]> Git Repo - J-linux.git/blob - arch/x86/xen/enlighten_pv.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / x86 / xen / enlighten_pv.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
13  */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/kstrtox.h>
27 #include <linux/memblock.h>
28 #include <linux/export.h>
29 #include <linux/mm.h>
30 #include <linux/page-flags.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/reboot.h>
35 #include <linux/virtio_anchor.h>
36 #include <linux/stackprotector.h>
37
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51
52 #include <asm/paravirt.h>
53 #include <asm/apic.h>
54 #include <asm/page.h>
55 #include <asm/xen/pci.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58 #include <asm/xen/cpuid.h>
59 #include <asm/fixmap.h>
60 #include <asm/processor.h>
61 #include <asm/proto.h>
62 #include <asm/msr-index.h>
63 #include <asm/traps.h>
64 #include <asm/setup.h>
65 #include <asm/desc.h>
66 #include <asm/pgalloc.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/hypervisor.h>
70 #include <asm/mach_traps.h>
71 #include <asm/mtrr.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
74 #include <asm/cpu.h>
75 #ifdef CONFIG_X86_IOPL_IOPERM
76 #include <asm/io_bitmap.h>
77 #endif
78
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/proc_cap_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86
87 #include "xen-ops.h"
88
89 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
90
91 void *xen_initial_gdt;
92
93 static int xen_cpu_up_prepare_pv(unsigned int cpu);
94 static int xen_cpu_dead_pv(unsigned int cpu);
95
96 struct tls_descs {
97         struct desc_struct desc[3];
98 };
99
100 DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
101 DEFINE_PER_CPU(unsigned int, xen_lazy_nesting);
102
103 enum xen_lazy_mode xen_get_lazy_mode(void)
104 {
105         if (in_interrupt())
106                 return XEN_LAZY_NONE;
107
108         return this_cpu_read(xen_lazy_mode);
109 }
110
111 /*
112  * Updating the 3 TLS descriptors in the GDT on every task switch is
113  * surprisingly expensive so we avoid updating them if they haven't
114  * changed.  Since Xen writes different descriptors than the one
115  * passed in the update_descriptor hypercall we keep shadow copies to
116  * compare against.
117  */
118 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
119
120 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
121
122 static int __init parse_xen_msr_safe(char *str)
123 {
124         if (str)
125                 return kstrtobool(str, &xen_msr_safe);
126         return -EINVAL;
127 }
128 early_param("xen_msr_safe", parse_xen_msr_safe);
129
130 /* Get MTRR settings from Xen and put them into mtrr_state. */
131 static void __init xen_set_mtrr_data(void)
132 {
133 #ifdef CONFIG_MTRR
134         struct xen_platform_op op = {
135                 .cmd = XENPF_read_memtype,
136                 .interface_version = XENPF_INTERFACE_VERSION,
137         };
138         unsigned int reg;
139         unsigned long mask;
140         uint32_t eax, width;
141         static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
142
143         /* Get physical address width (only 64-bit cpus supported). */
144         width = 36;
145         eax = cpuid_eax(0x80000000);
146         if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
147                 eax = cpuid_eax(0x80000008);
148                 width = eax & 0xff;
149         }
150
151         for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
152                 op.u.read_memtype.reg = reg;
153                 if (HYPERVISOR_platform_op(&op))
154                         break;
155
156                 /*
157                  * Only called in dom0, which has all RAM PFNs mapped at
158                  * RAM MFNs, and all PCI space etc. is identity mapped.
159                  * This means we can treat MFN == PFN regarding MTRR settings.
160                  */
161                 var[reg].base_lo = op.u.read_memtype.type;
162                 var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
163                 var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
164                 mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
165                 mask &= (1UL << width) - 1;
166                 if (mask)
167                         mask |= MTRR_PHYSMASK_V;
168                 var[reg].mask_lo = mask;
169                 var[reg].mask_hi = mask >> 32;
170         }
171
172         /* Only overwrite MTRR state if any MTRR could be got from Xen. */
173         if (reg)
174                 mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE);
175 #endif
176 }
177
178 static void __init xen_pv_init_platform(void)
179 {
180         /* PV guests can't operate virtio devices without grants. */
181         if (IS_ENABLED(CONFIG_XEN_VIRTIO))
182                 virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
183
184         populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
185
186         set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
187         HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
188
189         /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
190         xen_vcpu_info_reset(0);
191
192         /* pvclock is in shared info area */
193         xen_init_time_ops();
194
195         if (xen_initial_domain())
196                 xen_set_mtrr_data();
197         else
198                 mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
199
200         /* Adjust nr_cpu_ids before "enumeration" happens */
201         xen_smp_count_cpus();
202 }
203
204 static void __init xen_pv_guest_late_init(void)
205 {
206 #ifndef CONFIG_SMP
207         /* Setup shared vcpu info for non-smp configurations */
208         xen_setup_vcpu_info_placement();
209 #endif
210 }
211
212 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
213 static __read_mostly unsigned int cpuid_leaf5_edx_val;
214
215 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
216                       unsigned int *cx, unsigned int *dx)
217 {
218         unsigned int maskebx = ~0;
219         unsigned int or_ebx = 0;
220
221         /*
222          * Mask out inconvenient features, to try and disable as many
223          * unsupported kernel subsystems as possible.
224          */
225         switch (*ax) {
226         case 0x1:
227                 /* Replace initial APIC ID in bits 24-31 of EBX. */
228                 /* See xen_pv_smp_config() for related topology preparations. */
229                 maskebx = 0x00ffffff;
230                 or_ebx = smp_processor_id() << 24;
231                 break;
232
233         case CPUID_MWAIT_LEAF:
234                 /* Synthesize the values.. */
235                 *ax = 0;
236                 *bx = 0;
237                 *cx = cpuid_leaf5_ecx_val;
238                 *dx = cpuid_leaf5_edx_val;
239                 return;
240
241         case 0xb:
242                 /* Suppress extended topology stuff */
243                 maskebx = 0;
244                 break;
245         }
246
247         asm(XEN_EMULATE_PREFIX "cpuid"
248                 : "=a" (*ax),
249                   "=b" (*bx),
250                   "=c" (*cx),
251                   "=d" (*dx)
252                 : "0" (*ax), "2" (*cx));
253
254         *bx &= maskebx;
255         *bx |= or_ebx;
256 }
257
258 static bool __init xen_check_mwait(void)
259 {
260 #ifdef CONFIG_ACPI
261         struct xen_platform_op op = {
262                 .cmd                    = XENPF_set_processor_pminfo,
263                 .u.set_pminfo.id        = -1,
264                 .u.set_pminfo.type      = XEN_PM_PDC,
265         };
266         uint32_t buf[3];
267         unsigned int ax, bx, cx, dx;
268         unsigned int mwait_mask;
269
270         /* We need to determine whether it is OK to expose the MWAIT
271          * capability to the kernel to harvest deeper than C3 states from ACPI
272          * _CST using the processor_harvest_xen.c module. For this to work, we
273          * need to gather the MWAIT_LEAF values (which the cstate.c code
274          * checks against). The hypervisor won't expose the MWAIT flag because
275          * it would break backwards compatibility; so we will find out directly
276          * from the hardware and hypercall.
277          */
278         if (!xen_initial_domain())
279                 return false;
280
281         /*
282          * When running under platform earlier than Xen4.2, do not expose
283          * mwait, to avoid the risk of loading native acpi pad driver
284          */
285         if (!xen_running_on_version_or_later(4, 2))
286                 return false;
287
288         ax = 1;
289         cx = 0;
290
291         native_cpuid(&ax, &bx, &cx, &dx);
292
293         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
294                      (1 << (X86_FEATURE_MWAIT % 32));
295
296         if ((cx & mwait_mask) != mwait_mask)
297                 return false;
298
299         /* We need to emulate the MWAIT_LEAF and for that we need both
300          * ecx and edx. The hypercall provides only partial information.
301          */
302
303         ax = CPUID_MWAIT_LEAF;
304         bx = 0;
305         cx = 0;
306         dx = 0;
307
308         native_cpuid(&ax, &bx, &cx, &dx);
309
310         /* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
311          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
312          */
313         buf[0] = ACPI_PDC_REVISION_ID;
314         buf[1] = 1;
315         buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
316
317         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
318
319         if ((HYPERVISOR_platform_op(&op) == 0) &&
320             (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
321                 cpuid_leaf5_ecx_val = cx;
322                 cpuid_leaf5_edx_val = dx;
323         }
324         return true;
325 #else
326         return false;
327 #endif
328 }
329
330 static bool __init xen_check_xsave(void)
331 {
332         unsigned int cx, xsave_mask;
333
334         cx = cpuid_ecx(1);
335
336         xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
337                      (1 << (X86_FEATURE_OSXSAVE % 32));
338
339         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
340         return (cx & xsave_mask) == xsave_mask;
341 }
342
343 static void __init xen_init_capabilities(void)
344 {
345         setup_force_cpu_cap(X86_FEATURE_XENPV);
346         setup_clear_cpu_cap(X86_FEATURE_DCA);
347         setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
348         setup_clear_cpu_cap(X86_FEATURE_MTRR);
349         setup_clear_cpu_cap(X86_FEATURE_ACC);
350         setup_clear_cpu_cap(X86_FEATURE_X2APIC);
351         setup_clear_cpu_cap(X86_FEATURE_SME);
352         setup_clear_cpu_cap(X86_FEATURE_LKGS);
353
354         /*
355          * Xen PV would need some work to support PCID: CR3 handling as well
356          * as xen_flush_tlb_others() would need updating.
357          */
358         setup_clear_cpu_cap(X86_FEATURE_PCID);
359
360         if (!xen_initial_domain())
361                 setup_clear_cpu_cap(X86_FEATURE_ACPI);
362
363         if (xen_check_mwait())
364                 setup_force_cpu_cap(X86_FEATURE_MWAIT);
365         else
366                 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
367
368         if (!xen_check_xsave()) {
369                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
370                 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
371         }
372 }
373
374 static noinstr void xen_set_debugreg(int reg, unsigned long val)
375 {
376         HYPERVISOR_set_debugreg(reg, val);
377 }
378
379 static noinstr unsigned long xen_get_debugreg(int reg)
380 {
381         return HYPERVISOR_get_debugreg(reg);
382 }
383
384 static void xen_start_context_switch(struct task_struct *prev)
385 {
386         BUG_ON(preemptible());
387
388         if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
389                 arch_leave_lazy_mmu_mode();
390                 set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
391         }
392         enter_lazy(XEN_LAZY_CPU);
393 }
394
395 static void xen_end_context_switch(struct task_struct *next)
396 {
397         BUG_ON(preemptible());
398
399         xen_mc_flush();
400         leave_lazy(XEN_LAZY_CPU);
401         if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
402                 arch_enter_lazy_mmu_mode();
403 }
404
405 static unsigned long xen_store_tr(void)
406 {
407         return 0;
408 }
409
410 /*
411  * Set the page permissions for a particular virtual address.  If the
412  * address is a vmalloc mapping (or other non-linear mapping), then
413  * find the linear mapping of the page and also set its protections to
414  * match.
415  */
416 static void set_aliased_prot(void *v, pgprot_t prot)
417 {
418         int level;
419         pte_t *ptep;
420         pte_t pte;
421         unsigned long pfn;
422         unsigned char dummy;
423         void *va;
424
425         ptep = lookup_address((unsigned long)v, &level);
426         BUG_ON(ptep == NULL);
427
428         pfn = pte_pfn(*ptep);
429         pte = pfn_pte(pfn, prot);
430
431         /*
432          * Careful: update_va_mapping() will fail if the virtual address
433          * we're poking isn't populated in the page tables.  We don't
434          * need to worry about the direct map (that's always in the page
435          * tables), but we need to be careful about vmap space.  In
436          * particular, the top level page table can lazily propagate
437          * entries between processes, so if we've switched mms since we
438          * vmapped the target in the first place, we might not have the
439          * top-level page table entry populated.
440          *
441          * We disable preemption because we want the same mm active when
442          * we probe the target and when we issue the hypercall.  We'll
443          * have the same nominal mm, but if we're a kernel thread, lazy
444          * mm dropping could change our pgd.
445          *
446          * Out of an abundance of caution, this uses __get_user() to fault
447          * in the target address just in case there's some obscure case
448          * in which the target address isn't readable.
449          */
450
451         preempt_disable();
452
453         copy_from_kernel_nofault(&dummy, v, 1);
454
455         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
456                 BUG();
457
458         va = __va(PFN_PHYS(pfn));
459
460         if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
461                 BUG();
462
463         preempt_enable();
464 }
465
466 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
467 {
468         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
469         int i;
470
471         /*
472          * We need to mark the all aliases of the LDT pages RO.  We
473          * don't need to call vm_flush_aliases(), though, since that's
474          * only responsible for flushing aliases out the TLBs, not the
475          * page tables, and Xen will flush the TLB for us if needed.
476          *
477          * To avoid confusing future readers: none of this is necessary
478          * to load the LDT.  The hypervisor only checks this when the
479          * LDT is faulted in due to subsequent descriptor access.
480          */
481
482         for (i = 0; i < entries; i += entries_per_page)
483                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
484 }
485
486 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
487 {
488         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
489         int i;
490
491         for (i = 0; i < entries; i += entries_per_page)
492                 set_aliased_prot(ldt + i, PAGE_KERNEL);
493 }
494
495 static void xen_set_ldt(const void *addr, unsigned entries)
496 {
497         struct mmuext_op *op;
498         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
499
500         trace_xen_cpu_set_ldt(addr, entries);
501
502         op = mcs.args;
503         op->cmd = MMUEXT_SET_LDT;
504         op->arg1.linear_addr = (unsigned long)addr;
505         op->arg2.nr_ents = entries;
506
507         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
508
509         xen_mc_issue(XEN_LAZY_CPU);
510 }
511
512 static void xen_load_gdt(const struct desc_ptr *dtr)
513 {
514         unsigned long va = dtr->address;
515         unsigned int size = dtr->size + 1;
516         unsigned long pfn, mfn;
517         int level;
518         pte_t *ptep;
519         void *virt;
520
521         /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
522         BUG_ON(size > PAGE_SIZE);
523         BUG_ON(va & ~PAGE_MASK);
524
525         /*
526          * The GDT is per-cpu and is in the percpu data area.
527          * That can be virtually mapped, so we need to do a
528          * page-walk to get the underlying MFN for the
529          * hypercall.  The page can also be in the kernel's
530          * linear range, so we need to RO that mapping too.
531          */
532         ptep = lookup_address(va, &level);
533         BUG_ON(ptep == NULL);
534
535         pfn = pte_pfn(*ptep);
536         mfn = pfn_to_mfn(pfn);
537         virt = __va(PFN_PHYS(pfn));
538
539         make_lowmem_page_readonly((void *)va);
540         make_lowmem_page_readonly(virt);
541
542         if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
543                 BUG();
544 }
545
546 /*
547  * load_gdt for early boot, when the gdt is only mapped once
548  */
549 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
550 {
551         unsigned long va = dtr->address;
552         unsigned int size = dtr->size + 1;
553         unsigned long pfn, mfn;
554         pte_t pte;
555
556         /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
557         BUG_ON(size > PAGE_SIZE);
558         BUG_ON(va & ~PAGE_MASK);
559
560         pfn = virt_to_pfn((void *)va);
561         mfn = pfn_to_mfn(pfn);
562
563         pte = pfn_pte(pfn, PAGE_KERNEL_RO);
564
565         if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
566                 BUG();
567
568         if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
569                 BUG();
570 }
571
572 static inline bool desc_equal(const struct desc_struct *d1,
573                               const struct desc_struct *d2)
574 {
575         return !memcmp(d1, d2, sizeof(*d1));
576 }
577
578 static void load_TLS_descriptor(struct thread_struct *t,
579                                 unsigned int cpu, unsigned int i)
580 {
581         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
582         struct desc_struct *gdt;
583         xmaddr_t maddr;
584         struct multicall_space mc;
585
586         if (desc_equal(shadow, &t->tls_array[i]))
587                 return;
588
589         *shadow = t->tls_array[i];
590
591         gdt = get_cpu_gdt_rw(cpu);
592         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
593         mc = __xen_mc_entry(0);
594
595         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
596 }
597
598 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
599 {
600         /*
601          * In lazy mode we need to zero %fs, otherwise we may get an
602          * exception between the new %fs descriptor being loaded and
603          * %fs being effectively cleared at __switch_to().
604          */
605         if (xen_get_lazy_mode() == XEN_LAZY_CPU)
606                 loadsegment(fs, 0);
607
608         xen_mc_batch();
609
610         load_TLS_descriptor(t, cpu, 0);
611         load_TLS_descriptor(t, cpu, 1);
612         load_TLS_descriptor(t, cpu, 2);
613
614         xen_mc_issue(XEN_LAZY_CPU);
615 }
616
617 static void xen_load_gs_index(unsigned int idx)
618 {
619         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
620                 BUG();
621 }
622
623 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
624                                 const void *ptr)
625 {
626         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
627         u64 entry = *(u64 *)ptr;
628
629         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
630
631         preempt_disable();
632
633         xen_mc_flush();
634         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
635                 BUG();
636
637         preempt_enable();
638 }
639
640 void noist_exc_debug(struct pt_regs *regs);
641
642 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
643 {
644         /* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
645         exc_nmi(regs);
646 }
647
648 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
649 {
650         /* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
651         exc_double_fault(regs, error_code);
652 }
653
654 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
655 {
656         /*
657          * There's no IST on Xen PV, but we still need to dispatch
658          * to the correct handler.
659          */
660         if (user_mode(regs))
661                 noist_exc_debug(regs);
662         else
663                 exc_debug(regs);
664 }
665
666 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
667 {
668         /* This should never happen and there is no way to handle it. */
669         instrumentation_begin();
670         pr_err("Unknown trap in Xen PV mode.");
671         BUG();
672         instrumentation_end();
673 }
674
675 #ifdef CONFIG_X86_MCE
676 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
677 {
678         /*
679          * There's no IST on Xen PV, but we still need to dispatch
680          * to the correct handler.
681          */
682         if (user_mode(regs))
683                 noist_exc_machine_check(regs);
684         else
685                 exc_machine_check(regs);
686 }
687 #endif
688
689 struct trap_array_entry {
690         void (*orig)(void);
691         void (*xen)(void);
692         bool ist_okay;
693 };
694
695 #define TRAP_ENTRY(func, ist_ok) {                      \
696         .orig           = asm_##func,                   \
697         .xen            = xen_asm_##func,               \
698         .ist_okay       = ist_ok }
699
700 #define TRAP_ENTRY_REDIR(func, ist_ok) {                \
701         .orig           = asm_##func,                   \
702         .xen            = xen_asm_xenpv_##func,         \
703         .ist_okay       = ist_ok }
704
705 static struct trap_array_entry trap_array[] = {
706         TRAP_ENTRY_REDIR(exc_debug,                     true  ),
707         TRAP_ENTRY_REDIR(exc_double_fault,              true  ),
708 #ifdef CONFIG_X86_MCE
709         TRAP_ENTRY_REDIR(exc_machine_check,             true  ),
710 #endif
711         TRAP_ENTRY_REDIR(exc_nmi,                       true  ),
712         TRAP_ENTRY(exc_int3,                            false ),
713         TRAP_ENTRY(exc_overflow,                        false ),
714 #ifdef CONFIG_IA32_EMULATION
715         TRAP_ENTRY(int80_emulation,                     false ),
716 #endif
717         TRAP_ENTRY(exc_page_fault,                      false ),
718         TRAP_ENTRY(exc_divide_error,                    false ),
719         TRAP_ENTRY(exc_bounds,                          false ),
720         TRAP_ENTRY(exc_invalid_op,                      false ),
721         TRAP_ENTRY(exc_device_not_available,            false ),
722         TRAP_ENTRY(exc_coproc_segment_overrun,          false ),
723         TRAP_ENTRY(exc_invalid_tss,                     false ),
724         TRAP_ENTRY(exc_segment_not_present,             false ),
725         TRAP_ENTRY(exc_stack_segment,                   false ),
726         TRAP_ENTRY(exc_general_protection,              false ),
727         TRAP_ENTRY(exc_spurious_interrupt_bug,          false ),
728         TRAP_ENTRY(exc_coprocessor_error,               false ),
729         TRAP_ENTRY(exc_alignment_check,                 false ),
730         TRAP_ENTRY(exc_simd_coprocessor_error,          false ),
731 #ifdef CONFIG_X86_CET
732         TRAP_ENTRY(exc_control_protection,              false ),
733 #endif
734 };
735
736 static bool __ref get_trap_addr(void **addr, unsigned int ist)
737 {
738         unsigned int nr;
739         bool ist_okay = false;
740         bool found = false;
741
742         /*
743          * Replace trap handler addresses by Xen specific ones.
744          * Check for known traps using IST and whitelist them.
745          * The debugger ones are the only ones we care about.
746          * Xen will handle faults like double_fault, so we should never see
747          * them.  Warn if there's an unexpected IST-using fault handler.
748          */
749         for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
750                 struct trap_array_entry *entry = trap_array + nr;
751
752                 if (*addr == entry->orig) {
753                         *addr = entry->xen;
754                         ist_okay = entry->ist_okay;
755                         found = true;
756                         break;
757                 }
758         }
759
760         if (nr == ARRAY_SIZE(trap_array) &&
761             *addr >= (void *)early_idt_handler_array[0] &&
762             *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
763                 nr = (*addr - (void *)early_idt_handler_array[0]) /
764                      EARLY_IDT_HANDLER_SIZE;
765                 *addr = (void *)xen_early_idt_handler_array[nr];
766                 found = true;
767         }
768
769         if (!found)
770                 *addr = (void *)xen_asm_exc_xen_unknown_trap;
771
772         if (WARN_ON(found && ist != 0 && !ist_okay))
773                 return false;
774
775         return true;
776 }
777
778 static int cvt_gate_to_trap(int vector, const gate_desc *val,
779                             struct trap_info *info)
780 {
781         unsigned long addr;
782
783         if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
784                 return 0;
785
786         info->vector = vector;
787
788         addr = gate_offset(val);
789         if (!get_trap_addr((void **)&addr, val->bits.ist))
790                 return 0;
791         info->address = addr;
792
793         info->cs = gate_segment(val);
794         info->flags = val->bits.dpl;
795         /* interrupt gates clear IF */
796         if (val->bits.type == GATE_INTERRUPT)
797                 info->flags |= 1 << 2;
798
799         return 1;
800 }
801
802 /* Locations of each CPU's IDT */
803 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
804
805 /* Set an IDT entry.  If the entry is part of the current IDT, then
806    also update Xen. */
807 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
808 {
809         unsigned long p = (unsigned long)&dt[entrynum];
810         unsigned long start, end;
811
812         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
813
814         preempt_disable();
815
816         start = __this_cpu_read(idt_desc.address);
817         end = start + __this_cpu_read(idt_desc.size) + 1;
818
819         xen_mc_flush();
820
821         native_write_idt_entry(dt, entrynum, g);
822
823         if (p >= start && (p + 8) <= end) {
824                 struct trap_info info[2];
825
826                 info[1].address = 0;
827
828                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
829                         if (HYPERVISOR_set_trap_table(info))
830                                 BUG();
831         }
832
833         preempt_enable();
834 }
835
836 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
837                                       struct trap_info *traps, bool full)
838 {
839         unsigned in, out, count;
840
841         count = (desc->size+1) / sizeof(gate_desc);
842         BUG_ON(count > 256);
843
844         for (in = out = 0; in < count; in++) {
845                 gate_desc *entry = (gate_desc *)(desc->address) + in;
846
847                 if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
848                         out++;
849         }
850
851         return out;
852 }
853
854 void xen_copy_trap_info(struct trap_info *traps)
855 {
856         const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
857
858         xen_convert_trap_info(desc, traps, true);
859 }
860
861 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
862    hold a spinlock to protect the static traps[] array (static because
863    it avoids allocation, and saves stack space). */
864 static void xen_load_idt(const struct desc_ptr *desc)
865 {
866         static DEFINE_SPINLOCK(lock);
867         static struct trap_info traps[257];
868         static const struct trap_info zero = { };
869         unsigned out;
870
871         trace_xen_cpu_load_idt(desc);
872
873         spin_lock(&lock);
874
875         memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
876
877         out = xen_convert_trap_info(desc, traps, false);
878         traps[out] = zero;
879
880         xen_mc_flush();
881         if (HYPERVISOR_set_trap_table(traps))
882                 BUG();
883
884         spin_unlock(&lock);
885 }
886
887 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
888    they're handled differently. */
889 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
890                                 const void *desc, int type)
891 {
892         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
893
894         preempt_disable();
895
896         switch (type) {
897         case DESC_LDT:
898         case DESC_TSS:
899                 /* ignore */
900                 break;
901
902         default: {
903                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
904
905                 xen_mc_flush();
906                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
907                         BUG();
908         }
909
910         }
911
912         preempt_enable();
913 }
914
915 /*
916  * Version of write_gdt_entry for use at early boot-time needed to
917  * update an entry as simply as possible.
918  */
919 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
920                                             const void *desc, int type)
921 {
922         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
923
924         switch (type) {
925         case DESC_LDT:
926         case DESC_TSS:
927                 /* ignore */
928                 break;
929
930         default: {
931                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
932
933                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
934                         dt[entry] = *(struct desc_struct *)desc;
935         }
936
937         }
938 }
939
940 static void xen_load_sp0(unsigned long sp0)
941 {
942         struct multicall_space mcs;
943
944         mcs = xen_mc_entry(0);
945         MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
946         xen_mc_issue(XEN_LAZY_CPU);
947         this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
948 }
949
950 #ifdef CONFIG_X86_IOPL_IOPERM
951 static void xen_invalidate_io_bitmap(void)
952 {
953         struct physdev_set_iobitmap iobitmap = {
954                 .bitmap = NULL,
955                 .nr_ports = 0,
956         };
957
958         native_tss_invalidate_io_bitmap();
959         HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
960 }
961
962 static void xen_update_io_bitmap(void)
963 {
964         struct physdev_set_iobitmap iobitmap;
965         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
966
967         native_tss_update_io_bitmap();
968
969         iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
970                           tss->x86_tss.io_bitmap_base;
971         if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
972                 iobitmap.nr_ports = 0;
973         else
974                 iobitmap.nr_ports = IO_BITMAP_BITS;
975
976         HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
977 }
978 #endif
979
980 static void xen_io_delay(void)
981 {
982 }
983
984 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
985
986 static unsigned long xen_read_cr0(void)
987 {
988         unsigned long cr0 = this_cpu_read(xen_cr0_value);
989
990         if (unlikely(cr0 == 0)) {
991                 cr0 = native_read_cr0();
992                 this_cpu_write(xen_cr0_value, cr0);
993         }
994
995         return cr0;
996 }
997
998 static void xen_write_cr0(unsigned long cr0)
999 {
1000         struct multicall_space mcs;
1001
1002         this_cpu_write(xen_cr0_value, cr0);
1003
1004         /* Only pay attention to cr0.TS; everything else is
1005            ignored. */
1006         mcs = xen_mc_entry(0);
1007
1008         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1009
1010         xen_mc_issue(XEN_LAZY_CPU);
1011 }
1012
1013 static void xen_write_cr4(unsigned long cr4)
1014 {
1015         cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1016
1017         native_write_cr4(cr4);
1018 }
1019
1020 static u64 xen_do_read_msr(unsigned int msr, int *err)
1021 {
1022         u64 val = 0;    /* Avoid uninitialized value for safe variant. */
1023
1024         if (pmu_msr_read(msr, &val, err))
1025                 return val;
1026
1027         if (err)
1028                 val = native_read_msr_safe(msr, err);
1029         else
1030                 val = native_read_msr(msr);
1031
1032         switch (msr) {
1033         case MSR_IA32_APICBASE:
1034                 val &= ~X2APIC_ENABLE;
1035                 if (smp_processor_id() == 0)
1036                         val |= MSR_IA32_APICBASE_BSP;
1037                 else
1038                         val &= ~MSR_IA32_APICBASE_BSP;
1039                 break;
1040         }
1041         return val;
1042 }
1043
1044 static void set_seg(unsigned int which, unsigned int low, unsigned int high,
1045                     int *err)
1046 {
1047         u64 base = ((u64)high << 32) | low;
1048
1049         if (HYPERVISOR_set_segment_base(which, base) == 0)
1050                 return;
1051
1052         if (err)
1053                 *err = -EIO;
1054         else
1055                 WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1056 }
1057
1058 /*
1059  * Support write_msr_safe() and write_msr() semantics.
1060  * With err == NULL write_msr() semantics are selected.
1061  * Supplying an err pointer requires err to be pre-initialized with 0.
1062  */
1063 static void xen_do_write_msr(unsigned int msr, unsigned int low,
1064                              unsigned int high, int *err)
1065 {
1066         switch (msr) {
1067         case MSR_FS_BASE:
1068                 set_seg(SEGBASE_FS, low, high, err);
1069                 break;
1070
1071         case MSR_KERNEL_GS_BASE:
1072                 set_seg(SEGBASE_GS_USER, low, high, err);
1073                 break;
1074
1075         case MSR_GS_BASE:
1076                 set_seg(SEGBASE_GS_KERNEL, low, high, err);
1077                 break;
1078
1079         case MSR_STAR:
1080         case MSR_CSTAR:
1081         case MSR_LSTAR:
1082         case MSR_SYSCALL_MASK:
1083         case MSR_IA32_SYSENTER_CS:
1084         case MSR_IA32_SYSENTER_ESP:
1085         case MSR_IA32_SYSENTER_EIP:
1086                 /* Fast syscall setup is all done in hypercalls, so
1087                    these are all ignored.  Stub them out here to stop
1088                    Xen console noise. */
1089                 break;
1090
1091         default:
1092                 if (!pmu_msr_write(msr, low, high, err)) {
1093                         if (err)
1094                                 *err = native_write_msr_safe(msr, low, high);
1095                         else
1096                                 native_write_msr(msr, low, high);
1097                 }
1098         }
1099 }
1100
1101 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1102 {
1103         return xen_do_read_msr(msr, err);
1104 }
1105
1106 static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1107                               unsigned int high)
1108 {
1109         int err = 0;
1110
1111         xen_do_write_msr(msr, low, high, &err);
1112
1113         return err;
1114 }
1115
1116 static u64 xen_read_msr(unsigned int msr)
1117 {
1118         int err;
1119
1120         return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1121 }
1122
1123 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1124 {
1125         int err;
1126
1127         xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1128 }
1129
1130 /* This is called once we have the cpu_possible_mask */
1131 void __init xen_setup_vcpu_info_placement(void)
1132 {
1133         int cpu;
1134
1135         for_each_possible_cpu(cpu) {
1136                 /* Set up direct vCPU id mapping for PV guests. */
1137                 per_cpu(xen_vcpu_id, cpu) = cpu;
1138                 xen_vcpu_setup(cpu);
1139         }
1140
1141         pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1142         pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1143         pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1144         pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1145 }
1146
1147 static const struct pv_info xen_info __initconst = {
1148         .extra_user_64bit_cs = FLAT_USER_CS64,
1149         .name = "Xen",
1150 };
1151
1152 static const typeof(pv_ops) xen_cpu_ops __initconst = {
1153         .cpu = {
1154                 .cpuid = xen_cpuid,
1155
1156                 .set_debugreg = xen_set_debugreg,
1157                 .get_debugreg = xen_get_debugreg,
1158
1159                 .read_cr0 = xen_read_cr0,
1160                 .write_cr0 = xen_write_cr0,
1161
1162                 .write_cr4 = xen_write_cr4,
1163
1164                 .wbinvd = pv_native_wbinvd,
1165
1166                 .read_msr = xen_read_msr,
1167                 .write_msr = xen_write_msr,
1168
1169                 .read_msr_safe = xen_read_msr_safe,
1170                 .write_msr_safe = xen_write_msr_safe,
1171
1172                 .read_pmc = xen_read_pmc,
1173
1174                 .load_tr_desc = paravirt_nop,
1175                 .set_ldt = xen_set_ldt,
1176                 .load_gdt = xen_load_gdt,
1177                 .load_idt = xen_load_idt,
1178                 .load_tls = xen_load_tls,
1179                 .load_gs_index = xen_load_gs_index,
1180
1181                 .alloc_ldt = xen_alloc_ldt,
1182                 .free_ldt = xen_free_ldt,
1183
1184                 .store_tr = xen_store_tr,
1185
1186                 .write_ldt_entry = xen_write_ldt_entry,
1187                 .write_gdt_entry = xen_write_gdt_entry,
1188                 .write_idt_entry = xen_write_idt_entry,
1189                 .load_sp0 = xen_load_sp0,
1190
1191 #ifdef CONFIG_X86_IOPL_IOPERM
1192                 .invalidate_io_bitmap = xen_invalidate_io_bitmap,
1193                 .update_io_bitmap = xen_update_io_bitmap,
1194 #endif
1195                 .io_delay = xen_io_delay,
1196
1197                 .start_context_switch = xen_start_context_switch,
1198                 .end_context_switch = xen_end_context_switch,
1199         },
1200 };
1201
1202 static void xen_restart(char *msg)
1203 {
1204         xen_reboot(SHUTDOWN_reboot);
1205 }
1206
1207 static void xen_machine_halt(void)
1208 {
1209         xen_reboot(SHUTDOWN_poweroff);
1210 }
1211
1212 static void xen_machine_power_off(void)
1213 {
1214         do_kernel_power_off();
1215         xen_reboot(SHUTDOWN_poweroff);
1216 }
1217
1218 static void xen_crash_shutdown(struct pt_regs *regs)
1219 {
1220         xen_reboot(SHUTDOWN_crash);
1221 }
1222
1223 static const struct machine_ops xen_machine_ops __initconst = {
1224         .restart = xen_restart,
1225         .halt = xen_machine_halt,
1226         .power_off = xen_machine_power_off,
1227         .shutdown = xen_machine_halt,
1228         .crash_shutdown = xen_crash_shutdown,
1229         .emergency_restart = xen_emergency_restart,
1230 };
1231
1232 static unsigned char xen_get_nmi_reason(void)
1233 {
1234         unsigned char reason = 0;
1235
1236         /* Construct a value which looks like it came from port 0x61. */
1237         if (test_bit(_XEN_NMIREASON_io_error,
1238                      &HYPERVISOR_shared_info->arch.nmi_reason))
1239                 reason |= NMI_REASON_IOCHK;
1240         if (test_bit(_XEN_NMIREASON_pci_serr,
1241                      &HYPERVISOR_shared_info->arch.nmi_reason))
1242                 reason |= NMI_REASON_SERR;
1243
1244         return reason;
1245 }
1246
1247 static void __init xen_boot_params_init_edd(void)
1248 {
1249 #if IS_ENABLED(CONFIG_EDD)
1250         struct xen_platform_op op;
1251         struct edd_info *edd_info;
1252         u32 *mbr_signature;
1253         unsigned nr;
1254         int ret;
1255
1256         edd_info = boot_params.eddbuf;
1257         mbr_signature = boot_params.edd_mbr_sig_buffer;
1258
1259         op.cmd = XENPF_firmware_info;
1260
1261         op.u.firmware_info.type = XEN_FW_DISK_INFO;
1262         for (nr = 0; nr < EDDMAXNR; nr++) {
1263                 struct edd_info *info = edd_info + nr;
1264
1265                 op.u.firmware_info.index = nr;
1266                 info->params.length = sizeof(info->params);
1267                 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1268                                      &info->params);
1269                 ret = HYPERVISOR_platform_op(&op);
1270                 if (ret)
1271                         break;
1272
1273 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1274                 C(device);
1275                 C(version);
1276                 C(interface_support);
1277                 C(legacy_max_cylinder);
1278                 C(legacy_max_head);
1279                 C(legacy_sectors_per_track);
1280 #undef C
1281         }
1282         boot_params.eddbuf_entries = nr;
1283
1284         op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1285         for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1286                 op.u.firmware_info.index = nr;
1287                 ret = HYPERVISOR_platform_op(&op);
1288                 if (ret)
1289                         break;
1290                 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1291         }
1292         boot_params.edd_mbr_sig_buf_entries = nr;
1293 #endif
1294 }
1295
1296 /*
1297  * Set up the GDT and segment registers for -fstack-protector.  Until
1298  * we do this, we have to be careful not to call any stack-protected
1299  * function, which is most of the kernel.
1300  */
1301 static void __init xen_setup_gdt(int cpu)
1302 {
1303         pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1304         pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1305
1306         switch_gdt_and_percpu_base(cpu);
1307
1308         pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1309         pv_ops.cpu.load_gdt = xen_load_gdt;
1310 }
1311
1312 static void __init xen_dom0_set_legacy_features(void)
1313 {
1314         x86_platform.legacy.rtc = 1;
1315 }
1316
1317 static void __init xen_domu_set_legacy_features(void)
1318 {
1319         x86_platform.legacy.rtc = 0;
1320 }
1321
1322 extern void early_xen_iret_patch(void);
1323
1324 /* First C function to be called on Xen boot */
1325 asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1326 {
1327         struct physdev_set_iopl set_iopl;
1328         unsigned long initrd_start = 0;
1329         int rc;
1330
1331         if (!si)
1332                 return;
1333
1334         clear_bss();
1335
1336         xen_start_info = si;
1337
1338         __text_gen_insn(&early_xen_iret_patch,
1339                         JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1340                         JMP32_INSN_SIZE);
1341
1342         xen_domain_type = XEN_PV_DOMAIN;
1343         xen_start_flags = xen_start_info->flags;
1344         /* Interrupts are guaranteed to be off initially. */
1345         early_boot_irqs_disabled = true;
1346         static_call_update_early(xen_hypercall, xen_hypercall_pv);
1347
1348         xen_setup_features();
1349
1350         /* Install Xen paravirt ops */
1351         pv_info = xen_info;
1352         pv_ops.cpu = xen_cpu_ops.cpu;
1353         xen_init_irq_ops();
1354
1355         /*
1356          * Setup xen_vcpu early because it is needed for
1357          * local_irq_disable(), irqs_disabled(), e.g. in printk().
1358          *
1359          * Don't do the full vcpu_info placement stuff until we have
1360          * the cpu_possible_mask and a non-dummy shared_info.
1361          */
1362         xen_vcpu_info_reset(0);
1363
1364         x86_platform.get_nmi_reason = xen_get_nmi_reason;
1365         x86_platform.realmode_reserve = x86_init_noop;
1366         x86_platform.realmode_init = x86_init_noop;
1367
1368         x86_init.resources.memory_setup = xen_memory_setup;
1369         x86_init.irqs.intr_mode_select  = x86_init_noop;
1370         x86_init.irqs.intr_mode_init    = x86_64_probe_apic;
1371         x86_init.oem.arch_setup = xen_arch_setup;
1372         x86_init.oem.banner = xen_banner;
1373         x86_init.hyper.init_platform = xen_pv_init_platform;
1374         x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1375
1376         /*
1377          * Set up some pagetable state before starting to set any ptes.
1378          */
1379
1380         xen_setup_machphys_mapping();
1381         xen_init_mmu_ops();
1382
1383         /* Prevent unwanted bits from being set in PTEs. */
1384         __supported_pte_mask &= ~_PAGE_GLOBAL;
1385         __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1386
1387         /* Get mfn list */
1388         xen_build_dynamic_phys_to_machine();
1389
1390         /* Work out if we support NX */
1391         get_cpu_cap(&boot_cpu_data);
1392         x86_configure_nx();
1393
1394         /*
1395          * Set up kernel GDT and segment registers, mainly so that
1396          * -fstack-protector code can be executed.
1397          */
1398         xen_setup_gdt(0);
1399
1400         /* Determine virtual and physical address sizes */
1401         get_cpu_address_sizes(&boot_cpu_data);
1402
1403         /* Let's presume PV guests always boot on vCPU with id 0. */
1404         per_cpu(xen_vcpu_id, 0) = 0;
1405
1406         idt_setup_early_handler();
1407
1408         xen_init_capabilities();
1409
1410         /*
1411          * set up the basic apic ops.
1412          */
1413         xen_init_apic();
1414
1415         machine_ops = xen_machine_ops;
1416
1417         /*
1418          * The only reliable way to retain the initial address of the
1419          * percpu gdt_page is to remember it here, so we can go and
1420          * mark it RW later, when the initial percpu area is freed.
1421          */
1422         xen_initial_gdt = &per_cpu(gdt_page, 0);
1423
1424         xen_smp_init();
1425
1426 #ifdef CONFIG_ACPI_NUMA
1427         /*
1428          * The pages we from Xen are not related to machine pages, so
1429          * any NUMA information the kernel tries to get from ACPI will
1430          * be meaningless.  Prevent it from trying.
1431          */
1432         disable_srat();
1433 #endif
1434         WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1435
1436         local_irq_disable();
1437
1438         xen_raw_console_write("mapping kernel into physical memory\n");
1439         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1440                                    xen_start_info->nr_pages);
1441         xen_reserve_special_pages();
1442
1443         /*
1444          * We used to do this in xen_arch_setup, but that is too late
1445          * on AMD were early_cpu_init (run before ->arch_setup()) calls
1446          * early_amd_init which pokes 0xcf8 port.
1447          */
1448         set_iopl.iopl = 1;
1449         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1450         if (rc != 0)
1451                 xen_raw_printk("physdev_op failed %d\n", rc);
1452
1453
1454         if (xen_start_info->mod_start) {
1455             if (xen_start_info->flags & SIF_MOD_START_PFN)
1456                 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1457             else
1458                 initrd_start = __pa(xen_start_info->mod_start);
1459         }
1460
1461         /* Poke various useful things into boot_params */
1462         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1463         boot_params.hdr.ramdisk_image = initrd_start;
1464         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1465         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1466         boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1467
1468         if (!xen_initial_domain()) {
1469                 if (pci_xen)
1470                         x86_init.pci.arch_init = pci_xen_init;
1471                 x86_platform.set_legacy_features =
1472                                 xen_domu_set_legacy_features;
1473         } else {
1474                 const struct dom0_vga_console_info *info =
1475                         (void *)((char *)xen_start_info +
1476                                  xen_start_info->console.dom0.info_off);
1477                 struct xen_platform_op op = {
1478                         .cmd = XENPF_firmware_info,
1479                         .interface_version = XENPF_INTERFACE_VERSION,
1480                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1481                 };
1482
1483                 x86_platform.set_legacy_features =
1484                                 xen_dom0_set_legacy_features;
1485                 xen_init_vga(info, xen_start_info->console.dom0.info_size,
1486                              &boot_params.screen_info);
1487                 xen_start_info->console.domU.mfn = 0;
1488                 xen_start_info->console.domU.evtchn = 0;
1489
1490                 if (HYPERVISOR_platform_op(&op) == 0)
1491                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1492
1493                 /* Make sure ACS will be enabled */
1494                 pci_request_acs();
1495
1496                 xen_acpi_sleep_register();
1497
1498                 xen_boot_params_init_edd();
1499
1500 #ifdef CONFIG_ACPI
1501                 /*
1502                  * Disable selecting "Firmware First mode" for correctable
1503                  * memory errors, as this is the duty of the hypervisor to
1504                  * decide.
1505                  */
1506                 acpi_disable_cmcff = 1;
1507 #endif
1508         }
1509
1510         xen_add_preferred_consoles();
1511
1512 #ifdef CONFIG_PCI
1513         /* PCI BIOS service won't work from a PV guest. */
1514         pci_probe &= ~PCI_PROBE_BIOS;
1515 #endif
1516         xen_raw_console_write("about to get started...\n");
1517
1518         /* We need this for printk timestamps */
1519         xen_setup_runstate_info(0);
1520
1521         xen_efi_init(&boot_params);
1522
1523         /* Start the world */
1524         cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1525         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1526 }
1527
1528 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1529 {
1530         int rc;
1531
1532         if (per_cpu(xen_vcpu, cpu) == NULL)
1533                 return -ENODEV;
1534
1535         xen_setup_timer(cpu);
1536
1537         rc = xen_smp_intr_init(cpu);
1538         if (rc) {
1539                 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1540                      cpu, rc);
1541                 return rc;
1542         }
1543
1544         rc = xen_smp_intr_init_pv(cpu);
1545         if (rc) {
1546                 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1547                      cpu, rc);
1548                 return rc;
1549         }
1550
1551         return 0;
1552 }
1553
1554 static int xen_cpu_dead_pv(unsigned int cpu)
1555 {
1556         xen_smp_intr_free(cpu);
1557         xen_smp_intr_free_pv(cpu);
1558
1559         xen_teardown_timer(cpu);
1560
1561         return 0;
1562 }
1563
1564 static uint32_t __init xen_platform_pv(void)
1565 {
1566         if (xen_pv_domain())
1567                 return xen_cpuid_base();
1568
1569         return 0;
1570 }
1571
1572 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1573         .name                   = "Xen PV",
1574         .detect                 = xen_platform_pv,
1575         .type                   = X86_HYPER_XEN_PV,
1576         .runtime.pin_vcpu       = xen_pin_vcpu,
1577         .ignore_nopv            = true,
1578 };
This page took 0.119168 seconds and 4 git commands to generate.