]> Git Repo - J-linux.git/blob - arch/x86/kvm/svm/sev.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / x86 / kvm / svm / sev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
23
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/sev.h>
30
31 #include "mmu.h"
32 #include "x86.h"
33 #include "svm.h"
34 #include "svm_ops.h"
35 #include "cpuid.h"
36 #include "trace.h"
37
38 #define GHCB_VERSION_MAX        2ULL
39 #define GHCB_VERSION_DEFAULT    2ULL
40 #define GHCB_VERSION_MIN        1ULL
41
42 #define GHCB_HV_FT_SUPPORTED    (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
43
44 /* enable/disable SEV support */
45 static bool sev_enabled = true;
46 module_param_named(sev, sev_enabled, bool, 0444);
47
48 /* enable/disable SEV-ES support */
49 static bool sev_es_enabled = true;
50 module_param_named(sev_es, sev_es_enabled, bool, 0444);
51
52 /* enable/disable SEV-SNP support */
53 static bool sev_snp_enabled = true;
54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
55
56 /* enable/disable SEV-ES DebugSwap support */
57 static bool sev_es_debug_swap_enabled = true;
58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
59 static u64 sev_supported_vmsa_features;
60
61 #define AP_RESET_HOLD_NONE              0
62 #define AP_RESET_HOLD_NAE_EVENT         1
63 #define AP_RESET_HOLD_MSR_PROTO         2
64
65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
66 #define SNP_POLICY_MASK_API_MINOR       GENMASK_ULL(7, 0)
67 #define SNP_POLICY_MASK_API_MAJOR       GENMASK_ULL(15, 8)
68 #define SNP_POLICY_MASK_SMT             BIT_ULL(16)
69 #define SNP_POLICY_MASK_RSVD_MBO        BIT_ULL(17)
70 #define SNP_POLICY_MASK_DEBUG           BIT_ULL(19)
71 #define SNP_POLICY_MASK_SINGLE_SOCKET   BIT_ULL(20)
72
73 #define SNP_POLICY_MASK_VALID           (SNP_POLICY_MASK_API_MINOR      | \
74                                          SNP_POLICY_MASK_API_MAJOR      | \
75                                          SNP_POLICY_MASK_SMT            | \
76                                          SNP_POLICY_MASK_RSVD_MBO       | \
77                                          SNP_POLICY_MASK_DEBUG          | \
78                                          SNP_POLICY_MASK_SINGLE_SOCKET)
79
80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
81
82 static u8 sev_enc_bit;
83 static DECLARE_RWSEM(sev_deactivate_lock);
84 static DEFINE_MUTEX(sev_bitmap_lock);
85 unsigned int max_sev_asid;
86 static unsigned int min_sev_asid;
87 static unsigned long sev_me_mask;
88 static unsigned int nr_asids;
89 static unsigned long *sev_asid_bitmap;
90 static unsigned long *sev_reclaim_asid_bitmap;
91
92 static int snp_decommission_context(struct kvm *kvm);
93
94 struct enc_region {
95         struct list_head list;
96         unsigned long npages;
97         struct page **pages;
98         unsigned long uaddr;
99         unsigned long size;
100 };
101
102 /* Called with the sev_bitmap_lock held, or on shutdown  */
103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
104 {
105         int ret, error = 0;
106         unsigned int asid;
107
108         /* Check if there are any ASIDs to reclaim before performing a flush */
109         asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
110         if (asid > max_asid)
111                 return -EBUSY;
112
113         /*
114          * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
115          * so it must be guarded.
116          */
117         down_write(&sev_deactivate_lock);
118
119         wbinvd_on_all_cpus();
120
121         if (sev_snp_enabled)
122                 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
123         else
124                 ret = sev_guest_df_flush(&error);
125
126         up_write(&sev_deactivate_lock);
127
128         if (ret)
129                 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
130                        sev_snp_enabled ? "-SNP" : "", ret, error);
131
132         return ret;
133 }
134
135 static inline bool is_mirroring_enc_context(struct kvm *kvm)
136 {
137         return !!to_kvm_sev_info(kvm)->enc_context_owner;
138 }
139
140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
141 {
142         struct kvm_vcpu *vcpu = &svm->vcpu;
143         struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
144
145         return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
146 }
147
148 /* Must be called with the sev_bitmap_lock held */
149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
150 {
151         if (sev_flush_asids(min_asid, max_asid))
152                 return false;
153
154         /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
155         bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
156                    nr_asids);
157         bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
158
159         return true;
160 }
161
162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
163 {
164         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
165         return misc_cg_try_charge(type, sev->misc_cg, 1);
166 }
167
168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
169 {
170         enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
171         misc_cg_uncharge(type, sev->misc_cg, 1);
172 }
173
174 static int sev_asid_new(struct kvm_sev_info *sev)
175 {
176         /*
177          * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
178          * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
179          * Note: min ASID can end up larger than the max if basic SEV support is
180          * effectively disabled by disallowing use of ASIDs for SEV guests.
181          */
182         unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
183         unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
184         unsigned int asid;
185         bool retry = true;
186         int ret;
187
188         if (min_asid > max_asid)
189                 return -ENOTTY;
190
191         WARN_ON(sev->misc_cg);
192         sev->misc_cg = get_current_misc_cg();
193         ret = sev_misc_cg_try_charge(sev);
194         if (ret) {
195                 put_misc_cg(sev->misc_cg);
196                 sev->misc_cg = NULL;
197                 return ret;
198         }
199
200         mutex_lock(&sev_bitmap_lock);
201
202 again:
203         asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
204         if (asid > max_asid) {
205                 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
206                         retry = false;
207                         goto again;
208                 }
209                 mutex_unlock(&sev_bitmap_lock);
210                 ret = -EBUSY;
211                 goto e_uncharge;
212         }
213
214         __set_bit(asid, sev_asid_bitmap);
215
216         mutex_unlock(&sev_bitmap_lock);
217
218         sev->asid = asid;
219         return 0;
220 e_uncharge:
221         sev_misc_cg_uncharge(sev);
222         put_misc_cg(sev->misc_cg);
223         sev->misc_cg = NULL;
224         return ret;
225 }
226
227 static unsigned int sev_get_asid(struct kvm *kvm)
228 {
229         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
230
231         return sev->asid;
232 }
233
234 static void sev_asid_free(struct kvm_sev_info *sev)
235 {
236         struct svm_cpu_data *sd;
237         int cpu;
238
239         mutex_lock(&sev_bitmap_lock);
240
241         __set_bit(sev->asid, sev_reclaim_asid_bitmap);
242
243         for_each_possible_cpu(cpu) {
244                 sd = per_cpu_ptr(&svm_data, cpu);
245                 sd->sev_vmcbs[sev->asid] = NULL;
246         }
247
248         mutex_unlock(&sev_bitmap_lock);
249
250         sev_misc_cg_uncharge(sev);
251         put_misc_cg(sev->misc_cg);
252         sev->misc_cg = NULL;
253 }
254
255 static void sev_decommission(unsigned int handle)
256 {
257         struct sev_data_decommission decommission;
258
259         if (!handle)
260                 return;
261
262         decommission.handle = handle;
263         sev_guest_decommission(&decommission, NULL);
264 }
265
266 /*
267  * Transition a page to hypervisor-owned/shared state in the RMP table. This
268  * should not fail under normal conditions, but leak the page should that
269  * happen since it will no longer be usable by the host due to RMP protections.
270  */
271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
272 {
273         if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
274                 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
275                 return -EIO;
276         }
277
278         return 0;
279 }
280
281 /*
282  * Certain page-states, such as Pre-Guest and Firmware pages (as documented
283  * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
284  * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
285  * unless they are reclaimed first.
286  *
287  * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
288  * might not be usable by the host due to being set as immutable or still
289  * being associated with a guest ASID.
290  *
291  * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
292  * converted back to shared, as the page is no longer usable due to RMP
293  * protections, and it's infeasible for the guest to continue on.
294  */
295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
296 {
297         struct sev_data_snp_page_reclaim data = {0};
298         int fw_err, rc;
299
300         data.paddr = __sme_set(pfn << PAGE_SHIFT);
301         rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
302         if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
303                 snp_leak_pages(pfn, 1);
304                 return -EIO;
305         }
306
307         if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
308                 return -EIO;
309
310         return rc;
311 }
312
313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
314 {
315         struct sev_data_deactivate deactivate;
316
317         if (!handle)
318                 return;
319
320         deactivate.handle = handle;
321
322         /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
323         down_read(&sev_deactivate_lock);
324         sev_guest_deactivate(&deactivate, NULL);
325         up_read(&sev_deactivate_lock);
326
327         sev_decommission(handle);
328 }
329
330 /*
331  * This sets up bounce buffers/firmware pages to handle SNP Guest Request
332  * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
333  * 2.0 specification for more details.
334  *
335  * Technically, when an SNP Guest Request is issued, the guest will provide its
336  * own request/response pages, which could in theory be passed along directly
337  * to firmware rather than using bounce pages. However, these pages would need
338  * special care:
339  *
340  *   - Both pages are from shared guest memory, so they need to be protected
341  *     from migration/etc. occurring while firmware reads/writes to them. At a
342  *     minimum, this requires elevating the ref counts and potentially needing
343  *     an explicit pinning of the memory. This places additional restrictions
344  *     on what type of memory backends userspace can use for shared guest
345  *     memory since there is some reliance on using refcounted pages.
346  *
347  *   - The response page needs to be switched to Firmware-owned[1] state
348  *     before the firmware can write to it, which can lead to potential
349  *     host RMP #PFs if the guest is misbehaved and hands the host a
350  *     guest page that KVM might write to for other reasons (e.g. virtio
351  *     buffers/etc.).
352  *
353  * Both of these issues can be avoided completely by using separately-allocated
354  * bounce pages for both the request/response pages and passing those to
355  * firmware instead. So that's what is being set up here.
356  *
357  * Guest requests rely on message sequence numbers to ensure requests are
358  * issued to firmware in the order the guest issues them, so concurrent guest
359  * requests generally shouldn't happen. But a misbehaved guest could issue
360  * concurrent guest requests in theory, so a mutex is used to serialize
361  * access to the bounce buffers.
362  *
363  * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
364  *     details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
365  *     in the APM for details on the related RMP restrictions.
366  */
367 static int snp_guest_req_init(struct kvm *kvm)
368 {
369         struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
370         struct page *req_page;
371
372         req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
373         if (!req_page)
374                 return -ENOMEM;
375
376         sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
377         if (!sev->guest_resp_buf) {
378                 __free_page(req_page);
379                 return -EIO;
380         }
381
382         sev->guest_req_buf = page_address(req_page);
383         mutex_init(&sev->guest_req_mutex);
384
385         return 0;
386 }
387
388 static void snp_guest_req_cleanup(struct kvm *kvm)
389 {
390         struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
391
392         if (sev->guest_resp_buf)
393                 snp_free_firmware_page(sev->guest_resp_buf);
394
395         if (sev->guest_req_buf)
396                 __free_page(virt_to_page(sev->guest_req_buf));
397
398         sev->guest_req_buf = NULL;
399         sev->guest_resp_buf = NULL;
400 }
401
402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
403                             struct kvm_sev_init *data,
404                             unsigned long vm_type)
405 {
406         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
407         struct sev_platform_init_args init_args = {0};
408         bool es_active = vm_type != KVM_X86_SEV_VM;
409         u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
410         int ret;
411
412         if (kvm->created_vcpus)
413                 return -EINVAL;
414
415         if (data->flags)
416                 return -EINVAL;
417
418         if (data->vmsa_features & ~valid_vmsa_features)
419                 return -EINVAL;
420
421         if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
422                 return -EINVAL;
423
424         if (unlikely(sev->active))
425                 return -EINVAL;
426
427         sev->active = true;
428         sev->es_active = es_active;
429         sev->vmsa_features = data->vmsa_features;
430         sev->ghcb_version = data->ghcb_version;
431
432         /*
433          * Currently KVM supports the full range of mandatory features defined
434          * by version 2 of the GHCB protocol, so default to that for SEV-ES
435          * guests created via KVM_SEV_INIT2.
436          */
437         if (sev->es_active && !sev->ghcb_version)
438                 sev->ghcb_version = GHCB_VERSION_DEFAULT;
439
440         if (vm_type == KVM_X86_SNP_VM)
441                 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
442
443         ret = sev_asid_new(sev);
444         if (ret)
445                 goto e_no_asid;
446
447         init_args.probe = false;
448         ret = sev_platform_init(&init_args);
449         if (ret)
450                 goto e_free;
451
452         /* This needs to happen after SEV/SNP firmware initialization. */
453         if (vm_type == KVM_X86_SNP_VM) {
454                 ret = snp_guest_req_init(kvm);
455                 if (ret)
456                         goto e_free;
457         }
458
459         INIT_LIST_HEAD(&sev->regions_list);
460         INIT_LIST_HEAD(&sev->mirror_vms);
461         sev->need_init = false;
462
463         kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
464
465         return 0;
466
467 e_free:
468         argp->error = init_args.error;
469         sev_asid_free(sev);
470         sev->asid = 0;
471 e_no_asid:
472         sev->vmsa_features = 0;
473         sev->es_active = false;
474         sev->active = false;
475         return ret;
476 }
477
478 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
479 {
480         struct kvm_sev_init data = {
481                 .vmsa_features = 0,
482                 .ghcb_version = 0,
483         };
484         unsigned long vm_type;
485
486         if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
487                 return -EINVAL;
488
489         vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
490
491         /*
492          * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
493          * continue to only ever support the minimal GHCB protocol version.
494          */
495         if (vm_type == KVM_X86_SEV_ES_VM)
496                 data.ghcb_version = GHCB_VERSION_MIN;
497
498         return __sev_guest_init(kvm, argp, &data, vm_type);
499 }
500
501 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
502 {
503         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
504         struct kvm_sev_init data;
505
506         if (!sev->need_init)
507                 return -EINVAL;
508
509         if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
510             kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
511             kvm->arch.vm_type != KVM_X86_SNP_VM)
512                 return -EINVAL;
513
514         if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
515                 return -EFAULT;
516
517         return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
518 }
519
520 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
521 {
522         unsigned int asid = sev_get_asid(kvm);
523         struct sev_data_activate activate;
524         int ret;
525
526         /* activate ASID on the given handle */
527         activate.handle = handle;
528         activate.asid   = asid;
529         ret = sev_guest_activate(&activate, error);
530
531         return ret;
532 }
533
534 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
535 {
536         CLASS(fd, f)(fd);
537
538         if (fd_empty(f))
539                 return -EBADF;
540
541         return sev_issue_cmd_external_user(fd_file(f), id, data, error);
542 }
543
544 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
545 {
546         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
547
548         return __sev_issue_cmd(sev->fd, id, data, error);
549 }
550
551 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
552 {
553         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
554         struct sev_data_launch_start start;
555         struct kvm_sev_launch_start params;
556         void *dh_blob, *session_blob;
557         int *error = &argp->error;
558         int ret;
559
560         if (!sev_guest(kvm))
561                 return -ENOTTY;
562
563         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
564                 return -EFAULT;
565
566         memset(&start, 0, sizeof(start));
567
568         dh_blob = NULL;
569         if (params.dh_uaddr) {
570                 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
571                 if (IS_ERR(dh_blob))
572                         return PTR_ERR(dh_blob);
573
574                 start.dh_cert_address = __sme_set(__pa(dh_blob));
575                 start.dh_cert_len = params.dh_len;
576         }
577
578         session_blob = NULL;
579         if (params.session_uaddr) {
580                 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
581                 if (IS_ERR(session_blob)) {
582                         ret = PTR_ERR(session_blob);
583                         goto e_free_dh;
584                 }
585
586                 start.session_address = __sme_set(__pa(session_blob));
587                 start.session_len = params.session_len;
588         }
589
590         start.handle = params.handle;
591         start.policy = params.policy;
592
593         /* create memory encryption context */
594         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
595         if (ret)
596                 goto e_free_session;
597
598         /* Bind ASID to this guest */
599         ret = sev_bind_asid(kvm, start.handle, error);
600         if (ret) {
601                 sev_decommission(start.handle);
602                 goto e_free_session;
603         }
604
605         /* return handle to userspace */
606         params.handle = start.handle;
607         if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
608                 sev_unbind_asid(kvm, start.handle);
609                 ret = -EFAULT;
610                 goto e_free_session;
611         }
612
613         sev->handle = start.handle;
614         sev->fd = argp->sev_fd;
615
616 e_free_session:
617         kfree(session_blob);
618 e_free_dh:
619         kfree(dh_blob);
620         return ret;
621 }
622
623 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
624                                     unsigned long ulen, unsigned long *n,
625                                     int write)
626 {
627         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
628         unsigned long npages, size;
629         int npinned;
630         unsigned long locked, lock_limit;
631         struct page **pages;
632         unsigned long first, last;
633         int ret;
634
635         lockdep_assert_held(&kvm->lock);
636
637         if (ulen == 0 || uaddr + ulen < uaddr)
638                 return ERR_PTR(-EINVAL);
639
640         /* Calculate number of pages. */
641         first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
642         last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
643         npages = (last - first + 1);
644
645         locked = sev->pages_locked + npages;
646         lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
647         if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
648                 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
649                 return ERR_PTR(-ENOMEM);
650         }
651
652         if (WARN_ON_ONCE(npages > INT_MAX))
653                 return ERR_PTR(-EINVAL);
654
655         /* Avoid using vmalloc for smaller buffers. */
656         size = npages * sizeof(struct page *);
657         if (size > PAGE_SIZE)
658                 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
659         else
660                 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
661
662         if (!pages)
663                 return ERR_PTR(-ENOMEM);
664
665         /* Pin the user virtual address. */
666         npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
667         if (npinned != npages) {
668                 pr_err("SEV: Failure locking %lu pages.\n", npages);
669                 ret = -ENOMEM;
670                 goto err;
671         }
672
673         *n = npages;
674         sev->pages_locked = locked;
675
676         return pages;
677
678 err:
679         if (npinned > 0)
680                 unpin_user_pages(pages, npinned);
681
682         kvfree(pages);
683         return ERR_PTR(ret);
684 }
685
686 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
687                              unsigned long npages)
688 {
689         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
690
691         unpin_user_pages(pages, npages);
692         kvfree(pages);
693         sev->pages_locked -= npages;
694 }
695
696 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
697 {
698         uint8_t *page_virtual;
699         unsigned long i;
700
701         if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
702             pages == NULL)
703                 return;
704
705         for (i = 0; i < npages; i++) {
706                 page_virtual = kmap_local_page(pages[i]);
707                 clflush_cache_range(page_virtual, PAGE_SIZE);
708                 kunmap_local(page_virtual);
709                 cond_resched();
710         }
711 }
712
713 static unsigned long get_num_contig_pages(unsigned long idx,
714                                 struct page **inpages, unsigned long npages)
715 {
716         unsigned long paddr, next_paddr;
717         unsigned long i = idx + 1, pages = 1;
718
719         /* find the number of contiguous pages starting from idx */
720         paddr = __sme_page_pa(inpages[idx]);
721         while (i < npages) {
722                 next_paddr = __sme_page_pa(inpages[i++]);
723                 if ((paddr + PAGE_SIZE) == next_paddr) {
724                         pages++;
725                         paddr = next_paddr;
726                         continue;
727                 }
728                 break;
729         }
730
731         return pages;
732 }
733
734 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
735 {
736         unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
737         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
738         struct kvm_sev_launch_update_data params;
739         struct sev_data_launch_update_data data;
740         struct page **inpages;
741         int ret;
742
743         if (!sev_guest(kvm))
744                 return -ENOTTY;
745
746         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
747                 return -EFAULT;
748
749         vaddr = params.uaddr;
750         size = params.len;
751         vaddr_end = vaddr + size;
752
753         /* Lock the user memory. */
754         inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
755         if (IS_ERR(inpages))
756                 return PTR_ERR(inpages);
757
758         /*
759          * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
760          * place; the cache may contain the data that was written unencrypted.
761          */
762         sev_clflush_pages(inpages, npages);
763
764         data.reserved = 0;
765         data.handle = sev->handle;
766
767         for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
768                 int offset, len;
769
770                 /*
771                  * If the user buffer is not page-aligned, calculate the offset
772                  * within the page.
773                  */
774                 offset = vaddr & (PAGE_SIZE - 1);
775
776                 /* Calculate the number of pages that can be encrypted in one go. */
777                 pages = get_num_contig_pages(i, inpages, npages);
778
779                 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
780
781                 data.len = len;
782                 data.address = __sme_page_pa(inpages[i]) + offset;
783                 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
784                 if (ret)
785                         goto e_unpin;
786
787                 size -= len;
788                 next_vaddr = vaddr + len;
789         }
790
791 e_unpin:
792         /* content of memory is updated, mark pages dirty */
793         for (i = 0; i < npages; i++) {
794                 set_page_dirty_lock(inpages[i]);
795                 mark_page_accessed(inpages[i]);
796         }
797         /* unlock the user pages */
798         sev_unpin_memory(kvm, inpages, npages);
799         return ret;
800 }
801
802 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
803 {
804         struct kvm_vcpu *vcpu = &svm->vcpu;
805         struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
806         struct sev_es_save_area *save = svm->sev_es.vmsa;
807         struct xregs_state *xsave;
808         const u8 *s;
809         u8 *d;
810         int i;
811
812         /* Check some debug related fields before encrypting the VMSA */
813         if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
814                 return -EINVAL;
815
816         /*
817          * SEV-ES will use a VMSA that is pointed to by the VMCB, not
818          * the traditional VMSA that is part of the VMCB. Copy the
819          * traditional VMSA as it has been built so far (in prep
820          * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
821          */
822         memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
823
824         /* Sync registgers */
825         save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
826         save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
827         save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
828         save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
829         save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
830         save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
831         save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
832         save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
833 #ifdef CONFIG_X86_64
834         save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
835         save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
836         save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
837         save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
838         save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
839         save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
840         save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
841         save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
842 #endif
843         save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
844
845         /* Sync some non-GPR registers before encrypting */
846         save->xcr0 = svm->vcpu.arch.xcr0;
847         save->pkru = svm->vcpu.arch.pkru;
848         save->xss  = svm->vcpu.arch.ia32_xss;
849         save->dr6  = svm->vcpu.arch.dr6;
850
851         save->sev_features = sev->vmsa_features;
852
853         /*
854          * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
855          * breaking older measurements.
856          */
857         if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
858                 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
859                 save->x87_dp = xsave->i387.rdp;
860                 save->mxcsr = xsave->i387.mxcsr;
861                 save->x87_ftw = xsave->i387.twd;
862                 save->x87_fsw = xsave->i387.swd;
863                 save->x87_fcw = xsave->i387.cwd;
864                 save->x87_fop = xsave->i387.fop;
865                 save->x87_ds = 0;
866                 save->x87_cs = 0;
867                 save->x87_rip = xsave->i387.rip;
868
869                 for (i = 0; i < 8; i++) {
870                         /*
871                          * The format of the x87 save area is undocumented and
872                          * definitely not what you would expect.  It consists of
873                          * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
874                          * area with bytes 8-9 of each register.
875                          */
876                         d = save->fpreg_x87 + i * 8;
877                         s = ((u8 *)xsave->i387.st_space) + i * 16;
878                         memcpy(d, s, 8);
879                         save->fpreg_x87[64 + i * 2] = s[8];
880                         save->fpreg_x87[64 + i * 2 + 1] = s[9];
881                 }
882                 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
883
884                 s = get_xsave_addr(xsave, XFEATURE_YMM);
885                 if (s)
886                         memcpy(save->fpreg_ymm, s, 256);
887                 else
888                         memset(save->fpreg_ymm, 0, 256);
889         }
890
891         pr_debug("Virtual Machine Save Area (VMSA):\n");
892         print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
893
894         return 0;
895 }
896
897 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
898                                     int *error)
899 {
900         struct sev_data_launch_update_vmsa vmsa;
901         struct vcpu_svm *svm = to_svm(vcpu);
902         int ret;
903
904         if (vcpu->guest_debug) {
905                 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
906                 return -EINVAL;
907         }
908
909         /* Perform some pre-encryption checks against the VMSA */
910         ret = sev_es_sync_vmsa(svm);
911         if (ret)
912                 return ret;
913
914         /*
915          * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
916          * the VMSA memory content (i.e it will write the same memory region
917          * with the guest's key), so invalidate it first.
918          */
919         clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
920
921         vmsa.reserved = 0;
922         vmsa.handle = to_kvm_sev_info(kvm)->handle;
923         vmsa.address = __sme_pa(svm->sev_es.vmsa);
924         vmsa.len = PAGE_SIZE;
925         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
926         if (ret)
927           return ret;
928
929         /*
930          * SEV-ES guests maintain an encrypted version of their FPU
931          * state which is restored and saved on VMRUN and VMEXIT.
932          * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
933          * do xsave/xrstor on it.
934          */
935         fpstate_set_confidential(&vcpu->arch.guest_fpu);
936         vcpu->arch.guest_state_protected = true;
937
938         /*
939          * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
940          * only after setting guest_state_protected because KVM_SET_MSRS allows
941          * dynamic toggling of LBRV (for performance reason) on write access to
942          * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
943          */
944         svm_enable_lbrv(vcpu);
945         return 0;
946 }
947
948 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
949 {
950         struct kvm_vcpu *vcpu;
951         unsigned long i;
952         int ret;
953
954         if (!sev_es_guest(kvm))
955                 return -ENOTTY;
956
957         kvm_for_each_vcpu(i, vcpu, kvm) {
958                 ret = mutex_lock_killable(&vcpu->mutex);
959                 if (ret)
960                         return ret;
961
962                 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
963
964                 mutex_unlock(&vcpu->mutex);
965                 if (ret)
966                         return ret;
967         }
968
969         return 0;
970 }
971
972 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
973 {
974         void __user *measure = u64_to_user_ptr(argp->data);
975         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
976         struct sev_data_launch_measure data;
977         struct kvm_sev_launch_measure params;
978         void __user *p = NULL;
979         void *blob = NULL;
980         int ret;
981
982         if (!sev_guest(kvm))
983                 return -ENOTTY;
984
985         if (copy_from_user(&params, measure, sizeof(params)))
986                 return -EFAULT;
987
988         memset(&data, 0, sizeof(data));
989
990         /* User wants to query the blob length */
991         if (!params.len)
992                 goto cmd;
993
994         p = u64_to_user_ptr(params.uaddr);
995         if (p) {
996                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
997                         return -EINVAL;
998
999                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1000                 if (!blob)
1001                         return -ENOMEM;
1002
1003                 data.address = __psp_pa(blob);
1004                 data.len = params.len;
1005         }
1006
1007 cmd:
1008         data.handle = sev->handle;
1009         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1010
1011         /*
1012          * If we query the session length, FW responded with expected data.
1013          */
1014         if (!params.len)
1015                 goto done;
1016
1017         if (ret)
1018                 goto e_free_blob;
1019
1020         if (blob) {
1021                 if (copy_to_user(p, blob, params.len))
1022                         ret = -EFAULT;
1023         }
1024
1025 done:
1026         params.len = data.len;
1027         if (copy_to_user(measure, &params, sizeof(params)))
1028                 ret = -EFAULT;
1029 e_free_blob:
1030         kfree(blob);
1031         return ret;
1032 }
1033
1034 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1035 {
1036         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1037         struct sev_data_launch_finish data;
1038
1039         if (!sev_guest(kvm))
1040                 return -ENOTTY;
1041
1042         data.handle = sev->handle;
1043         return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1044 }
1045
1046 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1047 {
1048         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1049         struct kvm_sev_guest_status params;
1050         struct sev_data_guest_status data;
1051         int ret;
1052
1053         if (!sev_guest(kvm))
1054                 return -ENOTTY;
1055
1056         memset(&data, 0, sizeof(data));
1057
1058         data.handle = sev->handle;
1059         ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1060         if (ret)
1061                 return ret;
1062
1063         params.policy = data.policy;
1064         params.state = data.state;
1065         params.handle = data.handle;
1066
1067         if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
1068                 ret = -EFAULT;
1069
1070         return ret;
1071 }
1072
1073 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1074                                unsigned long dst, int size,
1075                                int *error, bool enc)
1076 {
1077         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1078         struct sev_data_dbg data;
1079
1080         data.reserved = 0;
1081         data.handle = sev->handle;
1082         data.dst_addr = dst;
1083         data.src_addr = src;
1084         data.len = size;
1085
1086         return sev_issue_cmd(kvm,
1087                              enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1088                              &data, error);
1089 }
1090
1091 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1092                              unsigned long dst_paddr, int sz, int *err)
1093 {
1094         int offset;
1095
1096         /*
1097          * Its safe to read more than we are asked, caller should ensure that
1098          * destination has enough space.
1099          */
1100         offset = src_paddr & 15;
1101         src_paddr = round_down(src_paddr, 16);
1102         sz = round_up(sz + offset, 16);
1103
1104         return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1105 }
1106
1107 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1108                                   void __user *dst_uaddr,
1109                                   unsigned long dst_paddr,
1110                                   int size, int *err)
1111 {
1112         struct page *tpage = NULL;
1113         int ret, offset;
1114
1115         /* if inputs are not 16-byte then use intermediate buffer */
1116         if (!IS_ALIGNED(dst_paddr, 16) ||
1117             !IS_ALIGNED(paddr,     16) ||
1118             !IS_ALIGNED(size,      16)) {
1119                 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1120                 if (!tpage)
1121                         return -ENOMEM;
1122
1123                 dst_paddr = __sme_page_pa(tpage);
1124         }
1125
1126         ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1127         if (ret)
1128                 goto e_free;
1129
1130         if (tpage) {
1131                 offset = paddr & 15;
1132                 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1133                         ret = -EFAULT;
1134         }
1135
1136 e_free:
1137         if (tpage)
1138                 __free_page(tpage);
1139
1140         return ret;
1141 }
1142
1143 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1144                                   void __user *vaddr,
1145                                   unsigned long dst_paddr,
1146                                   void __user *dst_vaddr,
1147                                   int size, int *error)
1148 {
1149         struct page *src_tpage = NULL;
1150         struct page *dst_tpage = NULL;
1151         int ret, len = size;
1152
1153         /* If source buffer is not aligned then use an intermediate buffer */
1154         if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1155                 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1156                 if (!src_tpage)
1157                         return -ENOMEM;
1158
1159                 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1160                         __free_page(src_tpage);
1161                         return -EFAULT;
1162                 }
1163
1164                 paddr = __sme_page_pa(src_tpage);
1165         }
1166
1167         /*
1168          *  If destination buffer or length is not aligned then do read-modify-write:
1169          *   - decrypt destination in an intermediate buffer
1170          *   - copy the source buffer in an intermediate buffer
1171          *   - use the intermediate buffer as source buffer
1172          */
1173         if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1174                 int dst_offset;
1175
1176                 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1177                 if (!dst_tpage) {
1178                         ret = -ENOMEM;
1179                         goto e_free;
1180                 }
1181
1182                 ret = __sev_dbg_decrypt(kvm, dst_paddr,
1183                                         __sme_page_pa(dst_tpage), size, error);
1184                 if (ret)
1185                         goto e_free;
1186
1187                 /*
1188                  *  If source is kernel buffer then use memcpy() otherwise
1189                  *  copy_from_user().
1190                  */
1191                 dst_offset = dst_paddr & 15;
1192
1193                 if (src_tpage)
1194                         memcpy(page_address(dst_tpage) + dst_offset,
1195                                page_address(src_tpage), size);
1196                 else {
1197                         if (copy_from_user(page_address(dst_tpage) + dst_offset,
1198                                            vaddr, size)) {
1199                                 ret = -EFAULT;
1200                                 goto e_free;
1201                         }
1202                 }
1203
1204                 paddr = __sme_page_pa(dst_tpage);
1205                 dst_paddr = round_down(dst_paddr, 16);
1206                 len = round_up(size, 16);
1207         }
1208
1209         ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1210
1211 e_free:
1212         if (src_tpage)
1213                 __free_page(src_tpage);
1214         if (dst_tpage)
1215                 __free_page(dst_tpage);
1216         return ret;
1217 }
1218
1219 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1220 {
1221         unsigned long vaddr, vaddr_end, next_vaddr;
1222         unsigned long dst_vaddr;
1223         struct page **src_p, **dst_p;
1224         struct kvm_sev_dbg debug;
1225         unsigned long n;
1226         unsigned int size;
1227         int ret;
1228
1229         if (!sev_guest(kvm))
1230                 return -ENOTTY;
1231
1232         if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1233                 return -EFAULT;
1234
1235         if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1236                 return -EINVAL;
1237         if (!debug.dst_uaddr)
1238                 return -EINVAL;
1239
1240         vaddr = debug.src_uaddr;
1241         size = debug.len;
1242         vaddr_end = vaddr + size;
1243         dst_vaddr = debug.dst_uaddr;
1244
1245         for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1246                 int len, s_off, d_off;
1247
1248                 /* lock userspace source and destination page */
1249                 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1250                 if (IS_ERR(src_p))
1251                         return PTR_ERR(src_p);
1252
1253                 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
1254                 if (IS_ERR(dst_p)) {
1255                         sev_unpin_memory(kvm, src_p, n);
1256                         return PTR_ERR(dst_p);
1257                 }
1258
1259                 /*
1260                  * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1261                  * the pages; flush the destination too so that future accesses do not
1262                  * see stale data.
1263                  */
1264                 sev_clflush_pages(src_p, 1);
1265                 sev_clflush_pages(dst_p, 1);
1266
1267                 /*
1268                  * Since user buffer may not be page aligned, calculate the
1269                  * offset within the page.
1270                  */
1271                 s_off = vaddr & ~PAGE_MASK;
1272                 d_off = dst_vaddr & ~PAGE_MASK;
1273                 len = min_t(size_t, (PAGE_SIZE - s_off), size);
1274
1275                 if (dec)
1276                         ret = __sev_dbg_decrypt_user(kvm,
1277                                                      __sme_page_pa(src_p[0]) + s_off,
1278                                                      (void __user *)dst_vaddr,
1279                                                      __sme_page_pa(dst_p[0]) + d_off,
1280                                                      len, &argp->error);
1281                 else
1282                         ret = __sev_dbg_encrypt_user(kvm,
1283                                                      __sme_page_pa(src_p[0]) + s_off,
1284                                                      (void __user *)vaddr,
1285                                                      __sme_page_pa(dst_p[0]) + d_off,
1286                                                      (void __user *)dst_vaddr,
1287                                                      len, &argp->error);
1288
1289                 sev_unpin_memory(kvm, src_p, n);
1290                 sev_unpin_memory(kvm, dst_p, n);
1291
1292                 if (ret)
1293                         goto err;
1294
1295                 next_vaddr = vaddr + len;
1296                 dst_vaddr = dst_vaddr + len;
1297                 size -= len;
1298         }
1299 err:
1300         return ret;
1301 }
1302
1303 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1304 {
1305         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1306         struct sev_data_launch_secret data;
1307         struct kvm_sev_launch_secret params;
1308         struct page **pages;
1309         void *blob, *hdr;
1310         unsigned long n, i;
1311         int ret, offset;
1312
1313         if (!sev_guest(kvm))
1314                 return -ENOTTY;
1315
1316         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1317                 return -EFAULT;
1318
1319         pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1320         if (IS_ERR(pages))
1321                 return PTR_ERR(pages);
1322
1323         /*
1324          * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1325          * place; the cache may contain the data that was written unencrypted.
1326          */
1327         sev_clflush_pages(pages, n);
1328
1329         /*
1330          * The secret must be copied into contiguous memory region, lets verify
1331          * that userspace memory pages are contiguous before we issue command.
1332          */
1333         if (get_num_contig_pages(0, pages, n) != n) {
1334                 ret = -EINVAL;
1335                 goto e_unpin_memory;
1336         }
1337
1338         memset(&data, 0, sizeof(data));
1339
1340         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1341         data.guest_address = __sme_page_pa(pages[0]) + offset;
1342         data.guest_len = params.guest_len;
1343
1344         blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1345         if (IS_ERR(blob)) {
1346                 ret = PTR_ERR(blob);
1347                 goto e_unpin_memory;
1348         }
1349
1350         data.trans_address = __psp_pa(blob);
1351         data.trans_len = params.trans_len;
1352
1353         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1354         if (IS_ERR(hdr)) {
1355                 ret = PTR_ERR(hdr);
1356                 goto e_free_blob;
1357         }
1358         data.hdr_address = __psp_pa(hdr);
1359         data.hdr_len = params.hdr_len;
1360
1361         data.handle = sev->handle;
1362         ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1363
1364         kfree(hdr);
1365
1366 e_free_blob:
1367         kfree(blob);
1368 e_unpin_memory:
1369         /* content of memory is updated, mark pages dirty */
1370         for (i = 0; i < n; i++) {
1371                 set_page_dirty_lock(pages[i]);
1372                 mark_page_accessed(pages[i]);
1373         }
1374         sev_unpin_memory(kvm, pages, n);
1375         return ret;
1376 }
1377
1378 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1379 {
1380         void __user *report = u64_to_user_ptr(argp->data);
1381         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1382         struct sev_data_attestation_report data;
1383         struct kvm_sev_attestation_report params;
1384         void __user *p;
1385         void *blob = NULL;
1386         int ret;
1387
1388         if (!sev_guest(kvm))
1389                 return -ENOTTY;
1390
1391         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1392                 return -EFAULT;
1393
1394         memset(&data, 0, sizeof(data));
1395
1396         /* User wants to query the blob length */
1397         if (!params.len)
1398                 goto cmd;
1399
1400         p = u64_to_user_ptr(params.uaddr);
1401         if (p) {
1402                 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1403                         return -EINVAL;
1404
1405                 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1406                 if (!blob)
1407                         return -ENOMEM;
1408
1409                 data.address = __psp_pa(blob);
1410                 data.len = params.len;
1411                 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1412         }
1413 cmd:
1414         data.handle = sev->handle;
1415         ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1416         /*
1417          * If we query the session length, FW responded with expected data.
1418          */
1419         if (!params.len)
1420                 goto done;
1421
1422         if (ret)
1423                 goto e_free_blob;
1424
1425         if (blob) {
1426                 if (copy_to_user(p, blob, params.len))
1427                         ret = -EFAULT;
1428         }
1429
1430 done:
1431         params.len = data.len;
1432         if (copy_to_user(report, &params, sizeof(params)))
1433                 ret = -EFAULT;
1434 e_free_blob:
1435         kfree(blob);
1436         return ret;
1437 }
1438
1439 /* Userspace wants to query session length. */
1440 static int
1441 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1442                                       struct kvm_sev_send_start *params)
1443 {
1444         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1445         struct sev_data_send_start data;
1446         int ret;
1447
1448         memset(&data, 0, sizeof(data));
1449         data.handle = sev->handle;
1450         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1451
1452         params->session_len = data.session_len;
1453         if (copy_to_user(u64_to_user_ptr(argp->data), params,
1454                                 sizeof(struct kvm_sev_send_start)))
1455                 ret = -EFAULT;
1456
1457         return ret;
1458 }
1459
1460 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1461 {
1462         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1463         struct sev_data_send_start data;
1464         struct kvm_sev_send_start params;
1465         void *amd_certs, *session_data;
1466         void *pdh_cert, *plat_certs;
1467         int ret;
1468
1469         if (!sev_guest(kvm))
1470                 return -ENOTTY;
1471
1472         if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1473                                 sizeof(struct kvm_sev_send_start)))
1474                 return -EFAULT;
1475
1476         /* if session_len is zero, userspace wants to query the session length */
1477         if (!params.session_len)
1478                 return __sev_send_start_query_session_length(kvm, argp,
1479                                 &params);
1480
1481         /* some sanity checks */
1482         if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1483             !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1484                 return -EINVAL;
1485
1486         /* allocate the memory to hold the session data blob */
1487         session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1488         if (!session_data)
1489                 return -ENOMEM;
1490
1491         /* copy the certificate blobs from userspace */
1492         pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1493                                 params.pdh_cert_len);
1494         if (IS_ERR(pdh_cert)) {
1495                 ret = PTR_ERR(pdh_cert);
1496                 goto e_free_session;
1497         }
1498
1499         plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1500                                 params.plat_certs_len);
1501         if (IS_ERR(plat_certs)) {
1502                 ret = PTR_ERR(plat_certs);
1503                 goto e_free_pdh;
1504         }
1505
1506         amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1507                                 params.amd_certs_len);
1508         if (IS_ERR(amd_certs)) {
1509                 ret = PTR_ERR(amd_certs);
1510                 goto e_free_plat_cert;
1511         }
1512
1513         /* populate the FW SEND_START field with system physical address */
1514         memset(&data, 0, sizeof(data));
1515         data.pdh_cert_address = __psp_pa(pdh_cert);
1516         data.pdh_cert_len = params.pdh_cert_len;
1517         data.plat_certs_address = __psp_pa(plat_certs);
1518         data.plat_certs_len = params.plat_certs_len;
1519         data.amd_certs_address = __psp_pa(amd_certs);
1520         data.amd_certs_len = params.amd_certs_len;
1521         data.session_address = __psp_pa(session_data);
1522         data.session_len = params.session_len;
1523         data.handle = sev->handle;
1524
1525         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1526
1527         if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1528                         session_data, params.session_len)) {
1529                 ret = -EFAULT;
1530                 goto e_free_amd_cert;
1531         }
1532
1533         params.policy = data.policy;
1534         params.session_len = data.session_len;
1535         if (copy_to_user(u64_to_user_ptr(argp->data), &params,
1536                                 sizeof(struct kvm_sev_send_start)))
1537                 ret = -EFAULT;
1538
1539 e_free_amd_cert:
1540         kfree(amd_certs);
1541 e_free_plat_cert:
1542         kfree(plat_certs);
1543 e_free_pdh:
1544         kfree(pdh_cert);
1545 e_free_session:
1546         kfree(session_data);
1547         return ret;
1548 }
1549
1550 /* Userspace wants to query either header or trans length. */
1551 static int
1552 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1553                                      struct kvm_sev_send_update_data *params)
1554 {
1555         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1556         struct sev_data_send_update_data data;
1557         int ret;
1558
1559         memset(&data, 0, sizeof(data));
1560         data.handle = sev->handle;
1561         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1562
1563         params->hdr_len = data.hdr_len;
1564         params->trans_len = data.trans_len;
1565
1566         if (copy_to_user(u64_to_user_ptr(argp->data), params,
1567                          sizeof(struct kvm_sev_send_update_data)))
1568                 ret = -EFAULT;
1569
1570         return ret;
1571 }
1572
1573 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1574 {
1575         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1576         struct sev_data_send_update_data data;
1577         struct kvm_sev_send_update_data params;
1578         void *hdr, *trans_data;
1579         struct page **guest_page;
1580         unsigned long n;
1581         int ret, offset;
1582
1583         if (!sev_guest(kvm))
1584                 return -ENOTTY;
1585
1586         if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1587                         sizeof(struct kvm_sev_send_update_data)))
1588                 return -EFAULT;
1589
1590         /* userspace wants to query either header or trans length */
1591         if (!params.trans_len || !params.hdr_len)
1592                 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1593
1594         if (!params.trans_uaddr || !params.guest_uaddr ||
1595             !params.guest_len || !params.hdr_uaddr)
1596                 return -EINVAL;
1597
1598         /* Check if we are crossing the page boundary */
1599         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1600         if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1601                 return -EINVAL;
1602
1603         /* Pin guest memory */
1604         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1605                                     PAGE_SIZE, &n, 0);
1606         if (IS_ERR(guest_page))
1607                 return PTR_ERR(guest_page);
1608
1609         /* allocate memory for header and transport buffer */
1610         ret = -ENOMEM;
1611         hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1612         if (!hdr)
1613                 goto e_unpin;
1614
1615         trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1616         if (!trans_data)
1617                 goto e_free_hdr;
1618
1619         memset(&data, 0, sizeof(data));
1620         data.hdr_address = __psp_pa(hdr);
1621         data.hdr_len = params.hdr_len;
1622         data.trans_address = __psp_pa(trans_data);
1623         data.trans_len = params.trans_len;
1624
1625         /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1626         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1627         data.guest_address |= sev_me_mask;
1628         data.guest_len = params.guest_len;
1629         data.handle = sev->handle;
1630
1631         ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1632
1633         if (ret)
1634                 goto e_free_trans_data;
1635
1636         /* copy transport buffer to user space */
1637         if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1638                          trans_data, params.trans_len)) {
1639                 ret = -EFAULT;
1640                 goto e_free_trans_data;
1641         }
1642
1643         /* Copy packet header to userspace. */
1644         if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1645                          params.hdr_len))
1646                 ret = -EFAULT;
1647
1648 e_free_trans_data:
1649         kfree(trans_data);
1650 e_free_hdr:
1651         kfree(hdr);
1652 e_unpin:
1653         sev_unpin_memory(kvm, guest_page, n);
1654
1655         return ret;
1656 }
1657
1658 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1659 {
1660         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1661         struct sev_data_send_finish data;
1662
1663         if (!sev_guest(kvm))
1664                 return -ENOTTY;
1665
1666         data.handle = sev->handle;
1667         return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1668 }
1669
1670 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1671 {
1672         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1673         struct sev_data_send_cancel data;
1674
1675         if (!sev_guest(kvm))
1676                 return -ENOTTY;
1677
1678         data.handle = sev->handle;
1679         return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1680 }
1681
1682 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1683 {
1684         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1685         struct sev_data_receive_start start;
1686         struct kvm_sev_receive_start params;
1687         int *error = &argp->error;
1688         void *session_data;
1689         void *pdh_data;
1690         int ret;
1691
1692         if (!sev_guest(kvm))
1693                 return -ENOTTY;
1694
1695         /* Get parameter from the userspace */
1696         if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1697                         sizeof(struct kvm_sev_receive_start)))
1698                 return -EFAULT;
1699
1700         /* some sanity checks */
1701         if (!params.pdh_uaddr || !params.pdh_len ||
1702             !params.session_uaddr || !params.session_len)
1703                 return -EINVAL;
1704
1705         pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1706         if (IS_ERR(pdh_data))
1707                 return PTR_ERR(pdh_data);
1708
1709         session_data = psp_copy_user_blob(params.session_uaddr,
1710                         params.session_len);
1711         if (IS_ERR(session_data)) {
1712                 ret = PTR_ERR(session_data);
1713                 goto e_free_pdh;
1714         }
1715
1716         memset(&start, 0, sizeof(start));
1717         start.handle = params.handle;
1718         start.policy = params.policy;
1719         start.pdh_cert_address = __psp_pa(pdh_data);
1720         start.pdh_cert_len = params.pdh_len;
1721         start.session_address = __psp_pa(session_data);
1722         start.session_len = params.session_len;
1723
1724         /* create memory encryption context */
1725         ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1726                                 error);
1727         if (ret)
1728                 goto e_free_session;
1729
1730         /* Bind ASID to this guest */
1731         ret = sev_bind_asid(kvm, start.handle, error);
1732         if (ret) {
1733                 sev_decommission(start.handle);
1734                 goto e_free_session;
1735         }
1736
1737         params.handle = start.handle;
1738         if (copy_to_user(u64_to_user_ptr(argp->data),
1739                          &params, sizeof(struct kvm_sev_receive_start))) {
1740                 ret = -EFAULT;
1741                 sev_unbind_asid(kvm, start.handle);
1742                 goto e_free_session;
1743         }
1744
1745         sev->handle = start.handle;
1746         sev->fd = argp->sev_fd;
1747
1748 e_free_session:
1749         kfree(session_data);
1750 e_free_pdh:
1751         kfree(pdh_data);
1752
1753         return ret;
1754 }
1755
1756 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1757 {
1758         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1759         struct kvm_sev_receive_update_data params;
1760         struct sev_data_receive_update_data data;
1761         void *hdr = NULL, *trans = NULL;
1762         struct page **guest_page;
1763         unsigned long n;
1764         int ret, offset;
1765
1766         if (!sev_guest(kvm))
1767                 return -EINVAL;
1768
1769         if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1770                         sizeof(struct kvm_sev_receive_update_data)))
1771                 return -EFAULT;
1772
1773         if (!params.hdr_uaddr || !params.hdr_len ||
1774             !params.guest_uaddr || !params.guest_len ||
1775             !params.trans_uaddr || !params.trans_len)
1776                 return -EINVAL;
1777
1778         /* Check if we are crossing the page boundary */
1779         offset = params.guest_uaddr & (PAGE_SIZE - 1);
1780         if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1781                 return -EINVAL;
1782
1783         hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1784         if (IS_ERR(hdr))
1785                 return PTR_ERR(hdr);
1786
1787         trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1788         if (IS_ERR(trans)) {
1789                 ret = PTR_ERR(trans);
1790                 goto e_free_hdr;
1791         }
1792
1793         memset(&data, 0, sizeof(data));
1794         data.hdr_address = __psp_pa(hdr);
1795         data.hdr_len = params.hdr_len;
1796         data.trans_address = __psp_pa(trans);
1797         data.trans_len = params.trans_len;
1798
1799         /* Pin guest memory */
1800         guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1801                                     PAGE_SIZE, &n, 1);
1802         if (IS_ERR(guest_page)) {
1803                 ret = PTR_ERR(guest_page);
1804                 goto e_free_trans;
1805         }
1806
1807         /*
1808          * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1809          * encrypts the written data with the guest's key, and the cache may
1810          * contain dirty, unencrypted data.
1811          */
1812         sev_clflush_pages(guest_page, n);
1813
1814         /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1815         data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1816         data.guest_address |= sev_me_mask;
1817         data.guest_len = params.guest_len;
1818         data.handle = sev->handle;
1819
1820         ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1821                                 &argp->error);
1822
1823         sev_unpin_memory(kvm, guest_page, n);
1824
1825 e_free_trans:
1826         kfree(trans);
1827 e_free_hdr:
1828         kfree(hdr);
1829
1830         return ret;
1831 }
1832
1833 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1834 {
1835         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1836         struct sev_data_receive_finish data;
1837
1838         if (!sev_guest(kvm))
1839                 return -ENOTTY;
1840
1841         data.handle = sev->handle;
1842         return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1843 }
1844
1845 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1846 {
1847         /*
1848          * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1849          * active mirror VMs. Also allow the debugging and status commands.
1850          */
1851         if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1852             cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1853             cmd_id == KVM_SEV_DBG_ENCRYPT)
1854                 return true;
1855
1856         return false;
1857 }
1858
1859 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1860 {
1861         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1862         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1863         int r = -EBUSY;
1864
1865         if (dst_kvm == src_kvm)
1866                 return -EINVAL;
1867
1868         /*
1869          * Bail if these VMs are already involved in a migration to avoid
1870          * deadlock between two VMs trying to migrate to/from each other.
1871          */
1872         if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1873                 return -EBUSY;
1874
1875         if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1876                 goto release_dst;
1877
1878         r = -EINTR;
1879         if (mutex_lock_killable(&dst_kvm->lock))
1880                 goto release_src;
1881         if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1882                 goto unlock_dst;
1883         return 0;
1884
1885 unlock_dst:
1886         mutex_unlock(&dst_kvm->lock);
1887 release_src:
1888         atomic_set_release(&src_sev->migration_in_progress, 0);
1889 release_dst:
1890         atomic_set_release(&dst_sev->migration_in_progress, 0);
1891         return r;
1892 }
1893
1894 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1895 {
1896         struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1897         struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1898
1899         mutex_unlock(&dst_kvm->lock);
1900         mutex_unlock(&src_kvm->lock);
1901         atomic_set_release(&dst_sev->migration_in_progress, 0);
1902         atomic_set_release(&src_sev->migration_in_progress, 0);
1903 }
1904
1905 /* vCPU mutex subclasses.  */
1906 enum sev_migration_role {
1907         SEV_MIGRATION_SOURCE = 0,
1908         SEV_MIGRATION_TARGET,
1909         SEV_NR_MIGRATION_ROLES,
1910 };
1911
1912 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1913                                         enum sev_migration_role role)
1914 {
1915         struct kvm_vcpu *vcpu;
1916         unsigned long i, j;
1917
1918         kvm_for_each_vcpu(i, vcpu, kvm) {
1919                 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1920                         goto out_unlock;
1921
1922 #ifdef CONFIG_PROVE_LOCKING
1923                 if (!i)
1924                         /*
1925                          * Reset the role to one that avoids colliding with
1926                          * the role used for the first vcpu mutex.
1927                          */
1928                         role = SEV_NR_MIGRATION_ROLES;
1929                 else
1930                         mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1931 #endif
1932         }
1933
1934         return 0;
1935
1936 out_unlock:
1937
1938         kvm_for_each_vcpu(j, vcpu, kvm) {
1939                 if (i == j)
1940                         break;
1941
1942 #ifdef CONFIG_PROVE_LOCKING
1943                 if (j)
1944                         mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1945 #endif
1946
1947                 mutex_unlock(&vcpu->mutex);
1948         }
1949         return -EINTR;
1950 }
1951
1952 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1953 {
1954         struct kvm_vcpu *vcpu;
1955         unsigned long i;
1956         bool first = true;
1957
1958         kvm_for_each_vcpu(i, vcpu, kvm) {
1959                 if (first)
1960                         first = false;
1961                 else
1962                         mutex_acquire(&vcpu->mutex.dep_map,
1963                                       SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1964
1965                 mutex_unlock(&vcpu->mutex);
1966         }
1967 }
1968
1969 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1970 {
1971         struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1972         struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1973         struct kvm_vcpu *dst_vcpu, *src_vcpu;
1974         struct vcpu_svm *dst_svm, *src_svm;
1975         struct kvm_sev_info *mirror;
1976         unsigned long i;
1977
1978         dst->active = true;
1979         dst->asid = src->asid;
1980         dst->handle = src->handle;
1981         dst->pages_locked = src->pages_locked;
1982         dst->enc_context_owner = src->enc_context_owner;
1983         dst->es_active = src->es_active;
1984         dst->vmsa_features = src->vmsa_features;
1985
1986         src->asid = 0;
1987         src->active = false;
1988         src->handle = 0;
1989         src->pages_locked = 0;
1990         src->enc_context_owner = NULL;
1991         src->es_active = false;
1992
1993         list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1994
1995         /*
1996          * If this VM has mirrors, "transfer" each mirror's refcount of the
1997          * source to the destination (this KVM).  The caller holds a reference
1998          * to the source, so there's no danger of use-after-free.
1999          */
2000         list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
2001         list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
2002                 kvm_get_kvm(dst_kvm);
2003                 kvm_put_kvm(src_kvm);
2004                 mirror->enc_context_owner = dst_kvm;
2005         }
2006
2007         /*
2008          * If this VM is a mirror, remove the old mirror from the owners list
2009          * and add the new mirror to the list.
2010          */
2011         if (is_mirroring_enc_context(dst_kvm)) {
2012                 struct kvm_sev_info *owner_sev_info =
2013                         &to_kvm_svm(dst->enc_context_owner)->sev_info;
2014
2015                 list_del(&src->mirror_entry);
2016                 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
2017         }
2018
2019         kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
2020                 dst_svm = to_svm(dst_vcpu);
2021
2022                 sev_init_vmcb(dst_svm);
2023
2024                 if (!dst->es_active)
2025                         continue;
2026
2027                 /*
2028                  * Note, the source is not required to have the same number of
2029                  * vCPUs as the destination when migrating a vanilla SEV VM.
2030                  */
2031                 src_vcpu = kvm_get_vcpu(src_kvm, i);
2032                 src_svm = to_svm(src_vcpu);
2033
2034                 /*
2035                  * Transfer VMSA and GHCB state to the destination.  Nullify and
2036                  * clear source fields as appropriate, the state now belongs to
2037                  * the destination.
2038                  */
2039                 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
2040                 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
2041                 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
2042                 dst_vcpu->arch.guest_state_protected = true;
2043
2044                 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
2045                 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
2046                 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2047                 src_vcpu->arch.guest_state_protected = false;
2048         }
2049 }
2050
2051 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2052 {
2053         struct kvm_vcpu *src_vcpu;
2054         unsigned long i;
2055
2056         if (!sev_es_guest(src))
2057                 return 0;
2058
2059         if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2060                 return -EINVAL;
2061
2062         kvm_for_each_vcpu(i, src_vcpu, src) {
2063                 if (!src_vcpu->arch.guest_state_protected)
2064                         return -EINVAL;
2065         }
2066
2067         return 0;
2068 }
2069
2070 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2071 {
2072         struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
2073         struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2074         CLASS(fd, f)(source_fd);
2075         struct kvm *source_kvm;
2076         bool charged = false;
2077         int ret;
2078
2079         if (fd_empty(f))
2080                 return -EBADF;
2081
2082         if (!file_is_kvm(fd_file(f)))
2083                 return -EBADF;
2084
2085         source_kvm = fd_file(f)->private_data;
2086         ret = sev_lock_two_vms(kvm, source_kvm);
2087         if (ret)
2088                 return ret;
2089
2090         if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2091             sev_guest(kvm) || !sev_guest(source_kvm)) {
2092                 ret = -EINVAL;
2093                 goto out_unlock;
2094         }
2095
2096         src_sev = &to_kvm_svm(source_kvm)->sev_info;
2097
2098         dst_sev->misc_cg = get_current_misc_cg();
2099         cg_cleanup_sev = dst_sev;
2100         if (dst_sev->misc_cg != src_sev->misc_cg) {
2101                 ret = sev_misc_cg_try_charge(dst_sev);
2102                 if (ret)
2103                         goto out_dst_cgroup;
2104                 charged = true;
2105         }
2106
2107         ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
2108         if (ret)
2109                 goto out_dst_cgroup;
2110         ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
2111         if (ret)
2112                 goto out_dst_vcpu;
2113
2114         ret = sev_check_source_vcpus(kvm, source_kvm);
2115         if (ret)
2116                 goto out_source_vcpu;
2117
2118         sev_migrate_from(kvm, source_kvm);
2119         kvm_vm_dead(source_kvm);
2120         cg_cleanup_sev = src_sev;
2121         ret = 0;
2122
2123 out_source_vcpu:
2124         sev_unlock_vcpus_for_migration(source_kvm);
2125 out_dst_vcpu:
2126         sev_unlock_vcpus_for_migration(kvm);
2127 out_dst_cgroup:
2128         /* Operates on the source on success, on the destination on failure.  */
2129         if (charged)
2130                 sev_misc_cg_uncharge(cg_cleanup_sev);
2131         put_misc_cg(cg_cleanup_sev->misc_cg);
2132         cg_cleanup_sev->misc_cg = NULL;
2133 out_unlock:
2134         sev_unlock_two_vms(kvm, source_kvm);
2135         return ret;
2136 }
2137
2138 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2139 {
2140         if (group != KVM_X86_GRP_SEV)
2141                 return -ENXIO;
2142
2143         switch (attr) {
2144         case KVM_X86_SEV_VMSA_FEATURES:
2145                 *val = sev_supported_vmsa_features;
2146                 return 0;
2147
2148         default:
2149                 return -ENXIO;
2150         }
2151 }
2152
2153 /*
2154  * The guest context contains all the information, keys and metadata
2155  * associated with the guest that the firmware tracks to implement SEV
2156  * and SNP features. The firmware stores the guest context in hypervisor
2157  * provide page via the SNP_GCTX_CREATE command.
2158  */
2159 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2160 {
2161         struct sev_data_snp_addr data = {};
2162         void *context;
2163         int rc;
2164
2165         /* Allocate memory for context page */
2166         context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2167         if (!context)
2168                 return NULL;
2169
2170         data.address = __psp_pa(context);
2171         rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2172         if (rc) {
2173                 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2174                         rc, argp->error);
2175                 snp_free_firmware_page(context);
2176                 return NULL;
2177         }
2178
2179         return context;
2180 }
2181
2182 static int snp_bind_asid(struct kvm *kvm, int *error)
2183 {
2184         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2185         struct sev_data_snp_activate data = {0};
2186
2187         data.gctx_paddr = __psp_pa(sev->snp_context);
2188         data.asid = sev_get_asid(kvm);
2189         return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2190 }
2191
2192 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2193 {
2194         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2195         struct sev_data_snp_launch_start start = {0};
2196         struct kvm_sev_snp_launch_start params;
2197         int rc;
2198
2199         if (!sev_snp_guest(kvm))
2200                 return -ENOTTY;
2201
2202         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2203                 return -EFAULT;
2204
2205         /* Don't allow userspace to allocate memory for more than 1 SNP context. */
2206         if (sev->snp_context)
2207                 return -EINVAL;
2208
2209         if (params.flags)
2210                 return -EINVAL;
2211
2212         if (params.policy & ~SNP_POLICY_MASK_VALID)
2213                 return -EINVAL;
2214
2215         /* Check for policy bits that must be set */
2216         if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) ||
2217             !(params.policy & SNP_POLICY_MASK_SMT))
2218                 return -EINVAL;
2219
2220         if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET)
2221                 return -EINVAL;
2222
2223         sev->snp_context = snp_context_create(kvm, argp);
2224         if (!sev->snp_context)
2225                 return -ENOTTY;
2226
2227         start.gctx_paddr = __psp_pa(sev->snp_context);
2228         start.policy = params.policy;
2229         memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2230         rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2231         if (rc) {
2232                 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2233                          __func__, rc);
2234                 goto e_free_context;
2235         }
2236
2237         sev->fd = argp->sev_fd;
2238         rc = snp_bind_asid(kvm, &argp->error);
2239         if (rc) {
2240                 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2241                          __func__, rc);
2242                 goto e_free_context;
2243         }
2244
2245         return 0;
2246
2247 e_free_context:
2248         snp_decommission_context(kvm);
2249
2250         return rc;
2251 }
2252
2253 struct sev_gmem_populate_args {
2254         __u8 type;
2255         int sev_fd;
2256         int fw_error;
2257 };
2258
2259 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2260                                   void __user *src, int order, void *opaque)
2261 {
2262         struct sev_gmem_populate_args *sev_populate_args = opaque;
2263         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2264         int n_private = 0, ret, i;
2265         int npages = (1 << order);
2266         gfn_t gfn;
2267
2268         if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2269                 return -EINVAL;
2270
2271         for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2272                 struct sev_data_snp_launch_update fw_args = {0};
2273                 bool assigned = false;
2274                 int level;
2275
2276                 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2277                 if (ret || assigned) {
2278                         pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2279                                  __func__, gfn, ret, assigned);
2280                         ret = ret ? -EINVAL : -EEXIST;
2281                         goto err;
2282                 }
2283
2284                 if (src) {
2285                         void *vaddr = kmap_local_pfn(pfn + i);
2286
2287                         if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2288                                 ret = -EFAULT;
2289                                 goto err;
2290                         }
2291                         kunmap_local(vaddr);
2292                 }
2293
2294                 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2295                                        sev_get_asid(kvm), true);
2296                 if (ret)
2297                         goto err;
2298
2299                 n_private++;
2300
2301                 fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2302                 fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2303                 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2304                 fw_args.page_type = sev_populate_args->type;
2305
2306                 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2307                                       &fw_args, &sev_populate_args->fw_error);
2308                 if (ret)
2309                         goto fw_err;
2310         }
2311
2312         return 0;
2313
2314 fw_err:
2315         /*
2316          * If the firmware command failed handle the reclaim and cleanup of that
2317          * PFN specially vs. prior pages which can be cleaned up below without
2318          * needing to reclaim in advance.
2319          *
2320          * Additionally, when invalid CPUID function entries are detected,
2321          * firmware writes the expected values into the page and leaves it
2322          * unencrypted so it can be used for debugging and error-reporting.
2323          *
2324          * Copy this page back into the source buffer so userspace can use this
2325          * information to provide information on which CPUID leaves/fields
2326          * failed CPUID validation.
2327          */
2328         if (!snp_page_reclaim(kvm, pfn + i) &&
2329             sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2330             sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2331                 void *vaddr = kmap_local_pfn(pfn + i);
2332
2333                 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2334                         pr_debug("Failed to write CPUID page back to userspace\n");
2335
2336                 kunmap_local(vaddr);
2337         }
2338
2339         /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2340         n_private--;
2341
2342 err:
2343         pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2344                  __func__, ret, sev_populate_args->fw_error, n_private);
2345         for (i = 0; i < n_private; i++)
2346                 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2347
2348         return ret;
2349 }
2350
2351 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2352 {
2353         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2354         struct sev_gmem_populate_args sev_populate_args = {0};
2355         struct kvm_sev_snp_launch_update params;
2356         struct kvm_memory_slot *memslot;
2357         long npages, count;
2358         void __user *src;
2359         int ret = 0;
2360
2361         if (!sev_snp_guest(kvm) || !sev->snp_context)
2362                 return -EINVAL;
2363
2364         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2365                 return -EFAULT;
2366
2367         pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2368                  params.gfn_start, params.len, params.type, params.flags);
2369
2370         if (!PAGE_ALIGNED(params.len) || params.flags ||
2371             (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2372              params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2373              params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2374              params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2375              params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2376                 return -EINVAL;
2377
2378         npages = params.len / PAGE_SIZE;
2379
2380         /*
2381          * For each GFN that's being prepared as part of the initial guest
2382          * state, the following pre-conditions are verified:
2383          *
2384          *   1) The backing memslot is a valid private memslot.
2385          *   2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2386          *      beforehand.
2387          *   3) The PFN of the guest_memfd has not already been set to private
2388          *      in the RMP table.
2389          *
2390          * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2391          * faults if there's a race between a fault and an attribute update via
2392          * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2393          * here. However, kvm->slots_lock guards against both this as well as
2394          * concurrent memslot updates occurring while these checks are being
2395          * performed, so use that here to make it easier to reason about the
2396          * initial expected state and better guard against unexpected
2397          * situations.
2398          */
2399         mutex_lock(&kvm->slots_lock);
2400
2401         memslot = gfn_to_memslot(kvm, params.gfn_start);
2402         if (!kvm_slot_can_be_private(memslot)) {
2403                 ret = -EINVAL;
2404                 goto out;
2405         }
2406
2407         sev_populate_args.sev_fd = argp->sev_fd;
2408         sev_populate_args.type = params.type;
2409         src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2410
2411         count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2412                                   sev_gmem_post_populate, &sev_populate_args);
2413         if (count < 0) {
2414                 argp->error = sev_populate_args.fw_error;
2415                 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2416                          __func__, count, argp->error);
2417                 ret = -EIO;
2418         } else {
2419                 params.gfn_start += count;
2420                 params.len -= count * PAGE_SIZE;
2421                 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2422                         params.uaddr += count * PAGE_SIZE;
2423
2424                 ret = 0;
2425                 if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
2426                         ret = -EFAULT;
2427         }
2428
2429 out:
2430         mutex_unlock(&kvm->slots_lock);
2431
2432         return ret;
2433 }
2434
2435 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2436 {
2437         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2438         struct sev_data_snp_launch_update data = {};
2439         struct kvm_vcpu *vcpu;
2440         unsigned long i;
2441         int ret;
2442
2443         data.gctx_paddr = __psp_pa(sev->snp_context);
2444         data.page_type = SNP_PAGE_TYPE_VMSA;
2445
2446         kvm_for_each_vcpu(i, vcpu, kvm) {
2447                 struct vcpu_svm *svm = to_svm(vcpu);
2448                 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2449
2450                 ret = sev_es_sync_vmsa(svm);
2451                 if (ret)
2452                         return ret;
2453
2454                 /* Transition the VMSA page to a firmware state. */
2455                 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2456                 if (ret)
2457                         return ret;
2458
2459                 /* Issue the SNP command to encrypt the VMSA */
2460                 data.address = __sme_pa(svm->sev_es.vmsa);
2461                 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2462                                       &data, &argp->error);
2463                 if (ret) {
2464                         snp_page_reclaim(kvm, pfn);
2465
2466                         return ret;
2467                 }
2468
2469                 svm->vcpu.arch.guest_state_protected = true;
2470                 /*
2471                  * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2472                  * be _always_ ON. Enable it only after setting
2473                  * guest_state_protected because KVM_SET_MSRS allows dynamic
2474                  * toggling of LBRV (for performance reason) on write access to
2475                  * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2476                  */
2477                 svm_enable_lbrv(vcpu);
2478         }
2479
2480         return 0;
2481 }
2482
2483 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2484 {
2485         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2486         struct kvm_sev_snp_launch_finish params;
2487         struct sev_data_snp_launch_finish *data;
2488         void *id_block = NULL, *id_auth = NULL;
2489         int ret;
2490
2491         if (!sev_snp_guest(kvm))
2492                 return -ENOTTY;
2493
2494         if (!sev->snp_context)
2495                 return -EINVAL;
2496
2497         if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2498                 return -EFAULT;
2499
2500         if (params.flags)
2501                 return -EINVAL;
2502
2503         /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2504         ret = snp_launch_update_vmsa(kvm, argp);
2505         if (ret)
2506                 return ret;
2507
2508         data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2509         if (!data)
2510                 return -ENOMEM;
2511
2512         if (params.id_block_en) {
2513                 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2514                 if (IS_ERR(id_block)) {
2515                         ret = PTR_ERR(id_block);
2516                         goto e_free;
2517                 }
2518
2519                 data->id_block_en = 1;
2520                 data->id_block_paddr = __sme_pa(id_block);
2521
2522                 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2523                 if (IS_ERR(id_auth)) {
2524                         ret = PTR_ERR(id_auth);
2525                         goto e_free_id_block;
2526                 }
2527
2528                 data->id_auth_paddr = __sme_pa(id_auth);
2529
2530                 if (params.auth_key_en)
2531                         data->auth_key_en = 1;
2532         }
2533
2534         data->vcek_disabled = params.vcek_disabled;
2535
2536         memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2537         data->gctx_paddr = __psp_pa(sev->snp_context);
2538         ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2539
2540         /*
2541          * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2542          * can be given to the guest simply by marking the RMP entry as private.
2543          * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2544          */
2545         if (!ret)
2546                 kvm->arch.pre_fault_allowed = true;
2547
2548         kfree(id_auth);
2549
2550 e_free_id_block:
2551         kfree(id_block);
2552
2553 e_free:
2554         kfree(data);
2555
2556         return ret;
2557 }
2558
2559 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2560 {
2561         struct kvm_sev_cmd sev_cmd;
2562         int r;
2563
2564         if (!sev_enabled)
2565                 return -ENOTTY;
2566
2567         if (!argp)
2568                 return 0;
2569
2570         if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2571                 return -EFAULT;
2572
2573         mutex_lock(&kvm->lock);
2574
2575         /* Only the enc_context_owner handles some memory enc operations. */
2576         if (is_mirroring_enc_context(kvm) &&
2577             !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2578                 r = -EINVAL;
2579                 goto out;
2580         }
2581
2582         /*
2583          * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2584          * allow the use of SNP-specific commands.
2585          */
2586         if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2587                 r = -EPERM;
2588                 goto out;
2589         }
2590
2591         switch (sev_cmd.id) {
2592         case KVM_SEV_ES_INIT:
2593                 if (!sev_es_enabled) {
2594                         r = -ENOTTY;
2595                         goto out;
2596                 }
2597                 fallthrough;
2598         case KVM_SEV_INIT:
2599                 r = sev_guest_init(kvm, &sev_cmd);
2600                 break;
2601         case KVM_SEV_INIT2:
2602                 r = sev_guest_init2(kvm, &sev_cmd);
2603                 break;
2604         case KVM_SEV_LAUNCH_START:
2605                 r = sev_launch_start(kvm, &sev_cmd);
2606                 break;
2607         case KVM_SEV_LAUNCH_UPDATE_DATA:
2608                 r = sev_launch_update_data(kvm, &sev_cmd);
2609                 break;
2610         case KVM_SEV_LAUNCH_UPDATE_VMSA:
2611                 r = sev_launch_update_vmsa(kvm, &sev_cmd);
2612                 break;
2613         case KVM_SEV_LAUNCH_MEASURE:
2614                 r = sev_launch_measure(kvm, &sev_cmd);
2615                 break;
2616         case KVM_SEV_LAUNCH_FINISH:
2617                 r = sev_launch_finish(kvm, &sev_cmd);
2618                 break;
2619         case KVM_SEV_GUEST_STATUS:
2620                 r = sev_guest_status(kvm, &sev_cmd);
2621                 break;
2622         case KVM_SEV_DBG_DECRYPT:
2623                 r = sev_dbg_crypt(kvm, &sev_cmd, true);
2624                 break;
2625         case KVM_SEV_DBG_ENCRYPT:
2626                 r = sev_dbg_crypt(kvm, &sev_cmd, false);
2627                 break;
2628         case KVM_SEV_LAUNCH_SECRET:
2629                 r = sev_launch_secret(kvm, &sev_cmd);
2630                 break;
2631         case KVM_SEV_GET_ATTESTATION_REPORT:
2632                 r = sev_get_attestation_report(kvm, &sev_cmd);
2633                 break;
2634         case KVM_SEV_SEND_START:
2635                 r = sev_send_start(kvm, &sev_cmd);
2636                 break;
2637         case KVM_SEV_SEND_UPDATE_DATA:
2638                 r = sev_send_update_data(kvm, &sev_cmd);
2639                 break;
2640         case KVM_SEV_SEND_FINISH:
2641                 r = sev_send_finish(kvm, &sev_cmd);
2642                 break;
2643         case KVM_SEV_SEND_CANCEL:
2644                 r = sev_send_cancel(kvm, &sev_cmd);
2645                 break;
2646         case KVM_SEV_RECEIVE_START:
2647                 r = sev_receive_start(kvm, &sev_cmd);
2648                 break;
2649         case KVM_SEV_RECEIVE_UPDATE_DATA:
2650                 r = sev_receive_update_data(kvm, &sev_cmd);
2651                 break;
2652         case KVM_SEV_RECEIVE_FINISH:
2653                 r = sev_receive_finish(kvm, &sev_cmd);
2654                 break;
2655         case KVM_SEV_SNP_LAUNCH_START:
2656                 r = snp_launch_start(kvm, &sev_cmd);
2657                 break;
2658         case KVM_SEV_SNP_LAUNCH_UPDATE:
2659                 r = snp_launch_update(kvm, &sev_cmd);
2660                 break;
2661         case KVM_SEV_SNP_LAUNCH_FINISH:
2662                 r = snp_launch_finish(kvm, &sev_cmd);
2663                 break;
2664         default:
2665                 r = -EINVAL;
2666                 goto out;
2667         }
2668
2669         if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2670                 r = -EFAULT;
2671
2672 out:
2673         mutex_unlock(&kvm->lock);
2674         return r;
2675 }
2676
2677 int sev_mem_enc_register_region(struct kvm *kvm,
2678                                 struct kvm_enc_region *range)
2679 {
2680         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2681         struct enc_region *region;
2682         int ret = 0;
2683
2684         if (!sev_guest(kvm))
2685                 return -ENOTTY;
2686
2687         /* If kvm is mirroring encryption context it isn't responsible for it */
2688         if (is_mirroring_enc_context(kvm))
2689                 return -EINVAL;
2690
2691         if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2692                 return -EINVAL;
2693
2694         region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2695         if (!region)
2696                 return -ENOMEM;
2697
2698         mutex_lock(&kvm->lock);
2699         region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
2700         if (IS_ERR(region->pages)) {
2701                 ret = PTR_ERR(region->pages);
2702                 mutex_unlock(&kvm->lock);
2703                 goto e_free;
2704         }
2705
2706         /*
2707          * The guest may change the memory encryption attribute from C=0 -> C=1
2708          * or vice versa for this memory range. Lets make sure caches are
2709          * flushed to ensure that guest data gets written into memory with
2710          * correct C-bit.  Note, this must be done before dropping kvm->lock,
2711          * as region and its array of pages can be freed by a different task
2712          * once kvm->lock is released.
2713          */
2714         sev_clflush_pages(region->pages, region->npages);
2715
2716         region->uaddr = range->addr;
2717         region->size = range->size;
2718
2719         list_add_tail(&region->list, &sev->regions_list);
2720         mutex_unlock(&kvm->lock);
2721
2722         return ret;
2723
2724 e_free:
2725         kfree(region);
2726         return ret;
2727 }
2728
2729 static struct enc_region *
2730 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2731 {
2732         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2733         struct list_head *head = &sev->regions_list;
2734         struct enc_region *i;
2735
2736         list_for_each_entry(i, head, list) {
2737                 if (i->uaddr == range->addr &&
2738                     i->size == range->size)
2739                         return i;
2740         }
2741
2742         return NULL;
2743 }
2744
2745 static void __unregister_enc_region_locked(struct kvm *kvm,
2746                                            struct enc_region *region)
2747 {
2748         sev_unpin_memory(kvm, region->pages, region->npages);
2749         list_del(&region->list);
2750         kfree(region);
2751 }
2752
2753 int sev_mem_enc_unregister_region(struct kvm *kvm,
2754                                   struct kvm_enc_region *range)
2755 {
2756         struct enc_region *region;
2757         int ret;
2758
2759         /* If kvm is mirroring encryption context it isn't responsible for it */
2760         if (is_mirroring_enc_context(kvm))
2761                 return -EINVAL;
2762
2763         mutex_lock(&kvm->lock);
2764
2765         if (!sev_guest(kvm)) {
2766                 ret = -ENOTTY;
2767                 goto failed;
2768         }
2769
2770         region = find_enc_region(kvm, range);
2771         if (!region) {
2772                 ret = -EINVAL;
2773                 goto failed;
2774         }
2775
2776         /*
2777          * Ensure that all guest tagged cache entries are flushed before
2778          * releasing the pages back to the system for use. CLFLUSH will
2779          * not do this, so issue a WBINVD.
2780          */
2781         wbinvd_on_all_cpus();
2782
2783         __unregister_enc_region_locked(kvm, region);
2784
2785         mutex_unlock(&kvm->lock);
2786         return 0;
2787
2788 failed:
2789         mutex_unlock(&kvm->lock);
2790         return ret;
2791 }
2792
2793 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2794 {
2795         CLASS(fd, f)(source_fd);
2796         struct kvm *source_kvm;
2797         struct kvm_sev_info *source_sev, *mirror_sev;
2798         int ret;
2799
2800         if (fd_empty(f))
2801                 return -EBADF;
2802
2803         if (!file_is_kvm(fd_file(f)))
2804                 return -EBADF;
2805
2806         source_kvm = fd_file(f)->private_data;
2807         ret = sev_lock_two_vms(kvm, source_kvm);
2808         if (ret)
2809                 return ret;
2810
2811         /*
2812          * Mirrors of mirrors should work, but let's not get silly.  Also
2813          * disallow out-of-band SEV/SEV-ES init if the target is already an
2814          * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2815          * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2816          */
2817         if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2818             is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2819                 ret = -EINVAL;
2820                 goto e_unlock;
2821         }
2822
2823         /*
2824          * The mirror kvm holds an enc_context_owner ref so its asid can't
2825          * disappear until we're done with it
2826          */
2827         source_sev = &to_kvm_svm(source_kvm)->sev_info;
2828         kvm_get_kvm(source_kvm);
2829         mirror_sev = &to_kvm_svm(kvm)->sev_info;
2830         list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2831
2832         /* Set enc_context_owner and copy its encryption context over */
2833         mirror_sev->enc_context_owner = source_kvm;
2834         mirror_sev->active = true;
2835         mirror_sev->asid = source_sev->asid;
2836         mirror_sev->fd = source_sev->fd;
2837         mirror_sev->es_active = source_sev->es_active;
2838         mirror_sev->need_init = false;
2839         mirror_sev->handle = source_sev->handle;
2840         INIT_LIST_HEAD(&mirror_sev->regions_list);
2841         INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2842         ret = 0;
2843
2844         /*
2845          * Do not copy ap_jump_table. Since the mirror does not share the same
2846          * KVM contexts as the original, and they may have different
2847          * memory-views.
2848          */
2849
2850 e_unlock:
2851         sev_unlock_two_vms(kvm, source_kvm);
2852         return ret;
2853 }
2854
2855 static int snp_decommission_context(struct kvm *kvm)
2856 {
2857         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2858         struct sev_data_snp_addr data = {};
2859         int ret;
2860
2861         /* If context is not created then do nothing */
2862         if (!sev->snp_context)
2863                 return 0;
2864
2865         /* Do the decommision, which will unbind the ASID from the SNP context */
2866         data.address = __sme_pa(sev->snp_context);
2867         down_write(&sev_deactivate_lock);
2868         ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2869         up_write(&sev_deactivate_lock);
2870
2871         if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2872                 return ret;
2873
2874         snp_free_firmware_page(sev->snp_context);
2875         sev->snp_context = NULL;
2876
2877         return 0;
2878 }
2879
2880 void sev_vm_destroy(struct kvm *kvm)
2881 {
2882         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2883         struct list_head *head = &sev->regions_list;
2884         struct list_head *pos, *q;
2885
2886         if (!sev_guest(kvm))
2887                 return;
2888
2889         WARN_ON(!list_empty(&sev->mirror_vms));
2890
2891         /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2892         if (is_mirroring_enc_context(kvm)) {
2893                 struct kvm *owner_kvm = sev->enc_context_owner;
2894
2895                 mutex_lock(&owner_kvm->lock);
2896                 list_del(&sev->mirror_entry);
2897                 mutex_unlock(&owner_kvm->lock);
2898                 kvm_put_kvm(owner_kvm);
2899                 return;
2900         }
2901
2902         /*
2903          * Ensure that all guest tagged cache entries are flushed before
2904          * releasing the pages back to the system for use. CLFLUSH will
2905          * not do this, so issue a WBINVD.
2906          */
2907         wbinvd_on_all_cpus();
2908
2909         /*
2910          * if userspace was terminated before unregistering the memory regions
2911          * then lets unpin all the registered memory.
2912          */
2913         if (!list_empty(head)) {
2914                 list_for_each_safe(pos, q, head) {
2915                         __unregister_enc_region_locked(kvm,
2916                                 list_entry(pos, struct enc_region, list));
2917                         cond_resched();
2918                 }
2919         }
2920
2921         if (sev_snp_guest(kvm)) {
2922                 snp_guest_req_cleanup(kvm);
2923
2924                 /*
2925                  * Decomission handles unbinding of the ASID. If it fails for
2926                  * some unexpected reason, just leak the ASID.
2927                  */
2928                 if (snp_decommission_context(kvm))
2929                         return;
2930         } else {
2931                 sev_unbind_asid(kvm, sev->handle);
2932         }
2933
2934         sev_asid_free(sev);
2935 }
2936
2937 void __init sev_set_cpu_caps(void)
2938 {
2939         if (sev_enabled) {
2940                 kvm_cpu_cap_set(X86_FEATURE_SEV);
2941                 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2942         }
2943         if (sev_es_enabled) {
2944                 kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2945                 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2946         }
2947         if (sev_snp_enabled) {
2948                 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2949                 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2950         }
2951 }
2952
2953 void __init sev_hardware_setup(void)
2954 {
2955         unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2956         bool sev_snp_supported = false;
2957         bool sev_es_supported = false;
2958         bool sev_supported = false;
2959
2960         if (!sev_enabled || !npt_enabled || !nrips)
2961                 goto out;
2962
2963         /*
2964          * SEV must obviously be supported in hardware.  Sanity check that the
2965          * CPU supports decode assists, which is mandatory for SEV guests to
2966          * support instruction emulation.  Ditto for flushing by ASID, as SEV
2967          * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2968          * ASID to effect a TLB flush.
2969          */
2970         if (!boot_cpu_has(X86_FEATURE_SEV) ||
2971             WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2972             WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2973                 goto out;
2974
2975         /* Retrieve SEV CPUID information */
2976         cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2977
2978         /* Set encryption bit location for SEV-ES guests */
2979         sev_enc_bit = ebx & 0x3f;
2980
2981         /* Maximum number of encrypted guests supported simultaneously */
2982         max_sev_asid = ecx;
2983         if (!max_sev_asid)
2984                 goto out;
2985
2986         /* Minimum ASID value that should be used for SEV guest */
2987         min_sev_asid = edx;
2988         sev_me_mask = 1UL << (ebx & 0x3f);
2989
2990         /*
2991          * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2992          * even though it's never used, so that the bitmap is indexed by the
2993          * actual ASID.
2994          */
2995         nr_asids = max_sev_asid + 1;
2996         sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2997         if (!sev_asid_bitmap)
2998                 goto out;
2999
3000         sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3001         if (!sev_reclaim_asid_bitmap) {
3002                 bitmap_free(sev_asid_bitmap);
3003                 sev_asid_bitmap = NULL;
3004                 goto out;
3005         }
3006
3007         if (min_sev_asid <= max_sev_asid) {
3008                 sev_asid_count = max_sev_asid - min_sev_asid + 1;
3009                 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3010         }
3011         sev_supported = true;
3012
3013         /* SEV-ES support requested? */
3014         if (!sev_es_enabled)
3015                 goto out;
3016
3017         /*
3018          * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3019          * instruction stream, i.e. can't emulate in response to a #NPF and
3020          * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3021          * (the guest can then do a #VMGEXIT to request MMIO emulation).
3022          */
3023         if (!enable_mmio_caching)
3024                 goto out;
3025
3026         /* Does the CPU support SEV-ES? */
3027         if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3028                 goto out;
3029
3030         if (!lbrv) {
3031                 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3032                           "LBRV must be present for SEV-ES support");
3033                 goto out;
3034         }
3035
3036         /* Has the system been allocated ASIDs for SEV-ES? */
3037         if (min_sev_asid == 1)
3038                 goto out;
3039
3040         sev_es_asid_count = min_sev_asid - 1;
3041         WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3042         sev_es_supported = true;
3043         sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3044
3045 out:
3046         if (boot_cpu_has(X86_FEATURE_SEV))
3047                 pr_info("SEV %s (ASIDs %u - %u)\n",
3048                         sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3049                                                                        "unusable" :
3050                                                                        "disabled",
3051                         min_sev_asid, max_sev_asid);
3052         if (boot_cpu_has(X86_FEATURE_SEV_ES))
3053                 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3054                         sev_es_supported ? "enabled" : "disabled",
3055                         min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3056         if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3057                 pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3058                         sev_snp_supported ? "enabled" : "disabled",
3059                         min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
3060
3061         sev_enabled = sev_supported;
3062         sev_es_enabled = sev_es_supported;
3063         sev_snp_enabled = sev_snp_supported;
3064
3065         if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3066             !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3067                 sev_es_debug_swap_enabled = false;
3068
3069         sev_supported_vmsa_features = 0;
3070         if (sev_es_debug_swap_enabled)
3071                 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3072 }
3073
3074 void sev_hardware_unsetup(void)
3075 {
3076         if (!sev_enabled)
3077                 return;
3078
3079         /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3080         sev_flush_asids(1, max_sev_asid);
3081
3082         bitmap_free(sev_asid_bitmap);
3083         bitmap_free(sev_reclaim_asid_bitmap);
3084
3085         misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3086         misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3087 }
3088
3089 int sev_cpu_init(struct svm_cpu_data *sd)
3090 {
3091         if (!sev_enabled)
3092                 return 0;
3093
3094         sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3095         if (!sd->sev_vmcbs)
3096                 return -ENOMEM;
3097
3098         return 0;
3099 }
3100
3101 /*
3102  * Pages used by hardware to hold guest encrypted state must be flushed before
3103  * returning them to the system.
3104  */
3105 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3106 {
3107         unsigned int asid = sev_get_asid(vcpu->kvm);
3108
3109         /*
3110          * Note!  The address must be a kernel address, as regular page walk
3111          * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3112          * address is non-deterministic and unsafe.  This function deliberately
3113          * takes a pointer to deter passing in a user address.
3114          */
3115         unsigned long addr = (unsigned long)va;
3116
3117         /*
3118          * If CPU enforced cache coherency for encrypted mappings of the
3119          * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3120          * flush is still needed in order to work properly with DMA devices.
3121          */
3122         if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3123                 clflush_cache_range(va, PAGE_SIZE);
3124                 return;
3125         }
3126
3127         /*
3128          * VM Page Flush takes a host virtual address and a guest ASID.  Fall
3129          * back to WBINVD if this faults so as not to make any problems worse
3130          * by leaving stale encrypted data in the cache.
3131          */
3132         if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3133                 goto do_wbinvd;
3134
3135         return;
3136
3137 do_wbinvd:
3138         wbinvd_on_all_cpus();
3139 }
3140
3141 void sev_guest_memory_reclaimed(struct kvm *kvm)
3142 {
3143         /*
3144          * With SNP+gmem, private/encrypted memory is unreachable via the
3145          * hva-based mmu notifiers, so these events are only actually
3146          * pertaining to shared pages where there is no need to perform
3147          * the WBINVD to flush associated caches.
3148          */
3149         if (!sev_guest(kvm) || sev_snp_guest(kvm))
3150                 return;
3151
3152         wbinvd_on_all_cpus();
3153 }
3154
3155 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3156 {
3157         struct vcpu_svm *svm;
3158
3159         if (!sev_es_guest(vcpu->kvm))
3160                 return;
3161
3162         svm = to_svm(vcpu);
3163
3164         /*
3165          * If it's an SNP guest, then the VMSA was marked in the RMP table as
3166          * a guest-owned page. Transition the page to hypervisor state before
3167          * releasing it back to the system.
3168          */
3169         if (sev_snp_guest(vcpu->kvm)) {
3170                 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3171
3172                 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3173                         goto skip_vmsa_free;
3174         }
3175
3176         if (vcpu->arch.guest_state_protected)
3177                 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3178
3179         __free_page(virt_to_page(svm->sev_es.vmsa));
3180
3181 skip_vmsa_free:
3182         if (svm->sev_es.ghcb_sa_free)
3183                 kvfree(svm->sev_es.ghcb_sa);
3184 }
3185
3186 static void dump_ghcb(struct vcpu_svm *svm)
3187 {
3188         struct ghcb *ghcb = svm->sev_es.ghcb;
3189         unsigned int nbits;
3190
3191         /* Re-use the dump_invalid_vmcb module parameter */
3192         if (!dump_invalid_vmcb) {
3193                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3194                 return;
3195         }
3196
3197         nbits = sizeof(ghcb->save.valid_bitmap) * 8;
3198
3199         pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
3200         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3201                ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
3202         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3203                ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
3204         pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3205                ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
3206         pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3207                ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
3208         pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
3209 }
3210
3211 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3212 {
3213         struct kvm_vcpu *vcpu = &svm->vcpu;
3214         struct ghcb *ghcb = svm->sev_es.ghcb;
3215
3216         /*
3217          * The GHCB protocol so far allows for the following data
3218          * to be returned:
3219          *   GPRs RAX, RBX, RCX, RDX
3220          *
3221          * Copy their values, even if they may not have been written during the
3222          * VM-Exit.  It's the guest's responsibility to not consume random data.
3223          */
3224         ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3225         ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3226         ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3227         ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3228 }
3229
3230 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3231 {
3232         struct vmcb_control_area *control = &svm->vmcb->control;
3233         struct kvm_vcpu *vcpu = &svm->vcpu;
3234         struct ghcb *ghcb = svm->sev_es.ghcb;
3235         u64 exit_code;
3236
3237         /*
3238          * The GHCB protocol so far allows for the following data
3239          * to be supplied:
3240          *   GPRs RAX, RBX, RCX, RDX
3241          *   XCR0
3242          *   CPL
3243          *
3244          * VMMCALL allows the guest to provide extra registers. KVM also
3245          * expects RSI for hypercalls, so include that, too.
3246          *
3247          * Copy their values to the appropriate location if supplied.
3248          */
3249         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3250
3251         BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3252         memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3253
3254         vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
3255         vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
3256         vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
3257         vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
3258         vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
3259
3260         svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
3261
3262         if (kvm_ghcb_xcr0_is_valid(svm)) {
3263                 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
3264                 kvm_update_cpuid_runtime(vcpu);
3265         }
3266
3267         /* Copy the GHCB exit information into the VMCB fields */
3268         exit_code = ghcb_get_sw_exit_code(ghcb);
3269         control->exit_code = lower_32_bits(exit_code);
3270         control->exit_code_hi = upper_32_bits(exit_code);
3271         control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
3272         control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
3273         svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
3274
3275         /* Clear the valid entries fields */
3276         memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3277 }
3278
3279 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
3280 {
3281         return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3282 }
3283
3284 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3285 {
3286         struct vmcb_control_area *control = &svm->vmcb->control;
3287         struct kvm_vcpu *vcpu = &svm->vcpu;
3288         u64 exit_code;
3289         u64 reason;
3290
3291         /*
3292          * Retrieve the exit code now even though it may not be marked valid
3293          * as it could help with debugging.
3294          */
3295         exit_code = kvm_ghcb_get_sw_exit_code(control);
3296
3297         /* Only GHCB Usage code 0 is supported */
3298         if (svm->sev_es.ghcb->ghcb_usage) {
3299                 reason = GHCB_ERR_INVALID_USAGE;
3300                 goto vmgexit_err;
3301         }
3302
3303         reason = GHCB_ERR_MISSING_INPUT;
3304
3305         if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3306             !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3307             !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3308                 goto vmgexit_err;
3309
3310         switch (exit_code) {
3311         case SVM_EXIT_READ_DR7:
3312                 break;
3313         case SVM_EXIT_WRITE_DR7:
3314                 if (!kvm_ghcb_rax_is_valid(svm))
3315                         goto vmgexit_err;
3316                 break;
3317         case SVM_EXIT_RDTSC:
3318                 break;
3319         case SVM_EXIT_RDPMC:
3320                 if (!kvm_ghcb_rcx_is_valid(svm))
3321                         goto vmgexit_err;
3322                 break;
3323         case SVM_EXIT_CPUID:
3324                 if (!kvm_ghcb_rax_is_valid(svm) ||
3325                     !kvm_ghcb_rcx_is_valid(svm))
3326                         goto vmgexit_err;
3327                 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3328                         if (!kvm_ghcb_xcr0_is_valid(svm))
3329                                 goto vmgexit_err;
3330                 break;
3331         case SVM_EXIT_INVD:
3332                 break;
3333         case SVM_EXIT_IOIO:
3334                 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3335                         if (!kvm_ghcb_sw_scratch_is_valid(svm))
3336                                 goto vmgexit_err;
3337                 } else {
3338                         if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3339                                 if (!kvm_ghcb_rax_is_valid(svm))
3340                                         goto vmgexit_err;
3341                 }
3342                 break;
3343         case SVM_EXIT_MSR:
3344                 if (!kvm_ghcb_rcx_is_valid(svm))
3345                         goto vmgexit_err;
3346                 if (control->exit_info_1) {
3347                         if (!kvm_ghcb_rax_is_valid(svm) ||
3348                             !kvm_ghcb_rdx_is_valid(svm))
3349                                 goto vmgexit_err;
3350                 }
3351                 break;
3352         case SVM_EXIT_VMMCALL:
3353                 if (!kvm_ghcb_rax_is_valid(svm) ||
3354                     !kvm_ghcb_cpl_is_valid(svm))
3355                         goto vmgexit_err;
3356                 break;
3357         case SVM_EXIT_RDTSCP:
3358                 break;
3359         case SVM_EXIT_WBINVD:
3360                 break;
3361         case SVM_EXIT_MONITOR:
3362                 if (!kvm_ghcb_rax_is_valid(svm) ||
3363                     !kvm_ghcb_rcx_is_valid(svm) ||
3364                     !kvm_ghcb_rdx_is_valid(svm))
3365                         goto vmgexit_err;
3366                 break;
3367         case SVM_EXIT_MWAIT:
3368                 if (!kvm_ghcb_rax_is_valid(svm) ||
3369                     !kvm_ghcb_rcx_is_valid(svm))
3370                         goto vmgexit_err;
3371                 break;
3372         case SVM_VMGEXIT_MMIO_READ:
3373         case SVM_VMGEXIT_MMIO_WRITE:
3374                 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3375                         goto vmgexit_err;
3376                 break;
3377         case SVM_VMGEXIT_AP_CREATION:
3378                 if (!sev_snp_guest(vcpu->kvm))
3379                         goto vmgexit_err;
3380                 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3381                         if (!kvm_ghcb_rax_is_valid(svm))
3382                                 goto vmgexit_err;
3383                 break;
3384         case SVM_VMGEXIT_NMI_COMPLETE:
3385         case SVM_VMGEXIT_AP_HLT_LOOP:
3386         case SVM_VMGEXIT_AP_JUMP_TABLE:
3387         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3388         case SVM_VMGEXIT_HV_FEATURES:
3389         case SVM_VMGEXIT_TERM_REQUEST:
3390                 break;
3391         case SVM_VMGEXIT_PSC:
3392                 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3393                         goto vmgexit_err;
3394                 break;
3395         case SVM_VMGEXIT_GUEST_REQUEST:
3396         case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3397                 if (!sev_snp_guest(vcpu->kvm) ||
3398                     !PAGE_ALIGNED(control->exit_info_1) ||
3399                     !PAGE_ALIGNED(control->exit_info_2) ||
3400                     control->exit_info_1 == control->exit_info_2)
3401                         goto vmgexit_err;
3402                 break;
3403         default:
3404                 reason = GHCB_ERR_INVALID_EVENT;
3405                 goto vmgexit_err;
3406         }
3407
3408         return 0;
3409
3410 vmgexit_err:
3411         if (reason == GHCB_ERR_INVALID_USAGE) {
3412                 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3413                             svm->sev_es.ghcb->ghcb_usage);
3414         } else if (reason == GHCB_ERR_INVALID_EVENT) {
3415                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3416                             exit_code);
3417         } else {
3418                 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3419                             exit_code);
3420                 dump_ghcb(svm);
3421         }
3422
3423         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3424         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
3425
3426         /* Resume the guest to "return" the error code. */
3427         return 1;
3428 }
3429
3430 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3431 {
3432         /* Clear any indication that the vCPU is in a type of AP Reset Hold */
3433         svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3434
3435         if (!svm->sev_es.ghcb)
3436                 return;
3437
3438         if (svm->sev_es.ghcb_sa_free) {
3439                 /*
3440                  * The scratch area lives outside the GHCB, so there is a
3441                  * buffer that, depending on the operation performed, may
3442                  * need to be synced, then freed.
3443                  */
3444                 if (svm->sev_es.ghcb_sa_sync) {
3445                         kvm_write_guest(svm->vcpu.kvm,
3446                                         svm->sev_es.sw_scratch,
3447                                         svm->sev_es.ghcb_sa,
3448                                         svm->sev_es.ghcb_sa_len);
3449                         svm->sev_es.ghcb_sa_sync = false;
3450                 }
3451
3452                 kvfree(svm->sev_es.ghcb_sa);
3453                 svm->sev_es.ghcb_sa = NULL;
3454                 svm->sev_es.ghcb_sa_free = false;
3455         }
3456
3457         trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3458
3459         sev_es_sync_to_ghcb(svm);
3460
3461         kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3462         svm->sev_es.ghcb = NULL;
3463 }
3464
3465 void pre_sev_run(struct vcpu_svm *svm, int cpu)
3466 {
3467         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3468         unsigned int asid = sev_get_asid(svm->vcpu.kvm);
3469
3470         /* Assign the asid allocated with this SEV guest */
3471         svm->asid = asid;
3472
3473         /*
3474          * Flush guest TLB:
3475          *
3476          * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3477          * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3478          */
3479         if (sd->sev_vmcbs[asid] == svm->vmcb &&
3480             svm->vcpu.arch.last_vmentry_cpu == cpu)
3481                 return;
3482
3483         sd->sev_vmcbs[asid] = svm->vmcb;
3484         svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3485         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3486 }
3487
3488 #define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
3489 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3490 {
3491         struct vmcb_control_area *control = &svm->vmcb->control;
3492         u64 ghcb_scratch_beg, ghcb_scratch_end;
3493         u64 scratch_gpa_beg, scratch_gpa_end;
3494         void *scratch_va;
3495
3496         scratch_gpa_beg = svm->sev_es.sw_scratch;
3497         if (!scratch_gpa_beg) {
3498                 pr_err("vmgexit: scratch gpa not provided\n");
3499                 goto e_scratch;
3500         }
3501
3502         scratch_gpa_end = scratch_gpa_beg + len;
3503         if (scratch_gpa_end < scratch_gpa_beg) {
3504                 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3505                        len, scratch_gpa_beg);
3506                 goto e_scratch;
3507         }
3508
3509         if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3510                 /* Scratch area begins within GHCB */
3511                 ghcb_scratch_beg = control->ghcb_gpa +
3512                                    offsetof(struct ghcb, shared_buffer);
3513                 ghcb_scratch_end = control->ghcb_gpa +
3514                                    offsetof(struct ghcb, reserved_0xff0);
3515
3516                 /*
3517                  * If the scratch area begins within the GHCB, it must be
3518                  * completely contained in the GHCB shared buffer area.
3519                  */
3520                 if (scratch_gpa_beg < ghcb_scratch_beg ||
3521                     scratch_gpa_end > ghcb_scratch_end) {
3522                         pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3523                                scratch_gpa_beg, scratch_gpa_end);
3524                         goto e_scratch;
3525                 }
3526
3527                 scratch_va = (void *)svm->sev_es.ghcb;
3528                 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3529         } else {
3530                 /*
3531                  * The guest memory must be read into a kernel buffer, so
3532                  * limit the size
3533                  */
3534                 if (len > GHCB_SCRATCH_AREA_LIMIT) {
3535                         pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3536                                len, GHCB_SCRATCH_AREA_LIMIT);
3537                         goto e_scratch;
3538                 }
3539                 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3540                 if (!scratch_va)
3541                         return -ENOMEM;
3542
3543                 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3544                         /* Unable to copy scratch area from guest */
3545                         pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3546
3547                         kvfree(scratch_va);
3548                         return -EFAULT;
3549                 }
3550
3551                 /*
3552                  * The scratch area is outside the GHCB. The operation will
3553                  * dictate whether the buffer needs to be synced before running
3554                  * the vCPU next time (i.e. a read was requested so the data
3555                  * must be written back to the guest memory).
3556                  */
3557                 svm->sev_es.ghcb_sa_sync = sync;
3558                 svm->sev_es.ghcb_sa_free = true;
3559         }
3560
3561         svm->sev_es.ghcb_sa = scratch_va;
3562         svm->sev_es.ghcb_sa_len = len;
3563
3564         return 0;
3565
3566 e_scratch:
3567         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
3568         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
3569
3570         return 1;
3571 }
3572
3573 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3574                               unsigned int pos)
3575 {
3576         svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3577         svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3578 }
3579
3580 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3581 {
3582         return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3583 }
3584
3585 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3586 {
3587         svm->vmcb->control.ghcb_gpa = value;
3588 }
3589
3590 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3591 {
3592         int ret;
3593
3594         pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3595
3596         /*
3597          * PSMASH_FAIL_INUSE indicates another processor is modifying the
3598          * entry, so retry until that's no longer the case.
3599          */
3600         do {
3601                 ret = psmash(pfn);
3602         } while (ret == PSMASH_FAIL_INUSE);
3603
3604         return ret;
3605 }
3606
3607 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3608 {
3609         struct vcpu_svm *svm = to_svm(vcpu);
3610
3611         if (vcpu->run->hypercall.ret)
3612                 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3613         else
3614                 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3615
3616         return 1; /* resume guest */
3617 }
3618
3619 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3620 {
3621         u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3622         u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3623         struct kvm_vcpu *vcpu = &svm->vcpu;
3624
3625         if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3626                 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3627                 return 1; /* resume guest */
3628         }
3629
3630         if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3631                 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3632                 return 1; /* resume guest */
3633         }
3634
3635         vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3636         vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3637         vcpu->run->hypercall.args[0] = gpa;
3638         vcpu->run->hypercall.args[1] = 1;
3639         vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3640                                        ? KVM_MAP_GPA_RANGE_ENCRYPTED
3641                                        : KVM_MAP_GPA_RANGE_DECRYPTED;
3642         vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3643
3644         vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3645
3646         return 0; /* forward request to userspace */
3647 }
3648
3649 struct psc_buffer {
3650         struct psc_hdr hdr;
3651         struct psc_entry entries[];
3652 } __packed;
3653
3654 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3655
3656 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3657 {
3658         svm->sev_es.psc_inflight = 0;
3659         svm->sev_es.psc_idx = 0;
3660         svm->sev_es.psc_2m = false;
3661         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret);
3662 }
3663
3664 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3665 {
3666         struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3667         struct psc_entry *entries = psc->entries;
3668         struct psc_hdr *hdr = &psc->hdr;
3669         __u16 idx;
3670
3671         /*
3672          * Everything in-flight has been processed successfully. Update the
3673          * corresponding entries in the guest's PSC buffer and zero out the
3674          * count of in-flight PSC entries.
3675          */
3676         for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3677              svm->sev_es.psc_inflight--, idx++) {
3678                 struct psc_entry *entry = &entries[idx];
3679
3680                 entry->cur_page = entry->pagesize ? 512 : 1;
3681         }
3682
3683         hdr->cur_entry = idx;
3684 }
3685
3686 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3687 {
3688         struct vcpu_svm *svm = to_svm(vcpu);
3689         struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3690
3691         if (vcpu->run->hypercall.ret) {
3692                 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3693                 return 1; /* resume guest */
3694         }
3695
3696         __snp_complete_one_psc(svm);
3697
3698         /* Handle the next range (if any). */
3699         return snp_begin_psc(svm, psc);
3700 }
3701
3702 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3703 {
3704         struct psc_entry *entries = psc->entries;
3705         struct kvm_vcpu *vcpu = &svm->vcpu;
3706         struct psc_hdr *hdr = &psc->hdr;
3707         struct psc_entry entry_start;
3708         u16 idx, idx_start, idx_end;
3709         int npages;
3710         bool huge;
3711         u64 gfn;
3712
3713         if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
3714                 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3715                 return 1;
3716         }
3717
3718 next_range:
3719         /* There should be no other PSCs in-flight at this point. */
3720         if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3721                 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3722                 return 1;
3723         }
3724
3725         /*
3726          * The PSC descriptor buffer can be modified by a misbehaved guest after
3727          * validation, so take care to only use validated copies of values used
3728          * for things like array indexing.
3729          */
3730         idx_start = hdr->cur_entry;
3731         idx_end = hdr->end_entry;
3732
3733         if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3734                 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3735                 return 1;
3736         }
3737
3738         /* Find the start of the next range which needs processing. */
3739         for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3740                 entry_start = entries[idx];
3741
3742                 gfn = entry_start.gfn;
3743                 huge = entry_start.pagesize;
3744                 npages = huge ? 512 : 1;
3745
3746                 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3747                         snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3748                         return 1;
3749                 }
3750
3751                 if (entry_start.cur_page) {
3752                         /*
3753                          * If this is a partially-completed 2M range, force 4K handling
3754                          * for the remaining pages since they're effectively split at
3755                          * this point. Subsequent code should ensure this doesn't get
3756                          * combined with adjacent PSC entries where 2M handling is still
3757                          * possible.
3758                          */
3759                         npages -= entry_start.cur_page;
3760                         gfn += entry_start.cur_page;
3761                         huge = false;
3762                 }
3763
3764                 if (npages)
3765                         break;
3766         }
3767
3768         if (idx > idx_end) {
3769                 /* Nothing more to process. */
3770                 snp_complete_psc(svm, 0);
3771                 return 1;
3772         }
3773
3774         svm->sev_es.psc_2m = huge;
3775         svm->sev_es.psc_idx = idx;
3776         svm->sev_es.psc_inflight = 1;
3777
3778         /*
3779          * Find all subsequent PSC entries that contain adjacent GPA
3780          * ranges/operations and can be combined into a single
3781          * KVM_HC_MAP_GPA_RANGE exit.
3782          */
3783         while (++idx <= idx_end) {
3784                 struct psc_entry entry = entries[idx];
3785
3786                 if (entry.operation != entry_start.operation ||
3787                     entry.gfn != entry_start.gfn + npages ||
3788                     entry.cur_page || !!entry.pagesize != huge)
3789                         break;
3790
3791                 svm->sev_es.psc_inflight++;
3792                 npages += huge ? 512 : 1;
3793         }
3794
3795         switch (entry_start.operation) {
3796         case VMGEXIT_PSC_OP_PRIVATE:
3797         case VMGEXIT_PSC_OP_SHARED:
3798                 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3799                 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3800                 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3801                 vcpu->run->hypercall.args[1] = npages;
3802                 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3803                                                ? KVM_MAP_GPA_RANGE_ENCRYPTED
3804                                                : KVM_MAP_GPA_RANGE_DECRYPTED;
3805                 vcpu->run->hypercall.args[2] |= entry_start.pagesize
3806                                                 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3807                                                 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3808                 vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3809                 return 0; /* forward request to userspace */
3810         default:
3811                 /*
3812                  * Only shared/private PSC operations are currently supported, so if the
3813                  * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3814                  * then consider the entire range completed and avoid exiting to
3815                  * userspace. In theory snp_complete_psc() can always be called directly
3816                  * at this point to complete the current range and start the next one,
3817                  * but that could lead to unexpected levels of recursion.
3818                  */
3819                 __snp_complete_one_psc(svm);
3820                 goto next_range;
3821         }
3822
3823         unreachable();
3824 }
3825
3826 static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu)
3827 {
3828         struct vcpu_svm *svm = to_svm(vcpu);
3829
3830         WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex));
3831
3832         /* Mark the vCPU as offline and not runnable */
3833         vcpu->arch.pv.pv_unhalted = false;
3834         vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3835
3836         /* Clear use of the VMSA */
3837         svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3838
3839         if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) {
3840                 gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3841                 struct kvm_memory_slot *slot;
3842                 struct page *page;
3843                 kvm_pfn_t pfn;
3844
3845                 slot = gfn_to_memslot(vcpu->kvm, gfn);
3846                 if (!slot)
3847                         return -EINVAL;
3848
3849                 /*
3850                  * The new VMSA will be private memory guest memory, so
3851                  * retrieve the PFN from the gmem backend.
3852                  */
3853                 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
3854                         return -EINVAL;
3855
3856                 /*
3857                  * From this point forward, the VMSA will always be a
3858                  * guest-mapped page rather than the initial one allocated
3859                  * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa
3860                  * could be free'd and cleaned up here, but that involves
3861                  * cleanups like wbinvd_on_all_cpus() which would ideally
3862                  * be handled during teardown rather than guest boot.
3863                  * Deferring that also allows the existing logic for SEV-ES
3864                  * VMSAs to be re-used with minimal SNP-specific changes.
3865                  */
3866                 svm->sev_es.snp_has_guest_vmsa = true;
3867
3868                 /* Use the new VMSA */
3869                 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
3870
3871                 /* Mark the vCPU as runnable */
3872                 vcpu->arch.pv.pv_unhalted = false;
3873                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3874
3875                 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3876
3877                 /*
3878                  * gmem pages aren't currently migratable, but if this ever
3879                  * changes then care should be taken to ensure
3880                  * svm->sev_es.vmsa is pinned through some other means.
3881                  */
3882                 kvm_release_page_clean(page);
3883         }
3884
3885         /*
3886          * When replacing the VMSA during SEV-SNP AP creation,
3887          * mark the VMCB dirty so that full state is always reloaded.
3888          */
3889         vmcb_mark_all_dirty(svm->vmcb);
3890
3891         return 0;
3892 }
3893
3894 /*
3895  * Invoked as part of svm_vcpu_reset() processing of an init event.
3896  */
3897 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3898 {
3899         struct vcpu_svm *svm = to_svm(vcpu);
3900         int ret;
3901
3902         if (!sev_snp_guest(vcpu->kvm))
3903                 return;
3904
3905         mutex_lock(&svm->sev_es.snp_vmsa_mutex);
3906
3907         if (!svm->sev_es.snp_ap_waiting_for_reset)
3908                 goto unlock;
3909
3910         svm->sev_es.snp_ap_waiting_for_reset = false;
3911
3912         ret = __sev_snp_update_protected_guest_state(vcpu);
3913         if (ret)
3914                 vcpu_unimpl(vcpu, "snp: AP state update on init failed\n");
3915
3916 unlock:
3917         mutex_unlock(&svm->sev_es.snp_vmsa_mutex);
3918 }
3919
3920 static int sev_snp_ap_creation(struct vcpu_svm *svm)
3921 {
3922         struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
3923         struct kvm_vcpu *vcpu = &svm->vcpu;
3924         struct kvm_vcpu *target_vcpu;
3925         struct vcpu_svm *target_svm;
3926         unsigned int request;
3927         unsigned int apic_id;
3928         bool kick;
3929         int ret;
3930
3931         request = lower_32_bits(svm->vmcb->control.exit_info_1);
3932         apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
3933
3934         /* Validate the APIC ID */
3935         target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
3936         if (!target_vcpu) {
3937                 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
3938                             apic_id);
3939                 return -EINVAL;
3940         }
3941
3942         ret = 0;
3943
3944         target_svm = to_svm(target_vcpu);
3945
3946         /*
3947          * The target vCPU is valid, so the vCPU will be kicked unless the
3948          * request is for CREATE_ON_INIT. For any errors at this stage, the
3949          * kick will place the vCPU in an non-runnable state.
3950          */
3951         kick = true;
3952
3953         mutex_lock(&target_svm->sev_es.snp_vmsa_mutex);
3954
3955         target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3956         target_svm->sev_es.snp_ap_waiting_for_reset = true;
3957
3958         /* Interrupt injection mode shouldn't change for AP creation */
3959         if (request < SVM_VMGEXIT_AP_DESTROY) {
3960                 u64 sev_features;
3961
3962                 sev_features = vcpu->arch.regs[VCPU_REGS_RAX];
3963                 sev_features ^= sev->vmsa_features;
3964
3965                 if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) {
3966                         vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n",
3967                                     vcpu->arch.regs[VCPU_REGS_RAX]);
3968                         ret = -EINVAL;
3969                         goto out;
3970                 }
3971         }
3972
3973         switch (request) {
3974         case SVM_VMGEXIT_AP_CREATE_ON_INIT:
3975                 kick = false;
3976                 fallthrough;
3977         case SVM_VMGEXIT_AP_CREATE:
3978                 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
3979                         vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
3980                                     svm->vmcb->control.exit_info_2);
3981                         ret = -EINVAL;
3982                         goto out;
3983                 }
3984
3985                 /*
3986                  * Malicious guest can RMPADJUST a large page into VMSA which
3987                  * will hit the SNP erratum where the CPU will incorrectly signal
3988                  * an RMP violation #PF if a hugepage collides with the RMP entry
3989                  * of VMSA page, reject the AP CREATE request if VMSA address from
3990                  * guest is 2M aligned.
3991                  */
3992                 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
3993                         vcpu_unimpl(vcpu,
3994                                     "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
3995                                     svm->vmcb->control.exit_info_2);
3996                         ret = -EINVAL;
3997                         goto out;
3998                 }
3999
4000                 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4001                 break;
4002         case SVM_VMGEXIT_AP_DESTROY:
4003                 break;
4004         default:
4005                 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4006                             request);
4007                 ret = -EINVAL;
4008                 break;
4009         }
4010
4011 out:
4012         if (kick) {
4013                 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4014                 kvm_vcpu_kick(target_vcpu);
4015         }
4016
4017         mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex);
4018
4019         return ret;
4020 }
4021
4022 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4023 {
4024         struct sev_data_snp_guest_request data = {0};
4025         struct kvm *kvm = svm->vcpu.kvm;
4026         struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4027         sev_ret_code fw_err = 0;
4028         int ret;
4029
4030         if (!sev_snp_guest(kvm))
4031                 return -EINVAL;
4032
4033         mutex_lock(&sev->guest_req_mutex);
4034
4035         if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4036                 ret = -EIO;
4037                 goto out_unlock;
4038         }
4039
4040         data.gctx_paddr = __psp_pa(sev->snp_context);
4041         data.req_paddr = __psp_pa(sev->guest_req_buf);
4042         data.res_paddr = __psp_pa(sev->guest_resp_buf);
4043
4044         /*
4045          * Firmware failures are propagated on to guest, but any other failure
4046          * condition along the way should be reported to userspace. E.g. if
4047          * the PSP is dead and commands are timing out.
4048          */
4049         ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4050         if (ret && !fw_err)
4051                 goto out_unlock;
4052
4053         if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4054                 ret = -EIO;
4055                 goto out_unlock;
4056         }
4057
4058         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err));
4059
4060         ret = 1; /* resume guest */
4061
4062 out_unlock:
4063         mutex_unlock(&sev->guest_req_mutex);
4064         return ret;
4065 }
4066
4067 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4068 {
4069         struct kvm *kvm = svm->vcpu.kvm;
4070         u8 msg_type;
4071
4072         if (!sev_snp_guest(kvm))
4073                 return -EINVAL;
4074
4075         if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4076                            &msg_type, 1))
4077                 return -EIO;
4078
4079         /*
4080          * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4081          * additional certificate data to be provided alongside the attestation
4082          * report via the guest-provided data pages indicated by RAX/RBX. The
4083          * certificate data is optional and requires additional KVM enablement
4084          * to provide an interface for userspace to provide it, but KVM still
4085          * needs to be able to handle extended guest requests either way. So
4086          * provide a stub implementation that will always return an empty
4087          * certificate table in the guest-provided data pages.
4088          */
4089         if (msg_type == SNP_MSG_REPORT_REQ) {
4090                 struct kvm_vcpu *vcpu = &svm->vcpu;
4091                 u64 data_npages;
4092                 gpa_t data_gpa;
4093
4094                 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4095                         goto request_invalid;
4096
4097                 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4098                 data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4099
4100                 if (!PAGE_ALIGNED(data_gpa))
4101                         goto request_invalid;
4102
4103                 /*
4104                  * As per GHCB spec (see "SNP Extended Guest Request"), the
4105                  * certificate table is terminated by 24-bytes of zeroes.
4106                  */
4107                 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4108                         return -EIO;
4109         }
4110
4111         return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4112
4113 request_invalid:
4114         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4115         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4116         return 1; /* resume guest */
4117 }
4118
4119 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4120 {
4121         struct vmcb_control_area *control = &svm->vmcb->control;
4122         struct kvm_vcpu *vcpu = &svm->vcpu;
4123         struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4124         u64 ghcb_info;
4125         int ret = 1;
4126
4127         ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4128
4129         trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4130                                              control->ghcb_gpa);
4131
4132         switch (ghcb_info) {
4133         case GHCB_MSR_SEV_INFO_REQ:
4134                 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4135                                                     GHCB_VERSION_MIN,
4136                                                     sev_enc_bit));
4137                 break;
4138         case GHCB_MSR_CPUID_REQ: {
4139                 u64 cpuid_fn, cpuid_reg, cpuid_value;
4140
4141                 cpuid_fn = get_ghcb_msr_bits(svm,
4142                                              GHCB_MSR_CPUID_FUNC_MASK,
4143                                              GHCB_MSR_CPUID_FUNC_POS);
4144
4145                 /* Initialize the registers needed by the CPUID intercept */
4146                 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4147                 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4148
4149                 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4150                 if (!ret) {
4151                         /* Error, keep GHCB MSR value as-is */
4152                         break;
4153                 }
4154
4155                 cpuid_reg = get_ghcb_msr_bits(svm,
4156                                               GHCB_MSR_CPUID_REG_MASK,
4157                                               GHCB_MSR_CPUID_REG_POS);
4158                 if (cpuid_reg == 0)
4159                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4160                 else if (cpuid_reg == 1)
4161                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4162                 else if (cpuid_reg == 2)
4163                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4164                 else
4165                         cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4166
4167                 set_ghcb_msr_bits(svm, cpuid_value,
4168                                   GHCB_MSR_CPUID_VALUE_MASK,
4169                                   GHCB_MSR_CPUID_VALUE_POS);
4170
4171                 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4172                                   GHCB_MSR_INFO_MASK,
4173                                   GHCB_MSR_INFO_POS);
4174                 break;
4175         }
4176         case GHCB_MSR_AP_RESET_HOLD_REQ:
4177                 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4178                 ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4179
4180                 /*
4181                  * Preset the result to a non-SIPI return and then only set
4182                  * the result to non-zero when delivering a SIPI.
4183                  */
4184                 set_ghcb_msr_bits(svm, 0,
4185                                   GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4186                                   GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4187
4188                 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4189                                   GHCB_MSR_INFO_MASK,
4190                                   GHCB_MSR_INFO_POS);
4191                 break;
4192         case GHCB_MSR_HV_FT_REQ:
4193                 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4194                                   GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4195                 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4196                                   GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4197                 break;
4198         case GHCB_MSR_PREF_GPA_REQ:
4199                 if (!sev_snp_guest(vcpu->kvm))
4200                         goto out_terminate;
4201
4202                 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4203                                   GHCB_MSR_GPA_VALUE_POS);
4204                 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4205                                   GHCB_MSR_INFO_POS);
4206                 break;
4207         case GHCB_MSR_REG_GPA_REQ: {
4208                 u64 gfn;
4209
4210                 if (!sev_snp_guest(vcpu->kvm))
4211                         goto out_terminate;
4212
4213                 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4214                                         GHCB_MSR_GPA_VALUE_POS);
4215
4216                 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4217
4218                 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4219                                   GHCB_MSR_GPA_VALUE_POS);
4220                 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4221                                   GHCB_MSR_INFO_POS);
4222                 break;
4223         }
4224         case GHCB_MSR_PSC_REQ:
4225                 if (!sev_snp_guest(vcpu->kvm))
4226                         goto out_terminate;
4227
4228                 ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4229                 break;
4230         case GHCB_MSR_TERM_REQ: {
4231                 u64 reason_set, reason_code;
4232
4233                 reason_set = get_ghcb_msr_bits(svm,
4234                                                GHCB_MSR_TERM_REASON_SET_MASK,
4235                                                GHCB_MSR_TERM_REASON_SET_POS);
4236                 reason_code = get_ghcb_msr_bits(svm,
4237                                                 GHCB_MSR_TERM_REASON_MASK,
4238                                                 GHCB_MSR_TERM_REASON_POS);
4239                 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4240                         reason_set, reason_code);
4241
4242                 goto out_terminate;
4243         }
4244         default:
4245                 /* Error, keep GHCB MSR value as-is */
4246                 break;
4247         }
4248
4249         trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4250                                             control->ghcb_gpa, ret);
4251
4252         return ret;
4253
4254 out_terminate:
4255         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4256         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4257         vcpu->run->system_event.ndata = 1;
4258         vcpu->run->system_event.data[0] = control->ghcb_gpa;
4259
4260         return 0;
4261 }
4262
4263 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4264 {
4265         struct vcpu_svm *svm = to_svm(vcpu);
4266         struct vmcb_control_area *control = &svm->vmcb->control;
4267         u64 ghcb_gpa, exit_code;
4268         int ret;
4269
4270         /* Validate the GHCB */
4271         ghcb_gpa = control->ghcb_gpa;
4272         if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4273                 return sev_handle_vmgexit_msr_protocol(svm);
4274
4275         if (!ghcb_gpa) {
4276                 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4277
4278                 /* Without a GHCB, just return right back to the guest */
4279                 return 1;
4280         }
4281
4282         if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4283                 /* Unable to map GHCB from guest */
4284                 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4285                             ghcb_gpa);
4286
4287                 /* Without a GHCB, just return right back to the guest */
4288                 return 1;
4289         }
4290
4291         svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4292
4293         trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4294
4295         sev_es_sync_from_ghcb(svm);
4296
4297         /* SEV-SNP guest requires that the GHCB GPA must be registered */
4298         if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4299                 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4300                 return -EINVAL;
4301         }
4302
4303         ret = sev_es_validate_vmgexit(svm);
4304         if (ret)
4305                 return ret;
4306
4307         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
4308         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
4309
4310         exit_code = kvm_ghcb_get_sw_exit_code(control);
4311         switch (exit_code) {
4312         case SVM_VMGEXIT_MMIO_READ:
4313                 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4314                 if (ret)
4315                         break;
4316
4317                 ret = kvm_sev_es_mmio_read(vcpu,
4318                                            control->exit_info_1,
4319                                            control->exit_info_2,
4320                                            svm->sev_es.ghcb_sa);
4321                 break;
4322         case SVM_VMGEXIT_MMIO_WRITE:
4323                 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4324                 if (ret)
4325                         break;
4326
4327                 ret = kvm_sev_es_mmio_write(vcpu,
4328                                             control->exit_info_1,
4329                                             control->exit_info_2,
4330                                             svm->sev_es.ghcb_sa);
4331                 break;
4332         case SVM_VMGEXIT_NMI_COMPLETE:
4333                 ++vcpu->stat.nmi_window_exits;
4334                 svm->nmi_masked = false;
4335                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4336                 ret = 1;
4337                 break;
4338         case SVM_VMGEXIT_AP_HLT_LOOP:
4339                 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4340                 ret = kvm_emulate_ap_reset_hold(vcpu);
4341                 break;
4342         case SVM_VMGEXIT_AP_JUMP_TABLE: {
4343                 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4344
4345                 switch (control->exit_info_1) {
4346                 case 0:
4347                         /* Set AP jump table address */
4348                         sev->ap_jump_table = control->exit_info_2;
4349                         break;
4350                 case 1:
4351                         /* Get AP jump table address */
4352                         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
4353                         break;
4354                 default:
4355                         pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4356                                control->exit_info_1);
4357                         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4358                         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4359                 }
4360
4361                 ret = 1;
4362                 break;
4363         }
4364         case SVM_VMGEXIT_HV_FEATURES:
4365                 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED);
4366
4367                 ret = 1;
4368                 break;
4369         case SVM_VMGEXIT_TERM_REQUEST:
4370                 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4371                         control->exit_info_1, control->exit_info_2);
4372                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4373                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4374                 vcpu->run->system_event.ndata = 1;
4375                 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4376                 break;
4377         case SVM_VMGEXIT_PSC:
4378                 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4379                 if (ret)
4380                         break;
4381
4382                 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4383                 break;
4384         case SVM_VMGEXIT_AP_CREATION:
4385                 ret = sev_snp_ap_creation(svm);
4386                 if (ret) {
4387                         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
4388                         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
4389                 }
4390
4391                 ret = 1;
4392                 break;
4393         case SVM_VMGEXIT_GUEST_REQUEST:
4394                 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4395                 break;
4396         case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4397                 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4398                 break;
4399         case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4400                 vcpu_unimpl(vcpu,
4401                             "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4402                             control->exit_info_1, control->exit_info_2);
4403                 ret = -EINVAL;
4404                 break;
4405         default:
4406                 ret = svm_invoke_exit_handler(vcpu, exit_code);
4407         }
4408
4409         return ret;
4410 }
4411
4412 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4413 {
4414         int count;
4415         int bytes;
4416         int r;
4417
4418         if (svm->vmcb->control.exit_info_2 > INT_MAX)
4419                 return -EINVAL;
4420
4421         count = svm->vmcb->control.exit_info_2;
4422         if (unlikely(check_mul_overflow(count, size, &bytes)))
4423                 return -EINVAL;
4424
4425         r = setup_vmgexit_scratch(svm, in, bytes);
4426         if (r)
4427                 return r;
4428
4429         return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4430                                     count, in);
4431 }
4432
4433 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4434 {
4435         struct kvm_vcpu *vcpu = &svm->vcpu;
4436
4437         if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
4438                 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4439                                  guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4440
4441                 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
4442         }
4443
4444         /*
4445          * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4446          * the host/guest supports its use.
4447          *
4448          * guest_can_use() checks a number of requirements on the host/guest to
4449          * ensure that MSR_IA32_XSS is available, but it might report true even
4450          * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
4451          * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
4452          * to further check that the guest CPUID actually supports
4453          * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
4454          * guests will still get intercepted and caught in the normal
4455          * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
4456          */
4457         if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
4458             guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4459                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
4460         else
4461                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
4462 }
4463
4464 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4465 {
4466         struct kvm_vcpu *vcpu = &svm->vcpu;
4467         struct kvm_cpuid_entry2 *best;
4468
4469         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4470         best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4471         if (best)
4472                 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4473
4474         if (sev_es_guest(svm->vcpu.kvm))
4475                 sev_es_vcpu_after_set_cpuid(svm);
4476 }
4477
4478 static void sev_es_init_vmcb(struct vcpu_svm *svm)
4479 {
4480         struct vmcb *vmcb = svm->vmcb01.ptr;
4481         struct kvm_vcpu *vcpu = &svm->vcpu;
4482
4483         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4484
4485         /*
4486          * An SEV-ES guest requires a VMSA area that is a separate from the
4487          * VMCB page. Do not include the encryption mask on the VMSA physical
4488          * address since hardware will access it using the guest key.  Note,
4489          * the VMSA will be NULL if this vCPU is the destination for intrahost
4490          * migration, and will be copied later.
4491          */
4492         if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa)
4493                 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4494
4495         /* Can't intercept CR register access, HV can't modify CR registers */
4496         svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4497         svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4498         svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4499         svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4500         svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4501         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4502
4503         svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4504
4505         /* Track EFER/CR register changes */
4506         svm_set_intercept(svm, TRAP_EFER_WRITE);
4507         svm_set_intercept(svm, TRAP_CR0_WRITE);
4508         svm_set_intercept(svm, TRAP_CR4_WRITE);
4509         svm_set_intercept(svm, TRAP_CR8_WRITE);
4510
4511         vmcb->control.intercepts[INTERCEPT_DR] = 0;
4512         if (!sev_vcpu_has_debug_swap(svm)) {
4513                 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4514                 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4515                 recalc_intercepts(svm);
4516         } else {
4517                 /*
4518                  * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
4519                  * allow debugging SEV-ES guests, and enables DebugSwap iff
4520                  * NO_NESTED_DATA_BP is supported, so there's no reason to
4521                  * intercept #DB when DebugSwap is enabled.  For simplicity
4522                  * with respect to guest debug, intercept #DB for other VMs
4523                  * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4524                  * guest can't DoS the CPU with infinite #DB vectoring.
4525                  */
4526                 clr_exception_intercept(svm, DB_VECTOR);
4527         }
4528
4529         /* Can't intercept XSETBV, HV can't modify XCR0 directly */
4530         svm_clr_intercept(svm, INTERCEPT_XSETBV);
4531
4532         /* Clear intercepts on selected MSRs */
4533         set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
4534         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
4535 }
4536
4537 void sev_init_vmcb(struct vcpu_svm *svm)
4538 {
4539         svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4540         clr_exception_intercept(svm, UD_VECTOR);
4541
4542         /*
4543          * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4544          * KVM can't decrypt guest memory to decode the faulting instruction.
4545          */
4546         clr_exception_intercept(svm, GP_VECTOR);
4547
4548         if (sev_es_guest(svm->vcpu.kvm))
4549                 sev_es_init_vmcb(svm);
4550 }
4551
4552 void sev_es_vcpu_reset(struct vcpu_svm *svm)
4553 {
4554         struct kvm_vcpu *vcpu = &svm->vcpu;
4555         struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
4556
4557         /*
4558          * Set the GHCB MSR value as per the GHCB specification when emulating
4559          * vCPU RESET for an SEV-ES guest.
4560          */
4561         set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4562                                             GHCB_VERSION_MIN,
4563                                             sev_enc_bit));
4564
4565         mutex_init(&svm->sev_es.snp_vmsa_mutex);
4566 }
4567
4568 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4569 {
4570         /*
4571          * All host state for SEV-ES guests is categorized into three swap types
4572          * based on how it is handled by hardware during a world switch:
4573          *
4574          * A: VMRUN:   Host state saved in host save area
4575          *    VMEXIT:  Host state loaded from host save area
4576          *
4577          * B: VMRUN:   Host state _NOT_ saved in host save area
4578          *    VMEXIT:  Host state loaded from host save area
4579          *
4580          * C: VMRUN:   Host state _NOT_ saved in host save area
4581          *    VMEXIT:  Host state initialized to default(reset) values
4582          *
4583          * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4584          * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4585          * by common SVM code).
4586          */
4587         hostsa->xcr0 = kvm_host.xcr0;
4588         hostsa->pkru = read_pkru();
4589         hostsa->xss = kvm_host.xss;
4590
4591         /*
4592          * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4593          * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
4594          * saves and loads debug registers (Type-A).
4595          */
4596         if (sev_vcpu_has_debug_swap(svm)) {
4597                 hostsa->dr0 = native_get_debugreg(0);
4598                 hostsa->dr1 = native_get_debugreg(1);
4599                 hostsa->dr2 = native_get_debugreg(2);
4600                 hostsa->dr3 = native_get_debugreg(3);
4601                 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4602                 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4603                 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4604                 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4605         }
4606 }
4607
4608 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4609 {
4610         struct vcpu_svm *svm = to_svm(vcpu);
4611
4612         /* First SIPI: Use the values as initially set by the VMM */
4613         if (!svm->sev_es.received_first_sipi) {
4614                 svm->sev_es.received_first_sipi = true;
4615                 return;
4616         }
4617
4618         /* Subsequent SIPI */
4619         switch (svm->sev_es.ap_reset_hold_type) {
4620         case AP_RESET_HOLD_NAE_EVENT:
4621                 /*
4622                  * Return from an AP Reset Hold VMGEXIT, where the guest will
4623                  * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4624                  */
4625                 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
4626                 break;
4627         case AP_RESET_HOLD_MSR_PROTO:
4628                 /*
4629                  * Return from an AP Reset Hold VMGEXIT, where the guest will
4630                  * set the CS and RIP. Set GHCB data field to a non-zero value.
4631                  */
4632                 set_ghcb_msr_bits(svm, 1,
4633                                   GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4634                                   GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4635
4636                 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4637                                   GHCB_MSR_INFO_MASK,
4638                                   GHCB_MSR_INFO_POS);
4639                 break;
4640         default:
4641                 break;
4642         }
4643 }
4644
4645 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4646 {
4647         unsigned long pfn;
4648         struct page *p;
4649
4650         if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4651                 return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4652
4653         /*
4654          * Allocate an SNP-safe page to workaround the SNP erratum where
4655          * the CPU will incorrectly signal an RMP violation #PF if a
4656          * hugepage (2MB or 1GB) collides with the RMP entry of a
4657          * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4658          *
4659          * Allocate one extra page, choose a page which is not
4660          * 2MB-aligned, and free the other.
4661          */
4662         p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4663         if (!p)
4664                 return NULL;
4665
4666         split_page(p, 1);
4667
4668         pfn = page_to_pfn(p);
4669         if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4670                 __free_page(p++);
4671         else
4672                 __free_page(p + 1);
4673
4674         return p;
4675 }
4676
4677 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4678 {
4679         struct kvm_memory_slot *slot;
4680         struct kvm *kvm = vcpu->kvm;
4681         int order, rmp_level, ret;
4682         struct page *page;
4683         bool assigned;
4684         kvm_pfn_t pfn;
4685         gfn_t gfn;
4686
4687         gfn = gpa >> PAGE_SHIFT;
4688
4689         /*
4690          * The only time RMP faults occur for shared pages is when the guest is
4691          * triggering an RMP fault for an implicit page-state change from
4692          * shared->private. Implicit page-state changes are forwarded to
4693          * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4694          * for shared pages should not end up here.
4695          */
4696         if (!kvm_mem_is_private(kvm, gfn)) {
4697                 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4698                                     gpa);
4699                 return;
4700         }
4701
4702         slot = gfn_to_memslot(kvm, gfn);
4703         if (!kvm_slot_can_be_private(slot)) {
4704                 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4705                                     gpa);
4706                 return;
4707         }
4708
4709         ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4710         if (ret) {
4711                 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4712                                     gpa);
4713                 return;
4714         }
4715
4716         ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4717         if (ret || !assigned) {
4718                 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4719                                     gpa, pfn, ret);
4720                 goto out_no_trace;
4721         }
4722
4723         /*
4724          * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4725          * with PFERR_GUEST_RMP_BIT set:
4726          *
4727          * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4728          *    bit set if the guest issues them with a smaller granularity than
4729          *    what is indicated by the page-size bit in the 2MB RMP entry for
4730          *    the PFN that backs the GPA.
4731          *
4732          * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4733          *    smaller than what is indicated by the 2MB RMP entry for the PFN
4734          *    that backs the GPA.
4735          *
4736          * In both these cases, the corresponding 2M RMP entry needs to
4737          * be PSMASH'd to 512 4K RMP entries.  If the RMP entry is already
4738          * split into 4K RMP entries, then this is likely a spurious case which
4739          * can occur when there are concurrent accesses by the guest to a 2MB
4740          * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4741          * the process of being PMASH'd into 4K entries. These cases should
4742          * resolve automatically on subsequent accesses, so just ignore them
4743          * here.
4744          */
4745         if (rmp_level == PG_LEVEL_4K)
4746                 goto out;
4747
4748         ret = snp_rmptable_psmash(pfn);
4749         if (ret) {
4750                 /*
4751                  * Look it up again. If it's 4K now then the PSMASH may have
4752                  * raced with another process and the issue has already resolved
4753                  * itself.
4754                  */
4755                 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4756                     assigned && rmp_level == PG_LEVEL_4K)
4757                         goto out;
4758
4759                 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4760                                     gpa, pfn, ret);
4761         }
4762
4763         kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4764 out:
4765         trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4766 out_no_trace:
4767         kvm_release_page_unused(page);
4768 }
4769
4770 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4771 {
4772         kvm_pfn_t pfn = start;
4773
4774         while (pfn < end) {
4775                 int ret, rmp_level;
4776                 bool assigned;
4777
4778                 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4779                 if (ret) {
4780                         pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4781                                             pfn, start, end, rmp_level, ret);
4782                         return false;
4783                 }
4784
4785                 if (assigned) {
4786                         pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4787                                  __func__, pfn, start, end, rmp_level);
4788                         return false;
4789                 }
4790
4791                 pfn++;
4792         }
4793
4794         return true;
4795 }
4796
4797 static u8 max_level_for_order(int order)
4798 {
4799         if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4800                 return PG_LEVEL_2M;
4801
4802         return PG_LEVEL_4K;
4803 }
4804
4805 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4806 {
4807         kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4808
4809         /*
4810          * If this is a large folio, and the entire 2M range containing the
4811          * PFN is currently shared, then the entire 2M-aligned range can be
4812          * set to private via a single 2M RMP entry.
4813          */
4814         if (max_level_for_order(order) > PG_LEVEL_4K &&
4815             is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4816                 return true;
4817
4818         return false;
4819 }
4820
4821 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4822 {
4823         struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
4824         kvm_pfn_t pfn_aligned;
4825         gfn_t gfn_aligned;
4826         int level, rc;
4827         bool assigned;
4828
4829         if (!sev_snp_guest(kvm))
4830                 return 0;
4831
4832         rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4833         if (rc) {
4834                 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4835                                    gfn, pfn, rc);
4836                 return -ENOENT;
4837         }
4838
4839         if (assigned) {
4840                 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4841                          __func__, gfn, pfn, max_order, level);
4842                 return 0;
4843         }
4844
4845         if (is_large_rmp_possible(kvm, pfn, max_order)) {
4846                 level = PG_LEVEL_2M;
4847                 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4848                 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4849         } else {
4850                 level = PG_LEVEL_4K;
4851                 pfn_aligned = pfn;
4852                 gfn_aligned = gfn;
4853         }
4854
4855         rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4856         if (rc) {
4857                 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4858                                    gfn, pfn, level, rc);
4859                 return -EINVAL;
4860         }
4861
4862         pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4863                  __func__, gfn, pfn, pfn_aligned, max_order, level);
4864
4865         return 0;
4866 }
4867
4868 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4869 {
4870         kvm_pfn_t pfn;
4871
4872         if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4873                 return;
4874
4875         pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4876
4877         for (pfn = start; pfn < end;) {
4878                 bool use_2m_update = false;
4879                 int rc, rmp_level;
4880                 bool assigned;
4881
4882                 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4883                 if (rc || !assigned)
4884                         goto next_pfn;
4885
4886                 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
4887                                 end >= (pfn + PTRS_PER_PMD) &&
4888                                 rmp_level > PG_LEVEL_4K;
4889
4890                 /*
4891                  * If an unaligned PFN corresponds to a 2M region assigned as a
4892                  * large page in the RMP table, PSMASH the region into individual
4893                  * 4K RMP entries before attempting to convert a 4K sub-page.
4894                  */
4895                 if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
4896                         /*
4897                          * This shouldn't fail, but if it does, report it, but
4898                          * still try to update RMP entry to shared and pray this
4899                          * was a spurious error that can be addressed later.
4900                          */
4901                         rc = snp_rmptable_psmash(pfn);
4902                         WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
4903                                   pfn, rc);
4904                 }
4905
4906                 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
4907                 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
4908                               pfn, rc))
4909                         goto next_pfn;
4910
4911                 /*
4912                  * SEV-ES avoids host/guest cache coherency issues through
4913                  * WBINVD hooks issued via MMU notifiers during run-time, and
4914                  * KVM's VM destroy path at shutdown. Those MMU notifier events
4915                  * don't cover gmem since there is no requirement to map pages
4916                  * to a HVA in order to use them for a running guest. While the
4917                  * shutdown path would still likely cover things for SNP guests,
4918                  * userspace may also free gmem pages during run-time via
4919                  * hole-punching operations on the guest_memfd, so flush the
4920                  * cache entries for these pages before free'ing them back to
4921                  * the host.
4922                  */
4923                 clflush_cache_range(__va(pfn_to_hpa(pfn)),
4924                                     use_2m_update ? PMD_SIZE : PAGE_SIZE);
4925 next_pfn:
4926                 pfn += use_2m_update ? PTRS_PER_PMD : 1;
4927                 cond_resched();
4928         }
4929 }
4930
4931 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
4932 {
4933         int level, rc;
4934         bool assigned;
4935
4936         if (!sev_snp_guest(kvm))
4937                 return 0;
4938
4939         rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4940         if (rc || !assigned)
4941                 return PG_LEVEL_4K;
4942
4943         return level;
4944 }
This page took 0.336579 seconds and 4 git commands to generate.