3552         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3553         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3554         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3555         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3556         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3557         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3558         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3559         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3560         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3561         { } /* End */
3562 };
3563
3564 #define BITMASK_OOB     (BIT(8) | BIT(18))
3565
3566 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3567 {
3568         const struct x86_cpu_id *id;
3569         u64 misc_pwr;
3570         int idx;
3571
3572         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3573         if (id) {
3574                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3575                 if (misc_pwr & BITMASK_OOB) {
3576                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3577                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3578                         return true;
3579                 }
3580         }
3581
3582         idx = acpi_match_platform_list(plat_info);
3583         if (idx < 0)
3584                 return false;
3585
3586         switch (plat_info[idx].data) {
3587         case PSS:
3588                 if (!intel_pstate_no_acpi_pss())
3589                         return false;
3590
3591                 return intel_pstate_no_acpi_pcch();
3592         case PPC:
3593                 return intel_pstate_has_acpi_ppc() && !force_load;
3594         }
3595
3596         return false;
3597 }
3598
3599 static void intel_pstate_request_control_from_smm(void)
3600 {
3601         /*
3602          * It may be unsafe to request P-states control from SMM if _PPC support
3603          * has not been enabled.
3604          */
3605         if (acpi_ppc)
3606                 acpi_processor_pstate_control();
3607 }
3608 #else /* CONFIG_ACPI not enabled */
3609 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3610 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3611 static inline void intel_pstate_request_control_from_smm(void) {}
3612 #endif /* CONFIG_ACPI */
3613
3614 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3615
3616 #define X86_MATCH_HWP(vfm, hwp_mode)                            \
3617         X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3618
3619 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3620         X86_MATCH_HWP(INTEL_BROADWELL_X,        INTEL_PSTATE_HWP_BROADWELL),
3621         X86_MATCH_HWP(INTEL_BROADWELL_D,        INTEL_PSTATE_HWP_BROADWELL),
3622         X86_MATCH_HWP(INTEL_ANY,                0),
3623         {}
3624 };
3625
3626 static bool intel_pstate_hwp_is_enabled(void)
3627 {
3628         u64 value;
3629
3630         rdmsrl(MSR_PM_ENABLE, value);
3631         return !!(value & 0x1);
3632 }
3633
3634 #define POWERSAVE_MASK                  GENMASK(7, 0)
3635 #define BALANCE_POWER_MASK              GENMASK(15, 8)
3636 #define BALANCE_PERFORMANCE_MASK        GENMASK(23, 16)
3637 #define PERFORMANCE_MASK                GENMASK(31, 24)
3638
3639 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3640         (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3641          FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3642          FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3643          FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3644
3645 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3646         (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3647          balance_perf, HWP_EPP_PERFORMANCE))
3648
3649 static const struct x86_cpu_id intel_epp_default[] = {
3650         /*
3651          * Set EPP value as 102, this is the max suggested EPP
3652          * which can result in one core turbo frequency for
3653          * AlderLake Mobile CPUs.
3654          */
3655         X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3656         X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3657         X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3658         X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3659         X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3660         X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3661                       179, 64, 16)),
3662         X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3663                       179, 64, 16)),
3664         {}
3665 };
3666
3667 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3668         X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3669         X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL),
3670         X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3671         {}
3672 };
3673
3674 static int __init intel_pstate_init(void)
3675 {
3676         static struct cpudata **_all_cpu_data;
3677         const struct x86_cpu_id *id;
3678         int rc;
3679
3680         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3681                 return -ENODEV;
3682
3683         id = x86_match_cpu(hwp_support_ids);
3684         if (id) {
3685                 hwp_forced = intel_pstate_hwp_is_enabled();
3686
3687                 if (hwp_forced)
3688                         pr_info("HWP enabled by BIOS\n");
3689                 else if (no_load)
3690                         return -ENODEV;
3691
3692                 copy_cpu_funcs(&core_funcs);
3693                 /*
3694                  * Avoid enabling HWP for processors without EPP support,
3695                  * because that means incomplete HWP implementation which is a
3696                  * corner case and supporting it is generally problematic.
3697                  *
3698                  * If HWP is enabled already, though, there is no choice but to
3699                  * deal with it.
3700                  */
3701                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3702                         hwp_active = true;
3703                         hwp_mode_bdw = id->driver_data;
3704                         intel_pstate.attr = hwp_cpufreq_attrs;
3705                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3706                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3707                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3708                         if (!default_driver)
3709                                 default_driver = &intel_pstate;
3710
3711                         pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3712
3713                         goto hwp_cpu_matched;
3714                 }
3715                 pr_info("HWP not enabled\n");
3716         } else {
3717                 if (no_load)
3718                         return -ENODEV;
3719
3720                 id = x86_match_cpu(intel_pstate_cpu_ids);
3721                 if (!id) {
3722                         pr_info("CPU model not supported\n");
3723                         return -ENODEV;
3724                 }
3725
3726                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3727         }
3728
3729         if (intel_pstate_msrs_not_valid()) {
3730                 pr_info("Invalid MSRs\n");
3731                 return -ENODEV;
3732         }
3733         /* Without HWP start in the passive mode. */
3734         if (!default_driver)
3735                 default_driver = &intel_cpufreq;
3736
3737 hwp_cpu_matched:
3738         /*
3739          * The Intel pstate driver will be ignored if the platform
3740          * firmware has its own power management modes.
3741          */
3742         if (intel_pstate_platform_pwr_mgmt_exists()) {
3743                 pr_info("P-states controlled by the platform\n");
3744                 return -ENODEV;
3745         }
3746
3747         if (!hwp_active && hwp_only)
3748                 return -ENOTSUPP;
3749
3750         pr_info("Intel P-state driver initializing\n");
3751
3752         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3753         if (!_all_cpu_data)
3754                 return -ENOMEM;
3755
3756         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3757
3758         intel_pstate_request_control_from_smm();
3759
3760         intel_pstate_sysfs_expose_params();
3761
3762         if (hwp_active) {
3763                 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3764                 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3765
3766                 if (id) {
3767                         epp_values[EPP_INDEX_POWERSAVE] =
3768                                         FIELD_GET(POWERSAVE_MASK, id->driver_data);
3769                         epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3770                                         FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3771                         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3772                                         FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3773                         epp_values[EPP_INDEX_PERFORMANCE] =
3774                                         FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3775                         pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3776                                  epp_values[EPP_INDEX_POWERSAVE],
3777                                  epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3778                                  epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3779                                  epp_values[EPP_INDEX_PERFORMANCE]);
3780                 }
3781
3782                 if (hybrid_id) {
3783                         hybrid_scaling_factor = hybrid_id->driver_data;
3784                         pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3785                 }
3786
3787         }
3788
3789         mutex_lock(&intel_pstate_driver_lock);
3790         rc = intel_pstate_register_driver(default_driver);
3791         mutex_unlock(&intel_pstate_driver_lock);
3792         if (rc) {
3793                 intel_pstate_sysfs_remove();
3794                 return rc;
3795         }
3796
3797         if (hwp_active) {
3798                 const struct x86_cpu_id *id;
3799
3800                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3801                 if (id) {
3802                         set_power_ctl_ee_state(false);
3803                         pr_info("Disabling energy efficiency optimization\n");
3804                 }
3805
3806                 pr_info("HWP enabled\n");
3807         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3808                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3809         }
3810
3811         return 0;
3812 }
3813 device_initcall(intel_pstate_init);
3814
3815 static int __init intel_pstate_setup(char *str)
3816 {
3817         if (!str)
3818                 return -EINVAL;
3819
3820         if (!strcmp(str, "disable"))
3821                 no_load = 1;
3822         else if (!strcmp(str, "active"))
3823                 default_driver = &intel_pstate;
3824         else if (!strcmp(str, "passive"))
3825                 default_driver = &intel_cpufreq;
3826
3827         if (!strcmp(str, "no_hwp"))
3828                 no_hwp = 1;
3829
3830         if (!strcmp(str, "force"))
3831                 force_load = 1;
3832         if (!strcmp(str, "hwp_only"))
3833                 hwp_only = 1;
3834         if (!strcmp(str, "per_cpu_perf_limits"))
3835                 per_cpu_limits = true;
3836
3837 #ifdef CONFIG_ACPI
3838         if (!strcmp(str, "support_acpi_ppc"))
3839                 acpi_ppc = true;
3840 #endif
3841
3842         return 0;
3843 }
3844 early_param("intel_pstate", intel_pstate_setup);
3845
3846 MODULE_AUTHOR("Dirk Brandewie <[email protected]>");
3847 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
This page took 0.242623 seconds and 4 git commands to generate.