]> Git Repo - J-linux.git/blob - drivers/cpufreq/acpi-cpufreq.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / cpufreq / acpi-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <[email protected]>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <[email protected]>
8  *  Copyright (C) 2006       Denis Sadykov <[email protected]>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
23 #include <linux/platform_device.h>
24
25 #include <linux/acpi.h>
26 #include <linux/io.h>
27 #include <linux/delay.h>
28 #include <linux/uaccess.h>
29
30 #include <acpi/processor.h>
31 #include <acpi/cppc_acpi.h>
32
33 #include <asm/msr.h>
34 #include <asm/processor.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cpu_device_id.h>
37
38 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
39 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
40 MODULE_LICENSE("GPL");
41
42 enum {
43         UNDEFINED_CAPABLE = 0,
44         SYSTEM_INTEL_MSR_CAPABLE,
45         SYSTEM_AMD_MSR_CAPABLE,
46         SYSTEM_IO_CAPABLE,
47 };
48
49 #define INTEL_MSR_RANGE         (0xffff)
50 #define AMD_MSR_RANGE           (0x7)
51 #define HYGON_MSR_RANGE         (0x7)
52
53 struct acpi_cpufreq_data {
54         unsigned int resume;
55         unsigned int cpu_feature;
56         unsigned int acpi_perf_cpu;
57         cpumask_var_t freqdomain_cpus;
58         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
59         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
60 };
61
62 /* acpi_perf_data is a pointer to percpu data. */
63 static struct acpi_processor_performance __percpu *acpi_perf_data;
64
65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
66 {
67         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
68 }
69
70 static struct cpufreq_driver acpi_cpufreq_driver;
71
72 static unsigned int acpi_pstate_strict;
73
74 static bool boost_state(unsigned int cpu)
75 {
76         u64 msr;
77
78         switch (boot_cpu_data.x86_vendor) {
79         case X86_VENDOR_INTEL:
80         case X86_VENDOR_CENTAUR:
81         case X86_VENDOR_ZHAOXIN:
82                 rdmsrl_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &msr);
83                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
84         case X86_VENDOR_HYGON:
85         case X86_VENDOR_AMD:
86                 rdmsrl_on_cpu(cpu, MSR_K7_HWCR, &msr);
87                 return !(msr & MSR_K7_HWCR_CPB_DIS);
88         }
89         return false;
90 }
91
92 static int boost_set_msr(bool enable)
93 {
94         u32 msr_addr;
95         u64 msr_mask, val;
96
97         switch (boot_cpu_data.x86_vendor) {
98         case X86_VENDOR_INTEL:
99         case X86_VENDOR_CENTAUR:
100         case X86_VENDOR_ZHAOXIN:
101                 msr_addr = MSR_IA32_MISC_ENABLE;
102                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
103                 break;
104         case X86_VENDOR_HYGON:
105         case X86_VENDOR_AMD:
106                 msr_addr = MSR_K7_HWCR;
107                 msr_mask = MSR_K7_HWCR_CPB_DIS;
108                 break;
109         default:
110                 return -EINVAL;
111         }
112
113         rdmsrl(msr_addr, val);
114
115         if (enable)
116                 val &= ~msr_mask;
117         else
118                 val |= msr_mask;
119
120         wrmsrl(msr_addr, val);
121         return 0;
122 }
123
124 static void boost_set_msr_each(void *p_en)
125 {
126         bool enable = (bool) p_en;
127
128         boost_set_msr(enable);
129 }
130
131 static int set_boost(struct cpufreq_policy *policy, int val)
132 {
133         on_each_cpu_mask(policy->cpus, boost_set_msr_each,
134                          (void *)(long)val, 1);
135         pr_debug("CPU %*pbl: Core Boosting %s.\n",
136                  cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
137
138         return 0;
139 }
140
141 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
142 {
143         struct acpi_cpufreq_data *data = policy->driver_data;
144
145         if (unlikely(!data))
146                 return -ENODEV;
147
148         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
149 }
150
151 cpufreq_freq_attr_ro(freqdomain_cpus);
152
153 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
154 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
155                          size_t count)
156 {
157         int ret;
158         unsigned int val = 0;
159
160         if (!acpi_cpufreq_driver.set_boost)
161                 return -EINVAL;
162
163         ret = kstrtouint(buf, 10, &val);
164         if (ret || val > 1)
165                 return -EINVAL;
166
167         cpus_read_lock();
168         set_boost(policy, val);
169         cpus_read_unlock();
170
171         return count;
172 }
173
174 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
175 {
176         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
177 }
178
179 cpufreq_freq_attr_rw(cpb);
180 #endif
181
182 static int check_est_cpu(unsigned int cpuid)
183 {
184         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
185
186         return cpu_has(cpu, X86_FEATURE_EST);
187 }
188
189 static int check_amd_hwpstate_cpu(unsigned int cpuid)
190 {
191         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192
193         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
194 }
195
196 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
197 {
198         struct acpi_cpufreq_data *data = policy->driver_data;
199         struct acpi_processor_performance *perf;
200         int i;
201
202         perf = to_perf_data(data);
203
204         for (i = 0; i < perf->state_count; i++) {
205                 if (value == perf->states[i].status)
206                         return policy->freq_table[i].frequency;
207         }
208         return 0;
209 }
210
211 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
212 {
213         struct acpi_cpufreq_data *data = policy->driver_data;
214         struct cpufreq_frequency_table *pos;
215         struct acpi_processor_performance *perf;
216
217         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
218                 msr &= AMD_MSR_RANGE;
219         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
220                 msr &= HYGON_MSR_RANGE;
221         else
222                 msr &= INTEL_MSR_RANGE;
223
224         perf = to_perf_data(data);
225
226         cpufreq_for_each_entry(pos, policy->freq_table)
227                 if (msr == perf->states[pos->driver_data].status)
228                         return pos->frequency;
229         return policy->freq_table[0].frequency;
230 }
231
232 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
233 {
234         struct acpi_cpufreq_data *data = policy->driver_data;
235
236         switch (data->cpu_feature) {
237         case SYSTEM_INTEL_MSR_CAPABLE:
238         case SYSTEM_AMD_MSR_CAPABLE:
239                 return extract_msr(policy, val);
240         case SYSTEM_IO_CAPABLE:
241                 return extract_io(policy, val);
242         default:
243                 return 0;
244         }
245 }
246
247 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
248 {
249         u32 val, dummy __always_unused;
250
251         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
252         return val;
253 }
254
255 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
256 {
257         u32 lo, hi;
258
259         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
260         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
261         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
262 }
263
264 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
265 {
266         u32 val, dummy __always_unused;
267
268         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
269         return val;
270 }
271
272 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
273 {
274         wrmsr(MSR_AMD_PERF_CTL, val, 0);
275 }
276
277 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
278 {
279         u32 val;
280
281         acpi_os_read_port(reg->address, &val, reg->bit_width);
282         return val;
283 }
284
285 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
286 {
287         acpi_os_write_port(reg->address, val, reg->bit_width);
288 }
289
290 struct drv_cmd {
291         struct acpi_pct_register *reg;
292         u32 val;
293         union {
294                 void (*write)(struct acpi_pct_register *reg, u32 val);
295                 u32 (*read)(struct acpi_pct_register *reg);
296         } func;
297 };
298
299 /* Called via smp_call_function_single(), on the target CPU */
300 static void do_drv_read(void *_cmd)
301 {
302         struct drv_cmd *cmd = _cmd;
303
304         cmd->val = cmd->func.read(cmd->reg);
305 }
306
307 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
308 {
309         struct acpi_processor_performance *perf = to_perf_data(data);
310         struct drv_cmd cmd = {
311                 .reg = &perf->control_register,
312                 .func.read = data->cpu_freq_read,
313         };
314         int err;
315
316         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
317         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
318         return cmd.val;
319 }
320
321 /* Called via smp_call_function_many(), on the target CPUs */
322 static void do_drv_write(void *_cmd)
323 {
324         struct drv_cmd *cmd = _cmd;
325
326         cmd->func.write(cmd->reg, cmd->val);
327 }
328
329 static void drv_write(struct acpi_cpufreq_data *data,
330                       const struct cpumask *mask, u32 val)
331 {
332         struct acpi_processor_performance *perf = to_perf_data(data);
333         struct drv_cmd cmd = {
334                 .reg = &perf->control_register,
335                 .val = val,
336                 .func.write = data->cpu_freq_write,
337         };
338         int this_cpu;
339
340         this_cpu = get_cpu();
341         if (cpumask_test_cpu(this_cpu, mask))
342                 do_drv_write(&cmd);
343
344         smp_call_function_many(mask, do_drv_write, &cmd, 1);
345         put_cpu();
346 }
347
348 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
349 {
350         u32 val;
351
352         if (unlikely(cpumask_empty(mask)))
353                 return 0;
354
355         val = drv_read(data, mask);
356
357         pr_debug("%s = %u\n", __func__, val);
358
359         return val;
360 }
361
362 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
363 {
364         struct acpi_cpufreq_data *data;
365         struct cpufreq_policy *policy;
366         unsigned int freq;
367         unsigned int cached_freq;
368
369         pr_debug("%s (%d)\n", __func__, cpu);
370
371         policy = cpufreq_cpu_get_raw(cpu);
372         if (unlikely(!policy))
373                 return 0;
374
375         data = policy->driver_data;
376         if (unlikely(!data || !policy->freq_table))
377                 return 0;
378
379         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
380         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
381         if (freq != cached_freq) {
382                 /*
383                  * The dreaded BIOS frequency change behind our back.
384                  * Force set the frequency on next target call.
385                  */
386                 data->resume = 1;
387         }
388
389         pr_debug("cur freq = %u\n", freq);
390
391         return freq;
392 }
393
394 static unsigned int check_freqs(struct cpufreq_policy *policy,
395                                 const struct cpumask *mask, unsigned int freq)
396 {
397         struct acpi_cpufreq_data *data = policy->driver_data;
398         unsigned int cur_freq;
399         unsigned int i;
400
401         for (i = 0; i < 100; i++) {
402                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
403                 if (cur_freq == freq)
404                         return 1;
405                 udelay(10);
406         }
407         return 0;
408 }
409
410 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
411                                unsigned int index)
412 {
413         struct acpi_cpufreq_data *data = policy->driver_data;
414         struct acpi_processor_performance *perf;
415         const struct cpumask *mask;
416         unsigned int next_perf_state = 0; /* Index into perf table */
417         int result = 0;
418
419         if (unlikely(!data)) {
420                 return -ENODEV;
421         }
422
423         perf = to_perf_data(data);
424         next_perf_state = policy->freq_table[index].driver_data;
425         if (perf->state == next_perf_state) {
426                 if (unlikely(data->resume)) {
427                         pr_debug("Called after resume, resetting to P%d\n",
428                                 next_perf_state);
429                         data->resume = 0;
430                 } else {
431                         pr_debug("Already at target state (P%d)\n",
432                                 next_perf_state);
433                         return 0;
434                 }
435         }
436
437         /*
438          * The core won't allow CPUs to go away until the governor has been
439          * stopped, so we can rely on the stability of policy->cpus.
440          */
441         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
442                 cpumask_of(policy->cpu) : policy->cpus;
443
444         drv_write(data, mask, perf->states[next_perf_state].control);
445
446         if (acpi_pstate_strict) {
447                 if (!check_freqs(policy, mask,
448                                  policy->freq_table[index].frequency)) {
449                         pr_debug("%s (%d)\n", __func__, policy->cpu);
450                         result = -EAGAIN;
451                 }
452         }
453
454         if (!result)
455                 perf->state = next_perf_state;
456
457         return result;
458 }
459
460 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
461                                              unsigned int target_freq)
462 {
463         struct acpi_cpufreq_data *data = policy->driver_data;
464         struct acpi_processor_performance *perf;
465         struct cpufreq_frequency_table *entry;
466         unsigned int next_perf_state, next_freq, index;
467
468         /*
469          * Find the closest frequency above target_freq.
470          */
471         if (policy->cached_target_freq == target_freq)
472                 index = policy->cached_resolved_idx;
473         else
474                 index = cpufreq_table_find_index_dl(policy, target_freq,
475                                                     false);
476
477         entry = &policy->freq_table[index];
478         next_freq = entry->frequency;
479         next_perf_state = entry->driver_data;
480
481         perf = to_perf_data(data);
482         if (perf->state == next_perf_state) {
483                 if (unlikely(data->resume))
484                         data->resume = 0;
485                 else
486                         return next_freq;
487         }
488
489         data->cpu_freq_write(&perf->control_register,
490                              perf->states[next_perf_state].control);
491         perf->state = next_perf_state;
492         return next_freq;
493 }
494
495 static unsigned long
496 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
497 {
498         struct acpi_processor_performance *perf;
499
500         perf = to_perf_data(data);
501         if (cpu_khz) {
502                 /* search the closest match to cpu_khz */
503                 unsigned int i;
504                 unsigned long freq;
505                 unsigned long freqn = perf->states[0].core_frequency * 1000;
506
507                 for (i = 0; i < (perf->state_count-1); i++) {
508                         freq = freqn;
509                         freqn = perf->states[i+1].core_frequency * 1000;
510                         if ((2 * cpu_khz) > (freqn + freq)) {
511                                 perf->state = i;
512                                 return freq;
513                         }
514                 }
515                 perf->state = perf->state_count-1;
516                 return freqn;
517         } else {
518                 /* assume CPU is at P0... */
519                 perf->state = 0;
520                 return perf->states[0].core_frequency * 1000;
521         }
522 }
523
524 static void free_acpi_perf_data(void)
525 {
526         unsigned int i;
527
528         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
529         for_each_possible_cpu(i)
530                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
531                                  ->shared_cpu_map);
532         free_percpu(acpi_perf_data);
533 }
534
535 static int cpufreq_boost_down_prep(unsigned int cpu)
536 {
537         /*
538          * Clear the boost-disable bit on the CPU_DOWN path so that
539          * this cpu cannot block the remaining ones from boosting.
540          */
541         return boost_set_msr(1);
542 }
543
544 /*
545  * acpi_cpufreq_early_init - initialize ACPI P-States library
546  *
547  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
548  * in order to determine correct frequency and voltage pairings. We can
549  * do _PDC and _PSD and find out the processor dependency for the
550  * actual init that will happen later...
551  */
552 static int __init acpi_cpufreq_early_init(void)
553 {
554         unsigned int i;
555         pr_debug("%s\n", __func__);
556
557         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
558         if (!acpi_perf_data) {
559                 pr_debug("Memory allocation error for acpi_perf_data.\n");
560                 return -ENOMEM;
561         }
562         for_each_possible_cpu(i) {
563                 if (!zalloc_cpumask_var_node(
564                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
565                         GFP_KERNEL, cpu_to_node(i))) {
566
567                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
568                         free_acpi_perf_data();
569                         return -ENOMEM;
570                 }
571         }
572
573         /* Do initialization in ACPI core */
574         acpi_processor_preregister_performance(acpi_perf_data);
575         return 0;
576 }
577
578 #ifdef CONFIG_SMP
579 /*
580  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
581  * or do it in BIOS firmware and won't inform about it to OS. If not
582  * detected, this has a side effect of making CPU run at a different speed
583  * than OS intended it to run at. Detect it and handle it cleanly.
584  */
585 static int bios_with_sw_any_bug;
586
587 static int sw_any_bug_found(const struct dmi_system_id *d)
588 {
589         bios_with_sw_any_bug = 1;
590         return 0;
591 }
592
593 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
594         {
595                 .callback = sw_any_bug_found,
596                 .ident = "Supermicro Server X6DLP",
597                 .matches = {
598                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
599                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
600                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
601                 },
602         },
603         { }
604 };
605
606 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
607 {
608         /* Intel Xeon Processor 7100 Series Specification Update
609          * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
610          * AL30: A Machine Check Exception (MCE) Occurring during an
611          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
612          * Both Processor Cores to Lock Up. */
613         if (c->x86_vendor == X86_VENDOR_INTEL) {
614                 if ((c->x86 == 15) &&
615                     (c->x86_model == 6) &&
616                     (c->x86_stepping == 8)) {
617                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
618                         return -ENODEV;
619                     }
620                 }
621         return 0;
622 }
623 #endif
624
625 #ifdef CONFIG_ACPI_CPPC_LIB
626 static u64 get_max_boost_ratio(unsigned int cpu)
627 {
628         struct cppc_perf_caps perf_caps;
629         u64 highest_perf, nominal_perf;
630         int ret;
631
632         if (acpi_pstate_strict)
633                 return 0;
634
635         ret = cppc_get_perf_caps(cpu, &perf_caps);
636         if (ret) {
637                 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
638                          cpu, ret);
639                 return 0;
640         }
641
642         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
643                 ret = amd_get_boost_ratio_numerator(cpu, &highest_perf);
644                 if (ret) {
645                         pr_debug("CPU%d: Unable to get boost ratio numerator (%d)\n",
646                                  cpu, ret);
647                         return 0;
648                 }
649         } else {
650                 highest_perf = perf_caps.highest_perf;
651         }
652
653         nominal_perf = perf_caps.nominal_perf;
654
655         if (!highest_perf || !nominal_perf) {
656                 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
657                 return 0;
658         }
659
660         if (highest_perf < nominal_perf) {
661                 pr_debug("CPU%d: nominal performance above highest\n", cpu);
662                 return 0;
663         }
664
665         return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
666 }
667 #else
668 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
669 #endif
670
671 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
672 {
673         struct cpufreq_frequency_table *freq_table;
674         struct acpi_processor_performance *perf;
675         struct acpi_cpufreq_data *data;
676         unsigned int cpu = policy->cpu;
677         struct cpuinfo_x86 *c = &cpu_data(cpu);
678         unsigned int valid_states = 0;
679         unsigned int result = 0;
680         u64 max_boost_ratio;
681         unsigned int i;
682 #ifdef CONFIG_SMP
683         static int blacklisted;
684 #endif
685
686         pr_debug("%s\n", __func__);
687
688 #ifdef CONFIG_SMP
689         if (blacklisted)
690                 return blacklisted;
691         blacklisted = acpi_cpufreq_blacklist(c);
692         if (blacklisted)
693                 return blacklisted;
694 #endif
695
696         data = kzalloc(sizeof(*data), GFP_KERNEL);
697         if (!data)
698                 return -ENOMEM;
699
700         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
701                 result = -ENOMEM;
702                 goto err_free;
703         }
704
705         perf = per_cpu_ptr(acpi_perf_data, cpu);
706         data->acpi_perf_cpu = cpu;
707         policy->driver_data = data;
708
709         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
710                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
711
712         result = acpi_processor_register_performance(perf, cpu);
713         if (result)
714                 goto err_free_mask;
715
716         policy->shared_type = perf->shared_type;
717
718         /*
719          * Will let policy->cpus know about dependency only when software
720          * coordination is required.
721          */
722         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
723             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
724                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
725         }
726         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
727
728 #ifdef CONFIG_SMP
729         dmi_check_system(sw_any_bug_dmi_table);
730         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
731                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
732                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
733         }
734
735         if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
736             !acpi_pstate_strict) {
737                 cpumask_clear(policy->cpus);
738                 cpumask_set_cpu(cpu, policy->cpus);
739                 cpumask_copy(data->freqdomain_cpus,
740                              topology_sibling_cpumask(cpu));
741                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
742                 pr_info_once("overriding BIOS provided _PSD data\n");
743         }
744 #endif
745
746         /* capability check */
747         if (perf->state_count <= 1) {
748                 pr_debug("No P-States\n");
749                 result = -ENODEV;
750                 goto err_unreg;
751         }
752
753         if (perf->control_register.space_id != perf->status_register.space_id) {
754                 result = -ENODEV;
755                 goto err_unreg;
756         }
757
758         switch (perf->control_register.space_id) {
759         case ACPI_ADR_SPACE_SYSTEM_IO:
760                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
761                     boot_cpu_data.x86 == 0xf) {
762                         pr_debug("AMD K8 systems must use native drivers.\n");
763                         result = -ENODEV;
764                         goto err_unreg;
765                 }
766                 pr_debug("SYSTEM IO addr space\n");
767                 data->cpu_feature = SYSTEM_IO_CAPABLE;
768                 data->cpu_freq_read = cpu_freq_read_io;
769                 data->cpu_freq_write = cpu_freq_write_io;
770                 break;
771         case ACPI_ADR_SPACE_FIXED_HARDWARE:
772                 pr_debug("HARDWARE addr space\n");
773                 if (check_est_cpu(cpu)) {
774                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
775                         data->cpu_freq_read = cpu_freq_read_intel;
776                         data->cpu_freq_write = cpu_freq_write_intel;
777                         break;
778                 }
779                 if (check_amd_hwpstate_cpu(cpu)) {
780                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
781                         data->cpu_freq_read = cpu_freq_read_amd;
782                         data->cpu_freq_write = cpu_freq_write_amd;
783                         break;
784                 }
785                 result = -ENODEV;
786                 goto err_unreg;
787         default:
788                 pr_debug("Unknown addr space %d\n",
789                         (u32) (perf->control_register.space_id));
790                 result = -ENODEV;
791                 goto err_unreg;
792         }
793
794         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
795                              GFP_KERNEL);
796         if (!freq_table) {
797                 result = -ENOMEM;
798                 goto err_unreg;
799         }
800
801         /* detect transition latency */
802         policy->cpuinfo.transition_latency = 0;
803         for (i = 0; i < perf->state_count; i++) {
804                 if ((perf->states[i].transition_latency * 1000) >
805                     policy->cpuinfo.transition_latency)
806                         policy->cpuinfo.transition_latency =
807                             perf->states[i].transition_latency * 1000;
808         }
809
810         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
811         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
812             policy->cpuinfo.transition_latency > 20 * 1000) {
813                 policy->cpuinfo.transition_latency = 20 * 1000;
814                 pr_info_once("P-state transition latency capped at 20 uS\n");
815         }
816
817         /* table init */
818         for (i = 0; i < perf->state_count; i++) {
819                 if (i > 0 && perf->states[i].core_frequency >=
820                     freq_table[valid_states-1].frequency / 1000)
821                         continue;
822
823                 freq_table[valid_states].driver_data = i;
824                 freq_table[valid_states].frequency =
825                     perf->states[i].core_frequency * 1000;
826                 valid_states++;
827         }
828         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
829
830         max_boost_ratio = get_max_boost_ratio(cpu);
831         if (max_boost_ratio) {
832                 unsigned int freq = freq_table[0].frequency;
833
834                 /*
835                  * Because the loop above sorts the freq_table entries in the
836                  * descending order, freq is the maximum frequency in the table.
837                  * Assume that it corresponds to the CPPC nominal frequency and
838                  * use it to set cpuinfo.max_freq.
839                  */
840                 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
841         } else {
842                 /*
843                  * If the maximum "boost" frequency is unknown, ask the arch
844                  * scale-invariance code to use the "nominal" performance for
845                  * CPU utilization scaling so as to prevent the schedutil
846                  * governor from selecting inadequate CPU frequencies.
847                  */
848                 arch_set_max_freq_ratio(true);
849         }
850
851         policy->freq_table = freq_table;
852         perf->state = 0;
853
854         switch (perf->control_register.space_id) {
855         case ACPI_ADR_SPACE_SYSTEM_IO:
856                 /*
857                  * The core will not set policy->cur, because
858                  * cpufreq_driver->get is NULL, so we need to set it here.
859                  * However, we have to guess it, because the current speed is
860                  * unknown and not detectable via IO ports.
861                  */
862                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
863                 break;
864         case ACPI_ADR_SPACE_FIXED_HARDWARE:
865                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
866                 break;
867         default:
868                 break;
869         }
870
871         /* notify BIOS that we exist */
872         acpi_processor_notify_smm(THIS_MODULE);
873
874         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
875         for (i = 0; i < perf->state_count; i++)
876                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
877                         (i == perf->state ? '*' : ' '), i,
878                         (u32) perf->states[i].core_frequency,
879                         (u32) perf->states[i].power,
880                         (u32) perf->states[i].transition_latency);
881
882         /*
883          * the first call to ->target() should result in us actually
884          * writing something to the appropriate registers.
885          */
886         data->resume = 1;
887
888         policy->fast_switch_possible = !acpi_pstate_strict &&
889                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
890
891         if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
892                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
893
894         if (acpi_cpufreq_driver.set_boost) {
895                 set_boost(policy, acpi_cpufreq_driver.boost_enabled);
896                 policy->boost_enabled = acpi_cpufreq_driver.boost_enabled;
897         }
898
899         return result;
900
901 err_unreg:
902         acpi_processor_unregister_performance(cpu);
903 err_free_mask:
904         free_cpumask_var(data->freqdomain_cpus);
905 err_free:
906         kfree(data);
907         policy->driver_data = NULL;
908
909         return result;
910 }
911
912 static void acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
913 {
914         struct acpi_cpufreq_data *data = policy->driver_data;
915
916         pr_debug("%s\n", __func__);
917
918         cpufreq_boost_down_prep(policy->cpu);
919         policy->fast_switch_possible = false;
920         policy->driver_data = NULL;
921         acpi_processor_unregister_performance(data->acpi_perf_cpu);
922         free_cpumask_var(data->freqdomain_cpus);
923         kfree(policy->freq_table);
924         kfree(data);
925 }
926
927 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
928 {
929         struct acpi_cpufreq_data *data = policy->driver_data;
930
931         pr_debug("%s\n", __func__);
932
933         data->resume = 1;
934
935         return 0;
936 }
937
938 static struct freq_attr *acpi_cpufreq_attr[] = {
939         &cpufreq_freq_attr_scaling_available_freqs,
940         &freqdomain_cpus,
941 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
942         &cpb,
943 #endif
944         NULL,
945 };
946
947 static struct cpufreq_driver acpi_cpufreq_driver = {
948         .verify         = cpufreq_generic_frequency_table_verify,
949         .target_index   = acpi_cpufreq_target,
950         .fast_switch    = acpi_cpufreq_fast_switch,
951         .bios_limit     = acpi_processor_get_bios_limit,
952         .init           = acpi_cpufreq_cpu_init,
953         .exit           = acpi_cpufreq_cpu_exit,
954         .resume         = acpi_cpufreq_resume,
955         .name           = "acpi-cpufreq",
956         .attr           = acpi_cpufreq_attr,
957 };
958
959 static void __init acpi_cpufreq_boost_init(void)
960 {
961         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
962                 pr_debug("Boost capabilities not present in the processor\n");
963                 return;
964         }
965
966         acpi_cpufreq_driver.set_boost = set_boost;
967         acpi_cpufreq_driver.boost_enabled = boost_state(0);
968 }
969
970 static int __init acpi_cpufreq_probe(struct platform_device *pdev)
971 {
972         int ret;
973
974         if (acpi_disabled)
975                 return -ENODEV;
976
977         /* don't keep reloading if cpufreq_driver exists */
978         if (cpufreq_get_current_driver())
979                 return -ENODEV;
980
981         pr_debug("%s\n", __func__);
982
983         ret = acpi_cpufreq_early_init();
984         if (ret)
985                 return ret;
986
987 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
988         /* this is a sysfs file with a strange name and an even stranger
989          * semantic - per CPU instantiation, but system global effect.
990          * Lets enable it only on AMD CPUs for compatibility reasons and
991          * only if configured. This is considered legacy code, which
992          * will probably be removed at some point in the future.
993          */
994         if (!check_amd_hwpstate_cpu(0)) {
995                 struct freq_attr **attr;
996
997                 pr_debug("CPB unsupported, do not expose it\n");
998
999                 for (attr = acpi_cpufreq_attr; *attr; attr++)
1000                         if (*attr == &cpb) {
1001                                 *attr = NULL;
1002                                 break;
1003                         }
1004         }
1005 #endif
1006         acpi_cpufreq_boost_init();
1007
1008         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1009         if (ret) {
1010                 free_acpi_perf_data();
1011         }
1012         return ret;
1013 }
1014
1015 static void acpi_cpufreq_remove(struct platform_device *pdev)
1016 {
1017         pr_debug("%s\n", __func__);
1018
1019         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1020
1021         free_acpi_perf_data();
1022 }
1023
1024 static struct platform_driver acpi_cpufreq_platdrv = {
1025         .driver = {
1026                 .name   = "acpi-cpufreq",
1027         },
1028         .remove = acpi_cpufreq_remove,
1029 };
1030
1031 static int __init acpi_cpufreq_init(void)
1032 {
1033         return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1034 }
1035
1036 static void __exit acpi_cpufreq_exit(void)
1037 {
1038         platform_driver_unregister(&acpi_cpufreq_platdrv);
1039 }
1040
1041 module_param(acpi_pstate_strict, uint, 0644);
1042 MODULE_PARM_DESC(acpi_pstate_strict,
1043         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1044         "performed during frequency changes.");
1045
1046 late_initcall(acpi_cpufreq_init);
1047 module_exit(acpi_cpufreq_exit);
1048
1049 MODULE_ALIAS("platform:acpi-cpufreq");
This page took 0.084271 seconds and 4 git commands to generate.