1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ASM_KVM_CACHE_REGS_H
3 #define ASM_KVM_CACHE_REGS_H
5 #include <linux/kvm_host.h>
7 #define KVM_POSSIBLE_CR0_GUEST_BITS (X86_CR0_TS | X86_CR0_WP)
8 #define KVM_POSSIBLE_CR4_GUEST_BITS \
9 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
10 | X86_CR4_OSXMMEXCPT | X86_CR4_PGE | X86_CR4_TSD | X86_CR4_FSGSBASE)
12 #define X86_CR0_PDPTR_BITS (X86_CR0_CD | X86_CR0_NW | X86_CR0_PG)
13 #define X86_CR4_TLBFLUSH_BITS (X86_CR4_PGE | X86_CR4_PCIDE | X86_CR4_PAE | X86_CR4_SMEP)
14 #define X86_CR4_PDPTR_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_SMEP)
16 static_assert(!(KVM_POSSIBLE_CR0_GUEST_BITS & X86_CR0_PDPTR_BITS));
18 #define BUILD_KVM_GPR_ACCESSORS(lname, uname) \
19 static __always_inline unsigned long kvm_##lname##_read(struct kvm_vcpu *vcpu)\
21 return vcpu->arch.regs[VCPU_REGS_##uname]; \
23 static __always_inline void kvm_##lname##_write(struct kvm_vcpu *vcpu, \
26 vcpu->arch.regs[VCPU_REGS_##uname] = val; \
28 BUILD_KVM_GPR_ACCESSORS(rax, RAX)
29 BUILD_KVM_GPR_ACCESSORS(rbx, RBX)
30 BUILD_KVM_GPR_ACCESSORS(rcx, RCX)
31 BUILD_KVM_GPR_ACCESSORS(rdx, RDX)
32 BUILD_KVM_GPR_ACCESSORS(rbp, RBP)
33 BUILD_KVM_GPR_ACCESSORS(rsi, RSI)
34 BUILD_KVM_GPR_ACCESSORS(rdi, RDI)
36 BUILD_KVM_GPR_ACCESSORS(r8, R8)
37 BUILD_KVM_GPR_ACCESSORS(r9, R9)
38 BUILD_KVM_GPR_ACCESSORS(r10, R10)
39 BUILD_KVM_GPR_ACCESSORS(r11, R11)
40 BUILD_KVM_GPR_ACCESSORS(r12, R12)
41 BUILD_KVM_GPR_ACCESSORS(r13, R13)
42 BUILD_KVM_GPR_ACCESSORS(r14, R14)
43 BUILD_KVM_GPR_ACCESSORS(r15, R15)
47 * Using the register cache from interrupt context is generally not allowed, as
48 * caching a register and marking it available/dirty can't be done atomically,
49 * i.e. accesses from interrupt context may clobber state or read stale data if
50 * the vCPU task is in the process of updating the cache. The exception is if
51 * KVM is handling a PMI IRQ/NMI VM-Exit, as that bound code sequence doesn't
52 * touch the cache, it runs after the cache is reset (post VM-Exit), and PMIs
53 * need to access several registers that are cacheable.
55 #define kvm_assert_register_caching_allowed(vcpu) \
56 lockdep_assert_once(in_task() || kvm_arch_pmi_in_guest(vcpu))
60 * 0 0 register in VMCS/VMCB
62 * 1 0 register in vcpu->arch
63 * 1 1 register in vcpu->arch, needs to be stored back
65 static inline bool kvm_register_is_available(struct kvm_vcpu *vcpu,
68 kvm_assert_register_caching_allowed(vcpu);
69 return test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
72 static inline bool kvm_register_is_dirty(struct kvm_vcpu *vcpu,
75 kvm_assert_register_caching_allowed(vcpu);
76 return test_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
79 static inline void kvm_register_mark_available(struct kvm_vcpu *vcpu,
82 kvm_assert_register_caching_allowed(vcpu);
83 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
86 static inline void kvm_register_mark_dirty(struct kvm_vcpu *vcpu,
89 kvm_assert_register_caching_allowed(vcpu);
90 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
91 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
95 * kvm_register_test_and_mark_available() is a special snowflake that uses an
96 * arch bitop directly to avoid the explicit instrumentation that comes with
97 * the generic bitops. This allows code that cannot be instrumented (noinstr
98 * functions), e.g. the low level VM-Enter/VM-Exit paths, to cache registers.
100 static __always_inline bool kvm_register_test_and_mark_available(struct kvm_vcpu *vcpu,
103 kvm_assert_register_caching_allowed(vcpu);
104 return arch___test_and_set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
108 * The "raw" register helpers are only for cases where the full 64 bits of a
109 * register are read/written irrespective of current vCPU mode. In other words,
110 * odds are good you shouldn't be using the raw variants.
112 static inline unsigned long kvm_register_read_raw(struct kvm_vcpu *vcpu, int reg)
114 if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS))
117 if (!kvm_register_is_available(vcpu, reg))
118 kvm_x86_call(cache_reg)(vcpu, reg);
120 return vcpu->arch.regs[reg];
123 static inline void kvm_register_write_raw(struct kvm_vcpu *vcpu, int reg,
126 if (WARN_ON_ONCE((unsigned int)reg >= NR_VCPU_REGS))
129 vcpu->arch.regs[reg] = val;
130 kvm_register_mark_dirty(vcpu, reg);
133 static inline unsigned long kvm_rip_read(struct kvm_vcpu *vcpu)
135 return kvm_register_read_raw(vcpu, VCPU_REGS_RIP);
138 static inline void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val)
140 kvm_register_write_raw(vcpu, VCPU_REGS_RIP, val);
143 static inline unsigned long kvm_rsp_read(struct kvm_vcpu *vcpu)
145 return kvm_register_read_raw(vcpu, VCPU_REGS_RSP);
148 static inline void kvm_rsp_write(struct kvm_vcpu *vcpu, unsigned long val)
150 kvm_register_write_raw(vcpu, VCPU_REGS_RSP, val);
153 static inline u64 kvm_pdptr_read(struct kvm_vcpu *vcpu, int index)
155 might_sleep(); /* on svm */
157 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
158 kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_PDPTR);
160 return vcpu->arch.walk_mmu->pdptrs[index];
163 static inline void kvm_pdptr_write(struct kvm_vcpu *vcpu, int index, u64 value)
165 vcpu->arch.walk_mmu->pdptrs[index] = value;
168 static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask)
170 ulong tmask = mask & KVM_POSSIBLE_CR0_GUEST_BITS;
171 if ((tmask & vcpu->arch.cr0_guest_owned_bits) &&
172 !kvm_register_is_available(vcpu, VCPU_EXREG_CR0))
173 kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR0);
174 return vcpu->arch.cr0 & mask;
177 static __always_inline bool kvm_is_cr0_bit_set(struct kvm_vcpu *vcpu,
178 unsigned long cr0_bit)
180 BUILD_BUG_ON(!is_power_of_2(cr0_bit));
182 return !!kvm_read_cr0_bits(vcpu, cr0_bit);
185 static inline ulong kvm_read_cr0(struct kvm_vcpu *vcpu)
187 return kvm_read_cr0_bits(vcpu, ~0UL);
190 static inline ulong kvm_read_cr4_bits(struct kvm_vcpu *vcpu, ulong mask)
192 ulong tmask = mask & KVM_POSSIBLE_CR4_GUEST_BITS;
193 if ((tmask & vcpu->arch.cr4_guest_owned_bits) &&
194 !kvm_register_is_available(vcpu, VCPU_EXREG_CR4))
195 kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR4);
196 return vcpu->arch.cr4 & mask;
199 static __always_inline bool kvm_is_cr4_bit_set(struct kvm_vcpu *vcpu,
200 unsigned long cr4_bit)
202 BUILD_BUG_ON(!is_power_of_2(cr4_bit));
204 return !!kvm_read_cr4_bits(vcpu, cr4_bit);
207 static inline ulong kvm_read_cr3(struct kvm_vcpu *vcpu)
209 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
210 kvm_x86_call(cache_reg)(vcpu, VCPU_EXREG_CR3);
211 return vcpu->arch.cr3;
214 static inline ulong kvm_read_cr4(struct kvm_vcpu *vcpu)
216 return kvm_read_cr4_bits(vcpu, ~0UL);
219 static inline u64 kvm_read_edx_eax(struct kvm_vcpu *vcpu)
221 return (kvm_rax_read(vcpu) & -1u)
222 | ((u64)(kvm_rdx_read(vcpu) & -1u) << 32);
225 static inline void enter_guest_mode(struct kvm_vcpu *vcpu)
227 vcpu->arch.hflags |= HF_GUEST_MASK;
228 vcpu->stat.guest_mode = 1;
231 static inline void leave_guest_mode(struct kvm_vcpu *vcpu)
233 vcpu->arch.hflags &= ~HF_GUEST_MASK;
235 if (vcpu->arch.load_eoi_exitmap_pending) {
236 vcpu->arch.load_eoi_exitmap_pending = false;
237 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
240 vcpu->stat.guest_mode = 0;
243 static inline bool is_guest_mode(struct kvm_vcpu *vcpu)
245 return vcpu->arch.hflags & HF_GUEST_MASK;