]> Git Repo - J-linux.git/blob - drivers/base/regmap/regmap-irq.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / base / regmap / regmap-irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <[email protected]>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21         struct mutex lock;
22         struct irq_chip irq_chip;
23
24         struct regmap *map;
25         const struct regmap_irq_chip *chip;
26
27         int irq_base;
28         struct irq_domain *domain;
29
30         int irq;
31         int wake_count;
32
33         void *status_reg_buf;
34         unsigned int *main_status_buf;
35         unsigned int *status_buf;
36         unsigned int *mask_buf;
37         unsigned int *mask_buf_def;
38         unsigned int *wake_buf;
39         unsigned int *type_buf;
40         unsigned int *type_buf_def;
41         unsigned int **config_buf;
42
43         unsigned int irq_reg_stride;
44
45         unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46                                     unsigned int base, int index);
47
48         unsigned int clear_status:1;
49 };
50
51 static inline const
52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53                                      int irq)
54 {
55         return &data->chip->irqs[irq];
56 }
57
58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59 {
60         struct regmap *map = data->map;
61
62         /*
63          * While possible that a user-defined ->get_irq_reg() callback might
64          * be linear enough to support bulk reads, most of the time it won't.
65          * Therefore only allow them if the default callback is being used.
66          */
67         return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68                data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69                !map->use_single_read;
70 }
71
72 static void regmap_irq_lock(struct irq_data *data)
73 {
74         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75
76         mutex_lock(&d->lock);
77 }
78
79 static void regmap_irq_sync_unlock(struct irq_data *data)
80 {
81         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82         struct regmap *map = d->map;
83         int i, j, ret;
84         u32 reg;
85         u32 val;
86
87         if (d->chip->runtime_pm) {
88                 ret = pm_runtime_get_sync(map->dev);
89                 if (ret < 0)
90                         dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91                                 ret);
92         }
93
94         if (d->clear_status) {
95                 for (i = 0; i < d->chip->num_regs; i++) {
96                         reg = d->get_irq_reg(d, d->chip->status_base, i);
97
98                         ret = regmap_read(map, reg, &val);
99                         if (ret)
100                                 dev_err(d->map->dev,
101                                         "Failed to clear the interrupt status bits\n");
102                 }
103
104                 d->clear_status = false;
105         }
106
107         /*
108          * If there's been a change in the mask write it back to the
109          * hardware.  We rely on the use of the regmap core cache to
110          * suppress pointless writes.
111          */
112         for (i = 0; i < d->chip->num_regs; i++) {
113                 if (d->chip->handle_mask_sync)
114                         d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115                                                   d->mask_buf[i],
116                                                   d->chip->irq_drv_data);
117
118                 if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119                         reg = d->get_irq_reg(d, d->chip->mask_base, i);
120                         ret = regmap_update_bits(d->map, reg,
121                                                  d->mask_buf_def[i],
122                                                  d->mask_buf[i]);
123                         if (ret)
124                                 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125                 }
126
127                 if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128                         reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129                         ret = regmap_update_bits(d->map, reg,
130                                         d->mask_buf_def[i], ~d->mask_buf[i]);
131                         if (ret)
132                                 dev_err(d->map->dev, "Failed to sync masks in %x\n",
133                                         reg);
134                 }
135
136                 reg = d->get_irq_reg(d, d->chip->wake_base, i);
137                 if (d->wake_buf) {
138                         if (d->chip->wake_invert)
139                                 ret = regmap_update_bits(d->map, reg,
140                                                          d->mask_buf_def[i],
141                                                          ~d->wake_buf[i]);
142                         else
143                                 ret = regmap_update_bits(d->map, reg,
144                                                          d->mask_buf_def[i],
145                                                          d->wake_buf[i]);
146                         if (ret != 0)
147                                 dev_err(d->map->dev,
148                                         "Failed to sync wakes in %x: %d\n",
149                                         reg, ret);
150                 }
151
152                 if (!d->chip->init_ack_masked)
153                         continue;
154                 /*
155                  * Ack all the masked interrupts unconditionally,
156                  * OR if there is masked interrupt which hasn't been Acked,
157                  * it'll be ignored in irq handler, then may introduce irq storm
158                  */
159                 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160                         reg = d->get_irq_reg(d, d->chip->ack_base, i);
161
162                         /* some chips ack by write 0 */
163                         if (d->chip->ack_invert)
164                                 ret = regmap_write(map, reg, ~d->mask_buf[i]);
165                         else
166                                 ret = regmap_write(map, reg, d->mask_buf[i]);
167                         if (d->chip->clear_ack) {
168                                 if (d->chip->ack_invert && !ret)
169                                         ret = regmap_write(map, reg, UINT_MAX);
170                                 else if (!ret)
171                                         ret = regmap_write(map, reg, 0);
172                         }
173                         if (ret != 0)
174                                 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175                                         reg, ret);
176                 }
177         }
178
179         for (i = 0; i < d->chip->num_config_bases; i++) {
180                 for (j = 0; j < d->chip->num_config_regs; j++) {
181                         reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182                         ret = regmap_write(map, reg, d->config_buf[i][j]);
183                         if (ret)
184                                 dev_err(d->map->dev,
185                                         "Failed to write config %x: %d\n",
186                                         reg, ret);
187                 }
188         }
189
190         if (d->chip->runtime_pm)
191                 pm_runtime_put(map->dev);
192
193         /* If we've changed our wakeup count propagate it to the parent */
194         if (d->wake_count < 0)
195                 for (i = d->wake_count; i < 0; i++)
196                         irq_set_irq_wake(d->irq, 0);
197         else if (d->wake_count > 0)
198                 for (i = 0; i < d->wake_count; i++)
199                         irq_set_irq_wake(d->irq, 1);
200
201         d->wake_count = 0;
202
203         mutex_unlock(&d->lock);
204 }
205
206 static void regmap_irq_enable(struct irq_data *data)
207 {
208         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209         struct regmap *map = d->map;
210         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211         unsigned int reg = irq_data->reg_offset / map->reg_stride;
212         unsigned int mask;
213
214         /*
215          * The type_in_mask flag means that the underlying hardware uses
216          * separate mask bits for each interrupt trigger type, but we want
217          * to have a single logical interrupt with a configurable type.
218          *
219          * If the interrupt we're enabling defines any supported types
220          * then instead of using the regular mask bits for this interrupt,
221          * use the value previously written to the type buffer at the
222          * corresponding offset in regmap_irq_set_type().
223          */
224         if (d->chip->type_in_mask && irq_data->type.types_supported)
225                 mask = d->type_buf[reg] & irq_data->mask;
226         else
227                 mask = irq_data->mask;
228
229         if (d->chip->clear_on_unmask)
230                 d->clear_status = true;
231
232         d->mask_buf[reg] &= ~mask;
233 }
234
235 static void regmap_irq_disable(struct irq_data *data)
236 {
237         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238         struct regmap *map = d->map;
239         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240
241         d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242 }
243
244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245 {
246         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247         struct regmap *map = d->map;
248         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249         int reg, ret;
250         const struct regmap_irq_type *t = &irq_data->type;
251
252         if ((t->types_supported & type) != type)
253                 return 0;
254
255         reg = t->type_reg_offset / map->reg_stride;
256
257         if (d->chip->type_in_mask) {
258                 ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259                                                         irq_data, reg, d->chip->irq_drv_data);
260                 if (ret)
261                         return ret;
262         }
263
264         if (d->chip->set_type_config) {
265                 ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266                                                reg, d->chip->irq_drv_data);
267                 if (ret)
268                         return ret;
269         }
270
271         return 0;
272 }
273
274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275 {
276         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277         struct regmap *map = d->map;
278         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280         if (on) {
281                 if (d->wake_buf)
282                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
283                                 &= ~irq_data->mask;
284                 d->wake_count++;
285         } else {
286                 if (d->wake_buf)
287                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
288                                 |= irq_data->mask;
289                 d->wake_count--;
290         }
291
292         return 0;
293 }
294
295 static const struct irq_chip regmap_irq_chip = {
296         .irq_bus_lock           = regmap_irq_lock,
297         .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
298         .irq_disable            = regmap_irq_disable,
299         .irq_enable             = regmap_irq_enable,
300         .irq_set_type           = regmap_irq_set_type,
301         .irq_set_wake           = regmap_irq_set_wake,
302 };
303
304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305                                            unsigned int b)
306 {
307         const struct regmap_irq_chip *chip = data->chip;
308         const struct regmap_irq_sub_irq_map *subreg;
309         struct regmap *map = data->map;
310         unsigned int reg;
311         int i, ret = 0;
312
313         if (!chip->sub_reg_offsets) {
314                 reg = data->get_irq_reg(data, chip->status_base, b);
315                 ret = regmap_read(map, reg, &data->status_buf[b]);
316         } else {
317                 /*
318                  * Note we can't use ->get_irq_reg() here because the offsets
319                  * in 'subreg' are *not* interchangeable with indices.
320                  */
321                 subreg = &chip->sub_reg_offsets[b];
322                 for (i = 0; i < subreg->num_regs; i++) {
323                         unsigned int offset = subreg->offset[i];
324                         unsigned int index = offset / map->reg_stride;
325
326                         ret = regmap_read(map, chip->status_base + offset,
327                                           &data->status_buf[index]);
328                         if (ret)
329                                 break;
330                 }
331         }
332         return ret;
333 }
334
335 static irqreturn_t regmap_irq_thread(int irq, void *d)
336 {
337         struct regmap_irq_chip_data *data = d;
338         const struct regmap_irq_chip *chip = data->chip;
339         struct regmap *map = data->map;
340         int ret, i;
341         bool handled = false;
342         u32 reg;
343
344         if (chip->handle_pre_irq)
345                 chip->handle_pre_irq(chip->irq_drv_data);
346
347         if (chip->runtime_pm) {
348                 ret = pm_runtime_get_sync(map->dev);
349                 if (ret < 0) {
350                         dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351                                 ret);
352                         goto exit;
353                 }
354         }
355
356         /*
357          * Read only registers with active IRQs if the chip has 'main status
358          * register'. Else read in the statuses, using a single bulk read if
359          * possible in order to reduce the I/O overheads.
360          */
361
362         if (chip->no_status) {
363                 /* no status register so default to all active */
364                 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365         } else if (chip->num_main_regs) {
366                 unsigned int max_main_bits;
367
368                 max_main_bits = (chip->num_main_status_bits) ?
369                                  chip->num_main_status_bits : chip->num_regs;
370                 /* Clear the status buf as we don't read all status regs */
371                 memset32(data->status_buf, 0, chip->num_regs);
372
373                 /* We could support bulk read for main status registers
374                  * but I don't expect to see devices with really many main
375                  * status registers so let's only support single reads for the
376                  * sake of simplicity. and add bulk reads only if needed
377                  */
378                 for (i = 0; i < chip->num_main_regs; i++) {
379                         reg = data->get_irq_reg(data, chip->main_status, i);
380                         ret = regmap_read(map, reg, &data->main_status_buf[i]);
381                         if (ret) {
382                                 dev_err(map->dev,
383                                         "Failed to read IRQ status %d\n",
384                                         ret);
385                                 goto exit;
386                         }
387                 }
388
389                 /* Read sub registers with active IRQs */
390                 for (i = 0; i < chip->num_main_regs; i++) {
391                         unsigned int b;
392                         const unsigned long mreg = data->main_status_buf[i];
393
394                         for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
395                                 if (i * map->format.val_bytes * 8 + b >
396                                     max_main_bits)
397                                         break;
398                                 ret = read_sub_irq_data(data, b);
399
400                                 if (ret != 0) {
401                                         dev_err(map->dev,
402                                                 "Failed to read IRQ status %d\n",
403                                                 ret);
404                                         goto exit;
405                                 }
406                         }
407
408                 }
409         } else if (regmap_irq_can_bulk_read_status(data)) {
410
411                 u8 *buf8 = data->status_reg_buf;
412                 u16 *buf16 = data->status_reg_buf;
413                 u32 *buf32 = data->status_reg_buf;
414
415                 BUG_ON(!data->status_reg_buf);
416
417                 ret = regmap_bulk_read(map, chip->status_base,
418                                        data->status_reg_buf,
419                                        chip->num_regs);
420                 if (ret != 0) {
421                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
422                                 ret);
423                         goto exit;
424                 }
425
426                 for (i = 0; i < data->chip->num_regs; i++) {
427                         switch (map->format.val_bytes) {
428                         case 1:
429                                 data->status_buf[i] = buf8[i];
430                                 break;
431                         case 2:
432                                 data->status_buf[i] = buf16[i];
433                                 break;
434                         case 4:
435                                 data->status_buf[i] = buf32[i];
436                                 break;
437                         default:
438                                 BUG();
439                                 goto exit;
440                         }
441                 }
442
443         } else {
444                 for (i = 0; i < data->chip->num_regs; i++) {
445                         unsigned int reg = data->get_irq_reg(data,
446                                         data->chip->status_base, i);
447                         ret = regmap_read(map, reg, &data->status_buf[i]);
448
449                         if (ret != 0) {
450                                 dev_err(map->dev,
451                                         "Failed to read IRQ status: %d\n",
452                                         ret);
453                                 goto exit;
454                         }
455                 }
456         }
457
458         if (chip->status_invert)
459                 for (i = 0; i < data->chip->num_regs; i++)
460                         data->status_buf[i] = ~data->status_buf[i];
461
462         /*
463          * Ignore masked IRQs and ack if we need to; we ack early so
464          * there is no race between handling and acknowledging the
465          * interrupt.  We assume that typically few of the interrupts
466          * will fire simultaneously so don't worry about overhead from
467          * doing a write per register.
468          */
469         for (i = 0; i < data->chip->num_regs; i++) {
470                 data->status_buf[i] &= ~data->mask_buf[i];
471
472                 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
473                         reg = data->get_irq_reg(data, data->chip->ack_base, i);
474
475                         if (chip->ack_invert)
476                                 ret = regmap_write(map, reg,
477                                                 ~data->status_buf[i]);
478                         else
479                                 ret = regmap_write(map, reg,
480                                                 data->status_buf[i]);
481                         if (chip->clear_ack) {
482                                 if (chip->ack_invert && !ret)
483                                         ret = regmap_write(map, reg, UINT_MAX);
484                                 else if (!ret)
485                                         ret = regmap_write(map, reg, 0);
486                         }
487                         if (ret != 0)
488                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
489                                         reg, ret);
490                 }
491         }
492
493         for (i = 0; i < chip->num_irqs; i++) {
494                 if (data->status_buf[chip->irqs[i].reg_offset /
495                                      map->reg_stride] & chip->irqs[i].mask) {
496                         handle_nested_irq(irq_find_mapping(data->domain, i));
497                         handled = true;
498                 }
499         }
500
501 exit:
502         if (chip->handle_post_irq)
503                 chip->handle_post_irq(chip->irq_drv_data);
504
505         if (chip->runtime_pm)
506                 pm_runtime_put(map->dev);
507
508         if (handled)
509                 return IRQ_HANDLED;
510         else
511                 return IRQ_NONE;
512 }
513
514 static struct lock_class_key regmap_irq_lock_class;
515 static struct lock_class_key regmap_irq_request_class;
516
517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
518                           irq_hw_number_t hw)
519 {
520         struct regmap_irq_chip_data *data = h->host_data;
521
522         irq_set_chip_data(virq, data);
523         irq_set_lockdep_class(virq, &regmap_irq_lock_class, &regmap_irq_request_class);
524         irq_set_chip(virq, &data->irq_chip);
525         irq_set_nested_thread(virq, 1);
526         irq_set_parent(virq, data->irq);
527         irq_set_noprobe(virq);
528
529         return 0;
530 }
531
532 static const struct irq_domain_ops regmap_domain_ops = {
533         .map    = regmap_irq_map,
534         .xlate  = irq_domain_xlate_onetwocell,
535 };
536
537 /**
538  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
539  * @data: Data for the &struct regmap_irq_chip
540  * @base: Base register
541  * @index: Register index
542  *
543  * Returns the register address corresponding to the given @base and @index
544  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
545  */
546 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
547                                            unsigned int base, int index)
548 {
549         struct regmap *map = data->map;
550
551         return base + index * map->reg_stride * data->irq_reg_stride;
552 }
553 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
554
555 /**
556  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
557  * @buf: Buffer containing configuration register values, this is a 2D array of
558  *       `num_config_bases` rows, each of `num_config_regs` elements.
559  * @type: The requested IRQ type.
560  * @irq_data: The IRQ being configured.
561  * @idx: Index of the irq's config registers within each array `buf[i]`
562  * @irq_drv_data: Driver specific IRQ data
563  *
564  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
565  * chips with one config register. Register values are updated according to
566  * the &struct regmap_irq_type data associated with an IRQ.
567  */
568 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
569                                       const struct regmap_irq *irq_data,
570                                       int idx, void *irq_drv_data)
571 {
572         const struct regmap_irq_type *t = &irq_data->type;
573
574         if (t->type_reg_mask)
575                 buf[0][idx] &= ~t->type_reg_mask;
576         else
577                 buf[0][idx] &= ~(t->type_falling_val |
578                                  t->type_rising_val |
579                                  t->type_level_low_val |
580                                  t->type_level_high_val);
581
582         switch (type) {
583         case IRQ_TYPE_EDGE_FALLING:
584                 buf[0][idx] |= t->type_falling_val;
585                 break;
586
587         case IRQ_TYPE_EDGE_RISING:
588                 buf[0][idx] |= t->type_rising_val;
589                 break;
590
591         case IRQ_TYPE_EDGE_BOTH:
592                 buf[0][idx] |= (t->type_falling_val |
593                                 t->type_rising_val);
594                 break;
595
596         case IRQ_TYPE_LEVEL_HIGH:
597                 buf[0][idx] |= t->type_level_high_val;
598                 break;
599
600         case IRQ_TYPE_LEVEL_LOW:
601                 buf[0][idx] |= t->type_level_low_val;
602                 break;
603
604         default:
605                 return -EINVAL;
606         }
607
608         return 0;
609 }
610 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
611
612 static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base,
613                                     const struct regmap_irq_chip *chip,
614                                     struct regmap_irq_chip_data *d)
615 {
616         struct irq_domain_info info = {
617                 .fwnode = fwnode,
618                 .size = chip->num_irqs,
619                 .hwirq_max = chip->num_irqs,
620                 .virq_base = irq_base,
621                 .ops = &regmap_domain_ops,
622                 .host_data = d,
623                 .name_suffix = chip->domain_suffix,
624         };
625
626         d->domain = irq_domain_instantiate(&info);
627         if (IS_ERR(d->domain)) {
628                 dev_err(d->map->dev, "Failed to create IRQ domain\n");
629                 return PTR_ERR(d->domain);
630         }
631
632         return 0;
633 }
634
635
636 /**
637  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
638  *
639  * @fwnode: The firmware node where the IRQ domain should be added to.
640  * @map: The regmap for the device.
641  * @irq: The IRQ the device uses to signal interrupts.
642  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
643  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
644  * @chip: Configuration for the interrupt controller.
645  * @data: Runtime data structure for the controller, allocated on success.
646  *
647  * Returns 0 on success or an errno on failure.
648  *
649  * In order for this to be efficient the chip really should use a
650  * register cache.  The chip driver is responsible for restoring the
651  * register values used by the IRQ controller over suspend and resume.
652  */
653 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
654                                struct regmap *map, int irq,
655                                int irq_flags, int irq_base,
656                                const struct regmap_irq_chip *chip,
657                                struct regmap_irq_chip_data **data)
658 {
659         struct regmap_irq_chip_data *d;
660         int i;
661         int ret = -ENOMEM;
662         u32 reg;
663
664         if (chip->num_regs <= 0)
665                 return -EINVAL;
666
667         if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
668                 return -EINVAL;
669
670         if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
671                 return -EINVAL;
672
673         for (i = 0; i < chip->num_irqs; i++) {
674                 if (chip->irqs[i].reg_offset % map->reg_stride)
675                         return -EINVAL;
676                 if (chip->irqs[i].reg_offset / map->reg_stride >=
677                     chip->num_regs)
678                         return -EINVAL;
679         }
680
681         if (irq_base) {
682                 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
683                 if (irq_base < 0) {
684                         dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
685                                  irq_base);
686                         return irq_base;
687                 }
688         }
689
690         d = kzalloc(sizeof(*d), GFP_KERNEL);
691         if (!d)
692                 return -ENOMEM;
693
694         if (chip->num_main_regs) {
695                 d->main_status_buf = kcalloc(chip->num_main_regs,
696                                              sizeof(*d->main_status_buf),
697                                              GFP_KERNEL);
698
699                 if (!d->main_status_buf)
700                         goto err_alloc;
701         }
702
703         d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
704                                 GFP_KERNEL);
705         if (!d->status_buf)
706                 goto err_alloc;
707
708         d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
709                               GFP_KERNEL);
710         if (!d->mask_buf)
711                 goto err_alloc;
712
713         d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
714                                   GFP_KERNEL);
715         if (!d->mask_buf_def)
716                 goto err_alloc;
717
718         if (chip->wake_base) {
719                 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
720                                       GFP_KERNEL);
721                 if (!d->wake_buf)
722                         goto err_alloc;
723         }
724
725         if (chip->type_in_mask) {
726                 d->type_buf_def = kcalloc(chip->num_regs,
727                                           sizeof(*d->type_buf_def), GFP_KERNEL);
728                 if (!d->type_buf_def)
729                         goto err_alloc;
730
731                 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
732                 if (!d->type_buf)
733                         goto err_alloc;
734         }
735
736         if (chip->num_config_bases && chip->num_config_regs) {
737                 /*
738                  * Create config_buf[num_config_bases][num_config_regs]
739                  */
740                 d->config_buf = kcalloc(chip->num_config_bases,
741                                         sizeof(*d->config_buf), GFP_KERNEL);
742                 if (!d->config_buf)
743                         goto err_alloc;
744
745                 for (i = 0; i < chip->num_config_bases; i++) {
746                         d->config_buf[i] = kcalloc(chip->num_config_regs,
747                                                    sizeof(**d->config_buf),
748                                                    GFP_KERNEL);
749                         if (!d->config_buf[i])
750                                 goto err_alloc;
751                 }
752         }
753
754         d->irq_chip = regmap_irq_chip;
755         d->irq_chip.name = chip->name;
756         d->irq = irq;
757         d->map = map;
758         d->chip = chip;
759         d->irq_base = irq_base;
760
761         if (chip->irq_reg_stride)
762                 d->irq_reg_stride = chip->irq_reg_stride;
763         else
764                 d->irq_reg_stride = 1;
765
766         if (chip->get_irq_reg)
767                 d->get_irq_reg = chip->get_irq_reg;
768         else
769                 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
770
771         if (regmap_irq_can_bulk_read_status(d)) {
772                 d->status_reg_buf = kmalloc_array(chip->num_regs,
773                                                   map->format.val_bytes,
774                                                   GFP_KERNEL);
775                 if (!d->status_reg_buf)
776                         goto err_alloc;
777         }
778
779         mutex_init(&d->lock);
780
781         for (i = 0; i < chip->num_irqs; i++)
782                 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
783                         |= chip->irqs[i].mask;
784
785         /* Mask all the interrupts by default */
786         for (i = 0; i < chip->num_regs; i++) {
787                 d->mask_buf[i] = d->mask_buf_def[i];
788
789                 if (chip->handle_mask_sync) {
790                         ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
791                                                      d->mask_buf[i],
792                                                      chip->irq_drv_data);
793                         if (ret)
794                                 goto err_alloc;
795                 }
796
797                 if (chip->mask_base && !chip->handle_mask_sync) {
798                         reg = d->get_irq_reg(d, chip->mask_base, i);
799                         ret = regmap_update_bits(d->map, reg,
800                                                  d->mask_buf_def[i],
801                                                  d->mask_buf[i]);
802                         if (ret) {
803                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
804                                         reg, ret);
805                                 goto err_alloc;
806                         }
807                 }
808
809                 if (chip->unmask_base && !chip->handle_mask_sync) {
810                         reg = d->get_irq_reg(d, chip->unmask_base, i);
811                         ret = regmap_update_bits(d->map, reg,
812                                         d->mask_buf_def[i], ~d->mask_buf[i]);
813                         if (ret) {
814                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
815                                         reg, ret);
816                                 goto err_alloc;
817                         }
818                 }
819
820                 if (!chip->init_ack_masked)
821                         continue;
822
823                 /* Ack masked but set interrupts */
824                 if (d->chip->no_status) {
825                         /* no status register so default to all active */
826                         d->status_buf[i] = GENMASK(31, 0);
827                 } else {
828                         reg = d->get_irq_reg(d, d->chip->status_base, i);
829                         ret = regmap_read(map, reg, &d->status_buf[i]);
830                         if (ret != 0) {
831                                 dev_err(map->dev, "Failed to read IRQ status: %d\n",
832                                         ret);
833                                 goto err_alloc;
834                         }
835                 }
836
837                 if (chip->status_invert)
838                         d->status_buf[i] = ~d->status_buf[i];
839
840                 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
841                         reg = d->get_irq_reg(d, d->chip->ack_base, i);
842                         if (chip->ack_invert)
843                                 ret = regmap_write(map, reg,
844                                         ~(d->status_buf[i] & d->mask_buf[i]));
845                         else
846                                 ret = regmap_write(map, reg,
847                                         d->status_buf[i] & d->mask_buf[i]);
848                         if (chip->clear_ack) {
849                                 if (chip->ack_invert && !ret)
850                                         ret = regmap_write(map, reg, UINT_MAX);
851                                 else if (!ret)
852                                         ret = regmap_write(map, reg, 0);
853                         }
854                         if (ret != 0) {
855                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
856                                         reg, ret);
857                                 goto err_alloc;
858                         }
859                 }
860         }
861
862         /* Wake is disabled by default */
863         if (d->wake_buf) {
864                 for (i = 0; i < chip->num_regs; i++) {
865                         d->wake_buf[i] = d->mask_buf_def[i];
866                         reg = d->get_irq_reg(d, d->chip->wake_base, i);
867
868                         if (chip->wake_invert)
869                                 ret = regmap_update_bits(d->map, reg,
870                                                          d->mask_buf_def[i],
871                                                          0);
872                         else
873                                 ret = regmap_update_bits(d->map, reg,
874                                                          d->mask_buf_def[i],
875                                                          d->wake_buf[i]);
876                         if (ret != 0) {
877                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
878                                         reg, ret);
879                                 goto err_alloc;
880                         }
881                 }
882         }
883
884         ret = regmap_irq_create_domain(fwnode, irq_base, chip, d);
885         if (ret)
886                 goto err_alloc;
887
888         ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
889                                    irq_flags | IRQF_ONESHOT,
890                                    chip->name, d);
891         if (ret != 0) {
892                 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
893                         irq, chip->name, ret);
894                 goto err_domain;
895         }
896
897         *data = d;
898
899         return 0;
900
901 err_domain:
902         /* Should really dispose of the domain but... */
903 err_alloc:
904         kfree(d->type_buf);
905         kfree(d->type_buf_def);
906         kfree(d->wake_buf);
907         kfree(d->mask_buf_def);
908         kfree(d->mask_buf);
909         kfree(d->status_buf);
910         kfree(d->status_reg_buf);
911         if (d->config_buf) {
912                 for (i = 0; i < chip->num_config_bases; i++)
913                         kfree(d->config_buf[i]);
914                 kfree(d->config_buf);
915         }
916         kfree(d);
917         return ret;
918 }
919 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
920
921 /**
922  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
923  *
924  * @map: The regmap for the device.
925  * @irq: The IRQ the device uses to signal interrupts.
926  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
927  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
928  * @chip: Configuration for the interrupt controller.
929  * @data: Runtime data structure for the controller, allocated on success.
930  *
931  * Returns 0 on success or an errno on failure.
932  *
933  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
934  * node of the regmap is used.
935  */
936 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
937                         int irq_base, const struct regmap_irq_chip *chip,
938                         struct regmap_irq_chip_data **data)
939 {
940         return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
941                                           irq_flags, irq_base, chip, data);
942 }
943 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
944
945 /**
946  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
947  *
948  * @irq: Primary IRQ for the device
949  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
950  *
951  * This function also disposes of all mapped IRQs on the chip.
952  */
953 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
954 {
955         unsigned int virq;
956         int i, hwirq;
957
958         if (!d)
959                 return;
960
961         free_irq(irq, d);
962
963         /* Dispose all virtual irq from irq domain before removing it */
964         for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
965                 /* Ignore hwirq if holes in the IRQ list */
966                 if (!d->chip->irqs[hwirq].mask)
967                         continue;
968
969                 /*
970                  * Find the virtual irq of hwirq on chip and if it is
971                  * there then dispose it
972                  */
973                 virq = irq_find_mapping(d->domain, hwirq);
974                 if (virq)
975                         irq_dispose_mapping(virq);
976         }
977
978         irq_domain_remove(d->domain);
979         kfree(d->type_buf);
980         kfree(d->type_buf_def);
981         kfree(d->wake_buf);
982         kfree(d->mask_buf_def);
983         kfree(d->mask_buf);
984         kfree(d->status_reg_buf);
985         kfree(d->status_buf);
986         if (d->config_buf) {
987                 for (i = 0; i < d->chip->num_config_bases; i++)
988                         kfree(d->config_buf[i]);
989                 kfree(d->config_buf);
990         }
991         kfree(d);
992 }
993 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
994
995 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
996 {
997         struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
998
999         regmap_del_irq_chip(d->irq, d);
1000 }
1001
1002 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1003
1004 {
1005         struct regmap_irq_chip_data **r = res;
1006
1007         if (!r || !*r) {
1008                 WARN_ON(!r || !*r);
1009                 return 0;
1010         }
1011         return *r == data;
1012 }
1013
1014 /**
1015  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1016  *
1017  * @dev: The device pointer on which irq_chip belongs to.
1018  * @fwnode: The firmware node where the IRQ domain should be added to.
1019  * @map: The regmap for the device.
1020  * @irq: The IRQ the device uses to signal interrupts
1021  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1022  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1023  * @chip: Configuration for the interrupt controller.
1024  * @data: Runtime data structure for the controller, allocated on success
1025  *
1026  * Returns 0 on success or an errno on failure.
1027  *
1028  * The &regmap_irq_chip_data will be automatically released when the device is
1029  * unbound.
1030  */
1031 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1032                                     struct fwnode_handle *fwnode,
1033                                     struct regmap *map, int irq,
1034                                     int irq_flags, int irq_base,
1035                                     const struct regmap_irq_chip *chip,
1036                                     struct regmap_irq_chip_data **data)
1037 {
1038         struct regmap_irq_chip_data **ptr, *d;
1039         int ret;
1040
1041         ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1042                            GFP_KERNEL);
1043         if (!ptr)
1044                 return -ENOMEM;
1045
1046         ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1047                                          chip, &d);
1048         if (ret < 0) {
1049                 devres_free(ptr);
1050                 return ret;
1051         }
1052
1053         *ptr = d;
1054         devres_add(dev, ptr);
1055         *data = d;
1056         return 0;
1057 }
1058 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1059
1060 /**
1061  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1062  *
1063  * @dev: The device pointer on which irq_chip belongs to.
1064  * @map: The regmap for the device.
1065  * @irq: The IRQ the device uses to signal interrupts
1066  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1067  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1068  * @chip: Configuration for the interrupt controller.
1069  * @data: Runtime data structure for the controller, allocated on success
1070  *
1071  * Returns 0 on success or an errno on failure.
1072  *
1073  * The &regmap_irq_chip_data will be automatically released when the device is
1074  * unbound.
1075  */
1076 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1077                              int irq_flags, int irq_base,
1078                              const struct regmap_irq_chip *chip,
1079                              struct regmap_irq_chip_data **data)
1080 {
1081         return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1082                                                irq, irq_flags, irq_base, chip,
1083                                                data);
1084 }
1085 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1086
1087 /**
1088  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1089  *
1090  * @dev: Device for which the resource was allocated.
1091  * @irq: Primary IRQ for the device.
1092  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1093  *
1094  * A resource managed version of regmap_del_irq_chip().
1095  */
1096 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1097                               struct regmap_irq_chip_data *data)
1098 {
1099         int rc;
1100
1101         WARN_ON(irq != data->irq);
1102         rc = devres_release(dev, devm_regmap_irq_chip_release,
1103                             devm_regmap_irq_chip_match, data);
1104
1105         if (rc != 0)
1106                 WARN_ON(rc);
1107 }
1108 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1109
1110 /**
1111  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1112  *
1113  * @data: regmap irq controller to operate on.
1114  *
1115  * Useful for drivers to request their own IRQs.
1116  */
1117 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1118 {
1119         WARN_ON(!data->irq_base);
1120         return data->irq_base;
1121 }
1122 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1123
1124 /**
1125  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1126  *
1127  * @data: regmap irq controller to operate on.
1128  * @irq: index of the interrupt requested in the chip IRQs.
1129  *
1130  * Useful for drivers to request their own IRQs.
1131  */
1132 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1133 {
1134         /* Handle holes in the IRQ list */
1135         if (!data->chip->irqs[irq].mask)
1136                 return -EINVAL;
1137
1138         return irq_create_mapping(data->domain, irq);
1139 }
1140 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1141
1142 /**
1143  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1144  *
1145  * @data: regmap_irq controller to operate on.
1146  *
1147  * Useful for drivers to request their own IRQs and for integration
1148  * with subsystems.  For ease of integration NULL is accepted as a
1149  * domain, allowing devices to just call this even if no domain is
1150  * allocated.
1151  */
1152 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1153 {
1154         if (data)
1155                 return data->domain;
1156         else
1157                 return NULL;
1158 }
1159 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
This page took 0.091738 seconds and 4 git commands to generate.