]> Git Repo - J-linux.git/blob - drivers/clocksource/sh_cmt.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / clocksource / sh_cmt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31
32 struct sh_cmt_device;
33
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *                      16B     32B     32B-F   48B     R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels             2       1/4     1       6       2/8
42  * Control Width        16      16      16      16      32
43  * Counter Width        16      32      32      32/48   32/48
44  * Shared Start/Stop    Y       Y       Y       Y       N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62
63 enum sh_cmt_model {
64         SH_CMT_16BIT,
65         SH_CMT_32BIT,
66         SH_CMT_48BIT,
67         SH_CMT0_RCAR_GEN2,
68         SH_CMT1_RCAR_GEN2,
69 };
70
71 struct sh_cmt_info {
72         enum sh_cmt_model model;
73
74         unsigned int channels_mask;
75
76         unsigned long width; /* 16 or 32 bit version of hardware block */
77         u32 overflow_bit;
78         u32 clear_bits;
79
80         /* callbacks for CMSTR and CMCSR access */
81         u32 (*read_control)(void __iomem *base, unsigned long offs);
82         void (*write_control)(void __iomem *base, unsigned long offs,
83                               u32 value);
84
85         /* callbacks for CMCNT and CMCOR access */
86         u32 (*read_count)(void __iomem *base, unsigned long offs);
87         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89
90 struct sh_cmt_channel {
91         struct sh_cmt_device *cmt;
92
93         unsigned int index;     /* Index in the documentation */
94         unsigned int hwidx;     /* Real hardware index */
95
96         void __iomem *iostart;
97         void __iomem *ioctrl;
98
99         unsigned int timer_bit;
100         unsigned long flags;
101         u32 match_value;
102         u32 next_match_value;
103         u32 max_match_value;
104         raw_spinlock_t lock;
105         struct clock_event_device ced;
106         struct clocksource cs;
107         u64 total_cycles;
108         bool cs_enabled;
109 };
110
111 struct sh_cmt_device {
112         struct platform_device *pdev;
113
114         const struct sh_cmt_info *info;
115
116         void __iomem *mapbase;
117         struct clk *clk;
118         unsigned long rate;
119         unsigned int reg_delay;
120
121         raw_spinlock_t lock; /* Protect the shared start/stop register */
122
123         struct sh_cmt_channel *channels;
124         unsigned int num_channels;
125         unsigned int hw_channels;
126
127         bool has_clockevent;
128         bool has_clocksource;
129 };
130
131 #define SH_CMT16_CMCSR_CMF              (1 << 7)
132 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
133 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
134 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
135 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
136 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
138
139 #define SH_CMT32_CMCSR_CMF              (1 << 15)
140 #define SH_CMT32_CMCSR_OVF              (1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
142 #define SH_CMT32_CMCSR_STTF             (1 << 12)
143 #define SH_CMT32_CMCSR_STPF             (1 << 11)
144 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
145 #define SH_CMT32_CMCSR_CMS              (1 << 9)
146 #define SH_CMT32_CMCSR_CMM              (1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
158
159 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160 {
161         return ioread16(base + (offs << 1));
162 }
163
164 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165 {
166         return ioread32(base + (offs << 2));
167 }
168
169 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170 {
171         iowrite16(value, base + (offs << 1));
172 }
173
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175 {
176         iowrite32(value, base + (offs << 2));
177 }
178
179 static const struct sh_cmt_info sh_cmt_info[] = {
180         [SH_CMT_16BIT] = {
181                 .model = SH_CMT_16BIT,
182                 .width = 16,
183                 .overflow_bit = SH_CMT16_CMCSR_CMF,
184                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
185                 .read_control = sh_cmt_read16,
186                 .write_control = sh_cmt_write16,
187                 .read_count = sh_cmt_read16,
188                 .write_count = sh_cmt_write16,
189         },
190         [SH_CMT_32BIT] = {
191                 .model = SH_CMT_32BIT,
192                 .width = 32,
193                 .overflow_bit = SH_CMT32_CMCSR_CMF,
194                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195                 .read_control = sh_cmt_read16,
196                 .write_control = sh_cmt_write16,
197                 .read_count = sh_cmt_read32,
198                 .write_count = sh_cmt_write32,
199         },
200         [SH_CMT_48BIT] = {
201                 .model = SH_CMT_48BIT,
202                 .channels_mask = 0x3f,
203                 .width = 32,
204                 .overflow_bit = SH_CMT32_CMCSR_CMF,
205                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206                 .read_control = sh_cmt_read32,
207                 .write_control = sh_cmt_write32,
208                 .read_count = sh_cmt_read32,
209                 .write_count = sh_cmt_write32,
210         },
211         [SH_CMT0_RCAR_GEN2] = {
212                 .model = SH_CMT0_RCAR_GEN2,
213                 .channels_mask = 0x60,
214                 .width = 32,
215                 .overflow_bit = SH_CMT32_CMCSR_CMF,
216                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217                 .read_control = sh_cmt_read32,
218                 .write_control = sh_cmt_write32,
219                 .read_count = sh_cmt_read32,
220                 .write_count = sh_cmt_write32,
221         },
222         [SH_CMT1_RCAR_GEN2] = {
223                 .model = SH_CMT1_RCAR_GEN2,
224                 .channels_mask = 0xff,
225                 .width = 32,
226                 .overflow_bit = SH_CMT32_CMCSR_CMF,
227                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228                 .read_control = sh_cmt_read32,
229                 .write_control = sh_cmt_write32,
230                 .read_count = sh_cmt_read32,
231                 .write_count = sh_cmt_write32,
232         },
233 };
234
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238
239 #define CMCLKE  0x1000  /* CLK Enable Register (R-Car Gen2) */
240
241 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
242 {
243         if (ch->iostart)
244                 return ch->cmt->info->read_control(ch->iostart, 0);
245         else
246                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
247 }
248
249 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
250 {
251         u32 old_value = sh_cmt_read_cmstr(ch);
252
253         if (value != old_value) {
254                 if (ch->iostart) {
255                         ch->cmt->info->write_control(ch->iostart, 0, value);
256                         udelay(ch->cmt->reg_delay);
257                 } else {
258                         ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259                         udelay(ch->cmt->reg_delay);
260                 }
261         }
262 }
263
264 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
265 {
266         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
267 }
268
269 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
270 {
271         u32 old_value = sh_cmt_read_cmcsr(ch);
272
273         if (value != old_value) {
274                 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275                 udelay(ch->cmt->reg_delay);
276         }
277 }
278
279 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
280 {
281         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
282 }
283
284 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
285 {
286         /* Tests showed that we need to wait 3 clocks here */
287         unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288         u32 reg;
289
290         if (ch->cmt->info->model > SH_CMT_16BIT) {
291                 int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292                                                    !(reg & SH_CMT32_CMCSR_WRFLG),
293                                                    1, cmcnt_delay, false, ch);
294                 if (ret < 0)
295                         return ret;
296         }
297
298         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299         udelay(cmcnt_delay);
300         return 0;
301 }
302
303 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
304 {
305         u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
306
307         if (value != old_value) {
308                 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309                 udelay(ch->cmt->reg_delay);
310         }
311 }
312
313 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
314 {
315         u32 v1, v2, v3;
316         u32 o1, o2;
317
318         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
319
320         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
321         do {
322                 o2 = o1;
323                 v1 = sh_cmt_read_cmcnt(ch);
324                 v2 = sh_cmt_read_cmcnt(ch);
325                 v3 = sh_cmt_read_cmcnt(ch);
326                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
329
330         *has_wrapped = o1;
331         return v2;
332 }
333
334 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
335 {
336         unsigned long flags;
337         u32 value;
338
339         /* start stop register shared by multiple timer channels */
340         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341         value = sh_cmt_read_cmstr(ch);
342
343         if (start)
344                 value |= 1 << ch->timer_bit;
345         else
346                 value &= ~(1 << ch->timer_bit);
347
348         sh_cmt_write_cmstr(ch, value);
349         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
350 }
351
352 static int sh_cmt_enable(struct sh_cmt_channel *ch)
353 {
354         int ret;
355
356         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
357
358         /* enable clock */
359         ret = clk_enable(ch->cmt->clk);
360         if (ret) {
361                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
362                         ch->index);
363                 goto err0;
364         }
365
366         /* make sure channel is disabled */
367         sh_cmt_start_stop_ch(ch, 0);
368
369         /* configure channel, periodic mode and maximum timeout */
370         if (ch->cmt->info->width == 16) {
371                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
372                                    SH_CMT16_CMCSR_CKS512);
373         } else {
374                 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
375                               SH_CMT32_CMCSR_CMTOUT_IE : 0;
376                 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
377                                    SH_CMT32_CMCSR_CMR_IRQ |
378                                    SH_CMT32_CMCSR_CKS_RCLK8);
379         }
380
381         sh_cmt_write_cmcor(ch, 0xffffffff);
382         ret = sh_cmt_write_cmcnt(ch, 0);
383
384         if (ret || sh_cmt_read_cmcnt(ch)) {
385                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
386                         ch->index);
387                 ret = -ETIMEDOUT;
388                 goto err1;
389         }
390
391         /* enable channel */
392         sh_cmt_start_stop_ch(ch, 1);
393         return 0;
394  err1:
395         /* stop clock */
396         clk_disable(ch->cmt->clk);
397
398  err0:
399         return ret;
400 }
401
402 static void sh_cmt_disable(struct sh_cmt_channel *ch)
403 {
404         /* disable channel */
405         sh_cmt_start_stop_ch(ch, 0);
406
407         /* disable interrupts in CMT block */
408         sh_cmt_write_cmcsr(ch, 0);
409
410         /* stop clock */
411         clk_disable(ch->cmt->clk);
412
413         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
414 }
415
416 /* private flags */
417 #define FLAG_CLOCKEVENT (1 << 0)
418 #define FLAG_CLOCKSOURCE (1 << 1)
419 #define FLAG_REPROGRAM (1 << 2)
420 #define FLAG_SKIPEVENT (1 << 3)
421 #define FLAG_IRQCONTEXT (1 << 4)
422
423 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
424                                               int absolute)
425 {
426         u32 value = ch->next_match_value;
427         u32 new_match;
428         u32 delay = 0;
429         u32 now = 0;
430         u32 has_wrapped;
431
432         now = sh_cmt_get_counter(ch, &has_wrapped);
433         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
434
435         if (has_wrapped) {
436                 /* we're competing with the interrupt handler.
437                  *  -> let the interrupt handler reprogram the timer.
438                  *  -> interrupt number two handles the event.
439                  */
440                 ch->flags |= FLAG_SKIPEVENT;
441                 return;
442         }
443
444         if (absolute)
445                 now = 0;
446
447         do {
448                 /* reprogram the timer hardware,
449                  * but don't save the new match value yet.
450                  */
451                 new_match = now + value + delay;
452                 if (new_match > ch->max_match_value)
453                         new_match = ch->max_match_value;
454
455                 sh_cmt_write_cmcor(ch, new_match);
456
457                 now = sh_cmt_get_counter(ch, &has_wrapped);
458                 if (has_wrapped && (new_match > ch->match_value)) {
459                         /* we are changing to a greater match value,
460                          * so this wrap must be caused by the counter
461                          * matching the old value.
462                          * -> first interrupt reprograms the timer.
463                          * -> interrupt number two handles the event.
464                          */
465                         ch->flags |= FLAG_SKIPEVENT;
466                         break;
467                 }
468
469                 if (has_wrapped) {
470                         /* we are changing to a smaller match value,
471                          * so the wrap must be caused by the counter
472                          * matching the new value.
473                          * -> save programmed match value.
474                          * -> let isr handle the event.
475                          */
476                         ch->match_value = new_match;
477                         break;
478                 }
479
480                 /* be safe: verify hardware settings */
481                 if (now < new_match) {
482                         /* timer value is below match value, all good.
483                          * this makes sure we won't miss any match events.
484                          * -> save programmed match value.
485                          * -> let isr handle the event.
486                          */
487                         ch->match_value = new_match;
488                         break;
489                 }
490
491                 /* the counter has reached a value greater
492                  * than our new match value. and since the
493                  * has_wrapped flag isn't set we must have
494                  * programmed a too close event.
495                  * -> increase delay and retry.
496                  */
497                 if (delay)
498                         delay <<= 1;
499                 else
500                         delay = 1;
501
502                 if (!delay)
503                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
504                                  ch->index);
505
506         } while (delay);
507 }
508
509 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
510 {
511         if (delta > ch->max_match_value)
512                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
513                          ch->index);
514
515         ch->next_match_value = delta;
516         sh_cmt_clock_event_program_verify(ch, 0);
517 }
518
519 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
520 {
521         unsigned long flags;
522
523         raw_spin_lock_irqsave(&ch->lock, flags);
524         __sh_cmt_set_next(ch, delta);
525         raw_spin_unlock_irqrestore(&ch->lock, flags);
526 }
527
528 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
529 {
530         struct sh_cmt_channel *ch = dev_id;
531         unsigned long flags;
532
533         /* clear flags */
534         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535                            ch->cmt->info->clear_bits);
536
537         /* update clock source counter to begin with if enabled
538          * the wrap flag should be cleared by the timer specific
539          * isr before we end up here.
540          */
541         if (ch->flags & FLAG_CLOCKSOURCE)
542                 ch->total_cycles += ch->match_value + 1;
543
544         if (!(ch->flags & FLAG_REPROGRAM))
545                 ch->next_match_value = ch->max_match_value;
546
547         ch->flags |= FLAG_IRQCONTEXT;
548
549         if (ch->flags & FLAG_CLOCKEVENT) {
550                 if (!(ch->flags & FLAG_SKIPEVENT)) {
551                         if (clockevent_state_oneshot(&ch->ced)) {
552                                 ch->next_match_value = ch->max_match_value;
553                                 ch->flags |= FLAG_REPROGRAM;
554                         }
555
556                         ch->ced.event_handler(&ch->ced);
557                 }
558         }
559
560         ch->flags &= ~FLAG_SKIPEVENT;
561
562         raw_spin_lock_irqsave(&ch->lock, flags);
563
564         if (ch->flags & FLAG_REPROGRAM) {
565                 ch->flags &= ~FLAG_REPROGRAM;
566                 sh_cmt_clock_event_program_verify(ch, 1);
567
568                 if (ch->flags & FLAG_CLOCKEVENT)
569                         if ((clockevent_state_shutdown(&ch->ced))
570                             || (ch->match_value == ch->next_match_value))
571                                 ch->flags &= ~FLAG_REPROGRAM;
572         }
573
574         ch->flags &= ~FLAG_IRQCONTEXT;
575
576         raw_spin_unlock_irqrestore(&ch->lock, flags);
577
578         return IRQ_HANDLED;
579 }
580
581 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
582 {
583         int ret = 0;
584         unsigned long flags;
585
586         if (flag & FLAG_CLOCKSOURCE)
587                 pm_runtime_get_sync(&ch->cmt->pdev->dev);
588
589         raw_spin_lock_irqsave(&ch->lock, flags);
590
591         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
592                 if (flag & FLAG_CLOCKEVENT)
593                         pm_runtime_get_sync(&ch->cmt->pdev->dev);
594                 ret = sh_cmt_enable(ch);
595         }
596
597         if (ret)
598                 goto out;
599         ch->flags |= flag;
600
601         /* setup timeout if no clockevent */
602         if (ch->cmt->num_channels == 1 &&
603             flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
604                 __sh_cmt_set_next(ch, ch->max_match_value);
605  out:
606         raw_spin_unlock_irqrestore(&ch->lock, flags);
607
608         return ret;
609 }
610
611 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
612 {
613         unsigned long flags;
614         unsigned long f;
615
616         raw_spin_lock_irqsave(&ch->lock, flags);
617
618         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
619         ch->flags &= ~flag;
620
621         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
622                 sh_cmt_disable(ch);
623                 if (flag & FLAG_CLOCKEVENT)
624                         pm_runtime_put(&ch->cmt->pdev->dev);
625         }
626
627         /* adjust the timeout to maximum if only clocksource left */
628         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
629                 __sh_cmt_set_next(ch, ch->max_match_value);
630
631         raw_spin_unlock_irqrestore(&ch->lock, flags);
632
633         if (flag & FLAG_CLOCKSOURCE)
634                 pm_runtime_put(&ch->cmt->pdev->dev);
635 }
636
637 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
638 {
639         return container_of(cs, struct sh_cmt_channel, cs);
640 }
641
642 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
643 {
644         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
645         u32 has_wrapped;
646
647         if (ch->cmt->num_channels == 1) {
648                 unsigned long flags;
649                 u64 value;
650                 u32 raw;
651
652                 raw_spin_lock_irqsave(&ch->lock, flags);
653                 value = ch->total_cycles;
654                 raw = sh_cmt_get_counter(ch, &has_wrapped);
655
656                 if (unlikely(has_wrapped))
657                         raw += ch->match_value + 1;
658                 raw_spin_unlock_irqrestore(&ch->lock, flags);
659
660                 return value + raw;
661         }
662
663         return sh_cmt_get_counter(ch, &has_wrapped);
664 }
665
666 static int sh_cmt_clocksource_enable(struct clocksource *cs)
667 {
668         int ret;
669         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
670
671         WARN_ON(ch->cs_enabled);
672
673         ch->total_cycles = 0;
674
675         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
676         if (!ret)
677                 ch->cs_enabled = true;
678
679         return ret;
680 }
681
682 static void sh_cmt_clocksource_disable(struct clocksource *cs)
683 {
684         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
685
686         WARN_ON(!ch->cs_enabled);
687
688         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
689         ch->cs_enabled = false;
690 }
691
692 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
693 {
694         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
695
696         if (!ch->cs_enabled)
697                 return;
698
699         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
700         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
701 }
702
703 static void sh_cmt_clocksource_resume(struct clocksource *cs)
704 {
705         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
706
707         if (!ch->cs_enabled)
708                 return;
709
710         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
711         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
712 }
713
714 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
715                                        const char *name)
716 {
717         struct clocksource *cs = &ch->cs;
718
719         cs->name = name;
720         cs->rating = 125;
721         cs->read = sh_cmt_clocksource_read;
722         cs->enable = sh_cmt_clocksource_enable;
723         cs->disable = sh_cmt_clocksource_disable;
724         cs->suspend = sh_cmt_clocksource_suspend;
725         cs->resume = sh_cmt_clocksource_resume;
726         cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
727         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
728
729         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
730                  ch->index);
731
732         clocksource_register_hz(cs, ch->cmt->rate);
733         return 0;
734 }
735
736 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
737 {
738         return container_of(ced, struct sh_cmt_channel, ced);
739 }
740
741 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
742 {
743         sh_cmt_start(ch, FLAG_CLOCKEVENT);
744
745         if (periodic)
746                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
747         else
748                 sh_cmt_set_next(ch, ch->max_match_value);
749 }
750
751 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
752 {
753         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
754
755         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
756         return 0;
757 }
758
759 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
760                                         int periodic)
761 {
762         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
763
764         /* deal with old setting first */
765         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
766                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
767
768         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
769                  ch->index, periodic ? "periodic" : "oneshot");
770         sh_cmt_clock_event_start(ch, periodic);
771         return 0;
772 }
773
774 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
775 {
776         return sh_cmt_clock_event_set_state(ced, 0);
777 }
778
779 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
780 {
781         return sh_cmt_clock_event_set_state(ced, 1);
782 }
783
784 static int sh_cmt_clock_event_next(unsigned long delta,
785                                    struct clock_event_device *ced)
786 {
787         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
788         unsigned long flags;
789
790         BUG_ON(!clockevent_state_oneshot(ced));
791
792         raw_spin_lock_irqsave(&ch->lock, flags);
793
794         if (likely(ch->flags & FLAG_IRQCONTEXT))
795                 ch->next_match_value = delta - 1;
796         else
797                 __sh_cmt_set_next(ch, delta - 1);
798
799         raw_spin_unlock_irqrestore(&ch->lock, flags);
800
801         return 0;
802 }
803
804 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
805 {
806         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
807
808         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
809         clk_unprepare(ch->cmt->clk);
810 }
811
812 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
813 {
814         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
815
816         clk_prepare(ch->cmt->clk);
817         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
818 }
819
820 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
821                                       const char *name)
822 {
823         struct clock_event_device *ced = &ch->ced;
824         int irq;
825         int ret;
826
827         irq = platform_get_irq(ch->cmt->pdev, ch->index);
828         if (irq < 0)
829                 return irq;
830
831         ret = request_irq(irq, sh_cmt_interrupt,
832                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
833                           dev_name(&ch->cmt->pdev->dev), ch);
834         if (ret) {
835                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
836                         ch->index, irq);
837                 return ret;
838         }
839
840         ced->name = name;
841         ced->features = CLOCK_EVT_FEAT_PERIODIC;
842         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
843         ced->rating = 125;
844         ced->cpumask = cpu_possible_mask;
845         ced->set_next_event = sh_cmt_clock_event_next;
846         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
847         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
848         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
849         ced->suspend = sh_cmt_clock_event_suspend;
850         ced->resume = sh_cmt_clock_event_resume;
851
852         /* TODO: calculate good shift from rate and counter bit width */
853         ced->shift = 32;
854         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
855         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
856         ced->max_delta_ticks = ch->max_match_value;
857         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
858         ced->min_delta_ticks = 0x1f;
859
860         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
861                  ch->index);
862         clockevents_register_device(ced);
863
864         return 0;
865 }
866
867 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
868                            bool clockevent, bool clocksource)
869 {
870         int ret;
871
872         if (clockevent) {
873                 ch->cmt->has_clockevent = true;
874                 ret = sh_cmt_register_clockevent(ch, name);
875                 if (ret < 0)
876                         return ret;
877         }
878
879         if (clocksource) {
880                 ch->cmt->has_clocksource = true;
881                 sh_cmt_register_clocksource(ch, name);
882         }
883
884         return 0;
885 }
886
887 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
888                                 unsigned int hwidx, bool clockevent,
889                                 bool clocksource, struct sh_cmt_device *cmt)
890 {
891         u32 value;
892         int ret;
893
894         /* Skip unused channels. */
895         if (!clockevent && !clocksource)
896                 return 0;
897
898         ch->cmt = cmt;
899         ch->index = index;
900         ch->hwidx = hwidx;
901         ch->timer_bit = hwidx;
902
903         /*
904          * Compute the address of the channel control register block. For the
905          * timers with a per-channel start/stop register, compute its address
906          * as well.
907          */
908         switch (cmt->info->model) {
909         case SH_CMT_16BIT:
910                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
911                 break;
912         case SH_CMT_32BIT:
913         case SH_CMT_48BIT:
914                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
915                 break;
916         case SH_CMT0_RCAR_GEN2:
917         case SH_CMT1_RCAR_GEN2:
918                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
919                 ch->ioctrl = ch->iostart + 0x10;
920                 ch->timer_bit = 0;
921
922                 /* Enable the clock supply to the channel */
923                 value = ioread32(cmt->mapbase + CMCLKE);
924                 value |= BIT(hwidx);
925                 iowrite32(value, cmt->mapbase + CMCLKE);
926                 break;
927         }
928
929         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
930                 ch->max_match_value = ~0;
931         else
932                 ch->max_match_value = (1 << cmt->info->width) - 1;
933
934         ch->match_value = ch->max_match_value;
935         raw_spin_lock_init(&ch->lock);
936
937         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
938                               clockevent, clocksource);
939         if (ret) {
940                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
941                         ch->index);
942                 return ret;
943         }
944         ch->cs_enabled = false;
945
946         return 0;
947 }
948
949 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
950 {
951         struct resource *mem;
952
953         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
954         if (!mem) {
955                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
956                 return -ENXIO;
957         }
958
959         cmt->mapbase = ioremap(mem->start, resource_size(mem));
960         if (cmt->mapbase == NULL) {
961                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
962                 return -ENXIO;
963         }
964
965         return 0;
966 }
967
968 static const struct platform_device_id sh_cmt_id_table[] = {
969         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
970         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
971         { }
972 };
973 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
974
975 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
976         {
977                 /* deprecated, preserved for backward compatibility */
978                 .compatible = "renesas,cmt-48",
979                 .data = &sh_cmt_info[SH_CMT_48BIT]
980         },
981         {
982                 /* deprecated, preserved for backward compatibility */
983                 .compatible = "renesas,cmt-48-gen2",
984                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
985         },
986         {
987                 .compatible = "renesas,r8a7740-cmt1",
988                 .data = &sh_cmt_info[SH_CMT_48BIT]
989         },
990         {
991                 .compatible = "renesas,sh73a0-cmt1",
992                 .data = &sh_cmt_info[SH_CMT_48BIT]
993         },
994         {
995                 .compatible = "renesas,rcar-gen2-cmt0",
996                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
997         },
998         {
999                 .compatible = "renesas,rcar-gen2-cmt1",
1000                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1001         },
1002         {
1003                 .compatible = "renesas,rcar-gen3-cmt0",
1004                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1005         },
1006         {
1007                 .compatible = "renesas,rcar-gen3-cmt1",
1008                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1009         },
1010         {
1011                 .compatible = "renesas,rcar-gen4-cmt0",
1012                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1013         },
1014         {
1015                 .compatible = "renesas,rcar-gen4-cmt1",
1016                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1017         },
1018         { }
1019 };
1020 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1021
1022 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1023 {
1024         unsigned int mask, i;
1025         unsigned long rate;
1026         int ret;
1027
1028         cmt->pdev = pdev;
1029         raw_spin_lock_init(&cmt->lock);
1030
1031         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1032                 cmt->info = of_device_get_match_data(&pdev->dev);
1033                 cmt->hw_channels = cmt->info->channels_mask;
1034         } else if (pdev->dev.platform_data) {
1035                 struct sh_timer_config *cfg = pdev->dev.platform_data;
1036                 const struct platform_device_id *id = pdev->id_entry;
1037
1038                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1039                 cmt->hw_channels = cfg->channels_mask;
1040         } else {
1041                 dev_err(&cmt->pdev->dev, "missing platform data\n");
1042                 return -ENXIO;
1043         }
1044
1045         /* Get hold of clock. */
1046         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1047         if (IS_ERR(cmt->clk)) {
1048                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1049                 return PTR_ERR(cmt->clk);
1050         }
1051
1052         ret = clk_prepare(cmt->clk);
1053         if (ret < 0)
1054                 goto err_clk_put;
1055
1056         /* Determine clock rate. */
1057         ret = clk_enable(cmt->clk);
1058         if (ret < 0)
1059                 goto err_clk_unprepare;
1060
1061         rate = clk_get_rate(cmt->clk);
1062         if (!rate) {
1063                 ret = -EINVAL;
1064                 goto err_clk_disable;
1065         }
1066
1067         /* We shall wait 2 input clks after register writes */
1068         if (cmt->info->model >= SH_CMT_48BIT)
1069                 cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1070         cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1071
1072         /* Map the memory resource(s). */
1073         ret = sh_cmt_map_memory(cmt);
1074         if (ret < 0)
1075                 goto err_clk_disable;
1076
1077         /* Allocate and setup the channels. */
1078         cmt->num_channels = hweight8(cmt->hw_channels);
1079         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1080                                 GFP_KERNEL);
1081         if (cmt->channels == NULL) {
1082                 ret = -ENOMEM;
1083                 goto err_unmap;
1084         }
1085
1086         /*
1087          * Use the first channel as a clock event device and the second channel
1088          * as a clock source. If only one channel is available use it for both.
1089          */
1090         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1091                 unsigned int hwidx = ffs(mask) - 1;
1092                 bool clocksource = i == 1 || cmt->num_channels == 1;
1093                 bool clockevent = i == 0;
1094
1095                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1096                                            clockevent, clocksource, cmt);
1097                 if (ret < 0)
1098                         goto err_unmap;
1099
1100                 mask &= ~(1 << hwidx);
1101         }
1102
1103         clk_disable(cmt->clk);
1104
1105         platform_set_drvdata(pdev, cmt);
1106
1107         return 0;
1108
1109 err_unmap:
1110         kfree(cmt->channels);
1111         iounmap(cmt->mapbase);
1112 err_clk_disable:
1113         clk_disable(cmt->clk);
1114 err_clk_unprepare:
1115         clk_unprepare(cmt->clk);
1116 err_clk_put:
1117         clk_put(cmt->clk);
1118         return ret;
1119 }
1120
1121 static int sh_cmt_probe(struct platform_device *pdev)
1122 {
1123         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1124         int ret;
1125
1126         if (!is_sh_early_platform_device(pdev)) {
1127                 pm_runtime_set_active(&pdev->dev);
1128                 pm_runtime_enable(&pdev->dev);
1129         }
1130
1131         if (cmt) {
1132                 dev_info(&pdev->dev, "kept as earlytimer\n");
1133                 goto out;
1134         }
1135
1136         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1137         if (cmt == NULL)
1138                 return -ENOMEM;
1139
1140         ret = sh_cmt_setup(cmt, pdev);
1141         if (ret) {
1142                 kfree(cmt);
1143                 pm_runtime_idle(&pdev->dev);
1144                 return ret;
1145         }
1146         if (is_sh_early_platform_device(pdev))
1147                 return 0;
1148
1149  out:
1150         if (cmt->has_clockevent || cmt->has_clocksource)
1151                 pm_runtime_irq_safe(&pdev->dev);
1152         else
1153                 pm_runtime_idle(&pdev->dev);
1154
1155         return 0;
1156 }
1157
1158 static struct platform_driver sh_cmt_device_driver = {
1159         .probe          = sh_cmt_probe,
1160         .driver         = {
1161                 .name   = "sh_cmt",
1162                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1163                 .suppress_bind_attrs = true,
1164         },
1165         .id_table       = sh_cmt_id_table,
1166 };
1167
1168 static int __init sh_cmt_init(void)
1169 {
1170         return platform_driver_register(&sh_cmt_device_driver);
1171 }
1172
1173 static void __exit sh_cmt_exit(void)
1174 {
1175         platform_driver_unregister(&sh_cmt_device_driver);
1176 }
1177
1178 #ifdef CONFIG_SUPERH
1179 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1180 #endif
1181
1182 subsys_initcall(sh_cmt_init);
1183 module_exit(sh_cmt_exit);
1184
1185 MODULE_AUTHOR("Magnus Damm");
1186 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
This page took 0.092306 seconds and 4 git commands to generate.