]> Git Repo - J-linux.git/blob - drivers/acpi/acpi_pad.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / acpi / acpi_pad.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <linux/platform_device.h>
22 #include <asm/mwait.h>
23 #include <xen/xen.h>
24
25 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
26 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
27 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
28
29 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS        0
30 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION      1
31
32 static DEFINE_MUTEX(isolated_cpus_lock);
33 static DEFINE_MUTEX(round_robin_lock);
34
35 static unsigned long power_saving_mwait_eax;
36
37 static unsigned char tsc_detected_unstable;
38 static unsigned char tsc_marked_unstable;
39
40 static void power_saving_mwait_init(void)
41 {
42         unsigned int eax, ebx, ecx, edx;
43         unsigned int highest_cstate = 0;
44         unsigned int highest_subcstate = 0;
45         int i;
46
47         if (!boot_cpu_has(X86_FEATURE_MWAIT))
48                 return;
49         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
50                 return;
51
52         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
53
54         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
55             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
56                 return;
57
58         edx >>= MWAIT_SUBSTATE_SIZE;
59         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
60                 if (edx & MWAIT_SUBSTATE_MASK) {
61                         highest_cstate = i;
62                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
63                 }
64         }
65         power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
66                 (highest_subcstate - 1);
67
68 #if defined(CONFIG_X86)
69         switch (boot_cpu_data.x86_vendor) {
70         case X86_VENDOR_HYGON:
71         case X86_VENDOR_AMD:
72         case X86_VENDOR_INTEL:
73         case X86_VENDOR_ZHAOXIN:
74         case X86_VENDOR_CENTAUR:
75                 /*
76                  * AMD Fam10h TSC will tick in all
77                  * C/P/S0/S1 states when this bit is set.
78                  */
79                 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
80                         tsc_detected_unstable = 1;
81                 break;
82         default:
83                 /* TSC could halt in idle */
84                 tsc_detected_unstable = 1;
85         }
86 #endif
87 }
88
89 static unsigned long cpu_weight[NR_CPUS];
90 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
91 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
92 static void round_robin_cpu(unsigned int tsk_index)
93 {
94         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
95         cpumask_var_t tmp;
96         int cpu;
97         unsigned long min_weight = -1;
98         unsigned long preferred_cpu;
99
100         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
101                 return;
102
103         mutex_lock(&round_robin_lock);
104         cpumask_clear(tmp);
105         for_each_cpu(cpu, pad_busy_cpus)
106                 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
107         cpumask_andnot(tmp, cpu_online_mask, tmp);
108         /* avoid HT siblings if possible */
109         if (cpumask_empty(tmp))
110                 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
111         if (cpumask_empty(tmp)) {
112                 mutex_unlock(&round_robin_lock);
113                 free_cpumask_var(tmp);
114                 return;
115         }
116         for_each_cpu(cpu, tmp) {
117                 if (cpu_weight[cpu] < min_weight) {
118                         min_weight = cpu_weight[cpu];
119                         preferred_cpu = cpu;
120                 }
121         }
122
123         if (tsk_in_cpu[tsk_index] != -1)
124                 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
125         tsk_in_cpu[tsk_index] = preferred_cpu;
126         cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
127         cpu_weight[preferred_cpu]++;
128         mutex_unlock(&round_robin_lock);
129
130         set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
131
132         free_cpumask_var(tmp);
133 }
134
135 static void exit_round_robin(unsigned int tsk_index)
136 {
137         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
138
139         if (tsk_in_cpu[tsk_index] != -1) {
140                 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
141                 tsk_in_cpu[tsk_index] = -1;
142         }
143 }
144
145 static unsigned int idle_pct = 5; /* percentage */
146 static unsigned int round_robin_time = 1; /* second */
147 static int power_saving_thread(void *data)
148 {
149         int do_sleep;
150         unsigned int tsk_index = (unsigned long)data;
151         u64 last_jiffies = 0;
152
153         sched_set_fifo_low(current);
154
155         while (!kthread_should_stop()) {
156                 unsigned long expire_time;
157
158                 /* round robin to cpus */
159                 expire_time = last_jiffies + round_robin_time * HZ;
160                 if (time_before(expire_time, jiffies)) {
161                         last_jiffies = jiffies;
162                         round_robin_cpu(tsk_index);
163                 }
164
165                 do_sleep = 0;
166
167                 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
168
169                 while (!need_resched()) {
170                         if (tsc_detected_unstable && !tsc_marked_unstable) {
171                                 /* TSC could halt in idle, so notify users */
172                                 mark_tsc_unstable("TSC halts in idle");
173                                 tsc_marked_unstable = 1;
174                         }
175                         local_irq_disable();
176
177                         perf_lopwr_cb(true);
178
179                         tick_broadcast_enable();
180                         tick_broadcast_enter();
181                         stop_critical_timings();
182
183                         mwait_idle_with_hints(power_saving_mwait_eax, 1);
184
185                         start_critical_timings();
186                         tick_broadcast_exit();
187
188                         perf_lopwr_cb(false);
189
190                         local_irq_enable();
191
192                         if (time_before(expire_time, jiffies)) {
193                                 do_sleep = 1;
194                                 break;
195                         }
196                 }
197
198                 /*
199                  * current sched_rt has threshold for rt task running time.
200                  * When a rt task uses 95% CPU time, the rt thread will be
201                  * scheduled out for 5% CPU time to not starve other tasks. But
202                  * the mechanism only works when all CPUs have RT task running,
203                  * as if one CPU hasn't RT task, RT task from other CPUs will
204                  * borrow CPU time from this CPU and cause RT task use > 95%
205                  * CPU time. To make 'avoid starvation' work, takes a nap here.
206                  */
207                 if (unlikely(do_sleep))
208                         schedule_timeout_killable(HZ * idle_pct / 100);
209
210                 /* If an external event has set the need_resched flag, then
211                  * we need to deal with it, or this loop will continue to
212                  * spin without calling __mwait().
213                  */
214                 if (unlikely(need_resched()))
215                         schedule();
216         }
217
218         exit_round_robin(tsk_index);
219         return 0;
220 }
221
222 static struct task_struct *ps_tsks[NR_CPUS];
223 static unsigned int ps_tsk_num;
224 static int create_power_saving_task(void)
225 {
226         int rc;
227
228         ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
229                 (void *)(unsigned long)ps_tsk_num,
230                 "acpi_pad/%d", ps_tsk_num);
231
232         if (IS_ERR(ps_tsks[ps_tsk_num])) {
233                 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
234                 ps_tsks[ps_tsk_num] = NULL;
235         } else {
236                 rc = 0;
237                 ps_tsk_num++;
238         }
239
240         return rc;
241 }
242
243 static void destroy_power_saving_task(void)
244 {
245         if (ps_tsk_num > 0) {
246                 ps_tsk_num--;
247                 kthread_stop(ps_tsks[ps_tsk_num]);
248                 ps_tsks[ps_tsk_num] = NULL;
249         }
250 }
251
252 static void set_power_saving_task_num(unsigned int num)
253 {
254         if (num > ps_tsk_num) {
255                 while (ps_tsk_num < num) {
256                         if (create_power_saving_task())
257                                 return;
258                 }
259         } else if (num < ps_tsk_num) {
260                 while (ps_tsk_num > num)
261                         destroy_power_saving_task();
262         }
263 }
264
265 static void acpi_pad_idle_cpus(unsigned int num_cpus)
266 {
267         cpus_read_lock();
268
269         num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
270         set_power_saving_task_num(num_cpus);
271
272         cpus_read_unlock();
273 }
274
275 static uint32_t acpi_pad_idle_cpus_num(void)
276 {
277         return ps_tsk_num;
278 }
279
280 static ssize_t rrtime_store(struct device *dev,
281         struct device_attribute *attr, const char *buf, size_t count)
282 {
283         unsigned long num;
284
285         if (kstrtoul(buf, 0, &num))
286                 return -EINVAL;
287         if (num < 1 || num >= 100)
288                 return -EINVAL;
289         mutex_lock(&isolated_cpus_lock);
290         round_robin_time = num;
291         mutex_unlock(&isolated_cpus_lock);
292         return count;
293 }
294
295 static ssize_t rrtime_show(struct device *dev,
296         struct device_attribute *attr, char *buf)
297 {
298         return sysfs_emit(buf, "%d\n", round_robin_time);
299 }
300 static DEVICE_ATTR_RW(rrtime);
301
302 static ssize_t idlepct_store(struct device *dev,
303         struct device_attribute *attr, const char *buf, size_t count)
304 {
305         unsigned long num;
306
307         if (kstrtoul(buf, 0, &num))
308                 return -EINVAL;
309         if (num < 1 || num >= 100)
310                 return -EINVAL;
311         mutex_lock(&isolated_cpus_lock);
312         idle_pct = num;
313         mutex_unlock(&isolated_cpus_lock);
314         return count;
315 }
316
317 static ssize_t idlepct_show(struct device *dev,
318         struct device_attribute *attr, char *buf)
319 {
320         return sysfs_emit(buf, "%d\n", idle_pct);
321 }
322 static DEVICE_ATTR_RW(idlepct);
323
324 static ssize_t idlecpus_store(struct device *dev,
325         struct device_attribute *attr, const char *buf, size_t count)
326 {
327         unsigned long num;
328
329         if (kstrtoul(buf, 0, &num))
330                 return -EINVAL;
331         mutex_lock(&isolated_cpus_lock);
332         acpi_pad_idle_cpus(num);
333         mutex_unlock(&isolated_cpus_lock);
334         return count;
335 }
336
337 static ssize_t idlecpus_show(struct device *dev,
338         struct device_attribute *attr, char *buf)
339 {
340         return cpumap_print_to_pagebuf(false, buf,
341                                        to_cpumask(pad_busy_cpus_bits));
342 }
343
344 static DEVICE_ATTR_RW(idlecpus);
345
346 static struct attribute *acpi_pad_attrs[] = {
347         &dev_attr_idlecpus.attr,
348         &dev_attr_idlepct.attr,
349         &dev_attr_rrtime.attr,
350         NULL
351 };
352
353 ATTRIBUTE_GROUPS(acpi_pad);
354
355 /*
356  * Query firmware how many CPUs should be idle
357  * return -1 on failure
358  */
359 static int acpi_pad_pur(acpi_handle handle)
360 {
361         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
362         union acpi_object *package;
363         int num = -1;
364
365         if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
366                 return num;
367
368         if (!buffer.length || !buffer.pointer)
369                 return num;
370
371         package = buffer.pointer;
372
373         if (package->type == ACPI_TYPE_PACKAGE &&
374                 package->package.count == 2 &&
375                 package->package.elements[0].integer.value == 1) /* rev 1 */
376
377                 num = package->package.elements[1].integer.value;
378
379         kfree(buffer.pointer);
380         return num;
381 }
382
383 static void acpi_pad_handle_notify(acpi_handle handle)
384 {
385         int num_cpus;
386         uint32_t idle_cpus;
387         struct acpi_buffer param = {
388                 .length = 4,
389                 .pointer = (void *)&idle_cpus,
390         };
391         u32 status;
392
393         mutex_lock(&isolated_cpus_lock);
394         num_cpus = acpi_pad_pur(handle);
395         if (num_cpus < 0) {
396                 /* The ACPI specification says that if no action was performed when
397                  * processing the _PUR object, _OST should still be evaluated, albeit
398                  * with a different status code.
399                  */
400                 status = ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION;
401         } else {
402                 status = ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS;
403                 acpi_pad_idle_cpus(num_cpus);
404         }
405
406         idle_cpus = acpi_pad_idle_cpus_num();
407         acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, status, &param);
408         mutex_unlock(&isolated_cpus_lock);
409 }
410
411 static void acpi_pad_notify(acpi_handle handle, u32 event,
412         void *data)
413 {
414         struct acpi_device *adev = data;
415
416         switch (event) {
417         case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
418                 acpi_pad_handle_notify(handle);
419                 acpi_bus_generate_netlink_event(adev->pnp.device_class,
420                         dev_name(&adev->dev), event, 0);
421                 break;
422         default:
423                 pr_warn("Unsupported event [0x%x]\n", event);
424                 break;
425         }
426 }
427
428 static int acpi_pad_probe(struct platform_device *pdev)
429 {
430         struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
431         acpi_status status;
432
433         strscpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
434         strscpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
435
436         status = acpi_install_notify_handler(adev->handle,
437                 ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
438
439         if (ACPI_FAILURE(status))
440                 return -ENODEV;
441
442         return 0;
443 }
444
445 static void acpi_pad_remove(struct platform_device *pdev)
446 {
447         struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
448
449         mutex_lock(&isolated_cpus_lock);
450         acpi_pad_idle_cpus(0);
451         mutex_unlock(&isolated_cpus_lock);
452
453         acpi_remove_notify_handler(adev->handle,
454                 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
455 }
456
457 static const struct acpi_device_id pad_device_ids[] = {
458         {"ACPI000C", 0},
459         {"", 0},
460 };
461 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
462
463 static struct platform_driver acpi_pad_driver = {
464         .probe = acpi_pad_probe,
465         .remove = acpi_pad_remove,
466         .driver = {
467                 .dev_groups = acpi_pad_groups,
468                 .name = "processor_aggregator",
469                 .acpi_match_table = pad_device_ids,
470         },
471 };
472
473 static int __init acpi_pad_init(void)
474 {
475         /* Xen ACPI PAD is used when running as Xen Dom0. */
476         if (xen_initial_domain())
477                 return -ENODEV;
478
479         power_saving_mwait_init();
480         if (power_saving_mwait_eax == 0)
481                 return -EINVAL;
482
483         return platform_driver_register(&acpi_pad_driver);
484 }
485
486 static void __exit acpi_pad_exit(void)
487 {
488         platform_driver_unregister(&acpi_pad_driver);
489 }
490
491 module_init(acpi_pad_init);
492 module_exit(acpi_pad_exit);
493 MODULE_AUTHOR("Shaohua Li<[email protected]>");
494 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
495 MODULE_LICENSE("GPL");
This page took 0.057509 seconds and 4 git commands to generate.