1 // SPDX-License-Identifier: GPL-2.0-only
3 * intel_pstate.c: Native P state management for Intel processors
5 * (C) Copyright 2012 Intel Corporation
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/sched/smt.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/cpufreq.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
26 #include <linux/acpi.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pm_qos.h>
29 #include <linux/bitfield.h>
30 #include <trace/events/power.h>
33 #include <asm/div64.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 #include "../drivers/thermal/intel/thermal_interrupt.h"
40 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
55 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
58 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
59 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
60 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
62 static inline int32_t mul_fp(int32_t x, int32_t y)
64 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
67 static inline int32_t div_fp(s64 x, s64 y)
69 return div64_s64((int64_t)x << FRAC_BITS, y);
72 static inline int ceiling_fp(int32_t x)
77 mask = (1 << FRAC_BITS) - 1;
83 static inline u64 mul_ext_fp(u64 x, u64 y)
85 return (x * y) >> EXT_FRAC_BITS;
88 static inline u64 div_ext_fp(u64 x, u64 y)
90 return div64_u64(x << EXT_FRAC_BITS, y);
94 * struct sample - Store performance sample
95 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
96 * performance during last sample period
97 * @busy_scaled: Scaled busy value which is used to calculate next
98 * P state. This can be different than core_avg_perf
99 * to account for cpu idle period
100 * @aperf: Difference of actual performance frequency clock count
101 * read from APERF MSR between last and current sample
102 * @mperf: Difference of maximum performance frequency clock count
103 * read from MPERF MSR between last and current sample
104 * @tsc: Difference of time stamp counter between last and
106 * @time: Current time from scheduler
108 * This structure is used in the cpudata structure to store performance sample
109 * data for choosing next P State.
112 int32_t core_avg_perf;
121 * struct pstate_data - Store P state data
122 * @current_pstate: Current requested P state
123 * @min_pstate: Min P state possible for this platform
124 * @max_pstate: Max P state possible for this platform
125 * @max_pstate_physical:This is physical Max P state for a processor
126 * This can be higher than the max_pstate which can
127 * be limited by platform thermal design power limits
128 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
129 * @scaling: Scaling factor between performance and frequency
130 * @turbo_pstate: Max Turbo P state possible for this platform
131 * @min_freq: @min_pstate frequency in cpufreq units
132 * @max_freq: @max_pstate frequency in cpufreq units
133 * @turbo_freq: @turbo_pstate frequency in cpufreq units
135 * Stores the per cpu model P state limits and current P state.
141 int max_pstate_physical;
142 int perf_ctl_scaling;
145 unsigned int min_freq;
146 unsigned int max_freq;
147 unsigned int turbo_freq;
151 * struct vid_data - Stores voltage information data
152 * @min: VID data for this platform corresponding to
154 * @max: VID data corresponding to the highest P State.
155 * @turbo: VID data for turbo P state
156 * @ratio: Ratio of (vid max - vid min) /
157 * (max P state - Min P State)
159 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
160 * This data is used in Atom platforms, where in addition to target P state,
161 * the voltage data needs to be specified to select next P State.
171 * struct global_params - Global parameters, mostly tunable via sysfs.
172 * @no_turbo: Whether or not to use turbo P-states.
173 * @turbo_disabled: Whether or not turbo P-states are available at all,
174 * based on the MSR_IA32_MISC_ENABLE value and whether or
175 * not the maximum reported turbo P-state is different from
176 * the maximum reported non-turbo one.
177 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
179 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
182 struct global_params {
190 * struct cpudata - Per CPU instance data storage
191 * @cpu: CPU number for this instance data
192 * @policy: CPUFreq policy value
193 * @update_util: CPUFreq utility callback information
194 * @update_util_set: CPUFreq utility callback is set
195 * @iowait_boost: iowait-related boost fraction
196 * @last_update: Time of the last update.
197 * @pstate: Stores P state limits for this CPU
198 * @vid: Stores VID limits for this CPU
199 * @last_sample_time: Last Sample time
200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
201 * @prev_aperf: Last APERF value read from APERF MSR
202 * @prev_mperf: Last MPERF value read from MPERF MSR
203 * @prev_tsc: Last timestamp counter (TSC) value
204 * @sample: Storage for storing last Sample data
205 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
206 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
207 * @acpi_perf_data: Stores ACPI perf information read from _PSS
208 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
209 * @epp_powersave: Last saved HWP energy performance preference
210 * (EPP) or energy performance bias (EPB),
211 * when policy switched to performance
212 * @epp_policy: Last saved policy used to set EPP/EPB
213 * @epp_default: Power on default HWP energy performance
215 * @epp_cached: Cached HWP energy-performance preference value
216 * @hwp_req_cached: Cached value of the last HWP Request MSR
217 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
218 * @last_io_update: Last time when IO wake flag was set
219 * @capacity_perf: Highest perf used for scale invariance
220 * @sched_flags: Store scheduler flags for possible cross CPU update
221 * @hwp_boost_min: Last HWP boosted min performance
222 * @suspended: Whether or not the driver has been suspended.
223 * @hwp_notify_work: workqueue for HWP notifications.
225 * This structure stores per CPU instance data for all CPUs.
231 struct update_util_data update_util;
232 bool update_util_set;
234 struct pstate_data pstate;
238 u64 last_sample_time;
239 u64 aperf_mperf_shift;
243 struct sample sample;
244 int32_t min_perf_ratio;
245 int32_t max_perf_ratio;
247 struct acpi_processor_performance acpi_perf_data;
248 bool valid_pss_table;
250 unsigned int iowait_boost;
258 unsigned int capacity_perf;
259 unsigned int sched_flags;
262 struct delayed_work hwp_notify_work;
265 static struct cpudata **all_cpu_data;
268 * struct pstate_funcs - Per CPU model specific callbacks
269 * @get_max: Callback to get maximum non turbo effective P state
270 * @get_max_physical: Callback to get maximum non turbo physical P state
271 * @get_min: Callback to get minimum P state
272 * @get_turbo: Callback to get turbo P state
273 * @get_scaling: Callback to get frequency scaling factor
274 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
275 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276 * @get_val: Callback to convert P state to actual MSR write value
277 * @get_vid: Callback to get VID data for Atom platforms
279 * Core and Atom CPU models have different way to get P State limits. This
280 * structure is used to store those callbacks.
282 struct pstate_funcs {
283 int (*get_max)(int cpu);
284 int (*get_max_physical)(int cpu);
285 int (*get_min)(int cpu);
286 int (*get_turbo)(int cpu);
287 int (*get_scaling)(void);
288 int (*get_cpu_scaling)(int cpu);
289 int (*get_aperf_mperf_shift)(void);
290 u64 (*get_val)(struct cpudata*, int pstate);
291 void (*get_vid)(struct cpudata *);
294 static struct pstate_funcs pstate_funcs __read_mostly;
296 static bool hwp_active __ro_after_init;
297 static int hwp_mode_bdw __ro_after_init;
298 static bool per_cpu_limits __ro_after_init;
299 static bool hwp_forced __ro_after_init;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_is_hybrid;
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
305 #define HYBRID_SCALING_FACTOR 78741
306 #define HYBRID_SCALING_FACTOR_MTL 80000
307 #define HYBRID_SCALING_FACTOR_LNL 86957
309 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
311 static inline int core_get_scaling(void)
317 static bool acpi_ppc;
320 static struct global_params global;
322 static DEFINE_MUTEX(intel_pstate_driver_lock);
323 static DEFINE_MUTEX(intel_pstate_limits_lock);
327 static bool intel_pstate_acpi_pm_profile_server(void)
329 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
330 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
336 static bool intel_pstate_get_ppc_enable_status(void)
338 if (intel_pstate_acpi_pm_profile_server())
344 #ifdef CONFIG_ACPI_CPPC_LIB
346 /* The work item is needed to avoid CPU hotplug locking issues */
347 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
349 sched_set_itmt_support();
352 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
354 #define CPPC_MAX_PERF U8_MAX
356 static void intel_pstate_set_itmt_prio(int cpu)
358 struct cppc_perf_caps cppc_perf;
359 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
362 ret = cppc_get_perf_caps(cpu, &cppc_perf);
364 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
366 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
367 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
368 * Fall back to MSR_HWP_CAPABILITIES then too.
370 if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
371 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
374 * The priorities can be set regardless of whether or not
375 * sched_set_itmt_support(true) has been called and it is valid to
376 * update them at any time after it has been called.
378 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
380 if (max_highest_perf <= min_highest_perf) {
381 if (cppc_perf.highest_perf > max_highest_perf)
382 max_highest_perf = cppc_perf.highest_perf;
384 if (cppc_perf.highest_perf < min_highest_perf)
385 min_highest_perf = cppc_perf.highest_perf;
387 if (max_highest_perf > min_highest_perf) {
389 * This code can be run during CPU online under the
390 * CPU hotplug locks, so sched_set_itmt_support()
391 * cannot be called from here. Queue up a work item
394 schedule_work(&sched_itmt_work);
399 static int intel_pstate_get_cppc_guaranteed(int cpu)
401 struct cppc_perf_caps cppc_perf;
404 ret = cppc_get_perf_caps(cpu, &cppc_perf);
408 if (cppc_perf.guaranteed_perf)
409 return cppc_perf.guaranteed_perf;
411 return cppc_perf.nominal_perf;
414 static int intel_pstate_cppc_get_scaling(int cpu)
416 struct cppc_perf_caps cppc_perf;
419 ret = cppc_get_perf_caps(cpu, &cppc_perf);
422 * If the nominal frequency and the nominal performance are not
423 * zero and the ratio between them is not 100, return the hybrid
426 if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
427 cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
428 return hybrid_scaling_factor;
430 return core_get_scaling();
433 #else /* CONFIG_ACPI_CPPC_LIB */
434 static inline void intel_pstate_set_itmt_prio(int cpu)
437 #endif /* CONFIG_ACPI_CPPC_LIB */
439 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
446 intel_pstate_set_itmt_prio(policy->cpu);
450 if (!intel_pstate_get_ppc_enable_status())
453 cpu = all_cpu_data[policy->cpu];
455 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
461 * Check if the control value in _PSS is for PERF_CTL MSR, which should
462 * guarantee that the states returned by it map to the states in our
465 if (cpu->acpi_perf_data.control_register.space_id !=
466 ACPI_ADR_SPACE_FIXED_HARDWARE)
470 * If there is only one entry _PSS, simply ignore _PSS and continue as
471 * usual without taking _PSS into account
473 if (cpu->acpi_perf_data.state_count < 2)
476 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
477 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
478 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
479 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
480 (u32) cpu->acpi_perf_data.states[i].core_frequency,
481 (u32) cpu->acpi_perf_data.states[i].power,
482 (u32) cpu->acpi_perf_data.states[i].control);
485 cpu->valid_pss_table = true;
486 pr_debug("_PPC limits will be enforced\n");
491 cpu->valid_pss_table = false;
492 acpi_processor_unregister_performance(policy->cpu);
495 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
499 cpu = all_cpu_data[policy->cpu];
500 if (!cpu->valid_pss_table)
503 acpi_processor_unregister_performance(policy->cpu);
505 #else /* CONFIG_ACPI */
506 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
510 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 static inline bool intel_pstate_acpi_pm_profile_server(void)
518 #endif /* CONFIG_ACPI */
520 #ifndef CONFIG_ACPI_CPPC_LIB
521 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
526 static int intel_pstate_cppc_get_scaling(int cpu)
528 return core_get_scaling();
530 #endif /* CONFIG_ACPI_CPPC_LIB */
532 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
533 unsigned int relation)
535 if (freq == cpu->pstate.turbo_freq)
536 return cpu->pstate.turbo_pstate;
538 if (freq == cpu->pstate.max_freq)
539 return cpu->pstate.max_pstate;
542 case CPUFREQ_RELATION_H:
543 return freq / cpu->pstate.scaling;
544 case CPUFREQ_RELATION_C:
545 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
548 return DIV_ROUND_UP(freq, cpu->pstate.scaling);
551 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
553 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
557 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
560 * On hybrid processors, HWP may expose more performance levels than there are
561 * P-states accessible through the PERF_CTL interface. If that happens, the
562 * scaling factor between HWP performance levels and CPU frequency will be less
563 * than the scaling factor between P-state values and CPU frequency.
565 * In that case, adjust the CPU parameters used in computations accordingly.
567 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
569 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
570 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
571 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
572 int scaling = cpu->pstate.scaling;
575 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
576 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
577 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
578 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
579 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
580 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
582 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
584 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
587 freq = perf_ctl_max_phys * perf_ctl_scaling;
588 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
590 freq = cpu->pstate.min_pstate * perf_ctl_scaling;
591 cpu->pstate.min_freq = freq;
593 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
594 * the effective range of HWP performance levels.
596 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
599 static bool turbo_is_disabled(void)
603 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
605 return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
608 static int min_perf_pct_min(void)
610 struct cpudata *cpu = all_cpu_data[0];
611 int turbo_pstate = cpu->pstate.turbo_pstate;
613 return turbo_pstate ?
614 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
617 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
622 if (!boot_cpu_has(X86_FEATURE_EPB))
625 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
629 return (s16)(epb & 0x0f);
632 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
636 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
638 * When hwp_req_data is 0, means that caller didn't read
639 * MSR_HWP_REQUEST, so need to read and get EPP.
642 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
647 epp = (hwp_req_data >> 24) & 0xff;
649 /* When there is no EPP present, HWP uses EPB settings */
650 epp = intel_pstate_get_epb(cpu_data);
656 static int intel_pstate_set_epb(int cpu, s16 pref)
661 if (!boot_cpu_has(X86_FEATURE_EPB))
664 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
668 epb = (epb & ~0x0f) | pref;
669 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
675 * EPP/EPB display strings corresponding to EPP index in the
676 * energy_perf_strings[]
678 *-------------------------------------
681 * 2 balance_performance
686 enum energy_perf_value_index {
687 EPP_INDEX_DEFAULT = 0,
688 EPP_INDEX_PERFORMANCE,
689 EPP_INDEX_BALANCE_PERFORMANCE,
690 EPP_INDEX_BALANCE_POWERSAVE,
694 static const char * const energy_perf_strings[] = {
695 [EPP_INDEX_DEFAULT] = "default",
696 [EPP_INDEX_PERFORMANCE] = "performance",
697 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
698 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
699 [EPP_INDEX_POWERSAVE] = "power",
702 static unsigned int epp_values[] = {
703 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
704 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
705 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
706 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
707 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
710 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
716 epp = intel_pstate_get_epp(cpu_data, 0);
720 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
721 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
722 return EPP_INDEX_PERFORMANCE;
723 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
724 return EPP_INDEX_BALANCE_PERFORMANCE;
725 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
726 return EPP_INDEX_BALANCE_POWERSAVE;
727 if (epp == epp_values[EPP_INDEX_POWERSAVE])
728 return EPP_INDEX_POWERSAVE;
731 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
734 * 0x00-0x03 : Performance
735 * 0x04-0x07 : Balance performance
736 * 0x08-0x0B : Balance power
738 * The EPB is a 4 bit value, but our ranges restrict the
739 * value which can be set. Here only using top two bits
742 index = (epp >> 2) + 1;
748 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
753 * Use the cached HWP Request MSR value, because in the active mode the
754 * register itself may be updated by intel_pstate_hwp_boost_up() or
755 * intel_pstate_hwp_boost_down() at any time.
757 u64 value = READ_ONCE(cpu->hwp_req_cached);
759 value &= ~GENMASK_ULL(31, 24);
760 value |= (u64)epp << 24;
762 * The only other updater of hwp_req_cached in the active mode,
763 * intel_pstate_hwp_set(), is called under the same lock as this
764 * function, so it cannot run in parallel with the update below.
766 WRITE_ONCE(cpu->hwp_req_cached, value);
767 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
769 cpu->epp_cached = epp;
774 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
775 int pref_index, bool use_raw,
782 epp = cpu_data->epp_default;
784 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
787 else if (epp == -EINVAL)
788 epp = epp_values[pref_index];
791 * To avoid confusion, refuse to set EPP to any values different
792 * from 0 (performance) if the current policy is "performance",
793 * because those values would be overridden.
795 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
798 ret = intel_pstate_set_epp(cpu_data, epp);
801 epp = (pref_index - 1) << 2;
802 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
808 static ssize_t show_energy_performance_available_preferences(
809 struct cpufreq_policy *policy, char *buf)
814 while (energy_perf_strings[i] != NULL)
815 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
817 ret += sprintf(&buf[ret], "\n");
822 cpufreq_freq_attr_ro(energy_performance_available_preferences);
824 static struct cpufreq_driver intel_pstate;
826 static ssize_t store_energy_performance_preference(
827 struct cpufreq_policy *policy, const char *buf, size_t count)
829 struct cpudata *cpu = all_cpu_data[policy->cpu];
830 char str_preference[21];
835 ret = sscanf(buf, "%20s", str_preference);
839 ret = match_string(energy_perf_strings, -1, str_preference);
841 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
844 ret = kstrtouint(buf, 10, &epp);
855 * This function runs with the policy R/W semaphore held, which
856 * guarantees that the driver pointer will not change while it is
859 if (!intel_pstate_driver)
862 mutex_lock(&intel_pstate_limits_lock);
864 if (intel_pstate_driver == &intel_pstate) {
865 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
868 * In the passive mode the governor needs to be stopped on the
869 * target CPU before the EPP update and restarted after it,
870 * which is super-heavy-weight, so make sure it is worth doing
874 epp = ret ? epp_values[ret] : cpu->epp_default;
876 if (cpu->epp_cached != epp) {
879 cpufreq_stop_governor(policy);
880 ret = intel_pstate_set_epp(cpu, epp);
881 err = cpufreq_start_governor(policy);
889 mutex_unlock(&intel_pstate_limits_lock);
894 static ssize_t show_energy_performance_preference(
895 struct cpufreq_policy *policy, char *buf)
897 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
898 int preference, raw_epp;
900 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
905 return sprintf(buf, "%d\n", raw_epp);
907 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
910 cpufreq_freq_attr_rw(energy_performance_preference);
912 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
914 struct cpudata *cpu = all_cpu_data[policy->cpu];
917 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
921 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
922 ratio = HWP_GUARANTEED_PERF(cap);
925 freq = ratio * cpu->pstate.scaling;
926 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
927 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
929 return sprintf(buf, "%d\n", freq);
932 cpufreq_freq_attr_ro(base_frequency);
934 static struct freq_attr *hwp_cpufreq_attrs[] = {
935 &energy_performance_preference,
936 &energy_performance_available_preferences,
941 static struct cpudata *hybrid_max_perf_cpu __read_mostly;
943 * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
944 * and the x86 arch scale-invariance information from concurrent updates.
946 static DEFINE_MUTEX(hybrid_capacity_lock);
948 static void hybrid_set_cpu_capacity(struct cpudata *cpu)
950 arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
951 hybrid_max_perf_cpu->capacity_perf,
953 cpu->pstate.max_pstate_physical);
955 pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
956 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
957 cpu->pstate.max_pstate_physical);
960 static void hybrid_clear_cpu_capacity(unsigned int cpunum)
962 arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
965 static void hybrid_get_capacity_perf(struct cpudata *cpu)
967 if (READ_ONCE(global.no_turbo)) {
968 cpu->capacity_perf = cpu->pstate.max_pstate_physical;
972 cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
975 static void hybrid_set_capacity_of_cpus(void)
979 for_each_online_cpu(cpunum) {
980 struct cpudata *cpu = all_cpu_data[cpunum];
983 hybrid_set_cpu_capacity(cpu);
987 static void hybrid_update_cpu_capacity_scaling(void)
989 struct cpudata *max_perf_cpu = NULL;
990 unsigned int max_cap_perf = 0;
993 for_each_online_cpu(cpunum) {
994 struct cpudata *cpu = all_cpu_data[cpunum];
1000 * During initialization, CPU performance at full capacity needs
1003 if (!hybrid_max_perf_cpu)
1004 hybrid_get_capacity_perf(cpu);
1007 * If hybrid_max_perf_cpu is not NULL at this point, it is
1008 * being replaced, so don't take it into account when looking
1011 if (cpu == hybrid_max_perf_cpu)
1014 if (cpu->capacity_perf > max_cap_perf) {
1015 max_cap_perf = cpu->capacity_perf;
1021 hybrid_max_perf_cpu = max_perf_cpu;
1022 hybrid_set_capacity_of_cpus();
1024 pr_info("Found no CPUs with nonzero maximum performance\n");
1025 /* Revert to the flat CPU capacity structure. */
1026 for_each_online_cpu(cpunum)
1027 hybrid_clear_cpu_capacity(cpunum);
1031 static void __hybrid_refresh_cpu_capacity_scaling(void)
1033 hybrid_max_perf_cpu = NULL;
1034 hybrid_update_cpu_capacity_scaling();
1037 static void hybrid_refresh_cpu_capacity_scaling(void)
1039 guard(mutex)(&hybrid_capacity_lock);
1041 __hybrid_refresh_cpu_capacity_scaling();
1044 static void hybrid_init_cpu_capacity_scaling(bool refresh)
1047 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1048 * scaling has been enabled already and the driver is just changing the
1052 hybrid_refresh_cpu_capacity_scaling();
1057 * On hybrid systems, use asym capacity instead of ITMT, but because
1058 * the capacity of SMT threads is not deterministic even approximately,
1059 * do not do that when SMT is in use.
1061 if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1062 hybrid_refresh_cpu_capacity_scaling();
1064 * Disabling ITMT causes sched domains to be rebuilt to disable asym
1065 * packing and enable asym capacity.
1067 sched_clear_itmt_support();
1071 static bool hybrid_clear_max_perf_cpu(void)
1075 guard(mutex)(&hybrid_capacity_lock);
1077 ret = !!hybrid_max_perf_cpu;
1078 hybrid_max_perf_cpu = NULL;
1083 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1087 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1088 WRITE_ONCE(cpu->hwp_cap_cached, cap);
1089 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1090 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1093 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1095 int scaling = cpu->pstate.scaling;
1097 __intel_pstate_get_hwp_cap(cpu);
1099 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1100 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1101 if (scaling != cpu->pstate.perf_ctl_scaling) {
1102 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1104 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1106 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1111 static void hybrid_update_capacity(struct cpudata *cpu)
1113 unsigned int max_cap_perf;
1115 mutex_lock(&hybrid_capacity_lock);
1117 if (!hybrid_max_perf_cpu)
1121 * The maximum performance of the CPU may have changed, but assume
1122 * that the performance of the other CPUs has not changed.
1124 max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1126 intel_pstate_get_hwp_cap(cpu);
1128 hybrid_get_capacity_perf(cpu);
1129 /* Should hybrid_max_perf_cpu be replaced by this CPU? */
1130 if (cpu->capacity_perf > max_cap_perf) {
1131 hybrid_max_perf_cpu = cpu;
1132 hybrid_set_capacity_of_cpus();
1136 /* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1137 if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1138 hybrid_update_cpu_capacity_scaling();
1142 hybrid_set_cpu_capacity(cpu);
1145 mutex_unlock(&hybrid_capacity_lock);
1148 static void intel_pstate_hwp_set(unsigned int cpu)
1150 struct cpudata *cpu_data = all_cpu_data[cpu];
1155 max = cpu_data->max_perf_ratio;
1156 min = cpu_data->min_perf_ratio;
1158 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1161 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1163 value &= ~HWP_MIN_PERF(~0L);
1164 value |= HWP_MIN_PERF(min);
1166 value &= ~HWP_MAX_PERF(~0L);
1167 value |= HWP_MAX_PERF(max);
1169 if (cpu_data->epp_policy == cpu_data->policy)
1172 cpu_data->epp_policy = cpu_data->policy;
1174 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1175 epp = intel_pstate_get_epp(cpu_data, value);
1176 cpu_data->epp_powersave = epp;
1177 /* If EPP read was failed, then don't try to write */
1183 /* skip setting EPP, when saved value is invalid */
1184 if (cpu_data->epp_powersave < 0)
1188 * No need to restore EPP when it is not zero. This
1190 * - Policy is not changed
1191 * - user has manually changed
1192 * - Error reading EPB
1194 epp = intel_pstate_get_epp(cpu_data, value);
1198 epp = cpu_data->epp_powersave;
1200 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1201 value &= ~GENMASK_ULL(31, 24);
1202 value |= (u64)epp << 24;
1204 intel_pstate_set_epb(cpu, epp);
1207 WRITE_ONCE(cpu_data->hwp_req_cached, value);
1208 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1211 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1213 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1215 u64 value = READ_ONCE(cpu->hwp_req_cached);
1218 intel_pstate_disable_hwp_interrupt(cpu);
1220 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1222 * In case the EPP has been set to "performance" by the
1223 * active mode "performance" scaling algorithm, replace that
1224 * temporary value with the cached EPP one.
1226 value &= ~GENMASK_ULL(31, 24);
1227 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1229 * However, make sure that EPP will be set to "performance" when
1230 * the CPU is brought back online again and the "performance"
1231 * scaling algorithm is still in effect.
1233 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1237 * Clear the desired perf field in the cached HWP request value to
1238 * prevent nonzero desired values from being leaked into the active
1241 value &= ~HWP_DESIRED_PERF(~0L);
1242 WRITE_ONCE(cpu->hwp_req_cached, value);
1244 value &= ~GENMASK_ULL(31, 0);
1245 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1247 /* Set hwp_max = hwp_min */
1248 value |= HWP_MAX_PERF(min_perf);
1249 value |= HWP_MIN_PERF(min_perf);
1251 /* Set EPP to min */
1252 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1253 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1255 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1257 mutex_lock(&hybrid_capacity_lock);
1259 if (!hybrid_max_perf_cpu) {
1260 mutex_unlock(&hybrid_capacity_lock);
1265 if (hybrid_max_perf_cpu == cpu)
1266 hybrid_update_cpu_capacity_scaling();
1268 mutex_unlock(&hybrid_capacity_lock);
1270 /* Reset the capacity of the CPU going offline to the initial value. */
1271 hybrid_clear_cpu_capacity(cpu->cpu);
1274 #define POWER_CTL_EE_ENABLE 1
1275 #define POWER_CTL_EE_DISABLE 2
1277 static int power_ctl_ee_state;
1279 static void set_power_ctl_ee_state(bool input)
1283 mutex_lock(&intel_pstate_driver_lock);
1284 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1286 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1287 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1289 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1290 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1292 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1293 mutex_unlock(&intel_pstate_driver_lock);
1296 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1298 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1300 intel_pstate_hwp_enable(cpu);
1301 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1304 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1306 struct cpudata *cpu = all_cpu_data[policy->cpu];
1308 pr_debug("CPU %d suspending\n", cpu->cpu);
1310 cpu->suspended = true;
1312 /* disable HWP interrupt and cancel any pending work */
1313 intel_pstate_disable_hwp_interrupt(cpu);
1318 static int intel_pstate_resume(struct cpufreq_policy *policy)
1320 struct cpudata *cpu = all_cpu_data[policy->cpu];
1322 pr_debug("CPU %d resuming\n", cpu->cpu);
1324 /* Only restore if the system default is changed */
1325 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1326 set_power_ctl_ee_state(true);
1327 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1328 set_power_ctl_ee_state(false);
1330 if (cpu->suspended && hwp_active) {
1331 mutex_lock(&intel_pstate_limits_lock);
1333 /* Re-enable HWP, because "online" has not done that. */
1334 intel_pstate_hwp_reenable(cpu);
1336 mutex_unlock(&intel_pstate_limits_lock);
1339 cpu->suspended = false;
1344 static void intel_pstate_update_policies(void)
1348 for_each_possible_cpu(cpu)
1349 cpufreq_update_policy(cpu);
1352 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1353 struct cpufreq_policy *policy)
1356 intel_pstate_get_hwp_cap(cpudata);
1358 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1359 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1361 refresh_frequency_limits(policy);
1364 static void intel_pstate_update_limits(unsigned int cpu)
1366 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1367 struct cpudata *cpudata;
1372 cpudata = all_cpu_data[cpu];
1374 __intel_pstate_update_max_freq(cpudata, policy);
1376 /* Prevent the driver from being unregistered now. */
1377 mutex_lock(&intel_pstate_driver_lock);
1379 cpufreq_cpu_release(policy);
1381 hybrid_update_capacity(cpudata);
1383 mutex_unlock(&intel_pstate_driver_lock);
1386 static void intel_pstate_update_limits_for_all(void)
1390 for_each_possible_cpu(cpu) {
1391 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1396 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1398 cpufreq_cpu_release(policy);
1401 mutex_lock(&hybrid_capacity_lock);
1403 if (hybrid_max_perf_cpu)
1404 __hybrid_refresh_cpu_capacity_scaling();
1406 mutex_unlock(&hybrid_capacity_lock);
1409 /************************** sysfs begin ************************/
1410 #define show_one(file_name, object) \
1411 static ssize_t show_##file_name \
1412 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1414 return sprintf(buf, "%u\n", global.object); \
1417 static ssize_t intel_pstate_show_status(char *buf);
1418 static int intel_pstate_update_status(const char *buf, size_t size);
1420 static ssize_t show_status(struct kobject *kobj,
1421 struct kobj_attribute *attr, char *buf)
1425 mutex_lock(&intel_pstate_driver_lock);
1426 ret = intel_pstate_show_status(buf);
1427 mutex_unlock(&intel_pstate_driver_lock);
1432 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1433 const char *buf, size_t count)
1435 char *p = memchr(buf, '\n', count);
1438 mutex_lock(&intel_pstate_driver_lock);
1439 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1440 mutex_unlock(&intel_pstate_driver_lock);
1442 return ret < 0 ? ret : count;
1445 static ssize_t show_turbo_pct(struct kobject *kobj,
1446 struct kobj_attribute *attr, char *buf)
1448 struct cpudata *cpu;
1449 int total, no_turbo, turbo_pct;
1452 mutex_lock(&intel_pstate_driver_lock);
1454 if (!intel_pstate_driver) {
1455 mutex_unlock(&intel_pstate_driver_lock);
1459 cpu = all_cpu_data[0];
1461 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1462 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1463 turbo_fp = div_fp(no_turbo, total);
1464 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1466 mutex_unlock(&intel_pstate_driver_lock);
1468 return sprintf(buf, "%u\n", turbo_pct);
1471 static ssize_t show_num_pstates(struct kobject *kobj,
1472 struct kobj_attribute *attr, char *buf)
1474 struct cpudata *cpu;
1477 mutex_lock(&intel_pstate_driver_lock);
1479 if (!intel_pstate_driver) {
1480 mutex_unlock(&intel_pstate_driver_lock);
1484 cpu = all_cpu_data[0];
1485 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1487 mutex_unlock(&intel_pstate_driver_lock);
1489 return sprintf(buf, "%u\n", total);
1492 static ssize_t show_no_turbo(struct kobject *kobj,
1493 struct kobj_attribute *attr, char *buf)
1497 mutex_lock(&intel_pstate_driver_lock);
1499 if (!intel_pstate_driver) {
1500 mutex_unlock(&intel_pstate_driver_lock);
1504 ret = sprintf(buf, "%u\n", global.no_turbo);
1506 mutex_unlock(&intel_pstate_driver_lock);
1511 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1512 const char *buf, size_t count)
1517 if (sscanf(buf, "%u", &input) != 1)
1520 mutex_lock(&intel_pstate_driver_lock);
1522 if (!intel_pstate_driver) {
1527 no_turbo = !!clamp_t(int, input, 0, 1);
1529 WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1530 if (global.turbo_disabled && !no_turbo) {
1531 pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1533 if (global.no_turbo)
1539 if (no_turbo == global.no_turbo) {
1543 WRITE_ONCE(global.no_turbo, no_turbo);
1545 mutex_lock(&intel_pstate_limits_lock);
1548 struct cpudata *cpu = all_cpu_data[0];
1549 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1551 /* Squash the global minimum into the permitted range. */
1552 if (global.min_perf_pct > pct)
1553 global.min_perf_pct = pct;
1556 mutex_unlock(&intel_pstate_limits_lock);
1558 intel_pstate_update_limits_for_all();
1559 arch_set_max_freq_ratio(no_turbo);
1562 mutex_unlock(&intel_pstate_driver_lock);
1567 static void update_qos_request(enum freq_qos_req_type type)
1569 struct freq_qos_request *req;
1570 struct cpufreq_policy *policy;
1573 for_each_possible_cpu(i) {
1574 struct cpudata *cpu = all_cpu_data[i];
1575 unsigned int freq, perf_pct;
1577 policy = cpufreq_cpu_get(i);
1581 req = policy->driver_data;
1582 cpufreq_cpu_put(policy);
1588 intel_pstate_get_hwp_cap(cpu);
1590 if (type == FREQ_QOS_MIN) {
1591 perf_pct = global.min_perf_pct;
1594 perf_pct = global.max_perf_pct;
1597 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1599 if (freq_qos_update_request(req, freq) < 0)
1600 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1604 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1605 const char *buf, size_t count)
1610 ret = sscanf(buf, "%u", &input);
1614 mutex_lock(&intel_pstate_driver_lock);
1616 if (!intel_pstate_driver) {
1617 mutex_unlock(&intel_pstate_driver_lock);
1621 mutex_lock(&intel_pstate_limits_lock);
1623 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1625 mutex_unlock(&intel_pstate_limits_lock);
1627 if (intel_pstate_driver == &intel_pstate)
1628 intel_pstate_update_policies();
1630 update_qos_request(FREQ_QOS_MAX);
1632 mutex_unlock(&intel_pstate_driver_lock);
1637 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1638 const char *buf, size_t count)
1643 ret = sscanf(buf, "%u", &input);
1647 mutex_lock(&intel_pstate_driver_lock);
1649 if (!intel_pstate_driver) {
1650 mutex_unlock(&intel_pstate_driver_lock);
1654 mutex_lock(&intel_pstate_limits_lock);
1656 global.min_perf_pct = clamp_t(int, input,
1657 min_perf_pct_min(), global.max_perf_pct);
1659 mutex_unlock(&intel_pstate_limits_lock);
1661 if (intel_pstate_driver == &intel_pstate)
1662 intel_pstate_update_policies();
1664 update_qos_request(FREQ_QOS_MIN);
1666 mutex_unlock(&intel_pstate_driver_lock);
1671 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1672 struct kobj_attribute *attr, char *buf)
1674 return sprintf(buf, "%u\n", hwp_boost);
1677 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1678 struct kobj_attribute *b,
1679 const char *buf, size_t count)
1684 ret = kstrtouint(buf, 10, &input);
1688 mutex_lock(&intel_pstate_driver_lock);
1689 hwp_boost = !!input;
1690 intel_pstate_update_policies();
1691 mutex_unlock(&intel_pstate_driver_lock);
1696 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1702 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1703 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1704 return sprintf(buf, "%d\n", !enable);
1707 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1708 const char *buf, size_t count)
1713 ret = kstrtobool(buf, &input);
1717 set_power_ctl_ee_state(input);
1722 show_one(max_perf_pct, max_perf_pct);
1723 show_one(min_perf_pct, min_perf_pct);
1725 define_one_global_rw(status);
1726 define_one_global_rw(no_turbo);
1727 define_one_global_rw(max_perf_pct);
1728 define_one_global_rw(min_perf_pct);
1729 define_one_global_ro(turbo_pct);
1730 define_one_global_ro(num_pstates);
1731 define_one_global_rw(hwp_dynamic_boost);
1732 define_one_global_rw(energy_efficiency);
1734 static struct attribute *intel_pstate_attributes[] = {
1740 static const struct attribute_group intel_pstate_attr_group = {
1741 .attrs = intel_pstate_attributes,
1744 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1746 static struct kobject *intel_pstate_kobject;
1748 static void __init intel_pstate_sysfs_expose_params(void)
1750 struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1754 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1755 put_device(dev_root);
1757 if (WARN_ON(!intel_pstate_kobject))
1760 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1764 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1765 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1768 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1773 * If per cpu limits are enforced there are no global limits, so
1774 * return without creating max/min_perf_pct attributes
1779 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1782 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1785 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1786 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1791 static void __init intel_pstate_sysfs_remove(void)
1793 if (!intel_pstate_kobject)
1796 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1798 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1799 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1800 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1803 if (!per_cpu_limits) {
1804 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1805 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1807 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1808 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1811 kobject_put(intel_pstate_kobject);
1814 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1821 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1825 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1830 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1833 /************************** sysfs end ************************/
1835 static void intel_pstate_notify_work(struct work_struct *work)
1837 struct cpudata *cpudata =
1838 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1839 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1842 __intel_pstate_update_max_freq(cpudata, policy);
1844 cpufreq_cpu_release(policy);
1847 * The driver will not be unregistered while this function is
1848 * running, so update the capacity without acquiring the driver
1851 hybrid_update_capacity(cpudata);
1854 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1857 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1858 static cpumask_t hwp_intr_enable_mask;
1860 #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0)
1861 #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3)
1863 void notify_hwp_interrupt(void)
1865 unsigned int this_cpu = smp_processor_id();
1866 u64 value, status_mask;
1867 unsigned long flags;
1869 if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1872 status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1873 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1874 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1876 rdmsrl_safe(MSR_HWP_STATUS, &value);
1877 if (!(value & status_mask))
1880 raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1882 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1885 schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1886 msecs_to_jiffies(10));
1888 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1893 wrmsrl_safe(MSR_HWP_STATUS, 0);
1894 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1897 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1901 if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1904 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1905 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1907 raw_spin_lock_irq(&hwp_notify_lock);
1908 cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1909 raw_spin_unlock_irq(&hwp_notify_lock);
1912 cancel_delayed_work_sync(&cpudata->hwp_notify_work);
1915 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
1916 #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2)
1918 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1920 /* Enable HWP notification interrupt for performance change */
1921 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1922 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
1924 raw_spin_lock_irq(&hwp_notify_lock);
1925 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1926 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1927 raw_spin_unlock_irq(&hwp_notify_lock);
1929 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1930 interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
1932 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1933 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
1934 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1938 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1940 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1943 * If the EPP is set by firmware, which means that firmware enabled HWP
1944 * - Is equal or less than 0x80 (default balance_perf EPP)
1945 * - But less performance oriented than performance EPP
1946 * then use this as new balance_perf EPP.
1948 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1949 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1950 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1955 * If this CPU gen doesn't call for change in balance_perf
1958 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1962 * Use hard coded value per gen to update the balance_perf
1965 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1966 intel_pstate_set_epp(cpudata, cpudata->epp_default);
1969 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1971 /* First disable HWP notification interrupt till we activate again */
1972 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1973 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1975 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1977 intel_pstate_enable_hwp_interrupt(cpudata);
1979 if (cpudata->epp_default >= 0)
1982 intel_pstate_update_epp_defaults(cpudata);
1985 static int atom_get_min_pstate(int not_used)
1989 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1990 return (value >> 8) & 0x7F;
1993 static int atom_get_max_pstate(int not_used)
1997 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1998 return (value >> 16) & 0x7F;
2001 static int atom_get_turbo_pstate(int not_used)
2005 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
2006 return value & 0x7F;
2009 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2015 val = (u64)pstate << 8;
2016 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2017 val |= (u64)1 << 32;
2019 vid_fp = cpudata->vid.min + mul_fp(
2020 int_tofp(pstate - cpudata->pstate.min_pstate),
2021 cpudata->vid.ratio);
2023 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2024 vid = ceiling_fp(vid_fp);
2026 if (pstate > cpudata->pstate.max_pstate)
2027 vid = cpudata->vid.turbo;
2032 static int silvermont_get_scaling(void)
2036 /* Defined in Table 35-6 from SDM (Sept 2015) */
2037 static int silvermont_freq_table[] = {
2038 83300, 100000, 133300, 116700, 80000};
2040 rdmsrl(MSR_FSB_FREQ, value);
2044 return silvermont_freq_table[i];
2047 static int airmont_get_scaling(void)
2051 /* Defined in Table 35-10 from SDM (Sept 2015) */
2052 static int airmont_freq_table[] = {
2053 83300, 100000, 133300, 116700, 80000,
2054 93300, 90000, 88900, 87500};
2056 rdmsrl(MSR_FSB_FREQ, value);
2060 return airmont_freq_table[i];
2063 static void atom_get_vid(struct cpudata *cpudata)
2067 rdmsrl(MSR_ATOM_CORE_VIDS, value);
2068 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2069 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2070 cpudata->vid.ratio = div_fp(
2071 cpudata->vid.max - cpudata->vid.min,
2072 int_tofp(cpudata->pstate.max_pstate -
2073 cpudata->pstate.min_pstate));
2075 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
2076 cpudata->vid.turbo = value & 0x7f;
2079 static int core_get_min_pstate(int cpu)
2083 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2084 return (value >> 40) & 0xFF;
2087 static int core_get_max_pstate_physical(int cpu)
2091 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2092 return (value >> 8) & 0xFF;
2095 static int core_get_tdp_ratio(int cpu, u64 plat_info)
2097 /* Check how many TDP levels present */
2098 if (plat_info & 0x600000000) {
2104 /* Get the TDP level (0, 1, 2) to get ratios */
2105 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2109 /* TDP MSR are continuous starting at 0x648 */
2110 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2111 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2115 /* For level 1 and 2, bits[23:16] contain the ratio */
2116 if (tdp_ctrl & 0x03)
2119 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2120 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2122 return (int)tdp_ratio;
2128 static int core_get_max_pstate(int cpu)
2136 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2137 max_pstate = (plat_info >> 8) & 0xFF;
2139 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2144 /* Turbo activation ratio is not used on HWP platforms */
2148 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2152 /* Do some sanity checking for safety */
2153 tar_levels = tar & 0xff;
2154 if (tdp_ratio - 1 == tar_levels) {
2155 max_pstate = tar_levels;
2156 pr_debug("max_pstate=TAC %x\n", max_pstate);
2163 static int core_get_turbo_pstate(int cpu)
2168 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2169 nont = core_get_max_pstate(cpu);
2170 ret = (value) & 255;
2176 static u64 core_get_val(struct cpudata *cpudata, int pstate)
2180 val = (u64)pstate << 8;
2181 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2182 val |= (u64)1 << 32;
2187 static int knl_get_aperf_mperf_shift(void)
2192 static int knl_get_turbo_pstate(int cpu)
2197 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2198 nont = core_get_max_pstate(cpu);
2199 ret = (((value) >> 8) & 0xFF);
2205 static void hybrid_get_type(void *data)
2207 u8 *cpu_type = data;
2209 *cpu_type = get_this_hybrid_cpu_type();
2212 static int hwp_get_cpu_scaling(int cpu)
2216 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
2217 /* P-cores have a smaller perf level-to-freqency scaling factor. */
2218 if (cpu_type == 0x40)
2219 return hybrid_scaling_factor;
2221 /* Use default core scaling for E-cores */
2222 if (cpu_type == 0x20)
2223 return core_get_scaling();
2226 * If reached here, this system is either non-hybrid (like Tiger
2227 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2228 * no E cores (in which case CPUID for hybrid support is 0).
2230 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2231 * so the default core scaling will be used for them.
2233 return intel_pstate_cppc_get_scaling(cpu);
2236 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2238 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2239 cpu->pstate.current_pstate = pstate;
2241 * Generally, there is no guarantee that this code will always run on
2242 * the CPU being updated, so force the register update to run on the
2245 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2246 pstate_funcs.get_val(cpu, pstate));
2249 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2251 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2254 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2256 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2257 int perf_ctl_scaling = pstate_funcs.get_scaling();
2259 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2260 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2261 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2263 if (hwp_active && !hwp_mode_bdw) {
2264 __intel_pstate_get_hwp_cap(cpu);
2266 if (pstate_funcs.get_cpu_scaling) {
2267 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2268 if (cpu->pstate.scaling != perf_ctl_scaling) {
2269 intel_pstate_hybrid_hwp_adjust(cpu);
2270 hwp_is_hybrid = true;
2273 cpu->pstate.scaling = perf_ctl_scaling;
2276 * If the CPU is going online for the first time and it was
2277 * offline initially, asym capacity scaling needs to be updated.
2279 hybrid_update_capacity(cpu);
2281 cpu->pstate.scaling = perf_ctl_scaling;
2282 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2283 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2286 if (cpu->pstate.scaling == perf_ctl_scaling) {
2287 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2288 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2289 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2292 if (pstate_funcs.get_aperf_mperf_shift)
2293 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2295 if (pstate_funcs.get_vid)
2296 pstate_funcs.get_vid(cpu);
2298 intel_pstate_set_min_pstate(cpu);
2302 * Long hold time will keep high perf limits for long time,
2303 * which negatively impacts perf/watt for some workloads,
2304 * like specpower. 3ms is based on experiements on some
2307 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2309 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2311 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2312 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2313 u32 max_limit = (hwp_req & 0xff00) >> 8;
2314 u32 min_limit = (hwp_req & 0xff);
2318 * Cases to consider (User changes via sysfs or boot time):
2319 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2321 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2322 * Should result in one level boost only for P0.
2323 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2324 * Should result in two level boost:
2325 * (min + p1)/2 and P1.
2326 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2327 * Should result in three level boost:
2328 * (min + p1)/2, P1 and P0.
2331 /* If max and min are equal or already at max, nothing to boost */
2332 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2335 if (!cpu->hwp_boost_min)
2336 cpu->hwp_boost_min = min_limit;
2338 /* level at half way mark between min and guranteed */
2339 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2341 if (cpu->hwp_boost_min < boost_level1)
2342 cpu->hwp_boost_min = boost_level1;
2343 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2344 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2345 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2346 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2347 cpu->hwp_boost_min = max_limit;
2351 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2352 wrmsrl(MSR_HWP_REQUEST, hwp_req);
2353 cpu->last_update = cpu->sample.time;
2356 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2358 if (cpu->hwp_boost_min) {
2361 /* Check if we are idle for hold time to boost down */
2362 expired = time_after64(cpu->sample.time, cpu->last_update +
2363 hwp_boost_hold_time_ns);
2365 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2366 cpu->hwp_boost_min = 0;
2369 cpu->last_update = cpu->sample.time;
2372 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2375 cpu->sample.time = time;
2377 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2380 cpu->sched_flags = 0;
2382 * Set iowait_boost flag and update time. Since IO WAIT flag
2383 * is set all the time, we can't just conclude that there is
2384 * some IO bound activity is scheduled on this CPU with just
2385 * one occurrence. If we receive at least two in two
2386 * consecutive ticks, then we treat as boost candidate.
2388 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2391 cpu->last_io_update = time;
2394 intel_pstate_hwp_boost_up(cpu);
2397 intel_pstate_hwp_boost_down(cpu);
2401 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2402 u64 time, unsigned int flags)
2404 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2406 cpu->sched_flags |= flags;
2408 if (smp_processor_id() == cpu->cpu)
2409 intel_pstate_update_util_hwp_local(cpu, time);
2412 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2414 struct sample *sample = &cpu->sample;
2416 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2419 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2422 unsigned long flags;
2425 local_irq_save(flags);
2426 rdmsrl(MSR_IA32_APERF, aperf);
2427 rdmsrl(MSR_IA32_MPERF, mperf);
2429 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2430 local_irq_restore(flags);
2433 local_irq_restore(flags);
2435 cpu->last_sample_time = cpu->sample.time;
2436 cpu->sample.time = time;
2437 cpu->sample.aperf = aperf;
2438 cpu->sample.mperf = mperf;
2439 cpu->sample.tsc = tsc;
2440 cpu->sample.aperf -= cpu->prev_aperf;
2441 cpu->sample.mperf -= cpu->prev_mperf;
2442 cpu->sample.tsc -= cpu->prev_tsc;
2444 cpu->prev_aperf = aperf;
2445 cpu->prev_mperf = mperf;
2446 cpu->prev_tsc = tsc;
2448 * First time this function is invoked in a given cycle, all of the
2449 * previous sample data fields are equal to zero or stale and they must
2450 * be populated with meaningful numbers for things to work, so assume
2451 * that sample.time will always be reset before setting the utilization
2452 * update hook and make the caller skip the sample then.
2454 if (cpu->last_sample_time) {
2455 intel_pstate_calc_avg_perf(cpu);
2461 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2463 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2466 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2468 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2469 cpu->sample.core_avg_perf);
2472 static inline int32_t get_target_pstate(struct cpudata *cpu)
2474 struct sample *sample = &cpu->sample;
2476 int target, avg_pstate;
2478 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2481 if (busy_frac < cpu->iowait_boost)
2482 busy_frac = cpu->iowait_boost;
2484 sample->busy_scaled = busy_frac * 100;
2486 target = READ_ONCE(global.no_turbo) ?
2487 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2488 target += target >> 2;
2489 target = mul_fp(target, busy_frac);
2490 if (target < cpu->pstate.min_pstate)
2491 target = cpu->pstate.min_pstate;
2494 * If the average P-state during the previous cycle was higher than the
2495 * current target, add 50% of the difference to the target to reduce
2496 * possible performance oscillations and offset possible performance
2497 * loss related to moving the workload from one CPU to another within
2500 avg_pstate = get_avg_pstate(cpu);
2501 if (avg_pstate > target)
2502 target += (avg_pstate - target) >> 1;
2507 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2509 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2510 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2512 return clamp_t(int, pstate, min_pstate, max_pstate);
2515 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2517 if (pstate == cpu->pstate.current_pstate)
2520 cpu->pstate.current_pstate = pstate;
2521 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2524 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2526 int from = cpu->pstate.current_pstate;
2527 struct sample *sample;
2530 target_pstate = get_target_pstate(cpu);
2531 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2532 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2533 intel_pstate_update_pstate(cpu, target_pstate);
2535 sample = &cpu->sample;
2536 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2537 fp_toint(sample->busy_scaled),
2539 cpu->pstate.current_pstate,
2543 get_avg_frequency(cpu),
2544 fp_toint(cpu->iowait_boost * 100));
2547 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2550 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2553 /* Don't allow remote callbacks */
2554 if (smp_processor_id() != cpu->cpu)
2557 delta_ns = time - cpu->last_update;
2558 if (flags & SCHED_CPUFREQ_IOWAIT) {
2559 /* Start over if the CPU may have been idle. */
2560 if (delta_ns > TICK_NSEC) {
2561 cpu->iowait_boost = ONE_EIGHTH_FP;
2562 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2563 cpu->iowait_boost <<= 1;
2564 if (cpu->iowait_boost > int_tofp(1))
2565 cpu->iowait_boost = int_tofp(1);
2567 cpu->iowait_boost = ONE_EIGHTH_FP;
2569 } else if (cpu->iowait_boost) {
2570 /* Clear iowait_boost if the CPU may have been idle. */
2571 if (delta_ns > TICK_NSEC)
2572 cpu->iowait_boost = 0;
2574 cpu->iowait_boost >>= 1;
2576 cpu->last_update = time;
2577 delta_ns = time - cpu->sample.time;
2578 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2581 if (intel_pstate_sample(cpu, time))
2582 intel_pstate_adjust_pstate(cpu);
2585 static struct pstate_funcs core_funcs = {
2586 .get_max = core_get_max_pstate,
2587 .get_max_physical = core_get_max_pstate_physical,
2588 .get_min = core_get_min_pstate,
2589 .get_turbo = core_get_turbo_pstate,
2590 .get_scaling = core_get_scaling,
2591 .get_val = core_get_val,
2594 static const struct pstate_funcs silvermont_funcs = {
2595 .get_max = atom_get_max_pstate,
2596 .get_max_physical = atom_get_max_pstate,
2597 .get_min = atom_get_min_pstate,
2598 .get_turbo = atom_get_turbo_pstate,
2599 .get_val = atom_get_val,
2600 .get_scaling = silvermont_get_scaling,
2601 .get_vid = atom_get_vid,
2604 static const struct pstate_funcs airmont_funcs = {
2605 .get_max = atom_get_max_pstate,
2606 .get_max_physical = atom_get_max_pstate,
2607 .get_min = atom_get_min_pstate,
2608 .get_turbo = atom_get_turbo_pstate,
2609 .get_val = atom_get_val,
2610 .get_scaling = airmont_get_scaling,
2611 .get_vid = atom_get_vid,
2614 static const struct pstate_funcs knl_funcs = {
2615 .get_max = core_get_max_pstate,
2616 .get_max_physical = core_get_max_pstate_physical,
2617 .get_min = core_get_min_pstate,
2618 .get_turbo = knl_get_turbo_pstate,
2619 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2620 .get_scaling = core_get_scaling,
2621 .get_val = core_get_val,
2624 #define X86_MATCH(vfm, policy) \
2625 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2627 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2628 X86_MATCH(INTEL_SANDYBRIDGE, core_funcs),
2629 X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs),
2630 X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs),
2631 X86_MATCH(INTEL_IVYBRIDGE, core_funcs),
2632 X86_MATCH(INTEL_HASWELL, core_funcs),
2633 X86_MATCH(INTEL_BROADWELL, core_funcs),
2634 X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs),
2635 X86_MATCH(INTEL_HASWELL_X, core_funcs),
2636 X86_MATCH(INTEL_HASWELL_L, core_funcs),
2637 X86_MATCH(INTEL_HASWELL_G, core_funcs),
2638 X86_MATCH(INTEL_BROADWELL_G, core_funcs),
2639 X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs),
2640 X86_MATCH(INTEL_SKYLAKE_L, core_funcs),
2641 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2642 X86_MATCH(INTEL_SKYLAKE, core_funcs),
2643 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2644 X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs),
2645 X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs),
2646 X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs),
2647 X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs),
2648 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2649 X86_MATCH(INTEL_COMETLAKE, core_funcs),
2650 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2651 X86_MATCH(INTEL_TIGERLAKE, core_funcs),
2652 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2653 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2656 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2659 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2660 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2661 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2662 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2663 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2664 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2665 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2666 X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs),
2667 X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs),
2668 X86_MATCH(INTEL_ATOM_CRESTMONT, core_funcs),
2669 X86_MATCH(INTEL_ATOM_CRESTMONT_X, core_funcs),
2674 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2675 X86_MATCH(INTEL_KABYLAKE, core_funcs),
2679 static int intel_pstate_init_cpu(unsigned int cpunum)
2681 struct cpudata *cpu;
2683 cpu = all_cpu_data[cpunum];
2686 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2690 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2694 cpu->epp_default = -EINVAL;
2697 intel_pstate_hwp_enable(cpu);
2699 if (intel_pstate_acpi_pm_profile_server())
2702 } else if (hwp_active) {
2704 * Re-enable HWP in case this happens after a resume from ACPI
2705 * S3 if the CPU was offline during the whole system/resume
2708 intel_pstate_hwp_reenable(cpu);
2711 cpu->epp_powersave = -EINVAL;
2712 cpu->epp_policy = 0;
2714 intel_pstate_get_cpu_pstates(cpu);
2716 pr_debug("controlling: cpu %d\n", cpunum);
2721 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2723 struct cpudata *cpu = all_cpu_data[cpu_num];
2725 if (hwp_active && !hwp_boost)
2728 if (cpu->update_util_set)
2731 /* Prevent intel_pstate_update_util() from using stale data. */
2732 cpu->sample.time = 0;
2733 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2735 intel_pstate_update_util_hwp :
2736 intel_pstate_update_util));
2737 cpu->update_util_set = true;
2740 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2742 struct cpudata *cpu_data = all_cpu_data[cpu];
2744 if (!cpu_data->update_util_set)
2747 cpufreq_remove_update_util_hook(cpu);
2748 cpu_data->update_util_set = false;
2752 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2754 return READ_ONCE(global.no_turbo) ?
2755 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2758 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2759 unsigned int policy_min,
2760 unsigned int policy_max)
2762 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2763 int32_t max_policy_perf, min_policy_perf;
2765 max_policy_perf = policy_max / perf_ctl_scaling;
2766 if (policy_max == policy_min) {
2767 min_policy_perf = max_policy_perf;
2769 min_policy_perf = policy_min / perf_ctl_scaling;
2770 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2771 0, max_policy_perf);
2775 * HWP needs some special consideration, because HWP_REQUEST uses
2776 * abstract values to represent performance rather than pure ratios.
2778 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2781 freq = max_policy_perf * perf_ctl_scaling;
2782 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2783 freq = min_policy_perf * perf_ctl_scaling;
2784 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2787 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2788 cpu->cpu, min_policy_perf, max_policy_perf);
2790 /* Normalize user input to [min_perf, max_perf] */
2791 if (per_cpu_limits) {
2792 cpu->min_perf_ratio = min_policy_perf;
2793 cpu->max_perf_ratio = max_policy_perf;
2795 int turbo_max = cpu->pstate.turbo_pstate;
2796 int32_t global_min, global_max;
2798 /* Global limits are in percent of the maximum turbo P-state. */
2799 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2800 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2801 global_min = clamp_t(int32_t, global_min, 0, global_max);
2803 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2804 global_min, global_max);
2806 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2807 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2808 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2809 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2811 /* Make sure min_perf <= max_perf */
2812 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2813 cpu->max_perf_ratio);
2816 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2817 cpu->max_perf_ratio,
2818 cpu->min_perf_ratio);
2821 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2823 struct cpudata *cpu;
2825 if (!policy->cpuinfo.max_freq)
2828 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2829 policy->cpuinfo.max_freq, policy->max);
2831 cpu = all_cpu_data[policy->cpu];
2832 cpu->policy = policy->policy;
2834 mutex_lock(&intel_pstate_limits_lock);
2836 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2838 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2839 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2842 * NOHZ_FULL CPUs need this as the governor callback may not
2843 * be invoked on them.
2845 intel_pstate_clear_update_util_hook(policy->cpu);
2846 intel_pstate_set_pstate(cpu, pstate);
2848 intel_pstate_set_update_util_hook(policy->cpu);
2853 * When hwp_boost was active before and dynamically it
2854 * was turned off, in that case we need to clear the
2858 intel_pstate_clear_update_util_hook(policy->cpu);
2859 intel_pstate_hwp_set(policy->cpu);
2862 * policy->cur is never updated with the intel_pstate driver, but it
2863 * is used as a stale frequency value. So, keep it within limits.
2865 policy->cur = policy->min;
2867 mutex_unlock(&intel_pstate_limits_lock);
2872 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2873 struct cpufreq_policy_data *policy)
2876 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2877 policy->max < policy->cpuinfo.max_freq &&
2878 policy->max > cpu->pstate.max_freq) {
2879 pr_debug("policy->max > max non turbo frequency\n");
2880 policy->max = policy->cpuinfo.max_freq;
2884 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2885 struct cpufreq_policy_data *policy)
2890 intel_pstate_get_hwp_cap(cpu);
2891 max_freq = READ_ONCE(global.no_turbo) ?
2892 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2894 max_freq = intel_pstate_get_max_freq(cpu);
2896 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2898 intel_pstate_adjust_policy_max(cpu, policy);
2901 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2903 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2908 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2910 struct cpudata *cpu = all_cpu_data[policy->cpu];
2912 pr_debug("CPU %d going offline\n", cpu->cpu);
2918 * If the CPU is an SMT thread and it goes offline with the performance
2919 * settings different from the minimum, it will prevent its sibling
2920 * from getting to lower performance levels, so force the minimum
2921 * performance on CPU offline to prevent that from happening.
2924 intel_pstate_hwp_offline(cpu);
2926 intel_pstate_set_min_pstate(cpu);
2928 intel_pstate_exit_perf_limits(policy);
2933 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2935 struct cpudata *cpu = all_cpu_data[policy->cpu];
2937 pr_debug("CPU %d going online\n", cpu->cpu);
2939 intel_pstate_init_acpi_perf_limits(policy);
2943 * Re-enable HWP and clear the "suspended" flag to let "resume"
2944 * know that it need not do that.
2946 intel_pstate_hwp_reenable(cpu);
2947 cpu->suspended = false;
2949 hybrid_update_capacity(cpu);
2955 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2957 intel_pstate_clear_update_util_hook(policy->cpu);
2959 return intel_cpufreq_cpu_offline(policy);
2962 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2964 pr_debug("CPU %d exiting\n", policy->cpu);
2966 policy->fast_switch_possible = false;
2969 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2971 struct cpudata *cpu;
2974 rc = intel_pstate_init_cpu(policy->cpu);
2978 cpu = all_cpu_data[policy->cpu];
2980 cpu->max_perf_ratio = 0xFF;
2981 cpu->min_perf_ratio = 0;
2983 /* cpuinfo and default policy values */
2984 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2985 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
2986 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2988 policy->min = policy->cpuinfo.min_freq;
2989 policy->max = policy->cpuinfo.max_freq;
2991 intel_pstate_init_acpi_perf_limits(policy);
2993 policy->fast_switch_possible = true;
2998 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
3000 int ret = __intel_pstate_cpu_init(policy);
3006 * Set the policy to powersave to provide a valid fallback value in case
3007 * the default cpufreq governor is neither powersave nor performance.
3009 policy->policy = CPUFREQ_POLICY_POWERSAVE;
3012 struct cpudata *cpu = all_cpu_data[policy->cpu];
3014 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3020 static struct cpufreq_driver intel_pstate = {
3021 .flags = CPUFREQ_CONST_LOOPS,
3022 .verify = intel_pstate_verify_policy,
3023 .setpolicy = intel_pstate_set_policy,
3024 .suspend = intel_pstate_suspend,
3025 .resume = intel_pstate_resume,
3026 .init = intel_pstate_cpu_init,
3027 .exit = intel_pstate_cpu_exit,
3028 .offline = intel_pstate_cpu_offline,
3029 .online = intel_pstate_cpu_online,
3030 .update_limits = intel_pstate_update_limits,
3031 .name = "intel_pstate",
3034 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3036 struct cpudata *cpu = all_cpu_data[policy->cpu];
3038 intel_pstate_verify_cpu_policy(cpu, policy);
3039 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3044 /* Use of trace in passive mode:
3046 * In passive mode the trace core_busy field (also known as the
3047 * performance field, and lablelled as such on the graphs; also known as
3048 * core_avg_perf) is not needed and so is re-assigned to indicate if the
3049 * driver call was via the normal or fast switch path. Various graphs
3050 * output from the intel_pstate_tracer.py utility that include core_busy
3051 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3052 * so we use 10 to indicate the normal path through the driver, and
3053 * 90 to indicate the fast switch path through the driver.
3054 * The scaled_busy field is not used, and is set to 0.
3057 #define INTEL_PSTATE_TRACE_TARGET 10
3058 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
3060 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3062 struct sample *sample;
3064 if (!trace_pstate_sample_enabled())
3067 if (!intel_pstate_sample(cpu, ktime_get()))
3070 sample = &cpu->sample;
3071 trace_pstate_sample(trace_type,
3074 cpu->pstate.current_pstate,
3078 get_avg_frequency(cpu),
3079 fp_toint(cpu->iowait_boost * 100));
3082 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3083 u32 desired, bool fast_switch)
3085 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3087 value &= ~HWP_MIN_PERF(~0L);
3088 value |= HWP_MIN_PERF(min);
3090 value &= ~HWP_MAX_PERF(~0L);
3091 value |= HWP_MAX_PERF(max);
3093 value &= ~HWP_DESIRED_PERF(~0L);
3094 value |= HWP_DESIRED_PERF(desired);
3099 WRITE_ONCE(cpu->hwp_req_cached, value);
3101 wrmsrl(MSR_HWP_REQUEST, value);
3103 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3106 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3107 u32 target_pstate, bool fast_switch)
3110 wrmsrl(MSR_IA32_PERF_CTL,
3111 pstate_funcs.get_val(cpu, target_pstate));
3113 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3114 pstate_funcs.get_val(cpu, target_pstate));
3117 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3118 int target_pstate, bool fast_switch)
3120 struct cpudata *cpu = all_cpu_data[policy->cpu];
3121 int old_pstate = cpu->pstate.current_pstate;
3123 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3125 int max_pstate = policy->strict_target ?
3126 target_pstate : cpu->max_perf_ratio;
3128 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
3130 } else if (target_pstate != old_pstate) {
3131 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3134 cpu->pstate.current_pstate = target_pstate;
3136 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3137 INTEL_PSTATE_TRACE_TARGET, old_pstate);
3139 return target_pstate;
3142 static int intel_cpufreq_target(struct cpufreq_policy *policy,
3143 unsigned int target_freq,
3144 unsigned int relation)
3146 struct cpudata *cpu = all_cpu_data[policy->cpu];
3147 struct cpufreq_freqs freqs;
3150 freqs.old = policy->cur;
3151 freqs.new = target_freq;
3153 cpufreq_freq_transition_begin(policy, &freqs);
3155 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3156 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3158 freqs.new = target_pstate * cpu->pstate.scaling;
3160 cpufreq_freq_transition_end(policy, &freqs, false);
3165 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3166 unsigned int target_freq)
3168 struct cpudata *cpu = all_cpu_data[policy->cpu];
3171 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3173 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3175 return target_pstate * cpu->pstate.scaling;
3178 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3179 unsigned long min_perf,
3180 unsigned long target_perf,
3181 unsigned long capacity)
3183 struct cpudata *cpu = all_cpu_data[cpunum];
3184 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3185 int old_pstate = cpu->pstate.current_pstate;
3186 int cap_pstate, min_pstate, max_pstate, target_pstate;
3188 cap_pstate = READ_ONCE(global.no_turbo) ?
3189 HWP_GUARANTEED_PERF(hwp_cap) :
3190 HWP_HIGHEST_PERF(hwp_cap);
3192 /* Optimization: Avoid unnecessary divisions. */
3194 target_pstate = cap_pstate;
3195 if (target_perf < capacity)
3196 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3198 min_pstate = cap_pstate;
3199 if (min_perf < capacity)
3200 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3202 if (min_pstate < cpu->pstate.min_pstate)
3203 min_pstate = cpu->pstate.min_pstate;
3205 if (min_pstate < cpu->min_perf_ratio)
3206 min_pstate = cpu->min_perf_ratio;
3208 if (min_pstate > cpu->max_perf_ratio)
3209 min_pstate = cpu->max_perf_ratio;
3211 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3212 if (max_pstate < min_pstate)
3213 max_pstate = min_pstate;
3215 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3217 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3219 cpu->pstate.current_pstate = target_pstate;
3220 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3223 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3225 struct freq_qos_request *req;
3226 struct cpudata *cpu;
3230 dev = get_cpu_device(policy->cpu);
3234 ret = __intel_pstate_cpu_init(policy);
3238 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3239 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3240 policy->cur = policy->cpuinfo.min_freq;
3242 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3248 cpu = all_cpu_data[policy->cpu];
3253 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3255 intel_pstate_get_hwp_cap(cpu);
3257 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3258 WRITE_ONCE(cpu->hwp_req_cached, value);
3260 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3262 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3265 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3267 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3270 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3274 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3276 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3279 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3280 goto remove_min_req;
3283 policy->driver_data = req;
3288 freq_qos_remove_request(req);
3292 intel_pstate_exit_perf_limits(policy);
3297 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3299 struct freq_qos_request *req;
3301 req = policy->driver_data;
3303 freq_qos_remove_request(req + 1);
3304 freq_qos_remove_request(req);
3307 intel_pstate_cpu_exit(policy);
3310 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3312 intel_pstate_suspend(policy);
3315 struct cpudata *cpu = all_cpu_data[policy->cpu];
3316 u64 value = READ_ONCE(cpu->hwp_req_cached);
3319 * Clear the desired perf field in MSR_HWP_REQUEST in case
3320 * intel_cpufreq_adjust_perf() is in use and the last value
3321 * written by it may not be suitable.
3323 value &= ~HWP_DESIRED_PERF(~0L);
3324 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3325 WRITE_ONCE(cpu->hwp_req_cached, value);
3331 static struct cpufreq_driver intel_cpufreq = {
3332 .flags = CPUFREQ_CONST_LOOPS,
3333 .verify = intel_cpufreq_verify_policy,
3334 .target = intel_cpufreq_target,
3335 .fast_switch = intel_cpufreq_fast_switch,
3336 .init = intel_cpufreq_cpu_init,
3337 .exit = intel_cpufreq_cpu_exit,
3338 .offline = intel_cpufreq_cpu_offline,
3339 .online = intel_pstate_cpu_online,
3340 .suspend = intel_cpufreq_suspend,
3341 .resume = intel_pstate_resume,
3342 .update_limits = intel_pstate_update_limits,
3343 .name = "intel_cpufreq",
3346 static struct cpufreq_driver *default_driver;
3348 static void intel_pstate_driver_cleanup(void)
3353 for_each_online_cpu(cpu) {
3354 if (all_cpu_data[cpu]) {
3355 if (intel_pstate_driver == &intel_pstate)
3356 intel_pstate_clear_update_util_hook(cpu);
3358 kfree(all_cpu_data[cpu]);
3359 WRITE_ONCE(all_cpu_data[cpu], NULL);
3364 intel_pstate_driver = NULL;
3367 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3369 bool refresh_cpu_cap_scaling;
3372 if (driver == &intel_pstate)
3373 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3375 memset(&global, 0, sizeof(global));
3376 global.max_perf_pct = 100;
3377 global.turbo_disabled = turbo_is_disabled();
3378 global.no_turbo = global.turbo_disabled;
3380 arch_set_max_freq_ratio(global.turbo_disabled);
3382 refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu();
3384 intel_pstate_driver = driver;
3385 ret = cpufreq_register_driver(intel_pstate_driver);
3387 intel_pstate_driver_cleanup();
3391 global.min_perf_pct = min_perf_pct_min();
3393 hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling);
3398 static ssize_t intel_pstate_show_status(char *buf)
3400 if (!intel_pstate_driver)
3401 return sprintf(buf, "off\n");
3403 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3404 "active" : "passive");
3407 static int intel_pstate_update_status(const char *buf, size_t size)
3409 if (size == 3 && !strncmp(buf, "off", size)) {
3410 if (!intel_pstate_driver)
3416 cpufreq_unregister_driver(intel_pstate_driver);
3417 intel_pstate_driver_cleanup();
3421 if (size == 6 && !strncmp(buf, "active", size)) {
3422 if (intel_pstate_driver) {
3423 if (intel_pstate_driver == &intel_pstate)
3426 cpufreq_unregister_driver(intel_pstate_driver);
3429 return intel_pstate_register_driver(&intel_pstate);
3432 if (size == 7 && !strncmp(buf, "passive", size)) {
3433 if (intel_pstate_driver) {
3434 if (intel_pstate_driver == &intel_cpufreq)
3437 cpufreq_unregister_driver(intel_pstate_driver);
3438 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3441 return intel_pstate_register_driver(&intel_cpufreq);
3447 static int no_load __initdata;
3448 static int no_hwp __initdata;
3449 static int hwp_only __initdata;
3450 static unsigned int force_load __initdata;
3452 static int __init intel_pstate_msrs_not_valid(void)
3454 if (!pstate_funcs.get_max(0) ||
3455 !pstate_funcs.get_min(0) ||
3456 !pstate_funcs.get_turbo(0))
3462 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3464 pstate_funcs.get_max = funcs->get_max;
3465 pstate_funcs.get_max_physical = funcs->get_max_physical;
3466 pstate_funcs.get_min = funcs->get_min;
3467 pstate_funcs.get_turbo = funcs->get_turbo;
3468 pstate_funcs.get_scaling = funcs->get_scaling;
3469 pstate_funcs.get_val = funcs->get_val;
3470 pstate_funcs.get_vid = funcs->get_vid;
3471 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3476 static bool __init intel_pstate_no_acpi_pss(void)
3480 for_each_possible_cpu(i) {
3482 union acpi_object *pss;
3483 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3484 struct acpi_processor *pr = per_cpu(processors, i);
3489 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3490 if (ACPI_FAILURE(status))
3493 pss = buffer.pointer;
3494 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3502 pr_debug("ACPI _PSS not found\n");
3506 static bool __init intel_pstate_no_acpi_pcch(void)
3511 status = acpi_get_handle(NULL, "\\_SB", &handle);
3512 if (ACPI_FAILURE(status))
3515 if (acpi_has_method(handle, "PCCH"))
3519 pr_debug("ACPI PCCH not found\n");
3523 static bool __init intel_pstate_has_acpi_ppc(void)
3527 for_each_possible_cpu(i) {
3528 struct acpi_processor *pr = per_cpu(processors, i);
3532 if (acpi_has_method(pr->handle, "_PPC"))
3535 pr_debug("ACPI _PPC not found\n");
3544 /* Hardware vendor-specific info that has its own power management modes */
3545 static struct acpi_platform_list plat_info[] __initdata = {
3546 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3547 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3548 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3549 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3550 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3551 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3552 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3553 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3554 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3555 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3556 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3557 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3558 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3559 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3560 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3564 #define BITMASK_OOB (BIT(8) | BIT(18))
3566 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3568 const struct x86_cpu_id *id;
3572 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3574 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3575 if (misc_pwr & BITMASK_OOB) {
3576 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3577 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3582 idx = acpi_match_platform_list(plat_info);
3586 switch (plat_info[idx].data) {
3588 if (!intel_pstate_no_acpi_pss())
3591 return intel_pstate_no_acpi_pcch();
3593 return intel_pstate_has_acpi_ppc() && !force_load;
3599 static void intel_pstate_request_control_from_smm(void)
3602 * It may be unsafe to request P-states control from SMM if _PPC support
3603 * has not been enabled.
3606 acpi_processor_pstate_control();
3608 #else /* CONFIG_ACPI not enabled */
3609 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3610 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3611 static inline void intel_pstate_request_control_from_smm(void) {}
3612 #endif /* CONFIG_ACPI */
3614 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3616 #define X86_MATCH_HWP(vfm, hwp_mode) \
3617 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3619 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3620 X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3621 X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3622 X86_MATCH_HWP(INTEL_ANY, 0),
3626 static bool intel_pstate_hwp_is_enabled(void)
3630 rdmsrl(MSR_PM_ENABLE, value);
3631 return !!(value & 0x1);
3634 #define POWERSAVE_MASK GENMASK(7, 0)
3635 #define BALANCE_POWER_MASK GENMASK(15, 8)
3636 #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16)
3637 #define PERFORMANCE_MASK GENMASK(31, 24)
3639 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3640 (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3641 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3642 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3643 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3645 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3646 (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3647 balance_perf, HWP_EPP_PERFORMANCE))
3649 static const struct x86_cpu_id intel_epp_default[] = {
3651 * Set EPP value as 102, this is the max suggested EPP
3652 * which can result in one core turbo frequency for
3653 * AlderLake Mobile CPUs.
3655 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3656 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3657 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3658 X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3659 X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3660 X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3662 X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3667 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3668 X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3669 X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL),
3670 X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3674 static int __init intel_pstate_init(void)
3676 static struct cpudata **_all_cpu_data;
3677 const struct x86_cpu_id *id;
3680 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3683 id = x86_match_cpu(hwp_support_ids);
3685 hwp_forced = intel_pstate_hwp_is_enabled();
3688 pr_info("HWP enabled by BIOS\n");
3692 copy_cpu_funcs(&core_funcs);
3694 * Avoid enabling HWP for processors without EPP support,
3695 * because that means incomplete HWP implementation which is a
3696 * corner case and supporting it is generally problematic.
3698 * If HWP is enabled already, though, there is no choice but to
3701 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3703 hwp_mode_bdw = id->driver_data;
3704 intel_pstate.attr = hwp_cpufreq_attrs;
3705 intel_cpufreq.attr = hwp_cpufreq_attrs;
3706 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3707 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3708 if (!default_driver)
3709 default_driver = &intel_pstate;
3711 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3713 goto hwp_cpu_matched;
3715 pr_info("HWP not enabled\n");
3720 id = x86_match_cpu(intel_pstate_cpu_ids);
3722 pr_info("CPU model not supported\n");
3726 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3729 if (intel_pstate_msrs_not_valid()) {
3730 pr_info("Invalid MSRs\n");
3733 /* Without HWP start in the passive mode. */
3734 if (!default_driver)
3735 default_driver = &intel_cpufreq;
3739 * The Intel pstate driver will be ignored if the platform
3740 * firmware has its own power management modes.
3742 if (intel_pstate_platform_pwr_mgmt_exists()) {
3743 pr_info("P-states controlled by the platform\n");
3747 if (!hwp_active && hwp_only)
3750 pr_info("Intel P-state driver initializing\n");
3752 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3756 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3758 intel_pstate_request_control_from_smm();
3760 intel_pstate_sysfs_expose_params();
3763 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3764 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3767 epp_values[EPP_INDEX_POWERSAVE] =
3768 FIELD_GET(POWERSAVE_MASK, id->driver_data);
3769 epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3770 FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3771 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3772 FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3773 epp_values[EPP_INDEX_PERFORMANCE] =
3774 FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3775 pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3776 epp_values[EPP_INDEX_POWERSAVE],
3777 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3778 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3779 epp_values[EPP_INDEX_PERFORMANCE]);
3783 hybrid_scaling_factor = hybrid_id->driver_data;
3784 pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3789 mutex_lock(&intel_pstate_driver_lock);
3790 rc = intel_pstate_register_driver(default_driver);
3791 mutex_unlock(&intel_pstate_driver_lock);
3793 intel_pstate_sysfs_remove();
3798 const struct x86_cpu_id *id;
3800 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3802 set_power_ctl_ee_state(false);
3803 pr_info("Disabling energy efficiency optimization\n");
3806 pr_info("HWP enabled\n");
3807 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3808 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3813 device_initcall(intel_pstate_init);
3815 static int __init intel_pstate_setup(char *str)
3820 if (!strcmp(str, "disable"))
3822 else if (!strcmp(str, "active"))
3823 default_driver = &intel_pstate;
3824 else if (!strcmp(str, "passive"))
3825 default_driver = &intel_cpufreq;
3827 if (!strcmp(str, "no_hwp"))
3830 if (!strcmp(str, "force"))
3832 if (!strcmp(str, "hwp_only"))
3834 if (!strcmp(str, "per_cpu_perf_limits"))
3835 per_cpu_limits = true;
3838 if (!strcmp(str, "support_acpi_ppc"))
3844 early_param("intel_pstate", intel_pstate_setup);
3847 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");