]> Git Repo - J-linux.git/blob - arch/x86/mm/extable.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / x86 / mm / extable.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/extable.h>
3 #include <linux/uaccess.h>
4 #include <linux/sched/debug.h>
5 #include <linux/bitfield.h>
6 #include <xen/xen.h>
7
8 #include <asm/fpu/api.h>
9 #include <asm/fred.h>
10 #include <asm/sev.h>
11 #include <asm/traps.h>
12 #include <asm/kdebug.h>
13 #include <asm/insn-eval.h>
14 #include <asm/sgx.h>
15
16 static inline unsigned long *pt_regs_nr(struct pt_regs *regs, int nr)
17 {
18         int reg_offset = pt_regs_offset(regs, nr);
19         static unsigned long __dummy;
20
21         if (WARN_ON_ONCE(reg_offset < 0))
22                 return &__dummy;
23
24         return (unsigned long *)((unsigned long)regs + reg_offset);
25 }
26
27 static inline unsigned long
28 ex_fixup_addr(const struct exception_table_entry *x)
29 {
30         return (unsigned long)&x->fixup + x->fixup;
31 }
32
33 static bool ex_handler_default(const struct exception_table_entry *e,
34                                struct pt_regs *regs)
35 {
36         if (e->data & EX_FLAG_CLEAR_AX)
37                 regs->ax = 0;
38         if (e->data & EX_FLAG_CLEAR_DX)
39                 regs->dx = 0;
40
41         regs->ip = ex_fixup_addr(e);
42         return true;
43 }
44
45 /*
46  * This is the *very* rare case where we do a "load_unaligned_zeropad()"
47  * and it's a page crosser into a non-existent page.
48  *
49  * This happens when we optimistically load a pathname a word-at-a-time
50  * and the name is less than the full word and the  next page is not
51  * mapped. Typically that only happens for CONFIG_DEBUG_PAGEALLOC.
52  *
53  * NOTE! The faulting address is always a 'mov mem,reg' type instruction
54  * of size 'long', and the exception fixup must always point to right
55  * after the instruction.
56  */
57 static bool ex_handler_zeropad(const struct exception_table_entry *e,
58                                struct pt_regs *regs,
59                                unsigned long fault_addr)
60 {
61         struct insn insn;
62         const unsigned long mask = sizeof(long) - 1;
63         unsigned long offset, addr, next_ip, len;
64         unsigned long *reg;
65
66         next_ip = ex_fixup_addr(e);
67         len = next_ip - regs->ip;
68         if (len > MAX_INSN_SIZE)
69                 return false;
70
71         if (insn_decode(&insn, (void *) regs->ip, len, INSN_MODE_KERN))
72                 return false;
73         if (insn.length != len)
74                 return false;
75
76         if (insn.opcode.bytes[0] != 0x8b)
77                 return false;
78         if (insn.opnd_bytes != sizeof(long))
79                 return false;
80
81         addr = (unsigned long) insn_get_addr_ref(&insn, regs);
82         if (addr == ~0ul)
83                 return false;
84
85         offset = addr & mask;
86         addr = addr & ~mask;
87         if (fault_addr != addr + sizeof(long))
88                 return false;
89
90         reg = insn_get_modrm_reg_ptr(&insn, regs);
91         if (!reg)
92                 return false;
93
94         *reg = *(unsigned long *)addr >> (offset * 8);
95         return ex_handler_default(e, regs);
96 }
97
98 static bool ex_handler_fault(const struct exception_table_entry *fixup,
99                              struct pt_regs *regs, int trapnr)
100 {
101         regs->ax = trapnr;
102         return ex_handler_default(fixup, regs);
103 }
104
105 static bool ex_handler_sgx(const struct exception_table_entry *fixup,
106                            struct pt_regs *regs, int trapnr)
107 {
108         regs->ax = trapnr | SGX_ENCLS_FAULT_FLAG;
109         return ex_handler_default(fixup, regs);
110 }
111
112 /*
113  * Handler for when we fail to restore a task's FPU state.  We should never get
114  * here because the FPU state of a task using the FPU (task->thread.fpu.state)
115  * should always be valid.  However, past bugs have allowed userspace to set
116  * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
117  * These caused XRSTOR to fail when switching to the task, leaking the FPU
118  * registers of the task previously executing on the CPU.  Mitigate this class
119  * of vulnerability by restoring from the initial state (essentially, zeroing
120  * out all the FPU registers) if we can't restore from the task's FPU state.
121  */
122 static bool ex_handler_fprestore(const struct exception_table_entry *fixup,
123                                  struct pt_regs *regs)
124 {
125         regs->ip = ex_fixup_addr(fixup);
126
127         WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
128                   (void *)instruction_pointer(regs));
129
130         fpu_reset_from_exception_fixup();
131         return true;
132 }
133
134 /*
135  * On x86-64, we end up being imprecise with 'access_ok()', and allow
136  * non-canonical user addresses to make the range comparisons simpler,
137  * and to not have to worry about LAM being enabled.
138  *
139  * In fact, we allow up to one page of "slop" at the sign boundary,
140  * which means that we can do access_ok() by just checking the sign
141  * of the pointer for the common case of having a small access size.
142  */
143 static bool gp_fault_address_ok(unsigned long fault_address)
144 {
145 #ifdef CONFIG_X86_64
146         /* Is it in the "user space" part of the non-canonical space? */
147         if (valid_user_address(fault_address))
148                 return true;
149
150         /* .. or just above it? */
151         fault_address -= PAGE_SIZE;
152         if (valid_user_address(fault_address))
153                 return true;
154 #endif
155         return false;
156 }
157
158 static bool ex_handler_uaccess(const struct exception_table_entry *fixup,
159                                struct pt_regs *regs, int trapnr,
160                                unsigned long fault_address)
161 {
162         WARN_ONCE(trapnr == X86_TRAP_GP && !gp_fault_address_ok(fault_address),
163                 "General protection fault in user access. Non-canonical address?");
164         return ex_handler_default(fixup, regs);
165 }
166
167 static bool ex_handler_msr(const struct exception_table_entry *fixup,
168                            struct pt_regs *regs, bool wrmsr, bool safe, int reg)
169 {
170         if (__ONCE_LITE_IF(!safe && wrmsr)) {
171                 pr_warn("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
172                         (unsigned int)regs->cx, (unsigned int)regs->dx,
173                         (unsigned int)regs->ax,  regs->ip, (void *)regs->ip);
174                 show_stack_regs(regs);
175         }
176
177         if (__ONCE_LITE_IF(!safe && !wrmsr)) {
178                 pr_warn("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
179                         (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
180                 show_stack_regs(regs);
181         }
182
183         if (!wrmsr) {
184                 /* Pretend that the read succeeded and returned 0. */
185                 regs->ax = 0;
186                 regs->dx = 0;
187         }
188
189         if (safe)
190                 *pt_regs_nr(regs, reg) = -EIO;
191
192         return ex_handler_default(fixup, regs);
193 }
194
195 static bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
196                                 struct pt_regs *regs)
197 {
198         if (static_cpu_has(X86_BUG_NULL_SEG))
199                 asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
200         asm volatile ("mov %0, %%fs" : : "rm" (0));
201         return ex_handler_default(fixup, regs);
202 }
203
204 static bool ex_handler_imm_reg(const struct exception_table_entry *fixup,
205                                struct pt_regs *regs, int reg, int imm)
206 {
207         *pt_regs_nr(regs, reg) = (long)imm;
208         return ex_handler_default(fixup, regs);
209 }
210
211 static bool ex_handler_ucopy_len(const struct exception_table_entry *fixup,
212                                   struct pt_regs *regs, int trapnr,
213                                   unsigned long fault_address,
214                                   int reg, int imm)
215 {
216         regs->cx = imm * regs->cx + *pt_regs_nr(regs, reg);
217         return ex_handler_uaccess(fixup, regs, trapnr, fault_address);
218 }
219
220 #ifdef CONFIG_X86_FRED
221 static bool ex_handler_eretu(const struct exception_table_entry *fixup,
222                              struct pt_regs *regs, unsigned long error_code)
223 {
224         struct pt_regs *uregs = (struct pt_regs *)(regs->sp - offsetof(struct pt_regs, orig_ax));
225         unsigned short ss = uregs->ss;
226         unsigned short cs = uregs->cs;
227
228         /*
229          * Move the NMI bit from the invalid stack frame, which caused ERETU
230          * to fault, to the fault handler's stack frame, thus to unblock NMI
231          * with the fault handler's ERETS instruction ASAP if NMI is blocked.
232          */
233         regs->fred_ss.nmi = uregs->fred_ss.nmi;
234
235         /*
236          * Sync event information to uregs, i.e., the ERETU return frame, but
237          * is it safe to write to the ERETU return frame which is just above
238          * current event stack frame?
239          *
240          * The RSP used by FRED to push a stack frame is not the value in %rsp,
241          * it is calculated from %rsp with the following 2 steps:
242          * 1) RSP = %rsp - (IA32_FRED_CONFIG & 0x1c0)   // Reserve N*64 bytes
243          * 2) RSP = RSP & ~0x3f         // Align to a 64-byte cache line
244          * when an event delivery doesn't trigger a stack level change.
245          *
246          * Here is an example with N*64 (N=1) bytes reserved:
247          *
248          *  64-byte cache line ==>  ______________
249          *                         |___Reserved___|
250          *                         |__Event_data__|
251          *                         |_____SS_______|
252          *                         |_____RSP______|
253          *                         |_____FLAGS____|
254          *                         |_____CS_______|
255          *                         |_____IP_______|
256          *  64-byte cache line ==> |__Error_code__| <== ERETU return frame
257          *                         |______________|
258          *                         |______________|
259          *                         |______________|
260          *                         |______________|
261          *                         |______________|
262          *                         |______________|
263          *                         |______________|
264          *  64-byte cache line ==> |______________| <== RSP after step 1) and 2)
265          *                         |___Reserved___|
266          *                         |__Event_data__|
267          *                         |_____SS_______|
268          *                         |_____RSP______|
269          *                         |_____FLAGS____|
270          *                         |_____CS_______|
271          *                         |_____IP_______|
272          *  64-byte cache line ==> |__Error_code__| <== ERETS return frame
273          *
274          * Thus a new FRED stack frame will always be pushed below a previous
275          * FRED stack frame ((N*64) bytes may be reserved between), and it is
276          * safe to write to a previous FRED stack frame as they never overlap.
277          */
278         fred_info(uregs)->edata = fred_event_data(regs);
279         uregs->ssx = regs->ssx;
280         uregs->fred_ss.ss = ss;
281         /* The NMI bit was moved away above */
282         uregs->fred_ss.nmi = 0;
283         uregs->csx = regs->csx;
284         uregs->fred_cs.sl = 0;
285         uregs->fred_cs.wfe = 0;
286         uregs->cs = cs;
287         uregs->orig_ax = error_code;
288
289         return ex_handler_default(fixup, regs);
290 }
291 #endif
292
293 int ex_get_fixup_type(unsigned long ip)
294 {
295         const struct exception_table_entry *e = search_exception_tables(ip);
296
297         return e ? FIELD_GET(EX_DATA_TYPE_MASK, e->data) : EX_TYPE_NONE;
298 }
299
300 int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
301                     unsigned long fault_addr)
302 {
303         const struct exception_table_entry *e;
304         int type, reg, imm;
305
306 #ifdef CONFIG_PNPBIOS
307         if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
308                 extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
309                 extern u32 pnp_bios_is_utter_crap;
310                 pnp_bios_is_utter_crap = 1;
311                 printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
312                 __asm__ volatile(
313                         "movl %0, %%esp\n\t"
314                         "jmp *%1\n\t"
315                         : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
316                 panic("do_trap: can't hit this");
317         }
318 #endif
319
320         e = search_exception_tables(regs->ip);
321         if (!e)
322                 return 0;
323
324         type = FIELD_GET(EX_DATA_TYPE_MASK, e->data);
325         reg  = FIELD_GET(EX_DATA_REG_MASK,  e->data);
326         imm  = FIELD_GET(EX_DATA_IMM_MASK,  e->data);
327
328         switch (type) {
329         case EX_TYPE_DEFAULT:
330         case EX_TYPE_DEFAULT_MCE_SAFE:
331                 return ex_handler_default(e, regs);
332         case EX_TYPE_FAULT:
333         case EX_TYPE_FAULT_MCE_SAFE:
334                 return ex_handler_fault(e, regs, trapnr);
335         case EX_TYPE_UACCESS:
336                 return ex_handler_uaccess(e, regs, trapnr, fault_addr);
337         case EX_TYPE_CLEAR_FS:
338                 return ex_handler_clear_fs(e, regs);
339         case EX_TYPE_FPU_RESTORE:
340                 return ex_handler_fprestore(e, regs);
341         case EX_TYPE_BPF:
342                 return ex_handler_bpf(e, regs);
343         case EX_TYPE_WRMSR:
344                 return ex_handler_msr(e, regs, true, false, reg);
345         case EX_TYPE_RDMSR:
346                 return ex_handler_msr(e, regs, false, false, reg);
347         case EX_TYPE_WRMSR_SAFE:
348                 return ex_handler_msr(e, regs, true, true, reg);
349         case EX_TYPE_RDMSR_SAFE:
350                 return ex_handler_msr(e, regs, false, true, reg);
351         case EX_TYPE_WRMSR_IN_MCE:
352                 ex_handler_msr_mce(regs, true);
353                 break;
354         case EX_TYPE_RDMSR_IN_MCE:
355                 ex_handler_msr_mce(regs, false);
356                 break;
357         case EX_TYPE_POP_REG:
358                 regs->sp += sizeof(long);
359                 fallthrough;
360         case EX_TYPE_IMM_REG:
361                 return ex_handler_imm_reg(e, regs, reg, imm);
362         case EX_TYPE_FAULT_SGX:
363                 return ex_handler_sgx(e, regs, trapnr);
364         case EX_TYPE_UCOPY_LEN:
365                 return ex_handler_ucopy_len(e, regs, trapnr, fault_addr, reg, imm);
366         case EX_TYPE_ZEROPAD:
367                 return ex_handler_zeropad(e, regs, fault_addr);
368 #ifdef CONFIG_X86_FRED
369         case EX_TYPE_ERETU:
370                 return ex_handler_eretu(e, regs, error_code);
371 #endif
372         }
373         BUG();
374 }
375
376 extern unsigned int early_recursion_flag;
377
378 /* Restricted version used during very early boot */
379 void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
380 {
381         /* Ignore early NMIs. */
382         if (trapnr == X86_TRAP_NMI)
383                 return;
384
385         if (early_recursion_flag > 2)
386                 goto halt_loop;
387
388         /*
389          * Old CPUs leave the high bits of CS on the stack
390          * undefined.  I'm not sure which CPUs do this, but at least
391          * the 486 DX works this way.
392          * Xen pv domains are not using the default __KERNEL_CS.
393          */
394         if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
395                 goto fail;
396
397         /*
398          * The full exception fixup machinery is available as soon as
399          * the early IDT is loaded.  This means that it is the
400          * responsibility of extable users to either function correctly
401          * when handlers are invoked early or to simply avoid causing
402          * exceptions before they're ready to handle them.
403          *
404          * This is better than filtering which handlers can be used,
405          * because refusing to call a handler here is guaranteed to
406          * result in a hard-to-debug panic.
407          *
408          * Keep in mind that not all vectors actually get here.  Early
409          * page faults, for example, are special.
410          */
411         if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
412                 return;
413
414         if (trapnr == X86_TRAP_UD) {
415                 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
416                         /* Skip the ud2. */
417                         regs->ip += LEN_UD2;
418                         return;
419                 }
420
421                 /*
422                  * If this was a BUG and report_bug returns or if this
423                  * was just a normal #UD, we want to continue onward and
424                  * crash.
425                  */
426         }
427
428 fail:
429         early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
430                      (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
431                      regs->orig_ax, read_cr2());
432
433         show_regs(regs);
434
435 halt_loop:
436         while (true)
437                 halt();
438 }
This page took 0.050887 seconds and 4 git commands to generate.