]> Git Repo - J-linux.git/blob - drivers/base/arch_topology.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / base / arch_topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8
9 #include <linux/acpi.h>
10 #include <linux/cacheinfo.h>
11 #include <linux/cleanup.h>
12 #include <linux/cpu.h>
13 #include <linux/cpufreq.h>
14 #include <linux/device.h>
15 #include <linux/of.h>
16 #include <linux/slab.h>
17 #include <linux/sched/topology.h>
18 #include <linux/cpuset.h>
19 #include <linux/cpumask.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/sched.h>
23 #include <linux/units.h>
24
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/hw_pressure.h>
27
28 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
29 static struct cpumask scale_freq_counters_mask;
30 static bool scale_freq_invariant;
31 DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1;
32 EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
33
34 static bool supports_scale_freq_counters(const struct cpumask *cpus)
35 {
36         return cpumask_subset(cpus, &scale_freq_counters_mask);
37 }
38
39 bool topology_scale_freq_invariant(void)
40 {
41         return cpufreq_supports_freq_invariance() ||
42                supports_scale_freq_counters(cpu_online_mask);
43 }
44
45 static void update_scale_freq_invariant(bool status)
46 {
47         if (scale_freq_invariant == status)
48                 return;
49
50         /*
51          * Task scheduler behavior depends on frequency invariance support,
52          * either cpufreq or counter driven. If the support status changes as
53          * a result of counter initialisation and use, retrigger the build of
54          * scheduling domains to ensure the information is propagated properly.
55          */
56         if (topology_scale_freq_invariant() == status) {
57                 scale_freq_invariant = status;
58                 rebuild_sched_domains_energy();
59         }
60 }
61
62 void topology_set_scale_freq_source(struct scale_freq_data *data,
63                                     const struct cpumask *cpus)
64 {
65         struct scale_freq_data *sfd;
66         int cpu;
67
68         /*
69          * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
70          * supported by cpufreq.
71          */
72         if (cpumask_empty(&scale_freq_counters_mask))
73                 scale_freq_invariant = topology_scale_freq_invariant();
74
75         rcu_read_lock();
76
77         for_each_cpu(cpu, cpus) {
78                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
79
80                 /* Use ARCH provided counters whenever possible */
81                 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
82                         rcu_assign_pointer(per_cpu(sft_data, cpu), data);
83                         cpumask_set_cpu(cpu, &scale_freq_counters_mask);
84                 }
85         }
86
87         rcu_read_unlock();
88
89         update_scale_freq_invariant(true);
90 }
91 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
92
93 void topology_clear_scale_freq_source(enum scale_freq_source source,
94                                       const struct cpumask *cpus)
95 {
96         struct scale_freq_data *sfd;
97         int cpu;
98
99         rcu_read_lock();
100
101         for_each_cpu(cpu, cpus) {
102                 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
103
104                 if (sfd && sfd->source == source) {
105                         rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
106                         cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
107                 }
108         }
109
110         rcu_read_unlock();
111
112         /*
113          * Make sure all references to previous sft_data are dropped to avoid
114          * use-after-free races.
115          */
116         synchronize_rcu();
117
118         update_scale_freq_invariant(false);
119 }
120 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
121
122 void topology_scale_freq_tick(void)
123 {
124         struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
125
126         if (sfd)
127                 sfd->set_freq_scale();
128 }
129
130 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
131 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
132
133 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
134                              unsigned long max_freq)
135 {
136         unsigned long scale;
137         int i;
138
139         if (WARN_ON_ONCE(!cur_freq || !max_freq))
140                 return;
141
142         /*
143          * If the use of counters for FIE is enabled, just return as we don't
144          * want to update the scale factor with information from CPUFREQ.
145          * Instead the scale factor will be updated from arch_scale_freq_tick.
146          */
147         if (supports_scale_freq_counters(cpus))
148                 return;
149
150         scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
151
152         for_each_cpu(i, cpus)
153                 per_cpu(arch_freq_scale, i) = scale;
154 }
155
156 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
157 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
158
159 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
160 {
161         per_cpu(cpu_scale, cpu) = capacity;
162 }
163
164 DEFINE_PER_CPU(unsigned long, hw_pressure);
165
166 /**
167  * topology_update_hw_pressure() - Update HW pressure for CPUs
168  * @cpus        : The related CPUs for which capacity has been reduced
169  * @capped_freq : The maximum allowed frequency that CPUs can run at
170  *
171  * Update the value of HW pressure for all @cpus in the mask. The
172  * cpumask should include all (online+offline) affected CPUs, to avoid
173  * operating on stale data when hot-plug is used for some CPUs. The
174  * @capped_freq reflects the currently allowed max CPUs frequency due to
175  * HW capping. It might be also a boost frequency value, which is bigger
176  * than the internal 'capacity_freq_ref' max frequency. In such case the
177  * pressure value should simply be removed, since this is an indication that
178  * there is no HW throttling. The @capped_freq must be provided in kHz.
179  */
180 void topology_update_hw_pressure(const struct cpumask *cpus,
181                                       unsigned long capped_freq)
182 {
183         unsigned long max_capacity, capacity, pressure;
184         u32 max_freq;
185         int cpu;
186
187         cpu = cpumask_first(cpus);
188         max_capacity = arch_scale_cpu_capacity(cpu);
189         max_freq = arch_scale_freq_ref(cpu);
190
191         /*
192          * Handle properly the boost frequencies, which should simply clean
193          * the HW pressure value.
194          */
195         if (max_freq <= capped_freq)
196                 capacity = max_capacity;
197         else
198                 capacity = mult_frac(max_capacity, capped_freq, max_freq);
199
200         pressure = max_capacity - capacity;
201
202         trace_hw_pressure_update(cpu, pressure);
203
204         for_each_cpu(cpu, cpus)
205                 WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure);
206 }
207 EXPORT_SYMBOL_GPL(topology_update_hw_pressure);
208
209 static ssize_t cpu_capacity_show(struct device *dev,
210                                  struct device_attribute *attr,
211                                  char *buf)
212 {
213         struct cpu *cpu = container_of(dev, struct cpu, dev);
214
215         return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
216 }
217
218 static void update_topology_flags_workfn(struct work_struct *work);
219 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
220
221 static DEVICE_ATTR_RO(cpu_capacity);
222
223 static int cpu_capacity_sysctl_add(unsigned int cpu)
224 {
225         struct device *cpu_dev = get_cpu_device(cpu);
226
227         if (!cpu_dev)
228                 return -ENOENT;
229
230         device_create_file(cpu_dev, &dev_attr_cpu_capacity);
231
232         return 0;
233 }
234
235 static int cpu_capacity_sysctl_remove(unsigned int cpu)
236 {
237         struct device *cpu_dev = get_cpu_device(cpu);
238
239         if (!cpu_dev)
240                 return -ENOENT;
241
242         device_remove_file(cpu_dev, &dev_attr_cpu_capacity);
243
244         return 0;
245 }
246
247 static int register_cpu_capacity_sysctl(void)
248 {
249         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "topology/cpu-capacity",
250                           cpu_capacity_sysctl_add, cpu_capacity_sysctl_remove);
251
252         return 0;
253 }
254 subsys_initcall(register_cpu_capacity_sysctl);
255
256 static int update_topology;
257
258 int topology_update_cpu_topology(void)
259 {
260         return update_topology;
261 }
262
263 /*
264  * Updating the sched_domains can't be done directly from cpufreq callbacks
265  * due to locking, so queue the work for later.
266  */
267 static void update_topology_flags_workfn(struct work_struct *work)
268 {
269         update_topology = 1;
270         rebuild_sched_domains();
271         pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
272         update_topology = 0;
273 }
274
275 static u32 *raw_capacity;
276
277 static int free_raw_capacity(void)
278 {
279         kfree(raw_capacity);
280         raw_capacity = NULL;
281
282         return 0;
283 }
284
285 void topology_normalize_cpu_scale(void)
286 {
287         u64 capacity;
288         u64 capacity_scale;
289         int cpu;
290
291         if (!raw_capacity)
292                 return;
293
294         capacity_scale = 1;
295         for_each_possible_cpu(cpu) {
296                 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
297                 capacity_scale = max(capacity, capacity_scale);
298         }
299
300         pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
301         for_each_possible_cpu(cpu) {
302                 capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
303                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
304                         capacity_scale);
305                 topology_set_cpu_scale(cpu, capacity);
306                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
307                         cpu, topology_get_cpu_scale(cpu));
308         }
309 }
310
311 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
312 {
313         struct clk *cpu_clk;
314         static bool cap_parsing_failed;
315         int ret;
316         u32 cpu_capacity;
317
318         if (cap_parsing_failed)
319                 return false;
320
321         ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
322                                    &cpu_capacity);
323         if (!ret) {
324                 if (!raw_capacity) {
325                         raw_capacity = kcalloc(num_possible_cpus(),
326                                                sizeof(*raw_capacity),
327                                                GFP_KERNEL);
328                         if (!raw_capacity) {
329                                 cap_parsing_failed = true;
330                                 return false;
331                         }
332                 }
333                 raw_capacity[cpu] = cpu_capacity;
334                 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
335                         cpu_node, raw_capacity[cpu]);
336
337                 /*
338                  * Update capacity_freq_ref for calculating early boot CPU capacities.
339                  * For non-clk CPU DVFS mechanism, there's no way to get the
340                  * frequency value now, assuming they are running at the same
341                  * frequency (by keeping the initial capacity_freq_ref value).
342                  */
343                 cpu_clk = of_clk_get(cpu_node, 0);
344                 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
345                         per_cpu(capacity_freq_ref, cpu) =
346                                 clk_get_rate(cpu_clk) / HZ_PER_KHZ;
347                         clk_put(cpu_clk);
348                 }
349         } else {
350                 if (raw_capacity) {
351                         pr_err("cpu_capacity: missing %pOF raw capacity\n",
352                                 cpu_node);
353                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
354                 }
355                 cap_parsing_failed = true;
356                 free_raw_capacity();
357         }
358
359         return !ret;
360 }
361
362 void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
363 {
364 }
365
366 #ifdef CONFIG_ACPI_CPPC_LIB
367 #include <acpi/cppc_acpi.h>
368
369 static inline void topology_init_cpu_capacity_cppc(void)
370 {
371         u64 capacity, capacity_scale = 0;
372         struct cppc_perf_caps perf_caps;
373         int cpu;
374
375         if (likely(!acpi_cpc_valid()))
376                 return;
377
378         raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
379                                GFP_KERNEL);
380         if (!raw_capacity)
381                 return;
382
383         for_each_possible_cpu(cpu) {
384                 if (!cppc_get_perf_caps(cpu, &perf_caps) &&
385                     (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
386                     (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
387                         raw_capacity[cpu] = perf_caps.highest_perf;
388                         capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
389
390                         per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
391
392                         pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
393                                  cpu, raw_capacity[cpu]);
394                         continue;
395                 }
396
397                 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
398                 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
399                 goto exit;
400         }
401
402         for_each_possible_cpu(cpu) {
403                 freq_inv_set_max_ratio(cpu,
404                                        per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
405
406                 capacity = raw_capacity[cpu];
407                 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
408                                      capacity_scale);
409                 topology_set_cpu_scale(cpu, capacity);
410                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
411                         cpu, topology_get_cpu_scale(cpu));
412         }
413
414         schedule_work(&update_topology_flags_work);
415         pr_debug("cpu_capacity: cpu_capacity initialization done\n");
416
417 exit:
418         free_raw_capacity();
419 }
420 void acpi_processor_init_invariance_cppc(void)
421 {
422         topology_init_cpu_capacity_cppc();
423 }
424 #endif
425
426 #ifdef CONFIG_CPU_FREQ
427 static cpumask_var_t cpus_to_visit;
428 static void parsing_done_workfn(struct work_struct *work);
429 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
430
431 static int
432 init_cpu_capacity_callback(struct notifier_block *nb,
433                            unsigned long val,
434                            void *data)
435 {
436         struct cpufreq_policy *policy = data;
437         int cpu;
438
439         if (val != CPUFREQ_CREATE_POLICY)
440                 return 0;
441
442         pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
443                  cpumask_pr_args(policy->related_cpus),
444                  cpumask_pr_args(cpus_to_visit));
445
446         cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
447
448         for_each_cpu(cpu, policy->related_cpus) {
449                 per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
450                 freq_inv_set_max_ratio(cpu,
451                                        per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
452         }
453
454         if (cpumask_empty(cpus_to_visit)) {
455                 if (raw_capacity) {
456                         topology_normalize_cpu_scale();
457                         schedule_work(&update_topology_flags_work);
458                         free_raw_capacity();
459                 }
460                 pr_debug("cpu_capacity: parsing done\n");
461                 schedule_work(&parsing_done_work);
462         }
463
464         return 0;
465 }
466
467 static struct notifier_block init_cpu_capacity_notifier = {
468         .notifier_call = init_cpu_capacity_callback,
469 };
470
471 static int __init register_cpufreq_notifier(void)
472 {
473         int ret;
474
475         /*
476          * On ACPI-based systems skip registering cpufreq notifier as cpufreq
477          * information is not needed for cpu capacity initialization.
478          */
479         if (!acpi_disabled)
480                 return -EINVAL;
481
482         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
483                 return -ENOMEM;
484
485         cpumask_copy(cpus_to_visit, cpu_possible_mask);
486
487         ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
488                                         CPUFREQ_POLICY_NOTIFIER);
489
490         if (ret)
491                 free_cpumask_var(cpus_to_visit);
492
493         return ret;
494 }
495 core_initcall(register_cpufreq_notifier);
496
497 static void parsing_done_workfn(struct work_struct *work)
498 {
499         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
500                                          CPUFREQ_POLICY_NOTIFIER);
501         free_cpumask_var(cpus_to_visit);
502 }
503
504 #else
505 core_initcall(free_raw_capacity);
506 #endif
507
508 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
509 /*
510  * This function returns the logic cpu number of the node.
511  * There are basically three kinds of return values:
512  * (1) logic cpu number which is > 0.
513  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
514  * there is no possible logical CPU in the kernel to match. This happens
515  * when CONFIG_NR_CPUS is configure to be smaller than the number of
516  * CPU nodes in DT. We need to just ignore this case.
517  * (3) -1 if the node does not exist in the device tree
518  */
519 static int __init get_cpu_for_node(struct device_node *node)
520 {
521         int cpu;
522         struct device_node *cpu_node __free(device_node) =
523                 of_parse_phandle(node, "cpu", 0);
524
525         if (!cpu_node)
526                 return -1;
527
528         cpu = of_cpu_node_to_id(cpu_node);
529         if (cpu >= 0)
530                 topology_parse_cpu_capacity(cpu_node, cpu);
531         else
532                 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
533                         cpu_node, cpumask_pr_args(cpu_possible_mask));
534
535         return cpu;
536 }
537
538 static int __init parse_core(struct device_node *core, int package_id,
539                              int cluster_id, int core_id)
540 {
541         char name[20];
542         bool leaf = true;
543         int i = 0;
544         int cpu;
545
546         do {
547                 snprintf(name, sizeof(name), "thread%d", i);
548                 struct device_node *t __free(device_node) =
549                         of_get_child_by_name(core, name);
550
551                 if (!t)
552                         break;
553
554                 leaf = false;
555                 cpu = get_cpu_for_node(t);
556                 if (cpu >= 0) {
557                         cpu_topology[cpu].package_id = package_id;
558                         cpu_topology[cpu].cluster_id = cluster_id;
559                         cpu_topology[cpu].core_id = core_id;
560                         cpu_topology[cpu].thread_id = i;
561                 } else if (cpu != -ENODEV) {
562                         pr_err("%pOF: Can't get CPU for thread\n", t);
563                         return -EINVAL;
564                 }
565                 i++;
566         } while (1);
567
568         cpu = get_cpu_for_node(core);
569         if (cpu >= 0) {
570                 if (!leaf) {
571                         pr_err("%pOF: Core has both threads and CPU\n",
572                                core);
573                         return -EINVAL;
574                 }
575
576                 cpu_topology[cpu].package_id = package_id;
577                 cpu_topology[cpu].cluster_id = cluster_id;
578                 cpu_topology[cpu].core_id = core_id;
579         } else if (leaf && cpu != -ENODEV) {
580                 pr_err("%pOF: Can't get CPU for leaf core\n", core);
581                 return -EINVAL;
582         }
583
584         return 0;
585 }
586
587 static int __init parse_cluster(struct device_node *cluster, int package_id,
588                                 int cluster_id, int depth)
589 {
590         char name[20];
591         bool leaf = true;
592         bool has_cores = false;
593         int core_id = 0;
594         int i, ret;
595
596         /*
597          * First check for child clusters; we currently ignore any
598          * information about the nesting of clusters and present the
599          * scheduler with a flat list of them.
600          */
601         i = 0;
602         do {
603                 snprintf(name, sizeof(name), "cluster%d", i);
604                 struct device_node *c __free(device_node) =
605                         of_get_child_by_name(cluster, name);
606
607                 if (!c)
608                         break;
609
610                 leaf = false;
611                 ret = parse_cluster(c, package_id, i, depth + 1);
612                 if (depth > 0)
613                         pr_warn("Topology for clusters of clusters not yet supported\n");
614                 if (ret != 0)
615                         return ret;
616                 i++;
617         } while (1);
618
619         /* Now check for cores */
620         i = 0;
621         do {
622                 snprintf(name, sizeof(name), "core%d", i);
623                 struct device_node *c __free(device_node) =
624                         of_get_child_by_name(cluster, name);
625
626                 if (!c)
627                         break;
628
629                 has_cores = true;
630
631                 if (depth == 0) {
632                         pr_err("%pOF: cpu-map children should be clusters\n", c);
633                         return -EINVAL;
634                 }
635
636                 if (leaf) {
637                         ret = parse_core(c, package_id, cluster_id, core_id++);
638                         if (ret != 0)
639                                 return ret;
640                 } else {
641                         pr_err("%pOF: Non-leaf cluster with core %s\n",
642                                cluster, name);
643                         return -EINVAL;
644                 }
645
646                 i++;
647         } while (1);
648
649         if (leaf && !has_cores)
650                 pr_warn("%pOF: empty cluster\n", cluster);
651
652         return 0;
653 }
654
655 static int __init parse_socket(struct device_node *socket)
656 {
657         char name[20];
658         bool has_socket = false;
659         int package_id = 0, ret;
660
661         do {
662                 snprintf(name, sizeof(name), "socket%d", package_id);
663                 struct device_node *c __free(device_node) =
664                         of_get_child_by_name(socket, name);
665
666                 if (!c)
667                         break;
668
669                 has_socket = true;
670                 ret = parse_cluster(c, package_id, -1, 0);
671                 if (ret != 0)
672                         return ret;
673
674                 package_id++;
675         } while (1);
676
677         if (!has_socket)
678                 ret = parse_cluster(socket, 0, -1, 0);
679
680         return ret;
681 }
682
683 static int __init parse_dt_topology(void)
684 {
685         int ret = 0;
686         int cpu;
687         struct device_node *cn __free(device_node) =
688                 of_find_node_by_path("/cpus");
689
690         if (!cn) {
691                 pr_err("No CPU information found in DT\n");
692                 return 0;
693         }
694
695         /*
696          * When topology is provided cpu-map is essentially a root
697          * cluster with restricted subnodes.
698          */
699         struct device_node *map __free(device_node) =
700                 of_get_child_by_name(cn, "cpu-map");
701
702         if (!map)
703                 return ret;
704
705         ret = parse_socket(map);
706         if (ret != 0)
707                 return ret;
708
709         topology_normalize_cpu_scale();
710
711         /*
712          * Check that all cores are in the topology; the SMP code will
713          * only mark cores described in the DT as possible.
714          */
715         for_each_possible_cpu(cpu)
716                 if (cpu_topology[cpu].package_id < 0) {
717                         return -EINVAL;
718                 }
719
720         return ret;
721 }
722 #endif
723
724 /*
725  * cpu topology table
726  */
727 struct cpu_topology cpu_topology[NR_CPUS];
728 EXPORT_SYMBOL_GPL(cpu_topology);
729
730 const struct cpumask *cpu_coregroup_mask(int cpu)
731 {
732         const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
733
734         /* Find the smaller of NUMA, core or LLC siblings */
735         if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
736                 /* not numa in package, lets use the package siblings */
737                 core_mask = &cpu_topology[cpu].core_sibling;
738         }
739
740         if (last_level_cache_is_valid(cpu)) {
741                 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
742                         core_mask = &cpu_topology[cpu].llc_sibling;
743         }
744
745         /*
746          * For systems with no shared cpu-side LLC but with clusters defined,
747          * extend core_mask to cluster_siblings. The sched domain builder will
748          * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
749          */
750         if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
751             cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
752                 core_mask = &cpu_topology[cpu].cluster_sibling;
753
754         return core_mask;
755 }
756
757 const struct cpumask *cpu_clustergroup_mask(int cpu)
758 {
759         /*
760          * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
761          * cpu_coregroup_mask().
762          */
763         if (cpumask_subset(cpu_coregroup_mask(cpu),
764                            &cpu_topology[cpu].cluster_sibling))
765                 return topology_sibling_cpumask(cpu);
766
767         return &cpu_topology[cpu].cluster_sibling;
768 }
769
770 void update_siblings_masks(unsigned int cpuid)
771 {
772         struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
773         int cpu, ret;
774
775         ret = detect_cache_attributes(cpuid);
776         if (ret && ret != -ENOENT)
777                 pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
778
779         /* update core and thread sibling masks */
780         for_each_online_cpu(cpu) {
781                 cpu_topo = &cpu_topology[cpu];
782
783                 if (last_level_cache_is_shared(cpu, cpuid)) {
784                         cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
785                         cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
786                 }
787
788                 if (cpuid_topo->package_id != cpu_topo->package_id)
789                         continue;
790
791                 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
792                 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
793
794                 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
795                         continue;
796
797                 if (cpuid_topo->cluster_id >= 0) {
798                         cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
799                         cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
800                 }
801
802                 if (cpuid_topo->core_id != cpu_topo->core_id)
803                         continue;
804
805                 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
806                 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
807         }
808 }
809
810 static void clear_cpu_topology(int cpu)
811 {
812         struct cpu_topology *cpu_topo = &cpu_topology[cpu];
813
814         cpumask_clear(&cpu_topo->llc_sibling);
815         cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
816
817         cpumask_clear(&cpu_topo->cluster_sibling);
818         cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
819
820         cpumask_clear(&cpu_topo->core_sibling);
821         cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
822         cpumask_clear(&cpu_topo->thread_sibling);
823         cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
824 }
825
826 void __init reset_cpu_topology(void)
827 {
828         unsigned int cpu;
829
830         for_each_possible_cpu(cpu) {
831                 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
832
833                 cpu_topo->thread_id = -1;
834                 cpu_topo->core_id = -1;
835                 cpu_topo->cluster_id = -1;
836                 cpu_topo->package_id = -1;
837
838                 clear_cpu_topology(cpu);
839         }
840 }
841
842 void remove_cpu_topology(unsigned int cpu)
843 {
844         int sibling;
845
846         for_each_cpu(sibling, topology_core_cpumask(cpu))
847                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
848         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
849                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
850         for_each_cpu(sibling, topology_cluster_cpumask(cpu))
851                 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
852         for_each_cpu(sibling, topology_llc_cpumask(cpu))
853                 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
854
855         clear_cpu_topology(cpu);
856 }
857
858 __weak int __init parse_acpi_topology(void)
859 {
860         return 0;
861 }
862
863 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
864 void __init init_cpu_topology(void)
865 {
866         int cpu, ret;
867
868         reset_cpu_topology();
869         ret = parse_acpi_topology();
870         if (!ret)
871                 ret = of_have_populated_dt() && parse_dt_topology();
872
873         if (ret) {
874                 /*
875                  * Discard anything that was parsed if we hit an error so we
876                  * don't use partial information. But do not return yet to give
877                  * arch-specific early cache level detection a chance to run.
878                  */
879                 reset_cpu_topology();
880         }
881
882         for_each_possible_cpu(cpu) {
883                 ret = fetch_cache_info(cpu);
884                 if (!ret)
885                         continue;
886                 else if (ret != -ENOENT)
887                         pr_err("Early cacheinfo failed, ret = %d\n", ret);
888                 return;
889         }
890 }
891
892 void store_cpu_topology(unsigned int cpuid)
893 {
894         struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
895
896         if (cpuid_topo->package_id != -1)
897                 goto topology_populated;
898
899         cpuid_topo->thread_id = -1;
900         cpuid_topo->core_id = cpuid;
901         cpuid_topo->package_id = cpu_to_node(cpuid);
902
903         pr_debug("CPU%u: package %d core %d thread %d\n",
904                  cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
905                  cpuid_topo->thread_id);
906
907 topology_populated:
908         update_siblings_masks(cpuid);
909 }
910 #endif
This page took 0.076223 seconds and 4 git commands to generate.