]> Git Repo - J-linux.git/blob - drivers/counter/stm32-timer-cnt.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / counter / stm32-timer-cnt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * STM32 Timer Encoder and Counter driver
4  *
5  * Copyright (C) STMicroelectronics 2018
6  *
7  * Author: Benjamin Gaignard <[email protected]>
8  *
9  */
10 #include <linux/counter.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/types.h>
19
20 #define TIM_CCMR_CCXS   (BIT(8) | BIT(0))
21 #define TIM_CCMR_MASK   (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
22                          TIM_CCMR_IC1F | TIM_CCMR_IC2F)
23 #define TIM_CCER_MASK   (TIM_CCER_CC1P | TIM_CCER_CC1NP | \
24                          TIM_CCER_CC2P | TIM_CCER_CC2NP)
25
26 #define STM32_CH1_SIG           0
27 #define STM32_CH2_SIG           1
28 #define STM32_CLOCK_SIG         2
29 #define STM32_CH3_SIG           3
30 #define STM32_CH4_SIG           4
31
32 struct stm32_timer_regs {
33         u32 cr1;
34         u32 cnt;
35         u32 smcr;
36         u32 arr;
37 };
38
39 struct stm32_timer_cnt {
40         struct regmap *regmap;
41         struct clk *clk;
42         u32 max_arr;
43         bool enabled;
44         struct stm32_timer_regs bak;
45         bool has_encoder;
46         unsigned int nchannels;
47         unsigned int nr_irqs;
48         spinlock_t lock; /* protects nb_ovf */
49         u64 nb_ovf;
50 };
51
52 static const enum counter_function stm32_count_functions[] = {
53         COUNTER_FUNCTION_INCREASE,
54         COUNTER_FUNCTION_QUADRATURE_X2_A,
55         COUNTER_FUNCTION_QUADRATURE_X2_B,
56         COUNTER_FUNCTION_QUADRATURE_X4,
57 };
58
59 static int stm32_count_read(struct counter_device *counter,
60                             struct counter_count *count, u64 *val)
61 {
62         struct stm32_timer_cnt *const priv = counter_priv(counter);
63         u32 cnt;
64
65         regmap_read(priv->regmap, TIM_CNT, &cnt);
66         *val = cnt;
67
68         return 0;
69 }
70
71 static int stm32_count_write(struct counter_device *counter,
72                              struct counter_count *count, const u64 val)
73 {
74         struct stm32_timer_cnt *const priv = counter_priv(counter);
75         u32 ceiling;
76
77         regmap_read(priv->regmap, TIM_ARR, &ceiling);
78         if (val > ceiling)
79                 return -EINVAL;
80
81         return regmap_write(priv->regmap, TIM_CNT, val);
82 }
83
84 static int stm32_count_function_read(struct counter_device *counter,
85                                      struct counter_count *count,
86                                      enum counter_function *function)
87 {
88         struct stm32_timer_cnt *const priv = counter_priv(counter);
89         u32 smcr;
90
91         regmap_read(priv->regmap, TIM_SMCR, &smcr);
92
93         switch (smcr & TIM_SMCR_SMS) {
94         case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
95                 *function = COUNTER_FUNCTION_INCREASE;
96                 return 0;
97         case TIM_SMCR_SMS_ENCODER_MODE_1:
98                 *function = COUNTER_FUNCTION_QUADRATURE_X2_A;
99                 return 0;
100         case TIM_SMCR_SMS_ENCODER_MODE_2:
101                 *function = COUNTER_FUNCTION_QUADRATURE_X2_B;
102                 return 0;
103         case TIM_SMCR_SMS_ENCODER_MODE_3:
104                 *function = COUNTER_FUNCTION_QUADRATURE_X4;
105                 return 0;
106         default:
107                 return -EINVAL;
108         }
109 }
110
111 static int stm32_count_function_write(struct counter_device *counter,
112                                       struct counter_count *count,
113                                       enum counter_function function)
114 {
115         struct stm32_timer_cnt *const priv = counter_priv(counter);
116         u32 cr1, sms;
117
118         switch (function) {
119         case COUNTER_FUNCTION_INCREASE:
120                 sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
121                 break;
122         case COUNTER_FUNCTION_QUADRATURE_X2_A:
123                 if (!priv->has_encoder)
124                         return -EOPNOTSUPP;
125                 sms = TIM_SMCR_SMS_ENCODER_MODE_1;
126                 break;
127         case COUNTER_FUNCTION_QUADRATURE_X2_B:
128                 if (!priv->has_encoder)
129                         return -EOPNOTSUPP;
130                 sms = TIM_SMCR_SMS_ENCODER_MODE_2;
131                 break;
132         case COUNTER_FUNCTION_QUADRATURE_X4:
133                 if (!priv->has_encoder)
134                         return -EOPNOTSUPP;
135                 sms = TIM_SMCR_SMS_ENCODER_MODE_3;
136                 break;
137         default:
138                 return -EINVAL;
139         }
140
141         /* Store enable status */
142         regmap_read(priv->regmap, TIM_CR1, &cr1);
143
144         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
145
146         regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
147
148         /* Make sure that registers are updated */
149         regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
150
151         /* Restore the enable status */
152         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
153
154         return 0;
155 }
156
157 static int stm32_count_direction_read(struct counter_device *counter,
158                                       struct counter_count *count,
159                                       enum counter_count_direction *direction)
160 {
161         struct stm32_timer_cnt *const priv = counter_priv(counter);
162         u32 cr1;
163
164         regmap_read(priv->regmap, TIM_CR1, &cr1);
165         *direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
166                 COUNTER_COUNT_DIRECTION_FORWARD;
167
168         return 0;
169 }
170
171 static int stm32_count_ceiling_read(struct counter_device *counter,
172                                     struct counter_count *count, u64 *ceiling)
173 {
174         struct stm32_timer_cnt *const priv = counter_priv(counter);
175         u32 arr;
176
177         regmap_read(priv->regmap, TIM_ARR, &arr);
178
179         *ceiling = arr;
180
181         return 0;
182 }
183
184 static int stm32_count_ceiling_write(struct counter_device *counter,
185                                      struct counter_count *count, u64 ceiling)
186 {
187         struct stm32_timer_cnt *const priv = counter_priv(counter);
188
189         if (ceiling > priv->max_arr)
190                 return -ERANGE;
191
192         /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
193         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
194         regmap_write(priv->regmap, TIM_ARR, ceiling);
195
196         return 0;
197 }
198
199 static int stm32_count_enable_read(struct counter_device *counter,
200                                    struct counter_count *count, u8 *enable)
201 {
202         struct stm32_timer_cnt *const priv = counter_priv(counter);
203         u32 cr1;
204
205         regmap_read(priv->regmap, TIM_CR1, &cr1);
206
207         *enable = cr1 & TIM_CR1_CEN;
208
209         return 0;
210 }
211
212 static int stm32_count_enable_write(struct counter_device *counter,
213                                     struct counter_count *count, u8 enable)
214 {
215         struct stm32_timer_cnt *const priv = counter_priv(counter);
216         u32 cr1;
217         int ret;
218
219         if (enable) {
220                 regmap_read(priv->regmap, TIM_CR1, &cr1);
221                 if (!(cr1 & TIM_CR1_CEN)) {
222                         ret = clk_enable(priv->clk);
223                         if (ret) {
224                                 dev_err(counter->parent, "Cannot enable clock %d\n", ret);
225                                 return ret;
226                         }
227                 }
228
229                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
230                                    TIM_CR1_CEN);
231         } else {
232                 regmap_read(priv->regmap, TIM_CR1, &cr1);
233                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
234                 if (cr1 & TIM_CR1_CEN)
235                         clk_disable(priv->clk);
236         }
237
238         /* Keep enabled state to properly handle low power states */
239         priv->enabled = enable;
240
241         return 0;
242 }
243
244 static int stm32_count_prescaler_read(struct counter_device *counter,
245                                       struct counter_count *count, u64 *prescaler)
246 {
247         struct stm32_timer_cnt *const priv = counter_priv(counter);
248         u32 psc;
249
250         regmap_read(priv->regmap, TIM_PSC, &psc);
251
252         *prescaler = psc + 1;
253
254         return 0;
255 }
256
257 static int stm32_count_prescaler_write(struct counter_device *counter,
258                                        struct counter_count *count, u64 prescaler)
259 {
260         struct stm32_timer_cnt *const priv = counter_priv(counter);
261         u32 psc;
262
263         if (!prescaler || prescaler > MAX_TIM_PSC + 1)
264                 return -ERANGE;
265
266         psc = prescaler - 1;
267
268         return regmap_write(priv->regmap, TIM_PSC, psc);
269 }
270
271 static int stm32_count_cap_read(struct counter_device *counter,
272                                 struct counter_count *count,
273                                 size_t ch, u64 *cap)
274 {
275         struct stm32_timer_cnt *const priv = counter_priv(counter);
276         u32 ccrx;
277
278         if (ch >= priv->nchannels)
279                 return -EOPNOTSUPP;
280
281         switch (ch) {
282         case 0:
283                 regmap_read(priv->regmap, TIM_CCR1, &ccrx);
284                 break;
285         case 1:
286                 regmap_read(priv->regmap, TIM_CCR2, &ccrx);
287                 break;
288         case 2:
289                 regmap_read(priv->regmap, TIM_CCR3, &ccrx);
290                 break;
291         case 3:
292                 regmap_read(priv->regmap, TIM_CCR4, &ccrx);
293                 break;
294         default:
295                 return -EINVAL;
296         }
297
298         dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx);
299
300         *cap = ccrx;
301
302         return 0;
303 }
304
305 static int stm32_count_nb_ovf_read(struct counter_device *counter,
306                                    struct counter_count *count, u64 *val)
307 {
308         struct stm32_timer_cnt *const priv = counter_priv(counter);
309         unsigned long irqflags;
310
311         spin_lock_irqsave(&priv->lock, irqflags);
312         *val = priv->nb_ovf;
313         spin_unlock_irqrestore(&priv->lock, irqflags);
314
315         return 0;
316 }
317
318 static int stm32_count_nb_ovf_write(struct counter_device *counter,
319                                     struct counter_count *count, u64 val)
320 {
321         struct stm32_timer_cnt *const priv = counter_priv(counter);
322         unsigned long irqflags;
323
324         spin_lock_irqsave(&priv->lock, irqflags);
325         priv->nb_ovf = val;
326         spin_unlock_irqrestore(&priv->lock, irqflags);
327
328         return 0;
329 }
330
331 static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4);
332
333 static struct counter_comp stm32_count_ext[] = {
334         COUNTER_COMP_DIRECTION(stm32_count_direction_read),
335         COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
336         COUNTER_COMP_CEILING(stm32_count_ceiling_read,
337                              stm32_count_ceiling_write),
338         COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read,
339                                stm32_count_prescaler_write),
340         COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array),
341         COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write),
342 };
343
344 static const enum counter_synapse_action stm32_clock_synapse_actions[] = {
345         COUNTER_SYNAPSE_ACTION_RISING_EDGE,
346 };
347
348 static const enum counter_synapse_action stm32_synapse_actions[] = {
349         COUNTER_SYNAPSE_ACTION_NONE,
350         COUNTER_SYNAPSE_ACTION_BOTH_EDGES
351 };
352
353 static int stm32_action_read(struct counter_device *counter,
354                              struct counter_count *count,
355                              struct counter_synapse *synapse,
356                              enum counter_synapse_action *action)
357 {
358         enum counter_function function;
359         int err;
360
361         err = stm32_count_function_read(counter, count, &function);
362         if (err)
363                 return err;
364
365         switch (function) {
366         case COUNTER_FUNCTION_INCREASE:
367                 /* counts on internal clock when CEN=1 */
368                 if (synapse->signal->id == STM32_CLOCK_SIG)
369                         *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
370                 else
371                         *action = COUNTER_SYNAPSE_ACTION_NONE;
372                 return 0;
373         case COUNTER_FUNCTION_QUADRATURE_X2_A:
374                 /* counts up/down on TI1FP1 edge depending on TI2FP2 level */
375                 if (synapse->signal->id == STM32_CH1_SIG)
376                         *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
377                 else
378                         *action = COUNTER_SYNAPSE_ACTION_NONE;
379                 return 0;
380         case COUNTER_FUNCTION_QUADRATURE_X2_B:
381                 /* counts up/down on TI2FP2 edge depending on TI1FP1 level */
382                 if (synapse->signal->id == STM32_CH2_SIG)
383                         *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
384                 else
385                         *action = COUNTER_SYNAPSE_ACTION_NONE;
386                 return 0;
387         case COUNTER_FUNCTION_QUADRATURE_X4:
388                 /* counts up/down on both TI1FP1 and TI2FP2 edges */
389                 if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG)
390                         *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
391                 else
392                         *action = COUNTER_SYNAPSE_ACTION_NONE;
393                 return 0;
394         default:
395                 return -EINVAL;
396         }
397 }
398
399 struct stm32_count_cc_regs {
400         u32 ccmr_reg;
401         u32 ccmr_mask;
402         u32 ccmr_bits;
403         u32 ccer_bits;
404 };
405
406 static const struct stm32_count_cc_regs stm32_cc[] = {
407         { TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1,
408                 TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP },
409         { TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2,
410                 TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP },
411         { TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3,
412                 TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP },
413         { TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4,
414                 TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP },
415 };
416
417 static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch,
418                                          bool enable)
419 {
420         struct stm32_timer_cnt *const priv = counter_priv(counter);
421         const struct stm32_count_cc_regs *cc;
422         u32 ccmr, ccer;
423
424         if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) {
425                 dev_err(counter->parent, "invalid ch: %d\n", ch);
426                 return -EINVAL;
427         }
428
429         cc = &stm32_cc[ch];
430
431         /*
432          * configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2...
433          * Select both edges / non-inverted to trigger a capture.
434          */
435         if (enable) {
436                 /* first clear possibly latched capture flag upon enabling */
437                 if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits))
438                         regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch));
439                 regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask,
440                                    cc->ccmr_bits);
441                 regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
442         } else {
443                 regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
444                 regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask);
445         }
446
447         regmap_read(priv->regmap, cc->ccmr_reg, &ccmr);
448         regmap_read(priv->regmap, TIM_CCER, &ccer);
449         dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis",
450                 ch, ccmr, ccer);
451
452         return 0;
453 }
454
455 static int stm32_count_events_configure(struct counter_device *counter)
456 {
457         struct stm32_timer_cnt *const priv = counter_priv(counter);
458         struct counter_event_node *event_node;
459         u32 dier = 0;
460         int i, ret;
461
462         list_for_each_entry(event_node, &counter->events_list, l) {
463                 switch (event_node->event) {
464                 case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
465                         /* first clear possibly latched UIF before enabling */
466                         if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE))
467                                 regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF);
468                         dier |= TIM_DIER_UIE;
469                         break;
470                 case COUNTER_EVENT_CAPTURE:
471                         ret = stm32_count_capture_configure(counter, event_node->channel, true);
472                         if (ret)
473                                 return ret;
474                         dier |= TIM_DIER_CCxIE(event_node->channel + 1);
475                         break;
476                 default:
477                         /* should never reach this path */
478                         return -EINVAL;
479                 }
480         }
481
482         /* Enable / disable all events at once, from events_list, so write all DIER bits */
483         regmap_write(priv->regmap, TIM_DIER, dier);
484
485         /* check for disabled capture events */
486         for (i = 0 ; i < priv->nchannels; i++) {
487                 if (!(dier & TIM_DIER_CCxIE(i + 1))) {
488                         ret = stm32_count_capture_configure(counter, i, false);
489                         if (ret)
490                                 return ret;
491                 }
492         }
493
494         return 0;
495 }
496
497 static int stm32_count_watch_validate(struct counter_device *counter,
498                                       const struct counter_watch *watch)
499 {
500         struct stm32_timer_cnt *const priv = counter_priv(counter);
501
502         /* Interrupts are optional */
503         if (!priv->nr_irqs)
504                 return -EOPNOTSUPP;
505
506         switch (watch->event) {
507         case COUNTER_EVENT_CAPTURE:
508                 if (watch->channel >= priv->nchannels) {
509                         dev_err(counter->parent, "Invalid channel %d\n", watch->channel);
510                         return -EINVAL;
511                 }
512                 return 0;
513         case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
514                 return 0;
515         default:
516                 return -EINVAL;
517         }
518 }
519
520 static const struct counter_ops stm32_timer_cnt_ops = {
521         .count_read = stm32_count_read,
522         .count_write = stm32_count_write,
523         .function_read = stm32_count_function_read,
524         .function_write = stm32_count_function_write,
525         .action_read = stm32_action_read,
526         .events_configure = stm32_count_events_configure,
527         .watch_validate = stm32_count_watch_validate,
528 };
529
530 static int stm32_count_clk_get_freq(struct counter_device *counter,
531                                     struct counter_signal *signal, u64 *freq)
532 {
533         struct stm32_timer_cnt *const priv = counter_priv(counter);
534
535         *freq = clk_get_rate(priv->clk);
536
537         return 0;
538 }
539
540 static struct counter_comp stm32_count_clock_ext[] = {
541         COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq),
542 };
543
544 static struct counter_signal stm32_signals[] = {
545         /*
546          * Need to declare all the signals as a static array, and keep the signals order here,
547          * even if they're unused or unexisting on some timer instances. It's an abstraction,
548          * e.g. high level view of the counter features.
549          *
550          * Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2",
551          * and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used,
552          * to indicate that a signal doesn't affect the counter.
553          */
554         {
555                 .id = STM32_CH1_SIG,
556                 .name = "Channel 1"
557         },
558         {
559                 .id = STM32_CH2_SIG,
560                 .name = "Channel 2"
561         },
562         {
563                 .id = STM32_CLOCK_SIG,
564                 .name = "Clock",
565                 .ext = stm32_count_clock_ext,
566                 .num_ext = ARRAY_SIZE(stm32_count_clock_ext),
567         },
568         {
569                 .id = STM32_CH3_SIG,
570                 .name = "Channel 3"
571         },
572         {
573                 .id = STM32_CH4_SIG,
574                 .name = "Channel 4"
575         },
576 };
577
578 static struct counter_synapse stm32_count_synapses[] = {
579         {
580                 .actions_list = stm32_synapse_actions,
581                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
582                 .signal = &stm32_signals[STM32_CH1_SIG]
583         },
584         {
585                 .actions_list = stm32_synapse_actions,
586                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
587                 .signal = &stm32_signals[STM32_CH2_SIG]
588         },
589         {
590                 .actions_list = stm32_clock_synapse_actions,
591                 .num_actions = ARRAY_SIZE(stm32_clock_synapse_actions),
592                 .signal = &stm32_signals[STM32_CLOCK_SIG]
593         },
594         {
595                 .actions_list = stm32_synapse_actions,
596                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
597                 .signal = &stm32_signals[STM32_CH3_SIG]
598         },
599         {
600                 .actions_list = stm32_synapse_actions,
601                 .num_actions = ARRAY_SIZE(stm32_synapse_actions),
602                 .signal = &stm32_signals[STM32_CH4_SIG]
603         },
604 };
605
606 static struct counter_count stm32_counts = {
607         .id = 0,
608         .name = "STM32 Timer Counter",
609         .functions_list = stm32_count_functions,
610         .num_functions = ARRAY_SIZE(stm32_count_functions),
611         .synapses = stm32_count_synapses,
612         .num_synapses = ARRAY_SIZE(stm32_count_synapses),
613         .ext = stm32_count_ext,
614         .num_ext = ARRAY_SIZE(stm32_count_ext)
615 };
616
617 static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr)
618 {
619         struct counter_device *counter = ptr;
620         struct stm32_timer_cnt *const priv = counter_priv(counter);
621         u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */
622         u32 sr, dier;
623         int i;
624
625         regmap_read(priv->regmap, TIM_SR, &sr);
626         regmap_read(priv->regmap, TIM_DIER, &dier);
627         /*
628          * Some status bits in SR don't match with the enable bits in DIER. Only take care of
629          * the possibly enabled bits in DIER (that matches in between SR and DIER).
630          */
631         dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE);
632         sr &= dier;
633
634         if (sr & TIM_SR_UIF) {
635                 spin_lock(&priv->lock);
636                 priv->nb_ovf++;
637                 spin_unlock(&priv->lock);
638                 counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0);
639                 dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n");
640                 /* SR flags can be cleared by writing 0, only clear relevant flag */
641                 clr &= ~TIM_SR_UIF;
642         }
643
644         /* Check capture events */
645         for (i = 0 ; i < priv->nchannels; i++) {
646                 if (sr & TIM_SR_CC_IF(i)) {
647                         counter_push_event(counter, COUNTER_EVENT_CAPTURE, i);
648                         clr &= ~TIM_SR_CC_IF(i);
649                         dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i);
650                 }
651         }
652
653         regmap_write(priv->regmap, TIM_SR, clr);
654
655         return IRQ_HANDLED;
656 };
657
658 static void stm32_timer_cnt_detect_channels(struct device *dev,
659                                             struct stm32_timer_cnt *priv)
660 {
661         u32 ccer, ccer_backup;
662
663         regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
664         regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
665         regmap_read(priv->regmap, TIM_CCER, &ccer);
666         regmap_write(priv->regmap, TIM_CCER, ccer_backup);
667         priv->nchannels = hweight32(ccer & TIM_CCER_CCXE);
668
669         dev_dbg(dev, "has %d cc channels\n", priv->nchannels);
670 }
671
672 /* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */
673 #define STM32_TIM_ENCODER_SUPPORTED     (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7))
674
675 static const char * const stm32_timer_trigger_compat[] = {
676         "st,stm32-timer-trigger",
677         "st,stm32h7-timer-trigger",
678 };
679
680 static int stm32_timer_cnt_probe_encoder(struct device *dev,
681                                          struct stm32_timer_cnt *priv)
682 {
683         struct device *parent = dev->parent;
684         struct device_node *tnode = NULL, *pnode = parent->of_node;
685         int i, ret;
686         u32 idx;
687
688         /*
689          * Need to retrieve the trigger node index from DT, to be able
690          * to determine if the counter supports encoder mode. It also
691          * enforce backward compatibility, and allow to support other
692          * counter modes in this driver (when the timer doesn't support
693          * encoder).
694          */
695         for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++)
696                 tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]);
697         if (!tnode) {
698                 dev_err(dev, "Can't find trigger node\n");
699                 return -ENODATA;
700         }
701
702         ret = of_property_read_u32(tnode, "reg", &idx);
703         of_node_put(tnode);
704         if (ret) {
705                 dev_err(dev, "Can't get index (%d)\n", ret);
706                 return ret;
707         }
708
709         priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx));
710
711         dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no");
712
713         return 0;
714 }
715
716 static int stm32_timer_cnt_probe(struct platform_device *pdev)
717 {
718         struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
719         struct device *dev = &pdev->dev;
720         struct stm32_timer_cnt *priv;
721         struct counter_device *counter;
722         int i, ret;
723
724         if (IS_ERR_OR_NULL(ddata))
725                 return -EINVAL;
726
727         counter = devm_counter_alloc(dev, sizeof(*priv));
728         if (!counter)
729                 return -ENOMEM;
730
731         priv = counter_priv(counter);
732
733         priv->regmap = ddata->regmap;
734         priv->clk = ddata->clk;
735         priv->max_arr = ddata->max_arr;
736         priv->nr_irqs = ddata->nr_irqs;
737
738         ret = stm32_timer_cnt_probe_encoder(dev, priv);
739         if (ret)
740                 return ret;
741
742         stm32_timer_cnt_detect_channels(dev, priv);
743
744         counter->name = dev_name(dev);
745         counter->parent = dev;
746         counter->ops = &stm32_timer_cnt_ops;
747         counter->counts = &stm32_counts;
748         counter->num_counts = 1;
749         counter->signals = stm32_signals;
750         counter->num_signals = ARRAY_SIZE(stm32_signals);
751
752         spin_lock_init(&priv->lock);
753
754         platform_set_drvdata(pdev, priv);
755
756         /* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */
757         if (priv->nr_irqs == 1) {
758                 /* All events reported through the global interrupt */
759                 ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr,
760                                        0, dev_name(dev), counter);
761                 if (ret) {
762                         dev_err(dev, "Failed to request irq %d (err %d)\n",
763                                 ddata->irq[0], ret);
764                         return ret;
765                 }
766         } else {
767                 for (i = 0; i < priv->nr_irqs; i++) {
768                         /*
769                          * Only take care of update IRQ for overflow events, and cc for
770                          * capture events.
771                          */
772                         if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC)
773                                 continue;
774
775                         ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr,
776                                                0, dev_name(dev), counter);
777                         if (ret) {
778                                 dev_err(dev, "Failed to request irq %d (err %d)\n",
779                                         ddata->irq[i], ret);
780                                 return ret;
781                         }
782                 }
783         }
784
785         /* Reset input selector to its default input */
786         regmap_write(priv->regmap, TIM_TISEL, 0x0);
787
788         /* Register Counter device */
789         ret = devm_counter_add(dev, counter);
790         if (ret < 0)
791                 dev_err_probe(dev, ret, "Failed to add counter\n");
792
793         return ret;
794 }
795
796 static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
797 {
798         struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
799
800         /* Only take care of enabled counter: don't disturb other MFD child */
801         if (priv->enabled) {
802                 /* Backup registers that may get lost in low power mode */
803                 regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
804                 regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
805                 regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
806                 regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
807
808                 /* Disable the counter */
809                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
810                 clk_disable(priv->clk);
811         }
812
813         return pinctrl_pm_select_sleep_state(dev);
814 }
815
816 static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
817 {
818         struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
819         int ret;
820
821         ret = pinctrl_pm_select_default_state(dev);
822         if (ret)
823                 return ret;
824
825         if (priv->enabled) {
826                 ret = clk_enable(priv->clk);
827                 if (ret) {
828                         dev_err(dev, "Cannot enable clock %d\n", ret);
829                         return ret;
830                 }
831
832                 /* Restore registers that may have been lost */
833                 regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
834                 regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
835                 regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
836
837                 /* Also re-enables the counter */
838                 regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
839         }
840
841         return 0;
842 }
843
844 static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
845                          stm32_timer_cnt_resume);
846
847 static const struct of_device_id stm32_timer_cnt_of_match[] = {
848         { .compatible = "st,stm32-timer-counter", },
849         {},
850 };
851 MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
852
853 static struct platform_driver stm32_timer_cnt_driver = {
854         .probe = stm32_timer_cnt_probe,
855         .driver = {
856                 .name = "stm32-timer-counter",
857                 .of_match_table = stm32_timer_cnt_of_match,
858                 .pm = &stm32_timer_cnt_pm_ops,
859         },
860 };
861 module_platform_driver(stm32_timer_cnt_driver);
862
863 MODULE_AUTHOR("Benjamin Gaignard <[email protected]>");
864 MODULE_ALIAS("platform:stm32-timer-counter");
865 MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
866 MODULE_LICENSE("GPL v2");
867 MODULE_IMPORT_NS("COUNTER");
This page took 0.074972 seconds and 4 git commands to generate.