]> Git Repo - J-linux.git/blob - crypto/drbg.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / crypto / drbg.c
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *              * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *              * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *              * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *              * with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <[email protected]>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99
100 #include <crypto/drbg.h>
101 #include <crypto/internal/cipher.h>
102 #include <linux/kernel.h>
103 #include <linux/jiffies.h>
104 #include <linux/string_choices.h>
105
106 /***************************************************************
107  * Backend cipher definitions available to DRBG
108  ***************************************************************/
109
110 /*
111  * The order of the DRBG definitions here matter: every DRBG is registered
112  * as stdrng. Each DRBG receives an increasing cra_priority values the later
113  * they are defined in this array (see drbg_fill_array).
114  *
115  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and the
116  * HMAC-SHA512 / SHA256 / AES 256 over other ciphers. Thus, the
117  * favored DRBGs are the latest entries in this array.
118  */
119 static const struct drbg_core drbg_cores[] = {
120 #ifdef CONFIG_CRYPTO_DRBG_CTR
121         {
122                 .flags = DRBG_CTR | DRBG_STRENGTH128,
123                 .statelen = 32, /* 256 bits as defined in 10.2.1 */
124                 .blocklen_bytes = 16,
125                 .cra_name = "ctr_aes128",
126                 .backend_cra_name = "aes",
127         }, {
128                 .flags = DRBG_CTR | DRBG_STRENGTH192,
129                 .statelen = 40, /* 320 bits as defined in 10.2.1 */
130                 .blocklen_bytes = 16,
131                 .cra_name = "ctr_aes192",
132                 .backend_cra_name = "aes",
133         }, {
134                 .flags = DRBG_CTR | DRBG_STRENGTH256,
135                 .statelen = 48, /* 384 bits as defined in 10.2.1 */
136                 .blocklen_bytes = 16,
137                 .cra_name = "ctr_aes256",
138                 .backend_cra_name = "aes",
139         },
140 #endif /* CONFIG_CRYPTO_DRBG_CTR */
141 #ifdef CONFIG_CRYPTO_DRBG_HASH
142         {
143                 .flags = DRBG_HASH | DRBG_STRENGTH256,
144                 .statelen = 111, /* 888 bits */
145                 .blocklen_bytes = 48,
146                 .cra_name = "sha384",
147                 .backend_cra_name = "sha384",
148         }, {
149                 .flags = DRBG_HASH | DRBG_STRENGTH256,
150                 .statelen = 111, /* 888 bits */
151                 .blocklen_bytes = 64,
152                 .cra_name = "sha512",
153                 .backend_cra_name = "sha512",
154         }, {
155                 .flags = DRBG_HASH | DRBG_STRENGTH256,
156                 .statelen = 55, /* 440 bits */
157                 .blocklen_bytes = 32,
158                 .cra_name = "sha256",
159                 .backend_cra_name = "sha256",
160         },
161 #endif /* CONFIG_CRYPTO_DRBG_HASH */
162 #ifdef CONFIG_CRYPTO_DRBG_HMAC
163         {
164                 .flags = DRBG_HMAC | DRBG_STRENGTH256,
165                 .statelen = 48, /* block length of cipher */
166                 .blocklen_bytes = 48,
167                 .cra_name = "hmac_sha384",
168                 .backend_cra_name = "hmac(sha384)",
169         }, {
170                 .flags = DRBG_HMAC | DRBG_STRENGTH256,
171                 .statelen = 32, /* block length of cipher */
172                 .blocklen_bytes = 32,
173                 .cra_name = "hmac_sha256",
174                 .backend_cra_name = "hmac(sha256)",
175         }, {
176                 .flags = DRBG_HMAC | DRBG_STRENGTH256,
177                 .statelen = 64, /* block length of cipher */
178                 .blocklen_bytes = 64,
179                 .cra_name = "hmac_sha512",
180                 .backend_cra_name = "hmac(sha512)",
181         },
182 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
183 };
184
185 static int drbg_uninstantiate(struct drbg_state *drbg);
186
187 /******************************************************************
188  * Generic helper functions
189  ******************************************************************/
190
191 /*
192  * Return strength of DRBG according to SP800-90A section 8.4
193  *
194  * @flags DRBG flags reference
195  *
196  * Return: normalized strength in *bytes* value or 32 as default
197  *         to counter programming errors
198  */
199 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
200 {
201         switch (flags & DRBG_STRENGTH_MASK) {
202         case DRBG_STRENGTH128:
203                 return 16;
204         case DRBG_STRENGTH192:
205                 return 24;
206         case DRBG_STRENGTH256:
207                 return 32;
208         default:
209                 return 32;
210         }
211 }
212
213 /*
214  * FIPS 140-2 continuous self test for the noise source
215  * The test is performed on the noise source input data. Thus, the function
216  * implicitly knows the size of the buffer to be equal to the security
217  * strength.
218  *
219  * Note, this function disregards the nonce trailing the entropy data during
220  * initial seeding.
221  *
222  * drbg->drbg_mutex must have been taken.
223  *
224  * @drbg DRBG handle
225  * @entropy buffer of seed data to be checked
226  *
227  * return:
228  *      0 on success
229  *      -EAGAIN on when the CTRNG is not yet primed
230  *      < 0 on error
231  */
232 static int drbg_fips_continuous_test(struct drbg_state *drbg,
233                                      const unsigned char *entropy)
234 {
235         unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
236         int ret = 0;
237
238         if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
239                 return 0;
240
241         /* skip test if we test the overall system */
242         if (list_empty(&drbg->test_data.list))
243                 return 0;
244         /* only perform test in FIPS mode */
245         if (!fips_enabled)
246                 return 0;
247
248         if (!drbg->fips_primed) {
249                 /* Priming of FIPS test */
250                 memcpy(drbg->prev, entropy, entropylen);
251                 drbg->fips_primed = true;
252                 /* priming: another round is needed */
253                 return -EAGAIN;
254         }
255         ret = memcmp(drbg->prev, entropy, entropylen);
256         if (!ret)
257                 panic("DRBG continuous self test failed\n");
258         memcpy(drbg->prev, entropy, entropylen);
259
260         /* the test shall pass when the two values are not equal */
261         return 0;
262 }
263
264 /*
265  * Convert an integer into a byte representation of this integer.
266  * The byte representation is big-endian
267  *
268  * @val value to be converted
269  * @buf buffer holding the converted integer -- caller must ensure that
270  *      buffer size is at least 32 bit
271  */
272 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
273 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
274 {
275         struct s {
276                 __be32 conv;
277         };
278         struct s *conversion = (struct s *) buf;
279
280         conversion->conv = cpu_to_be32(val);
281 }
282 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
283
284 /******************************************************************
285  * CTR DRBG callback functions
286  ******************************************************************/
287
288 #ifdef CONFIG_CRYPTO_DRBG_CTR
289 #define CRYPTO_DRBG_CTR_STRING "CTR "
290 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
291 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
292 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
293 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
294 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
295 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
296
297 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
298                                  const unsigned char *key);
299 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
300                           const struct drbg_string *in);
301 static int drbg_init_sym_kernel(struct drbg_state *drbg);
302 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
303 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
304                               u8 *inbuf, u32 inbuflen,
305                               u8 *outbuf, u32 outlen);
306 #define DRBG_OUTSCRATCHLEN 256
307
308 /* BCC function for CTR DRBG as defined in 10.4.3 */
309 static int drbg_ctr_bcc(struct drbg_state *drbg,
310                         unsigned char *out, const unsigned char *key,
311                         struct list_head *in)
312 {
313         int ret = 0;
314         struct drbg_string *curr = NULL;
315         struct drbg_string data;
316         short cnt = 0;
317
318         drbg_string_fill(&data, out, drbg_blocklen(drbg));
319
320         /* 10.4.3 step 2 / 4 */
321         drbg_kcapi_symsetkey(drbg, key);
322         list_for_each_entry(curr, in, list) {
323                 const unsigned char *pos = curr->buf;
324                 size_t len = curr->len;
325                 /* 10.4.3 step 4.1 */
326                 while (len) {
327                         /* 10.4.3 step 4.2 */
328                         if (drbg_blocklen(drbg) == cnt) {
329                                 cnt = 0;
330                                 ret = drbg_kcapi_sym(drbg, out, &data);
331                                 if (ret)
332                                         return ret;
333                         }
334                         out[cnt] ^= *pos;
335                         pos++;
336                         cnt++;
337                         len--;
338                 }
339         }
340         /* 10.4.3 step 4.2 for last block */
341         if (cnt)
342                 ret = drbg_kcapi_sym(drbg, out, &data);
343
344         return ret;
345 }
346
347 /*
348  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
349  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
350  * the scratchpad is used as follows:
351  * drbg_ctr_update:
352  *      temp
353  *              start: drbg->scratchpad
354  *              length: drbg_statelen(drbg) + drbg_blocklen(drbg)
355  *                      note: the cipher writing into this variable works
356  *                      blocklen-wise. Now, when the statelen is not a multiple
357  *                      of blocklen, the generateion loop below "spills over"
358  *                      by at most blocklen. Thus, we need to give sufficient
359  *                      memory.
360  *      df_data
361  *              start: drbg->scratchpad +
362  *                              drbg_statelen(drbg) + drbg_blocklen(drbg)
363  *              length: drbg_statelen(drbg)
364  *
365  * drbg_ctr_df:
366  *      pad
367  *              start: df_data + drbg_statelen(drbg)
368  *              length: drbg_blocklen(drbg)
369  *      iv
370  *              start: pad + drbg_blocklen(drbg)
371  *              length: drbg_blocklen(drbg)
372  *      temp
373  *              start: iv + drbg_blocklen(drbg)
374  *              length: drbg_satelen(drbg) + drbg_blocklen(drbg)
375  *                      note: temp is the buffer that the BCC function operates
376  *                      on. BCC operates blockwise. drbg_statelen(drbg)
377  *                      is sufficient when the DRBG state length is a multiple
378  *                      of the block size. For AES192 (and maybe other ciphers)
379  *                      this is not correct and the length for temp is
380  *                      insufficient (yes, that also means for such ciphers,
381  *                      the final output of all BCC rounds are truncated).
382  *                      Therefore, add drbg_blocklen(drbg) to cover all
383  *                      possibilities.
384  */
385
386 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
387 static int drbg_ctr_df(struct drbg_state *drbg,
388                        unsigned char *df_data, size_t bytes_to_return,
389                        struct list_head *seedlist)
390 {
391         int ret = -EFAULT;
392         unsigned char L_N[8];
393         /* S3 is input */
394         struct drbg_string S1, S2, S4, cipherin;
395         LIST_HEAD(bcc_list);
396         unsigned char *pad = df_data + drbg_statelen(drbg);
397         unsigned char *iv = pad + drbg_blocklen(drbg);
398         unsigned char *temp = iv + drbg_blocklen(drbg);
399         size_t padlen = 0;
400         unsigned int templen = 0;
401         /* 10.4.2 step 7 */
402         unsigned int i = 0;
403         /* 10.4.2 step 8 */
404         const unsigned char *K = (unsigned char *)
405                            "\x00\x01\x02\x03\x04\x05\x06\x07"
406                            "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
407                            "\x10\x11\x12\x13\x14\x15\x16\x17"
408                            "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
409         unsigned char *X;
410         size_t generated_len = 0;
411         size_t inputlen = 0;
412         struct drbg_string *seed = NULL;
413
414         memset(pad, 0, drbg_blocklen(drbg));
415         memset(iv, 0, drbg_blocklen(drbg));
416
417         /* 10.4.2 step 1 is implicit as we work byte-wise */
418
419         /* 10.4.2 step 2 */
420         if ((512/8) < bytes_to_return)
421                 return -EINVAL;
422
423         /* 10.4.2 step 2 -- calculate the entire length of all input data */
424         list_for_each_entry(seed, seedlist, list)
425                 inputlen += seed->len;
426         drbg_cpu_to_be32(inputlen, &L_N[0]);
427
428         /* 10.4.2 step 3 */
429         drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
430
431         /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
432         padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
433         /* wrap the padlen appropriately */
434         if (padlen)
435                 padlen = drbg_blocklen(drbg) - padlen;
436         /*
437          * pad / padlen contains the 0x80 byte and the following zero bytes.
438          * As the calculated padlen value only covers the number of zero
439          * bytes, this value has to be incremented by one for the 0x80 byte.
440          */
441         padlen++;
442         pad[0] = 0x80;
443
444         /* 10.4.2 step 4 -- first fill the linked list and then order it */
445         drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
446         list_add_tail(&S1.list, &bcc_list);
447         drbg_string_fill(&S2, L_N, sizeof(L_N));
448         list_add_tail(&S2.list, &bcc_list);
449         list_splice_tail(seedlist, &bcc_list);
450         drbg_string_fill(&S4, pad, padlen);
451         list_add_tail(&S4.list, &bcc_list);
452
453         /* 10.4.2 step 9 */
454         while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
455                 /*
456                  * 10.4.2 step 9.1 - the padding is implicit as the buffer
457                  * holds zeros after allocation -- even the increment of i
458                  * is irrelevant as the increment remains within length of i
459                  */
460                 drbg_cpu_to_be32(i, iv);
461                 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
462                 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
463                 if (ret)
464                         goto out;
465                 /* 10.4.2 step 9.3 */
466                 i++;
467                 templen += drbg_blocklen(drbg);
468         }
469
470         /* 10.4.2 step 11 */
471         X = temp + (drbg_keylen(drbg));
472         drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
473
474         /* 10.4.2 step 12: overwriting of outval is implemented in next step */
475
476         /* 10.4.2 step 13 */
477         drbg_kcapi_symsetkey(drbg, temp);
478         while (generated_len < bytes_to_return) {
479                 short blocklen = 0;
480                 /*
481                  * 10.4.2 step 13.1: the truncation of the key length is
482                  * implicit as the key is only drbg_blocklen in size based on
483                  * the implementation of the cipher function callback
484                  */
485                 ret = drbg_kcapi_sym(drbg, X, &cipherin);
486                 if (ret)
487                         goto out;
488                 blocklen = (drbg_blocklen(drbg) <
489                                 (bytes_to_return - generated_len)) ?
490                             drbg_blocklen(drbg) :
491                                 (bytes_to_return - generated_len);
492                 /* 10.4.2 step 13.2 and 14 */
493                 memcpy(df_data + generated_len, X, blocklen);
494                 generated_len += blocklen;
495         }
496
497         ret = 0;
498
499 out:
500         memset(iv, 0, drbg_blocklen(drbg));
501         memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
502         memset(pad, 0, drbg_blocklen(drbg));
503         return ret;
504 }
505
506 /*
507  * update function of CTR DRBG as defined in 10.2.1.2
508  *
509  * The reseed variable has an enhanced meaning compared to the update
510  * functions of the other DRBGs as follows:
511  * 0 => initial seed from initialization
512  * 1 => reseed via drbg_seed
513  * 2 => first invocation from drbg_ctr_update when addtl is present. In
514  *      this case, the df_data scratchpad is not deleted so that it is
515  *      available for another calls to prevent calling the DF function
516  *      again.
517  * 3 => second invocation from drbg_ctr_update. When the update function
518  *      was called with addtl, the df_data memory already contains the
519  *      DFed addtl information and we do not need to call DF again.
520  */
521 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
522                            int reseed)
523 {
524         int ret = -EFAULT;
525         /* 10.2.1.2 step 1 */
526         unsigned char *temp = drbg->scratchpad;
527         unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
528                                  drbg_blocklen(drbg);
529
530         if (3 > reseed)
531                 memset(df_data, 0, drbg_statelen(drbg));
532
533         if (!reseed) {
534                 /*
535                  * The DRBG uses the CTR mode of the underlying AES cipher. The
536                  * CTR mode increments the counter value after the AES operation
537                  * but SP800-90A requires that the counter is incremented before
538                  * the AES operation. Hence, we increment it at the time we set
539                  * it by one.
540                  */
541                 crypto_inc(drbg->V, drbg_blocklen(drbg));
542
543                 ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
544                                              drbg_keylen(drbg));
545                 if (ret)
546                         goto out;
547         }
548
549         /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
550         if (seed) {
551                 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
552                 if (ret)
553                         goto out;
554         }
555
556         ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
557                                  temp, drbg_statelen(drbg));
558         if (ret)
559                 return ret;
560
561         /* 10.2.1.2 step 5 */
562         ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
563                                      drbg_keylen(drbg));
564         if (ret)
565                 goto out;
566         /* 10.2.1.2 step 6 */
567         memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
568         /* See above: increment counter by one to compensate timing of CTR op */
569         crypto_inc(drbg->V, drbg_blocklen(drbg));
570         ret = 0;
571
572 out:
573         memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
574         if (2 != reseed)
575                 memset(df_data, 0, drbg_statelen(drbg));
576         return ret;
577 }
578
579 /*
580  * scratchpad use: drbg_ctr_update is called independently from
581  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
582  */
583 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
584 static int drbg_ctr_generate(struct drbg_state *drbg,
585                              unsigned char *buf, unsigned int buflen,
586                              struct list_head *addtl)
587 {
588         int ret;
589         int len = min_t(int, buflen, INT_MAX);
590
591         /* 10.2.1.5.2 step 2 */
592         if (addtl && !list_empty(addtl)) {
593                 ret = drbg_ctr_update(drbg, addtl, 2);
594                 if (ret)
595                         return 0;
596         }
597
598         /* 10.2.1.5.2 step 4.1 */
599         ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
600         if (ret)
601                 return ret;
602
603         /* 10.2.1.5.2 step 6 */
604         ret = drbg_ctr_update(drbg, NULL, 3);
605         if (ret)
606                 len = ret;
607
608         return len;
609 }
610
611 static const struct drbg_state_ops drbg_ctr_ops = {
612         .update         = drbg_ctr_update,
613         .generate       = drbg_ctr_generate,
614         .crypto_init    = drbg_init_sym_kernel,
615         .crypto_fini    = drbg_fini_sym_kernel,
616 };
617 #endif /* CONFIG_CRYPTO_DRBG_CTR */
618
619 /******************************************************************
620  * HMAC DRBG callback functions
621  ******************************************************************/
622
623 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
624 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
625                            const struct list_head *in);
626 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
627                                   const unsigned char *key);
628 static int drbg_init_hash_kernel(struct drbg_state *drbg);
629 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
630 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
631
632 #ifdef CONFIG_CRYPTO_DRBG_HMAC
633 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
634 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
635 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
636 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
637 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
638 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
639 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
640
641 /* update function of HMAC DRBG as defined in 10.1.2.2 */
642 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
643                             int reseed)
644 {
645         int ret = -EFAULT;
646         int i = 0;
647         struct drbg_string seed1, seed2, vdata;
648         LIST_HEAD(seedlist);
649         LIST_HEAD(vdatalist);
650
651         if (!reseed) {
652                 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
653                 memset(drbg->V, 1, drbg_statelen(drbg));
654                 drbg_kcapi_hmacsetkey(drbg, drbg->C);
655         }
656
657         drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
658         list_add_tail(&seed1.list, &seedlist);
659         /* buffer of seed2 will be filled in for loop below with one byte */
660         drbg_string_fill(&seed2, NULL, 1);
661         list_add_tail(&seed2.list, &seedlist);
662         /* input data of seed is allowed to be NULL at this point */
663         if (seed)
664                 list_splice_tail(seed, &seedlist);
665
666         drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
667         list_add_tail(&vdata.list, &vdatalist);
668         for (i = 2; 0 < i; i--) {
669                 /* first round uses 0x0, second 0x1 */
670                 unsigned char prefix = DRBG_PREFIX0;
671                 if (1 == i)
672                         prefix = DRBG_PREFIX1;
673                 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
674                 seed2.buf = &prefix;
675                 ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
676                 if (ret)
677                         return ret;
678                 drbg_kcapi_hmacsetkey(drbg, drbg->C);
679
680                 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
681                 ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
682                 if (ret)
683                         return ret;
684
685                 /* 10.1.2.2 step 3 */
686                 if (!seed)
687                         return ret;
688         }
689
690         return 0;
691 }
692
693 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
694 static int drbg_hmac_generate(struct drbg_state *drbg,
695                               unsigned char *buf,
696                               unsigned int buflen,
697                               struct list_head *addtl)
698 {
699         int len = 0;
700         int ret = 0;
701         struct drbg_string data;
702         LIST_HEAD(datalist);
703
704         /* 10.1.2.5 step 2 */
705         if (addtl && !list_empty(addtl)) {
706                 ret = drbg_hmac_update(drbg, addtl, 1);
707                 if (ret)
708                         return ret;
709         }
710
711         drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
712         list_add_tail(&data.list, &datalist);
713         while (len < buflen) {
714                 unsigned int outlen = 0;
715                 /* 10.1.2.5 step 4.1 */
716                 ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
717                 if (ret)
718                         return ret;
719                 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
720                           drbg_blocklen(drbg) : (buflen - len);
721
722                 /* 10.1.2.5 step 4.2 */
723                 memcpy(buf + len, drbg->V, outlen);
724                 len += outlen;
725         }
726
727         /* 10.1.2.5 step 6 */
728         if (addtl && !list_empty(addtl))
729                 ret = drbg_hmac_update(drbg, addtl, 1);
730         else
731                 ret = drbg_hmac_update(drbg, NULL, 1);
732         if (ret)
733                 return ret;
734
735         return len;
736 }
737
738 static const struct drbg_state_ops drbg_hmac_ops = {
739         .update         = drbg_hmac_update,
740         .generate       = drbg_hmac_generate,
741         .crypto_init    = drbg_init_hash_kernel,
742         .crypto_fini    = drbg_fini_hash_kernel,
743 };
744 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
745
746 /******************************************************************
747  * Hash DRBG callback functions
748  ******************************************************************/
749
750 #ifdef CONFIG_CRYPTO_DRBG_HASH
751 #define CRYPTO_DRBG_HASH_STRING "HASH "
752 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
753 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
754 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
755 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
756 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
757 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
758
759 /*
760  * Increment buffer
761  *
762  * @dst buffer to increment
763  * @add value to add
764  */
765 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
766                                 const unsigned char *add, size_t addlen)
767 {
768         /* implied: dstlen > addlen */
769         unsigned char *dstptr;
770         const unsigned char *addptr;
771         unsigned int remainder = 0;
772         size_t len = addlen;
773
774         dstptr = dst + (dstlen-1);
775         addptr = add + (addlen-1);
776         while (len) {
777                 remainder += *dstptr + *addptr;
778                 *dstptr = remainder & 0xff;
779                 remainder >>= 8;
780                 len--; dstptr--; addptr--;
781         }
782         len = dstlen - addlen;
783         while (len && remainder > 0) {
784                 remainder = *dstptr + 1;
785                 *dstptr = remainder & 0xff;
786                 remainder >>= 8;
787                 len--; dstptr--;
788         }
789 }
790
791 /*
792  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
793  * interlinked, the scratchpad is used as follows:
794  * drbg_hash_update
795  *      start: drbg->scratchpad
796  *      length: drbg_statelen(drbg)
797  * drbg_hash_df:
798  *      start: drbg->scratchpad + drbg_statelen(drbg)
799  *      length: drbg_blocklen(drbg)
800  *
801  * drbg_hash_process_addtl uses the scratchpad, but fully completes
802  * before either of the functions mentioned before are invoked. Therefore,
803  * drbg_hash_process_addtl does not need to be specifically considered.
804  */
805
806 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
807 static int drbg_hash_df(struct drbg_state *drbg,
808                         unsigned char *outval, size_t outlen,
809                         struct list_head *entropylist)
810 {
811         int ret = 0;
812         size_t len = 0;
813         unsigned char input[5];
814         unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
815         struct drbg_string data;
816
817         /* 10.4.1 step 3 */
818         input[0] = 1;
819         drbg_cpu_to_be32((outlen * 8), &input[1]);
820
821         /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
822         drbg_string_fill(&data, input, 5);
823         list_add(&data.list, entropylist);
824
825         /* 10.4.1 step 4 */
826         while (len < outlen) {
827                 short blocklen = 0;
828                 /* 10.4.1 step 4.1 */
829                 ret = drbg_kcapi_hash(drbg, tmp, entropylist);
830                 if (ret)
831                         goto out;
832                 /* 10.4.1 step 4.2 */
833                 input[0]++;
834                 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
835                             drbg_blocklen(drbg) : (outlen - len);
836                 memcpy(outval + len, tmp, blocklen);
837                 len += blocklen;
838         }
839
840 out:
841         memset(tmp, 0, drbg_blocklen(drbg));
842         return ret;
843 }
844
845 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
846 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
847                             int reseed)
848 {
849         int ret = 0;
850         struct drbg_string data1, data2;
851         LIST_HEAD(datalist);
852         LIST_HEAD(datalist2);
853         unsigned char *V = drbg->scratchpad;
854         unsigned char prefix = DRBG_PREFIX1;
855
856         if (!seed)
857                 return -EINVAL;
858
859         if (reseed) {
860                 /* 10.1.1.3 step 1 */
861                 memcpy(V, drbg->V, drbg_statelen(drbg));
862                 drbg_string_fill(&data1, &prefix, 1);
863                 list_add_tail(&data1.list, &datalist);
864                 drbg_string_fill(&data2, V, drbg_statelen(drbg));
865                 list_add_tail(&data2.list, &datalist);
866         }
867         list_splice_tail(seed, &datalist);
868
869         /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
870         ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
871         if (ret)
872                 goto out;
873
874         /* 10.1.1.2 / 10.1.1.3 step 4  */
875         prefix = DRBG_PREFIX0;
876         drbg_string_fill(&data1, &prefix, 1);
877         list_add_tail(&data1.list, &datalist2);
878         drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
879         list_add_tail(&data2.list, &datalist2);
880         /* 10.1.1.2 / 10.1.1.3 step 4 */
881         ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
882
883 out:
884         memset(drbg->scratchpad, 0, drbg_statelen(drbg));
885         return ret;
886 }
887
888 /* processing of additional information string for Hash DRBG */
889 static int drbg_hash_process_addtl(struct drbg_state *drbg,
890                                    struct list_head *addtl)
891 {
892         int ret = 0;
893         struct drbg_string data1, data2;
894         LIST_HEAD(datalist);
895         unsigned char prefix = DRBG_PREFIX2;
896
897         /* 10.1.1.4 step 2 */
898         if (!addtl || list_empty(addtl))
899                 return 0;
900
901         /* 10.1.1.4 step 2a */
902         drbg_string_fill(&data1, &prefix, 1);
903         drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
904         list_add_tail(&data1.list, &datalist);
905         list_add_tail(&data2.list, &datalist);
906         list_splice_tail(addtl, &datalist);
907         ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
908         if (ret)
909                 goto out;
910
911         /* 10.1.1.4 step 2b */
912         drbg_add_buf(drbg->V, drbg_statelen(drbg),
913                      drbg->scratchpad, drbg_blocklen(drbg));
914
915 out:
916         memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
917         return ret;
918 }
919
920 /* Hashgen defined in 10.1.1.4 */
921 static int drbg_hash_hashgen(struct drbg_state *drbg,
922                              unsigned char *buf,
923                              unsigned int buflen)
924 {
925         int len = 0;
926         int ret = 0;
927         unsigned char *src = drbg->scratchpad;
928         unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
929         struct drbg_string data;
930         LIST_HEAD(datalist);
931
932         /* 10.1.1.4 step hashgen 2 */
933         memcpy(src, drbg->V, drbg_statelen(drbg));
934
935         drbg_string_fill(&data, src, drbg_statelen(drbg));
936         list_add_tail(&data.list, &datalist);
937         while (len < buflen) {
938                 unsigned int outlen = 0;
939                 /* 10.1.1.4 step hashgen 4.1 */
940                 ret = drbg_kcapi_hash(drbg, dst, &datalist);
941                 if (ret) {
942                         len = ret;
943                         goto out;
944                 }
945                 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
946                           drbg_blocklen(drbg) : (buflen - len);
947                 /* 10.1.1.4 step hashgen 4.2 */
948                 memcpy(buf + len, dst, outlen);
949                 len += outlen;
950                 /* 10.1.1.4 hashgen step 4.3 */
951                 if (len < buflen)
952                         crypto_inc(src, drbg_statelen(drbg));
953         }
954
955 out:
956         memset(drbg->scratchpad, 0,
957                (drbg_statelen(drbg) + drbg_blocklen(drbg)));
958         return len;
959 }
960
961 /* generate function for Hash DRBG as defined in  10.1.1.4 */
962 static int drbg_hash_generate(struct drbg_state *drbg,
963                               unsigned char *buf, unsigned int buflen,
964                               struct list_head *addtl)
965 {
966         int len = 0;
967         int ret = 0;
968         union {
969                 unsigned char req[8];
970                 __be64 req_int;
971         } u;
972         unsigned char prefix = DRBG_PREFIX3;
973         struct drbg_string data1, data2;
974         LIST_HEAD(datalist);
975
976         /* 10.1.1.4 step 2 */
977         ret = drbg_hash_process_addtl(drbg, addtl);
978         if (ret)
979                 return ret;
980         /* 10.1.1.4 step 3 */
981         len = drbg_hash_hashgen(drbg, buf, buflen);
982
983         /* this is the value H as documented in 10.1.1.4 */
984         /* 10.1.1.4 step 4 */
985         drbg_string_fill(&data1, &prefix, 1);
986         list_add_tail(&data1.list, &datalist);
987         drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
988         list_add_tail(&data2.list, &datalist);
989         ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
990         if (ret) {
991                 len = ret;
992                 goto out;
993         }
994
995         /* 10.1.1.4 step 5 */
996         drbg_add_buf(drbg->V, drbg_statelen(drbg),
997                      drbg->scratchpad, drbg_blocklen(drbg));
998         drbg_add_buf(drbg->V, drbg_statelen(drbg),
999                      drbg->C, drbg_statelen(drbg));
1000         u.req_int = cpu_to_be64(drbg->reseed_ctr);
1001         drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1002
1003 out:
1004         memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1005         return len;
1006 }
1007
1008 /*
1009  * scratchpad usage: as update and generate are used isolated, both
1010  * can use the scratchpad
1011  */
1012 static const struct drbg_state_ops drbg_hash_ops = {
1013         .update         = drbg_hash_update,
1014         .generate       = drbg_hash_generate,
1015         .crypto_init    = drbg_init_hash_kernel,
1016         .crypto_fini    = drbg_fini_hash_kernel,
1017 };
1018 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1019
1020 /******************************************************************
1021  * Functions common for DRBG implementations
1022  ******************************************************************/
1023
1024 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1025                               int reseed, enum drbg_seed_state new_seed_state)
1026 {
1027         int ret = drbg->d_ops->update(drbg, seed, reseed);
1028
1029         if (ret)
1030                 return ret;
1031
1032         drbg->seeded = new_seed_state;
1033         drbg->last_seed_time = jiffies;
1034         /* 10.1.1.2 / 10.1.1.3 step 5 */
1035         drbg->reseed_ctr = 1;
1036
1037         switch (drbg->seeded) {
1038         case DRBG_SEED_STATE_UNSEEDED:
1039                 /* Impossible, but handle it to silence compiler warnings. */
1040                 fallthrough;
1041         case DRBG_SEED_STATE_PARTIAL:
1042                 /*
1043                  * Require frequent reseeds until the seed source is
1044                  * fully initialized.
1045                  */
1046                 drbg->reseed_threshold = 50;
1047                 break;
1048
1049         case DRBG_SEED_STATE_FULL:
1050                 /*
1051                  * Seed source has become fully initialized, frequent
1052                  * reseeds no longer required.
1053                  */
1054                 drbg->reseed_threshold = drbg_max_requests(drbg);
1055                 break;
1056         }
1057
1058         return ret;
1059 }
1060
1061 static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1062                                         unsigned char *entropy,
1063                                         unsigned int entropylen)
1064 {
1065         int ret;
1066
1067         do {
1068                 get_random_bytes(entropy, entropylen);
1069                 ret = drbg_fips_continuous_test(drbg, entropy);
1070                 if (ret && ret != -EAGAIN)
1071                         return ret;
1072         } while (ret);
1073
1074         return 0;
1075 }
1076
1077 static int drbg_seed_from_random(struct drbg_state *drbg)
1078 {
1079         struct drbg_string data;
1080         LIST_HEAD(seedlist);
1081         unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1082         unsigned char entropy[32];
1083         int ret;
1084
1085         BUG_ON(!entropylen);
1086         BUG_ON(entropylen > sizeof(entropy));
1087
1088         drbg_string_fill(&data, entropy, entropylen);
1089         list_add_tail(&data.list, &seedlist);
1090
1091         ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1092         if (ret)
1093                 goto out;
1094
1095         ret = __drbg_seed(drbg, &seedlist, true, DRBG_SEED_STATE_FULL);
1096
1097 out:
1098         memzero_explicit(entropy, entropylen);
1099         return ret;
1100 }
1101
1102 static bool drbg_nopr_reseed_interval_elapsed(struct drbg_state *drbg)
1103 {
1104         unsigned long next_reseed;
1105
1106         /* Don't ever reseed from get_random_bytes() in test mode. */
1107         if (list_empty(&drbg->test_data.list))
1108                 return false;
1109
1110         /*
1111          * Obtain fresh entropy for the nopr DRBGs after 300s have
1112          * elapsed in order to still achieve sort of partial
1113          * prediction resistance over the time domain at least. Note
1114          * that the period of 300s has been chosen to match the
1115          * CRNG_RESEED_INTERVAL of the get_random_bytes()' chacha
1116          * rngs.
1117          */
1118         next_reseed = drbg->last_seed_time + 300 * HZ;
1119         return time_after(jiffies, next_reseed);
1120 }
1121
1122 /*
1123  * Seeding or reseeding of the DRBG
1124  *
1125  * @drbg: DRBG state struct
1126  * @pers: personalization / additional information buffer
1127  * @reseed: 0 for initial seed process, 1 for reseeding
1128  *
1129  * return:
1130  *      0 on success
1131  *      error value otherwise
1132  */
1133 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1134                      bool reseed)
1135 {
1136         int ret;
1137         unsigned char entropy[((32 + 16) * 2)];
1138         unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1139         struct drbg_string data1;
1140         LIST_HEAD(seedlist);
1141         enum drbg_seed_state new_seed_state = DRBG_SEED_STATE_FULL;
1142
1143         /* 9.1 / 9.2 / 9.3.1 step 3 */
1144         if (pers && pers->len > (drbg_max_addtl(drbg))) {
1145                 pr_devel("DRBG: personalization string too long %zu\n",
1146                          pers->len);
1147                 return -EINVAL;
1148         }
1149
1150         if (list_empty(&drbg->test_data.list)) {
1151                 drbg_string_fill(&data1, drbg->test_data.buf,
1152                                  drbg->test_data.len);
1153                 pr_devel("DRBG: using test entropy\n");
1154         } else {
1155                 /*
1156                  * Gather entropy equal to the security strength of the DRBG.
1157                  * With a derivation function, a nonce is required in addition
1158                  * to the entropy. A nonce must be at least 1/2 of the security
1159                  * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1160                  * of the strength. The consideration of a nonce is only
1161                  * applicable during initial seeding.
1162                  */
1163                 BUG_ON(!entropylen);
1164                 if (!reseed)
1165                         entropylen = ((entropylen + 1) / 2) * 3;
1166                 BUG_ON((entropylen * 2) > sizeof(entropy));
1167
1168                 /* Get seed from in-kernel /dev/urandom */
1169                 if (!rng_is_initialized())
1170                         new_seed_state = DRBG_SEED_STATE_PARTIAL;
1171
1172                 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1173                 if (ret)
1174                         goto out;
1175
1176                 if (!drbg->jent) {
1177                         drbg_string_fill(&data1, entropy, entropylen);
1178                         pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1179                                  entropylen);
1180                 } else {
1181                         /*
1182                          * Get seed from Jitter RNG, failures are
1183                          * fatal only in FIPS mode.
1184                          */
1185                         ret = crypto_rng_get_bytes(drbg->jent,
1186                                                    entropy + entropylen,
1187                                                    entropylen);
1188                         if (fips_enabled && ret) {
1189                                 pr_devel("DRBG: jent failed with %d\n", ret);
1190
1191                                 /*
1192                                  * Do not treat the transient failure of the
1193                                  * Jitter RNG as an error that needs to be
1194                                  * reported. The combined number of the
1195                                  * maximum reseed threshold times the maximum
1196                                  * number of Jitter RNG transient errors is
1197                                  * less than the reseed threshold required by
1198                                  * SP800-90A allowing us to treat the
1199                                  * transient errors as such.
1200                                  *
1201                                  * However, we mandate that at least the first
1202                                  * seeding operation must succeed with the
1203                                  * Jitter RNG.
1204                                  */
1205                                 if (!reseed || ret != -EAGAIN)
1206                                         goto out;
1207                         }
1208
1209                         drbg_string_fill(&data1, entropy, entropylen * 2);
1210                         pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1211                                  entropylen * 2);
1212                 }
1213         }
1214         list_add_tail(&data1.list, &seedlist);
1215
1216         /*
1217          * concatenation of entropy with personalization str / addtl input)
1218          * the variable pers is directly handed in by the caller, so check its
1219          * contents whether it is appropriate
1220          */
1221         if (pers && pers->buf && 0 < pers->len) {
1222                 list_add_tail(&pers->list, &seedlist);
1223                 pr_devel("DRBG: using personalization string\n");
1224         }
1225
1226         if (!reseed) {
1227                 memset(drbg->V, 0, drbg_statelen(drbg));
1228                 memset(drbg->C, 0, drbg_statelen(drbg));
1229         }
1230
1231         ret = __drbg_seed(drbg, &seedlist, reseed, new_seed_state);
1232
1233 out:
1234         memzero_explicit(entropy, entropylen * 2);
1235
1236         return ret;
1237 }
1238
1239 /* Free all substructures in a DRBG state without the DRBG state structure */
1240 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1241 {
1242         if (!drbg)
1243                 return;
1244         kfree_sensitive(drbg->Vbuf);
1245         drbg->Vbuf = NULL;
1246         drbg->V = NULL;
1247         kfree_sensitive(drbg->Cbuf);
1248         drbg->Cbuf = NULL;
1249         drbg->C = NULL;
1250         kfree_sensitive(drbg->scratchpadbuf);
1251         drbg->scratchpadbuf = NULL;
1252         drbg->reseed_ctr = 0;
1253         drbg->d_ops = NULL;
1254         drbg->core = NULL;
1255         if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1256                 kfree_sensitive(drbg->prev);
1257                 drbg->prev = NULL;
1258                 drbg->fips_primed = false;
1259         }
1260 }
1261
1262 /*
1263  * Allocate all sub-structures for a DRBG state.
1264  * The DRBG state structure must already be allocated.
1265  */
1266 static inline int drbg_alloc_state(struct drbg_state *drbg)
1267 {
1268         int ret = -ENOMEM;
1269         unsigned int sb_size = 0;
1270
1271         switch (drbg->core->flags & DRBG_TYPE_MASK) {
1272 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1273         case DRBG_HMAC:
1274                 drbg->d_ops = &drbg_hmac_ops;
1275                 break;
1276 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1277 #ifdef CONFIG_CRYPTO_DRBG_HASH
1278         case DRBG_HASH:
1279                 drbg->d_ops = &drbg_hash_ops;
1280                 break;
1281 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1282 #ifdef CONFIG_CRYPTO_DRBG_CTR
1283         case DRBG_CTR:
1284                 drbg->d_ops = &drbg_ctr_ops;
1285                 break;
1286 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1287         default:
1288                 ret = -EOPNOTSUPP;
1289                 goto err;
1290         }
1291
1292         ret = drbg->d_ops->crypto_init(drbg);
1293         if (ret < 0)
1294                 goto err;
1295
1296         drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1297         if (!drbg->Vbuf) {
1298                 ret = -ENOMEM;
1299                 goto fini;
1300         }
1301         drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1302         drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1303         if (!drbg->Cbuf) {
1304                 ret = -ENOMEM;
1305                 goto fini;
1306         }
1307         drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1308         /* scratchpad is only generated for CTR and Hash */
1309         if (drbg->core->flags & DRBG_HMAC)
1310                 sb_size = 0;
1311         else if (drbg->core->flags & DRBG_CTR)
1312                 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1313                           drbg_statelen(drbg) + /* df_data */
1314                           drbg_blocklen(drbg) + /* pad */
1315                           drbg_blocklen(drbg) + /* iv */
1316                           drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1317         else
1318                 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1319
1320         if (0 < sb_size) {
1321                 drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1322                 if (!drbg->scratchpadbuf) {
1323                         ret = -ENOMEM;
1324                         goto fini;
1325                 }
1326                 drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1327         }
1328
1329         if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1330                 drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1331                                      GFP_KERNEL);
1332                 if (!drbg->prev) {
1333                         ret = -ENOMEM;
1334                         goto fini;
1335                 }
1336                 drbg->fips_primed = false;
1337         }
1338
1339         return 0;
1340
1341 fini:
1342         drbg->d_ops->crypto_fini(drbg);
1343 err:
1344         drbg_dealloc_state(drbg);
1345         return ret;
1346 }
1347
1348 /*************************************************************************
1349  * DRBG interface functions
1350  *************************************************************************/
1351
1352 /*
1353  * DRBG generate function as required by SP800-90A - this function
1354  * generates random numbers
1355  *
1356  * @drbg DRBG state handle
1357  * @buf Buffer where to store the random numbers -- the buffer must already
1358  *      be pre-allocated by caller
1359  * @buflen Length of output buffer - this value defines the number of random
1360  *         bytes pulled from DRBG
1361  * @addtl Additional input that is mixed into state, may be NULL -- note
1362  *        the entropy is pulled by the DRBG internally unconditionally
1363  *        as defined in SP800-90A. The additional input is mixed into
1364  *        the state in addition to the pulled entropy.
1365  *
1366  * return: 0 when all bytes are generated; < 0 in case of an error
1367  */
1368 static int drbg_generate(struct drbg_state *drbg,
1369                          unsigned char *buf, unsigned int buflen,
1370                          struct drbg_string *addtl)
1371 {
1372         int len = 0;
1373         LIST_HEAD(addtllist);
1374
1375         if (!drbg->core) {
1376                 pr_devel("DRBG: not yet seeded\n");
1377                 return -EINVAL;
1378         }
1379         if (0 == buflen || !buf) {
1380                 pr_devel("DRBG: no output buffer provided\n");
1381                 return -EINVAL;
1382         }
1383         if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1384                 pr_devel("DRBG: wrong format of additional information\n");
1385                 return -EINVAL;
1386         }
1387
1388         /* 9.3.1 step 2 */
1389         len = -EINVAL;
1390         if (buflen > (drbg_max_request_bytes(drbg))) {
1391                 pr_devel("DRBG: requested random numbers too large %u\n",
1392                          buflen);
1393                 goto err;
1394         }
1395
1396         /* 9.3.1 step 3 is implicit with the chosen DRBG */
1397
1398         /* 9.3.1 step 4 */
1399         if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1400                 pr_devel("DRBG: additional information string too long %zu\n",
1401                          addtl->len);
1402                 goto err;
1403         }
1404         /* 9.3.1 step 5 is implicit with the chosen DRBG */
1405
1406         /*
1407          * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1408          * here. The spec is a bit convoluted here, we make it simpler.
1409          */
1410         if (drbg->reseed_threshold < drbg->reseed_ctr)
1411                 drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1412
1413         if (drbg->pr || drbg->seeded == DRBG_SEED_STATE_UNSEEDED) {
1414                 pr_devel("DRBG: reseeding before generation (prediction "
1415                          "resistance: %s, state %s)\n",
1416                          str_true_false(drbg->pr),
1417                          (drbg->seeded ==  DRBG_SEED_STATE_FULL ?
1418                           "seeded" : "unseeded"));
1419                 /* 9.3.1 steps 7.1 through 7.3 */
1420                 len = drbg_seed(drbg, addtl, true);
1421                 if (len)
1422                         goto err;
1423                 /* 9.3.1 step 7.4 */
1424                 addtl = NULL;
1425         } else if (rng_is_initialized() &&
1426                    (drbg->seeded == DRBG_SEED_STATE_PARTIAL ||
1427                     drbg_nopr_reseed_interval_elapsed(drbg))) {
1428                 len = drbg_seed_from_random(drbg);
1429                 if (len)
1430                         goto err;
1431         }
1432
1433         if (addtl && 0 < addtl->len)
1434                 list_add_tail(&addtl->list, &addtllist);
1435         /* 9.3.1 step 8 and 10 */
1436         len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1437
1438         /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1439         drbg->reseed_ctr++;
1440         if (0 >= len)
1441                 goto err;
1442
1443         /*
1444          * Section 11.3.3 requires to re-perform self tests after some
1445          * generated random numbers. The chosen value after which self
1446          * test is performed is arbitrary, but it should be reasonable.
1447          * However, we do not perform the self tests because of the following
1448          * reasons: it is mathematically impossible that the initial self tests
1449          * were successfully and the following are not. If the initial would
1450          * pass and the following would not, the kernel integrity is violated.
1451          * In this case, the entire kernel operation is questionable and it
1452          * is unlikely that the integrity violation only affects the
1453          * correct operation of the DRBG.
1454          *
1455          * Albeit the following code is commented out, it is provided in
1456          * case somebody has a need to implement the test of 11.3.3.
1457          */
1458 #if 0
1459         if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1460                 int err = 0;
1461                 pr_devel("DRBG: start to perform self test\n");
1462                 if (drbg->core->flags & DRBG_HMAC)
1463                         err = alg_test("drbg_pr_hmac_sha512",
1464                                        "drbg_pr_hmac_sha512", 0, 0);
1465                 else if (drbg->core->flags & DRBG_CTR)
1466                         err = alg_test("drbg_pr_ctr_aes256",
1467                                        "drbg_pr_ctr_aes256", 0, 0);
1468                 else
1469                         err = alg_test("drbg_pr_sha256",
1470                                        "drbg_pr_sha256", 0, 0);
1471                 if (err) {
1472                         pr_err("DRBG: periodical self test failed\n");
1473                         /*
1474                          * uninstantiate implies that from now on, only errors
1475                          * are returned when reusing this DRBG cipher handle
1476                          */
1477                         drbg_uninstantiate(drbg);
1478                         return 0;
1479                 } else {
1480                         pr_devel("DRBG: self test successful\n");
1481                 }
1482         }
1483 #endif
1484
1485         /*
1486          * All operations were successful, return 0 as mandated by
1487          * the kernel crypto API interface.
1488          */
1489         len = 0;
1490 err:
1491         return len;
1492 }
1493
1494 /*
1495  * Wrapper around drbg_generate which can pull arbitrary long strings
1496  * from the DRBG without hitting the maximum request limitation.
1497  *
1498  * Parameters: see drbg_generate
1499  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1500  *               the entire drbg_generate_long request fails
1501  */
1502 static int drbg_generate_long(struct drbg_state *drbg,
1503                               unsigned char *buf, unsigned int buflen,
1504                               struct drbg_string *addtl)
1505 {
1506         unsigned int len = 0;
1507         unsigned int slice = 0;
1508         do {
1509                 int err = 0;
1510                 unsigned int chunk = 0;
1511                 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1512                 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1513                 mutex_lock(&drbg->drbg_mutex);
1514                 err = drbg_generate(drbg, buf + len, chunk, addtl);
1515                 mutex_unlock(&drbg->drbg_mutex);
1516                 if (0 > err)
1517                         return err;
1518                 len += chunk;
1519         } while (slice > 0 && (len < buflen));
1520         return 0;
1521 }
1522
1523 static int drbg_prepare_hrng(struct drbg_state *drbg)
1524 {
1525         /* We do not need an HRNG in test mode. */
1526         if (list_empty(&drbg->test_data.list))
1527                 return 0;
1528
1529         drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1530         if (IS_ERR(drbg->jent)) {
1531                 const int err = PTR_ERR(drbg->jent);
1532
1533                 drbg->jent = NULL;
1534                 if (fips_enabled)
1535                         return err;
1536                 pr_info("DRBG: Continuing without Jitter RNG\n");
1537         }
1538
1539         return 0;
1540 }
1541
1542 /*
1543  * DRBG instantiation function as required by SP800-90A - this function
1544  * sets up the DRBG handle, performs the initial seeding and all sanity
1545  * checks required by SP800-90A
1546  *
1547  * @drbg memory of state -- if NULL, new memory is allocated
1548  * @pers Personalization string that is mixed into state, may be NULL -- note
1549  *       the entropy is pulled by the DRBG internally unconditionally
1550  *       as defined in SP800-90A. The additional input is mixed into
1551  *       the state in addition to the pulled entropy.
1552  * @coreref reference to core
1553  * @pr prediction resistance enabled
1554  *
1555  * return
1556  *      0 on success
1557  *      error value otherwise
1558  */
1559 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1560                             int coreref, bool pr)
1561 {
1562         int ret;
1563         bool reseed = true;
1564
1565         pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1566                  "%s\n", coreref, str_enabled_disabled(pr));
1567         mutex_lock(&drbg->drbg_mutex);
1568
1569         /* 9.1 step 1 is implicit with the selected DRBG type */
1570
1571         /*
1572          * 9.1 step 2 is implicit as caller can select prediction resistance
1573          * and the flag is copied into drbg->flags --
1574          * all DRBG types support prediction resistance
1575          */
1576
1577         /* 9.1 step 4 is implicit in  drbg_sec_strength */
1578
1579         if (!drbg->core) {
1580                 drbg->core = &drbg_cores[coreref];
1581                 drbg->pr = pr;
1582                 drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1583                 drbg->last_seed_time = 0;
1584                 drbg->reseed_threshold = drbg_max_requests(drbg);
1585
1586                 ret = drbg_alloc_state(drbg);
1587                 if (ret)
1588                         goto unlock;
1589
1590                 ret = drbg_prepare_hrng(drbg);
1591                 if (ret)
1592                         goto free_everything;
1593
1594                 reseed = false;
1595         }
1596
1597         ret = drbg_seed(drbg, pers, reseed);
1598
1599         if (ret && !reseed)
1600                 goto free_everything;
1601
1602         mutex_unlock(&drbg->drbg_mutex);
1603         return ret;
1604
1605 unlock:
1606         mutex_unlock(&drbg->drbg_mutex);
1607         return ret;
1608
1609 free_everything:
1610         mutex_unlock(&drbg->drbg_mutex);
1611         drbg_uninstantiate(drbg);
1612         return ret;
1613 }
1614
1615 /*
1616  * DRBG uninstantiate function as required by SP800-90A - this function
1617  * frees all buffers and the DRBG handle
1618  *
1619  * @drbg DRBG state handle
1620  *
1621  * return
1622  *      0 on success
1623  */
1624 static int drbg_uninstantiate(struct drbg_state *drbg)
1625 {
1626         if (!IS_ERR_OR_NULL(drbg->jent))
1627                 crypto_free_rng(drbg->jent);
1628         drbg->jent = NULL;
1629
1630         if (drbg->d_ops)
1631                 drbg->d_ops->crypto_fini(drbg);
1632         drbg_dealloc_state(drbg);
1633         /* no scrubbing of test_data -- this shall survive an uninstantiate */
1634         return 0;
1635 }
1636
1637 /*
1638  * Helper function for setting the test data in the DRBG
1639  *
1640  * @drbg DRBG state handle
1641  * @data test data
1642  * @len test data length
1643  */
1644 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1645                                    const u8 *data, unsigned int len)
1646 {
1647         struct drbg_state *drbg = crypto_rng_ctx(tfm);
1648
1649         mutex_lock(&drbg->drbg_mutex);
1650         drbg_string_fill(&drbg->test_data, data, len);
1651         mutex_unlock(&drbg->drbg_mutex);
1652 }
1653
1654 /***************************************************************
1655  * Kernel crypto API cipher invocations requested by DRBG
1656  ***************************************************************/
1657
1658 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1659 struct sdesc {
1660         struct shash_desc shash;
1661         char ctx[];
1662 };
1663
1664 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1665 {
1666         struct sdesc *sdesc;
1667         struct crypto_shash *tfm;
1668
1669         tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1670         if (IS_ERR(tfm)) {
1671                 pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1672                                 drbg->core->backend_cra_name);
1673                 return PTR_ERR(tfm);
1674         }
1675         BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1676         sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1677                         GFP_KERNEL);
1678         if (!sdesc) {
1679                 crypto_free_shash(tfm);
1680                 return -ENOMEM;
1681         }
1682
1683         sdesc->shash.tfm = tfm;
1684         drbg->priv_data = sdesc;
1685
1686         return 0;
1687 }
1688
1689 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1690 {
1691         struct sdesc *sdesc = drbg->priv_data;
1692         if (sdesc) {
1693                 crypto_free_shash(sdesc->shash.tfm);
1694                 kfree_sensitive(sdesc);
1695         }
1696         drbg->priv_data = NULL;
1697         return 0;
1698 }
1699
1700 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1701                                   const unsigned char *key)
1702 {
1703         struct sdesc *sdesc = drbg->priv_data;
1704
1705         crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1706 }
1707
1708 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1709                            const struct list_head *in)
1710 {
1711         struct sdesc *sdesc = drbg->priv_data;
1712         struct drbg_string *input = NULL;
1713
1714         crypto_shash_init(&sdesc->shash);
1715         list_for_each_entry(input, in, list)
1716                 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1717         return crypto_shash_final(&sdesc->shash, outval);
1718 }
1719 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1720
1721 #ifdef CONFIG_CRYPTO_DRBG_CTR
1722 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1723 {
1724         struct crypto_cipher *tfm =
1725                 (struct crypto_cipher *)drbg->priv_data;
1726         if (tfm)
1727                 crypto_free_cipher(tfm);
1728         drbg->priv_data = NULL;
1729
1730         if (drbg->ctr_handle)
1731                 crypto_free_skcipher(drbg->ctr_handle);
1732         drbg->ctr_handle = NULL;
1733
1734         if (drbg->ctr_req)
1735                 skcipher_request_free(drbg->ctr_req);
1736         drbg->ctr_req = NULL;
1737
1738         kfree(drbg->outscratchpadbuf);
1739         drbg->outscratchpadbuf = NULL;
1740
1741         return 0;
1742 }
1743
1744 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1745 {
1746         struct crypto_cipher *tfm;
1747         struct crypto_skcipher *sk_tfm;
1748         struct skcipher_request *req;
1749         unsigned int alignmask;
1750         char ctr_name[CRYPTO_MAX_ALG_NAME];
1751
1752         tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1753         if (IS_ERR(tfm)) {
1754                 pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1755                                 drbg->core->backend_cra_name);
1756                 return PTR_ERR(tfm);
1757         }
1758         BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1759         drbg->priv_data = tfm;
1760
1761         if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1762             drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1763                 drbg_fini_sym_kernel(drbg);
1764                 return -EINVAL;
1765         }
1766         sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1767         if (IS_ERR(sk_tfm)) {
1768                 pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1769                                 ctr_name);
1770                 drbg_fini_sym_kernel(drbg);
1771                 return PTR_ERR(sk_tfm);
1772         }
1773         drbg->ctr_handle = sk_tfm;
1774         crypto_init_wait(&drbg->ctr_wait);
1775
1776         req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1777         if (!req) {
1778                 pr_info("DRBG: could not allocate request queue\n");
1779                 drbg_fini_sym_kernel(drbg);
1780                 return -ENOMEM;
1781         }
1782         drbg->ctr_req = req;
1783         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1784                                                 CRYPTO_TFM_REQ_MAY_SLEEP,
1785                                         crypto_req_done, &drbg->ctr_wait);
1786
1787         alignmask = crypto_skcipher_alignmask(sk_tfm);
1788         drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1789                                          GFP_KERNEL);
1790         if (!drbg->outscratchpadbuf) {
1791                 drbg_fini_sym_kernel(drbg);
1792                 return -ENOMEM;
1793         }
1794         drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1795                                               alignmask + 1);
1796
1797         sg_init_table(&drbg->sg_in, 1);
1798         sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1799
1800         return alignmask;
1801 }
1802
1803 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1804                                  const unsigned char *key)
1805 {
1806         struct crypto_cipher *tfm = drbg->priv_data;
1807
1808         crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1809 }
1810
1811 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1812                           const struct drbg_string *in)
1813 {
1814         struct crypto_cipher *tfm = drbg->priv_data;
1815
1816         /* there is only component in *in */
1817         BUG_ON(in->len < drbg_blocklen(drbg));
1818         crypto_cipher_encrypt_one(tfm, outval, in->buf);
1819         return 0;
1820 }
1821
1822 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1823                               u8 *inbuf, u32 inlen,
1824                               u8 *outbuf, u32 outlen)
1825 {
1826         struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1827         u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1828         int ret;
1829
1830         if (inbuf) {
1831                 /* Use caller-provided input buffer */
1832                 sg_set_buf(sg_in, inbuf, inlen);
1833         } else {
1834                 /* Use scratchpad for in-place operation */
1835                 inlen = scratchpad_use;
1836                 memset(drbg->outscratchpad, 0, scratchpad_use);
1837                 sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1838         }
1839
1840         while (outlen) {
1841                 u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1842
1843                 /* Output buffer may not be valid for SGL, use scratchpad */
1844                 skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1845                                            cryptlen, drbg->V);
1846                 ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1847                                         &drbg->ctr_wait);
1848                 if (ret)
1849                         goto out;
1850
1851                 crypto_init_wait(&drbg->ctr_wait);
1852
1853                 memcpy(outbuf, drbg->outscratchpad, cryptlen);
1854                 memzero_explicit(drbg->outscratchpad, cryptlen);
1855
1856                 outlen -= cryptlen;
1857                 outbuf += cryptlen;
1858         }
1859         ret = 0;
1860
1861 out:
1862         return ret;
1863 }
1864 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1865
1866 /***************************************************************
1867  * Kernel crypto API interface to register DRBG
1868  ***************************************************************/
1869
1870 /*
1871  * Look up the DRBG flags by given kernel crypto API cra_name
1872  * The code uses the drbg_cores definition to do this
1873  *
1874  * @cra_name kernel crypto API cra_name
1875  * @coreref reference to integer which is filled with the pointer to
1876  *  the applicable core
1877  * @pr reference for setting prediction resistance
1878  *
1879  * return: flags
1880  */
1881 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1882                                          int *coreref, bool *pr)
1883 {
1884         int i = 0;
1885         size_t start = 0;
1886         int len = 0;
1887
1888         *pr = true;
1889         /* disassemble the names */
1890         if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1891                 start = 10;
1892                 *pr = false;
1893         } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1894                 start = 8;
1895         } else {
1896                 return;
1897         }
1898
1899         /* remove the first part */
1900         len = strlen(cra_driver_name) - start;
1901         for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1902                 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1903                             len)) {
1904                         *coreref = i;
1905                         return;
1906                 }
1907         }
1908 }
1909
1910 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1911 {
1912         struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1913
1914         mutex_init(&drbg->drbg_mutex);
1915
1916         return 0;
1917 }
1918
1919 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1920 {
1921         drbg_uninstantiate(crypto_tfm_ctx(tfm));
1922 }
1923
1924 /*
1925  * Generate random numbers invoked by the kernel crypto API:
1926  * The API of the kernel crypto API is extended as follows:
1927  *
1928  * src is additional input supplied to the RNG.
1929  * slen is the length of src.
1930  * dst is the output buffer where random data is to be stored.
1931  * dlen is the length of dst.
1932  */
1933 static int drbg_kcapi_random(struct crypto_rng *tfm,
1934                              const u8 *src, unsigned int slen,
1935                              u8 *dst, unsigned int dlen)
1936 {
1937         struct drbg_state *drbg = crypto_rng_ctx(tfm);
1938         struct drbg_string *addtl = NULL;
1939         struct drbg_string string;
1940
1941         if (slen) {
1942                 /* linked list variable is now local to allow modification */
1943                 drbg_string_fill(&string, src, slen);
1944                 addtl = &string;
1945         }
1946
1947         return drbg_generate_long(drbg, dst, dlen, addtl);
1948 }
1949
1950 /*
1951  * Seed the DRBG invoked by the kernel crypto API
1952  */
1953 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1954                            const u8 *seed, unsigned int slen)
1955 {
1956         struct drbg_state *drbg = crypto_rng_ctx(tfm);
1957         struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1958         bool pr = false;
1959         struct drbg_string string;
1960         struct drbg_string *seed_string = NULL;
1961         int coreref = 0;
1962
1963         drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1964                               &pr);
1965         if (0 < slen) {
1966                 drbg_string_fill(&string, seed, slen);
1967                 seed_string = &string;
1968         }
1969
1970         return drbg_instantiate(drbg, seed_string, coreref, pr);
1971 }
1972
1973 /***************************************************************
1974  * Kernel module: code to load the module
1975  ***************************************************************/
1976
1977 /*
1978  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1979  * of the error handling.
1980  *
1981  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1982  * as seed source of get_random_bytes does not fail.
1983  *
1984  * Note 2: There is no sensible way of testing the reseed counter
1985  * enforcement, so skip it.
1986  */
1987 static inline int __init drbg_healthcheck_sanity(void)
1988 {
1989         int len = 0;
1990 #define OUTBUFLEN 16
1991         unsigned char buf[OUTBUFLEN];
1992         struct drbg_state *drbg = NULL;
1993         int ret;
1994         int rc = -EFAULT;
1995         bool pr = false;
1996         int coreref = 0;
1997         struct drbg_string addtl;
1998         size_t max_addtllen, max_request_bytes;
1999
2000         /* only perform test in FIPS mode */
2001         if (!fips_enabled)
2002                 return 0;
2003
2004 #ifdef CONFIG_CRYPTO_DRBG_CTR
2005         drbg_convert_tfm_core("drbg_nopr_ctr_aes256", &coreref, &pr);
2006 #endif
2007 #ifdef CONFIG_CRYPTO_DRBG_HASH
2008         drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2009 #endif
2010 #ifdef CONFIG_CRYPTO_DRBG_HMAC
2011         drbg_convert_tfm_core("drbg_nopr_hmac_sha512", &coreref, &pr);
2012 #endif
2013
2014         drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2015         if (!drbg)
2016                 return -ENOMEM;
2017
2018         mutex_init(&drbg->drbg_mutex);
2019         drbg->core = &drbg_cores[coreref];
2020         drbg->reseed_threshold = drbg_max_requests(drbg);
2021
2022         /*
2023          * if the following tests fail, it is likely that there is a buffer
2024          * overflow as buf is much smaller than the requested or provided
2025          * string lengths -- in case the error handling does not succeed
2026          * we may get an OOPS. And we want to get an OOPS as this is a
2027          * grave bug.
2028          */
2029
2030         max_addtllen = drbg_max_addtl(drbg);
2031         max_request_bytes = drbg_max_request_bytes(drbg);
2032         drbg_string_fill(&addtl, buf, max_addtllen + 1);
2033         /* overflow addtllen with additonal info string */
2034         len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2035         BUG_ON(0 < len);
2036         /* overflow max_bits */
2037         len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2038         BUG_ON(0 < len);
2039
2040         /* overflow max addtllen with personalization string */
2041         ret = drbg_seed(drbg, &addtl, false);
2042         BUG_ON(0 == ret);
2043         /* all tests passed */
2044         rc = 0;
2045
2046         pr_devel("DRBG: Sanity tests for failure code paths successfully "
2047                  "completed\n");
2048
2049         kfree(drbg);
2050         return rc;
2051 }
2052
2053 static struct rng_alg drbg_algs[22];
2054
2055 /*
2056  * Fill the array drbg_algs used to register the different DRBGs
2057  * with the kernel crypto API. To fill the array, the information
2058  * from drbg_cores[] is used.
2059  */
2060 static inline void __init drbg_fill_array(struct rng_alg *alg,
2061                                           const struct drbg_core *core, int pr)
2062 {
2063         int pos = 0;
2064         static int priority = 200;
2065
2066         memcpy(alg->base.cra_name, "stdrng", 6);
2067         if (pr) {
2068                 memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2069                 pos = 8;
2070         } else {
2071                 memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2072                 pos = 10;
2073         }
2074         memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2075                strlen(core->cra_name));
2076
2077         alg->base.cra_priority = priority;
2078         priority++;
2079         /*
2080          * If FIPS mode enabled, the selected DRBG shall have the
2081          * highest cra_priority over other stdrng instances to ensure
2082          * it is selected.
2083          */
2084         if (fips_enabled)
2085                 alg->base.cra_priority += 200;
2086
2087         alg->base.cra_ctxsize   = sizeof(struct drbg_state);
2088         alg->base.cra_module    = THIS_MODULE;
2089         alg->base.cra_init      = drbg_kcapi_init;
2090         alg->base.cra_exit      = drbg_kcapi_cleanup;
2091         alg->generate           = drbg_kcapi_random;
2092         alg->seed               = drbg_kcapi_seed;
2093         alg->set_ent            = drbg_kcapi_set_entropy;
2094         alg->seedsize           = 0;
2095 }
2096
2097 static int __init drbg_init(void)
2098 {
2099         unsigned int i = 0; /* pointer to drbg_algs */
2100         unsigned int j = 0; /* pointer to drbg_cores */
2101         int ret;
2102
2103         ret = drbg_healthcheck_sanity();
2104         if (ret)
2105                 return ret;
2106
2107         if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2108                 pr_info("DRBG: Cannot register all DRBG types"
2109                         "(slots needed: %zu, slots available: %zu)\n",
2110                         ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2111                 return -EFAULT;
2112         }
2113
2114         /*
2115          * each DRBG definition can be used with PR and without PR, thus
2116          * we instantiate each DRBG in drbg_cores[] twice.
2117          *
2118          * As the order of placing them into the drbg_algs array matters
2119          * (the later DRBGs receive a higher cra_priority) we register the
2120          * prediction resistance DRBGs first as the should not be too
2121          * interesting.
2122          */
2123         for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2124                 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2125         for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2126                 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2127         return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2128 }
2129
2130 static void __exit drbg_exit(void)
2131 {
2132         crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2133 }
2134
2135 subsys_initcall(drbg_init);
2136 module_exit(drbg_exit);
2137 #ifndef CRYPTO_DRBG_HASH_STRING
2138 #define CRYPTO_DRBG_HASH_STRING ""
2139 #endif
2140 #ifndef CRYPTO_DRBG_HMAC_STRING
2141 #define CRYPTO_DRBG_HMAC_STRING ""
2142 #endif
2143 #ifndef CRYPTO_DRBG_CTR_STRING
2144 #define CRYPTO_DRBG_CTR_STRING ""
2145 #endif
2146 MODULE_LICENSE("GPL");
2147 MODULE_AUTHOR("Stephan Mueller <[email protected]>");
2148 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2149                    "using following cores: "
2150                    CRYPTO_DRBG_HASH_STRING
2151                    CRYPTO_DRBG_HMAC_STRING
2152                    CRYPTO_DRBG_CTR_STRING);
2153 MODULE_ALIAS_CRYPTO("stdrng");
2154 MODULE_IMPORT_NS("CRYPTO_INTERNAL");
This page took 0.145613 seconds and 4 git commands to generate.