]> Git Repo - J-linux.git/blob - arch/x86/kvm/cpuid.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
39 struct cpuid_xstate_sizes {
40         u32 eax;
41         u32 ebx;
42         u32 ecx;
43 };
44
45 static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
46
47 void __init kvm_init_xstate_sizes(void)
48 {
49         u32 ign;
50         int i;
51
52         for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
53                 struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
54
55                 cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
56         }
57 }
58
59 u32 xstate_required_size(u64 xstate_bv, bool compacted)
60 {
61         int feature_bit = 0;
62         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
63
64         xstate_bv &= XFEATURE_MASK_EXTEND;
65         while (xstate_bv) {
66                 if (xstate_bv & 0x1) {
67                         struct cpuid_xstate_sizes *xs = &xstate_sizes[feature_bit];
68                         u32 offset;
69
70                         /* ECX[1]: 64B alignment in compacted form */
71                         if (compacted)
72                                 offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
73                         else
74                                 offset = xs->ebx;
75                         ret = max(ret, offset + xs->eax);
76                 }
77
78                 xstate_bv >>= 1;
79                 feature_bit++;
80         }
81
82         return ret;
83 }
84
85 #define F feature_bit
86
87 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
88 #define SF(name)                                                \
89 ({                                                              \
90         BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);   \
91         (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);       \
92 })
93
94 /*
95  * Magic value used by KVM when querying userspace-provided CPUID entries and
96  * doesn't care about the CPIUD index because the index of the function in
97  * question is not significant.  Note, this magic value must have at least one
98  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
99  * to avoid false positives when processing guest CPUID input.
100  */
101 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
102
103 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
104         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
105 {
106         struct kvm_cpuid_entry2 *e;
107         int i;
108
109         /*
110          * KVM has a semi-arbitrary rule that querying the guest's CPUID model
111          * with IRQs disabled is disallowed.  The CPUID model can legitimately
112          * have over one hundred entries, i.e. the lookup is slow, and IRQs are
113          * typically disabled in KVM only when KVM is in a performance critical
114          * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
115          * if this rule is violated, this assertion is purely to flag potential
116          * performance issues.  If this fires, consider moving the lookup out
117          * of the hotpath, e.g. by caching information during CPUID updates.
118          */
119         lockdep_assert_irqs_enabled();
120
121         for (i = 0; i < nent; i++) {
122                 e = &entries[i];
123
124                 if (e->function != function)
125                         continue;
126
127                 /*
128                  * If the index isn't significant, use the first entry with a
129                  * matching function.  It's userspace's responsibility to not
130                  * provide "duplicate" entries in all cases.
131                  */
132                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
133                         return e;
134
135
136                 /*
137                  * Similarly, use the first matching entry if KVM is doing a
138                  * lookup (as opposed to emulating CPUID) for a function that's
139                  * architecturally defined as not having a significant index.
140                  */
141                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
142                         /*
143                          * Direct lookups from KVM should not diverge from what
144                          * KVM defines internally (the architectural behavior).
145                          */
146                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
147                         return e;
148                 }
149         }
150
151         return NULL;
152 }
153
154 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
155                            struct kvm_cpuid_entry2 *entries,
156                            int nent)
157 {
158         struct kvm_cpuid_entry2 *best;
159         u64 xfeatures;
160
161         /*
162          * The existing code assumes virtual address is 48-bit or 57-bit in the
163          * canonical address checks; exit if it is ever changed.
164          */
165         best = cpuid_entry2_find(entries, nent, 0x80000008,
166                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
167         if (best) {
168                 int vaddr_bits = (best->eax & 0xff00) >> 8;
169
170                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
171                         return -EINVAL;
172         }
173
174         /*
175          * Exposing dynamic xfeatures to the guest requires additional
176          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
177          */
178         best = cpuid_entry2_find(entries, nent, 0xd, 0);
179         if (!best)
180                 return 0;
181
182         xfeatures = best->eax | ((u64)best->edx << 32);
183         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
184         if (!xfeatures)
185                 return 0;
186
187         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
188 }
189
190 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
191 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
192                                  int nent)
193 {
194         struct kvm_cpuid_entry2 *orig;
195         int i;
196
197         if (nent != vcpu->arch.cpuid_nent)
198                 return -EINVAL;
199
200         for (i = 0; i < nent; i++) {
201                 orig = &vcpu->arch.cpuid_entries[i];
202                 if (e2[i].function != orig->function ||
203                     e2[i].index != orig->index ||
204                     e2[i].flags != orig->flags ||
205                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
206                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
207                         return -EINVAL;
208         }
209
210         return 0;
211 }
212
213 static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
214                                                               int nent, const char *sig)
215 {
216         struct kvm_hypervisor_cpuid cpuid = {};
217         struct kvm_cpuid_entry2 *entry;
218         u32 base;
219
220         for_each_possible_hypervisor_cpuid_base(base) {
221                 entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
222
223                 if (entry) {
224                         u32 signature[3];
225
226                         signature[0] = entry->ebx;
227                         signature[1] = entry->ecx;
228                         signature[2] = entry->edx;
229
230                         if (!memcmp(signature, sig, sizeof(signature))) {
231                                 cpuid.base = base;
232                                 cpuid.limit = entry->eax;
233                                 break;
234                         }
235                 }
236         }
237
238         return cpuid;
239 }
240
241 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
242                                                             const char *sig)
243 {
244         return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
245                                           vcpu->arch.cpuid_nent, sig);
246 }
247
248 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
249                                                               int nent, u32 kvm_cpuid_base)
250 {
251         return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
252                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
253 }
254
255 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
256 {
257         u32 base = vcpu->arch.kvm_cpuid.base;
258
259         if (!base)
260                 return NULL;
261
262         return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
263                                              vcpu->arch.cpuid_nent, base);
264 }
265
266 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
267 {
268         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
269
270         /*
271          * save the feature bitmap to avoid cpuid lookup for every PV
272          * operation
273          */
274         if (best)
275                 vcpu->arch.pv_cpuid.features = best->eax;
276 }
277
278 /*
279  * Calculate guest's supported XCR0 taking into account guest CPUID data and
280  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
281  */
282 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
283 {
284         struct kvm_cpuid_entry2 *best;
285
286         best = cpuid_entry2_find(entries, nent, 0xd, 0);
287         if (!best)
288                 return 0;
289
290         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
291 }
292
293 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
294                                        int nent)
295 {
296         struct kvm_cpuid_entry2 *best;
297         struct kvm_hypervisor_cpuid kvm_cpuid;
298
299         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
300         if (best) {
301                 /* Update OSXSAVE bit */
302                 if (boot_cpu_has(X86_FEATURE_XSAVE))
303                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
304                                            kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
305
306                 cpuid_entry_change(best, X86_FEATURE_APIC,
307                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
308         }
309
310         best = cpuid_entry2_find(entries, nent, 7, 0);
311         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
312                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
313                                    kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
314
315         best = cpuid_entry2_find(entries, nent, 0xD, 0);
316         if (best)
317                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
318
319         best = cpuid_entry2_find(entries, nent, 0xD, 1);
320         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
321                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
322                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
323
324         kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
325         if (kvm_cpuid.base) {
326                 best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
327                 if (kvm_hlt_in_guest(vcpu->kvm) && best)
328                         best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
329         }
330
331         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
332                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
333                 if (best)
334                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
335                                            vcpu->arch.ia32_misc_enable_msr &
336                                            MSR_IA32_MISC_ENABLE_MWAIT);
337         }
338 }
339
340 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
341 {
342         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
343 }
344 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
345
346 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
347 {
348 #ifdef CONFIG_KVM_HYPERV
349         struct kvm_cpuid_entry2 *entry;
350
351         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
352                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
353         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
354 #else
355         return false;
356 #endif
357 }
358
359 static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
360 {
361         struct kvm_cpuid_entry2 *entry;
362
363         entry = kvm_find_cpuid_entry(vcpu, 0);
364         if (!entry)
365                 return false;
366
367         return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
368                is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
369 }
370
371 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
372 {
373         struct kvm_lapic *apic = vcpu->arch.apic;
374         struct kvm_cpuid_entry2 *best;
375         bool allow_gbpages;
376
377         BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
378         bitmap_zero(vcpu->arch.governed_features.enabled,
379                     KVM_MAX_NR_GOVERNED_FEATURES);
380
381         /*
382          * If TDP is enabled, let the guest use GBPAGES if they're supported in
383          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
384          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
385          * walk for performance and complexity reasons.  Not to mention KVM
386          * _can't_ solve the problem because GVA->GPA walks aren't visible to
387          * KVM once a TDP translation is installed.  Mimic hardware behavior so
388          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
389          * If TDP is disabled, honor *only* guest CPUID as KVM has full control
390          * and can install smaller shadow pages if the host lacks 1GiB support.
391          */
392         allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
393                                       guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
394         if (allow_gbpages)
395                 kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
396
397         best = kvm_find_cpuid_entry(vcpu, 1);
398         if (best && apic) {
399                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
400                         apic->lapic_timer.timer_mode_mask = 3 << 17;
401                 else
402                         apic->lapic_timer.timer_mode_mask = 1 << 17;
403
404                 kvm_apic_set_version(vcpu);
405         }
406
407         vcpu->arch.guest_supported_xcr0 =
408                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
409
410         kvm_update_pv_runtime(vcpu);
411
412         vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
413         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
414         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
415
416         kvm_pmu_refresh(vcpu);
417         vcpu->arch.cr4_guest_rsvd_bits =
418             __cr4_reserved_bits(guest_cpuid_has, vcpu);
419
420         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
421                                                     vcpu->arch.cpuid_nent));
422
423         /* Invoke the vendor callback only after the above state is updated. */
424         kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
425
426         /*
427          * Except for the MMU, which needs to do its thing any vendor specific
428          * adjustments to the reserved GPA bits.
429          */
430         kvm_mmu_after_set_cpuid(vcpu);
431 }
432
433 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
434 {
435         struct kvm_cpuid_entry2 *best;
436
437         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
438         if (!best || best->eax < 0x80000008)
439                 goto not_found;
440         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
441         if (best)
442                 return best->eax & 0xff;
443 not_found:
444         return 36;
445 }
446
447 /*
448  * This "raw" version returns the reserved GPA bits without any adjustments for
449  * encryption technologies that usurp bits.  The raw mask should be used if and
450  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
451  */
452 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
453 {
454         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
455 }
456
457 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
458                         int nent)
459 {
460         int r;
461
462         __kvm_update_cpuid_runtime(vcpu, e2, nent);
463
464         /*
465          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
466          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
467          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
468          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
469          * the core vCPU model on the fly. It would've been better to forbid any
470          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
471          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
472          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
473          * whether the supplied CPUID data is equal to what's already set.
474          */
475         if (kvm_vcpu_has_run(vcpu)) {
476                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
477                 if (r)
478                         return r;
479
480                 kvfree(e2);
481                 return 0;
482         }
483
484 #ifdef CONFIG_KVM_HYPERV
485         if (kvm_cpuid_has_hyperv(e2, nent)) {
486                 r = kvm_hv_vcpu_init(vcpu);
487                 if (r)
488                         return r;
489         }
490 #endif
491
492         r = kvm_check_cpuid(vcpu, e2, nent);
493         if (r)
494                 return r;
495
496         kvfree(vcpu->arch.cpuid_entries);
497         vcpu->arch.cpuid_entries = e2;
498         vcpu->arch.cpuid_nent = nent;
499
500         vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
501 #ifdef CONFIG_KVM_XEN
502         vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
503 #endif
504         kvm_vcpu_after_set_cpuid(vcpu);
505
506         return 0;
507 }
508
509 /* when an old userspace process fills a new kernel module */
510 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
511                              struct kvm_cpuid *cpuid,
512                              struct kvm_cpuid_entry __user *entries)
513 {
514         int r, i;
515         struct kvm_cpuid_entry *e = NULL;
516         struct kvm_cpuid_entry2 *e2 = NULL;
517
518         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
519                 return -E2BIG;
520
521         if (cpuid->nent) {
522                 e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
523                 if (IS_ERR(e))
524                         return PTR_ERR(e);
525
526                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
527                 if (!e2) {
528                         r = -ENOMEM;
529                         goto out_free_cpuid;
530                 }
531         }
532         for (i = 0; i < cpuid->nent; i++) {
533                 e2[i].function = e[i].function;
534                 e2[i].eax = e[i].eax;
535                 e2[i].ebx = e[i].ebx;
536                 e2[i].ecx = e[i].ecx;
537                 e2[i].edx = e[i].edx;
538                 e2[i].index = 0;
539                 e2[i].flags = 0;
540                 e2[i].padding[0] = 0;
541                 e2[i].padding[1] = 0;
542                 e2[i].padding[2] = 0;
543         }
544
545         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
546         if (r)
547                 kvfree(e2);
548
549 out_free_cpuid:
550         kvfree(e);
551
552         return r;
553 }
554
555 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
556                               struct kvm_cpuid2 *cpuid,
557                               struct kvm_cpuid_entry2 __user *entries)
558 {
559         struct kvm_cpuid_entry2 *e2 = NULL;
560         int r;
561
562         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
563                 return -E2BIG;
564
565         if (cpuid->nent) {
566                 e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
567                 if (IS_ERR(e2))
568                         return PTR_ERR(e2);
569         }
570
571         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
572         if (r)
573                 kvfree(e2);
574
575         return r;
576 }
577
578 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
579                               struct kvm_cpuid2 *cpuid,
580                               struct kvm_cpuid_entry2 __user *entries)
581 {
582         if (cpuid->nent < vcpu->arch.cpuid_nent)
583                 return -E2BIG;
584
585         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
586                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
587                 return -EFAULT;
588
589         cpuid->nent = vcpu->arch.cpuid_nent;
590         return 0;
591 }
592
593 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
594 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
595 {
596         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
597         struct kvm_cpuid_entry2 entry;
598
599         reverse_cpuid_check(leaf);
600
601         cpuid_count(cpuid.function, cpuid.index,
602                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
603
604         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
605 }
606
607 static __always_inline
608 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
609 {
610         /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
611         BUILD_BUG_ON(leaf < NCAPINTS);
612
613         kvm_cpu_caps[leaf] = mask;
614
615         __kvm_cpu_cap_mask(leaf);
616 }
617
618 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
619 {
620         /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
621         BUILD_BUG_ON(leaf >= NCAPINTS);
622
623         kvm_cpu_caps[leaf] &= mask;
624
625         __kvm_cpu_cap_mask(leaf);
626 }
627
628 void kvm_set_cpu_caps(void)
629 {
630 #ifdef CONFIG_X86_64
631         unsigned int f_gbpages = F(GBPAGES);
632         unsigned int f_lm = F(LM);
633         unsigned int f_xfd = F(XFD);
634 #else
635         unsigned int f_gbpages = 0;
636         unsigned int f_lm = 0;
637         unsigned int f_xfd = 0;
638 #endif
639         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
640
641         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
642                      sizeof(boot_cpu_data.x86_capability));
643
644         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
645                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
646
647         kvm_cpu_cap_mask(CPUID_1_ECX,
648                 /*
649                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
650                  * advertised to guests via CPUID!
651                  */
652                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
653                 0 /* DS-CPL, VMX, SMX, EST */ |
654                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
655                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
656                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
657                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
658                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
659                 F(F16C) | F(RDRAND)
660         );
661         /* KVM emulates x2apic in software irrespective of host support. */
662         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
663
664         kvm_cpu_cap_mask(CPUID_1_EDX,
665                 F(FPU) | F(VME) | F(DE) | F(PSE) |
666                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
667                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
668                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
669                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
670                 0 /* Reserved, DS, ACPI */ | F(MMX) |
671                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
672                 0 /* HTT, TM, Reserved, PBE */
673         );
674
675         kvm_cpu_cap_mask(CPUID_7_0_EBX,
676                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
677                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
678                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
679                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
680                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
681                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
682                 F(AVX512VL));
683
684         kvm_cpu_cap_mask(CPUID_7_ECX,
685                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
686                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
687                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
688                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
689                 F(SGX_LC) | F(BUS_LOCK_DETECT)
690         );
691         /* Set LA57 based on hardware capability. */
692         if (cpuid_ecx(7) & F(LA57))
693                 kvm_cpu_cap_set(X86_FEATURE_LA57);
694
695         /*
696          * PKU not yet implemented for shadow paging and requires OSPKE
697          * to be set on the host. Clear it if that is not the case
698          */
699         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
700                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
701
702         kvm_cpu_cap_mask(CPUID_7_EDX,
703                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
704                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
705                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
706                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
707                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
708         );
709
710         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
711         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
712         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
713
714         if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
715             boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
716             boot_cpu_has(X86_FEATURE_AMD_IBRS))
717                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
718         if (boot_cpu_has(X86_FEATURE_STIBP))
719                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
720         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
721                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
722
723         kvm_cpu_cap_mask(CPUID_7_1_EAX,
724                 F(SHA512) | F(SM3) | F(SM4) | F(AVX_VNNI) | F(AVX512_BF16) |
725                 F(CMPCCXADD) | F(FZRM) | F(FSRS) | F(FSRC) | F(AMX_FP16) |
726                 F(AVX_IFMA) | F(LAM)
727         );
728
729         kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
730                 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(AMX_COMPLEX) |
731                 F(AVX_VNNI_INT16) | F(PREFETCHITI) | F(AVX10)
732         );
733
734         kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
735                 F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
736                 F(BHI_CTRL) | F(MCDT_NO)
737         );
738
739         kvm_cpu_cap_mask(CPUID_D_1_EAX,
740                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
741         );
742
743         kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
744                 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
745         );
746
747         kvm_cpu_cap_init_kvm_defined(CPUID_24_0_EBX,
748                 F(AVX10_128) | F(AVX10_256) | F(AVX10_512)
749         );
750
751         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
752                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
753                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
754                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
755                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
756                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
757         );
758
759         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
760                 F(FPU) | F(VME) | F(DE) | F(PSE) |
761                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
762                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
763                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
764                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
765                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
766                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
767                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
768         );
769
770         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
771                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
772
773         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
774                 SF(CONSTANT_TSC)
775         );
776
777         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
778                 F(CLZERO) | F(XSAVEERPTR) |
779                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
780                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
781                 F(AMD_PSFD) | F(AMD_IBPB_RET)
782         );
783
784         /*
785          * AMD has separate bits for each SPEC_CTRL bit.
786          * arch/x86/kernel/cpu/bugs.c is kind enough to
787          * record that in cpufeatures so use them.
788          */
789         if (boot_cpu_has(X86_FEATURE_IBPB)) {
790                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
791                 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
792                     !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
793                         kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
794         }
795         if (boot_cpu_has(X86_FEATURE_IBRS))
796                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
797         if (boot_cpu_has(X86_FEATURE_STIBP))
798                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
799         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
800                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
801         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
802                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
803         /*
804          * The preference is to use SPEC CTRL MSR instead of the
805          * VIRT_SPEC MSR.
806          */
807         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
808             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
809                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
810
811         /*
812          * Hide all SVM features by default, SVM will set the cap bits for
813          * features it emulates and/or exposes for L1.
814          */
815         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
816
817         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
818                 0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
819                 F(SME_COHERENT));
820
821         kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
822                 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
823                 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
824                 F(WRMSR_XX_BASE_NS)
825         );
826
827         kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
828         kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
829         kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
830
831         kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
832                 F(PERFMON_V2)
833         );
834
835         /*
836          * Synthesize "LFENCE is serializing" into the AMD-defined entry in
837          * KVM's supported CPUID if the feature is reported as supported by the
838          * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
839          * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
840          * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
841          * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
842          * the mask with the raw host CPUID, and reporting support in AMD's
843          * leaf can make it easier for userspace to detect the feature.
844          */
845         if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
846                 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
847         if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
848                 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
849         kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
850
851         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
852                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
853                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
854                 F(PMM) | F(PMM_EN)
855         );
856
857         /*
858          * Hide RDTSCP and RDPID if either feature is reported as supported but
859          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
860          * should never happen, but the guest will likely crash if RDTSCP or
861          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
862          * the past.  For example, the sanity check may fire if this instance of
863          * KVM is running as L1 on top of an older, broken KVM.
864          */
865         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
866                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
867                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
868                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
869                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
870         }
871 }
872 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
873
874 struct kvm_cpuid_array {
875         struct kvm_cpuid_entry2 *entries;
876         int maxnent;
877         int nent;
878 };
879
880 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
881 {
882         if (array->nent >= array->maxnent)
883                 return NULL;
884
885         return &array->entries[array->nent++];
886 }
887
888 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
889                                               u32 function, u32 index)
890 {
891         struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
892
893         if (!entry)
894                 return NULL;
895
896         memset(entry, 0, sizeof(*entry));
897         entry->function = function;
898         entry->index = index;
899         switch (function & 0xC0000000) {
900         case 0x40000000:
901                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
902                 return entry;
903
904         case 0x80000000:
905                 /*
906                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
907                  * would result in out-of-bounds calls to do_host_cpuid.
908                  */
909                 {
910                         static int max_cpuid_80000000;
911                         if (!READ_ONCE(max_cpuid_80000000))
912                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
913                         if (function > READ_ONCE(max_cpuid_80000000))
914                                 return entry;
915                 }
916                 break;
917
918         default:
919                 break;
920         }
921
922         cpuid_count(entry->function, entry->index,
923                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
924
925         if (cpuid_function_is_indexed(function))
926                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
927
928         return entry;
929 }
930
931 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
932 {
933         struct kvm_cpuid_entry2 *entry;
934
935         if (array->nent >= array->maxnent)
936                 return -E2BIG;
937
938         entry = &array->entries[array->nent];
939         entry->function = func;
940         entry->index = 0;
941         entry->flags = 0;
942
943         switch (func) {
944         case 0:
945                 entry->eax = 7;
946                 ++array->nent;
947                 break;
948         case 1:
949                 entry->ecx = F(MOVBE);
950                 ++array->nent;
951                 break;
952         case 7:
953                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
954                 entry->eax = 0;
955                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
956                         entry->ecx = F(RDPID);
957                 ++array->nent;
958                 break;
959         default:
960                 break;
961         }
962
963         return 0;
964 }
965
966 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
967 {
968         struct kvm_cpuid_entry2 *entry;
969         int r, i, max_idx;
970
971         /* all calls to cpuid_count() should be made on the same cpu */
972         get_cpu();
973
974         r = -E2BIG;
975
976         entry = do_host_cpuid(array, function, 0);
977         if (!entry)
978                 goto out;
979
980         switch (function) {
981         case 0:
982                 /* Limited to the highest leaf implemented in KVM. */
983                 entry->eax = min(entry->eax, 0x24U);
984                 break;
985         case 1:
986                 cpuid_entry_override(entry, CPUID_1_EDX);
987                 cpuid_entry_override(entry, CPUID_1_ECX);
988                 break;
989         case 2:
990                 /*
991                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
992                  * CPUID(function=2, index=0) may return different results each
993                  * time, with the least-significant byte in EAX enumerating the
994                  * number of times software should do CPUID(2, 0).
995                  *
996                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
997                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
998                  * return 01H. Software should ignore this value and not
999                  * interpret it as an informational descriptor", while AMD's
1000                  * APM states that CPUID(2) is reserved.
1001                  *
1002                  * WARN if a frankenstein CPU that supports virtualization and
1003                  * a stateful CPUID.0x2 is encountered.
1004                  */
1005                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
1006                 break;
1007         /* functions 4 and 0x8000001d have additional index. */
1008         case 4:
1009         case 0x8000001d:
1010                 /*
1011                  * Read entries until the cache type in the previous entry is
1012                  * zero, i.e. indicates an invalid entry.
1013                  */
1014                 for (i = 1; entry->eax & 0x1f; ++i) {
1015                         entry = do_host_cpuid(array, function, i);
1016                         if (!entry)
1017                                 goto out;
1018                 }
1019                 break;
1020         case 6: /* Thermal management */
1021                 entry->eax = 0x4; /* allow ARAT */
1022                 entry->ebx = 0;
1023                 entry->ecx = 0;
1024                 entry->edx = 0;
1025                 break;
1026         /* function 7 has additional index. */
1027         case 7:
1028                 max_idx = entry->eax = min(entry->eax, 2u);
1029                 cpuid_entry_override(entry, CPUID_7_0_EBX);
1030                 cpuid_entry_override(entry, CPUID_7_ECX);
1031                 cpuid_entry_override(entry, CPUID_7_EDX);
1032
1033                 /* KVM only supports up to 0x7.2, capped above via min(). */
1034                 if (max_idx >= 1) {
1035                         entry = do_host_cpuid(array, function, 1);
1036                         if (!entry)
1037                                 goto out;
1038
1039                         cpuid_entry_override(entry, CPUID_7_1_EAX);
1040                         cpuid_entry_override(entry, CPUID_7_1_EDX);
1041                         entry->ebx = 0;
1042                         entry->ecx = 0;
1043                 }
1044                 if (max_idx >= 2) {
1045                         entry = do_host_cpuid(array, function, 2);
1046                         if (!entry)
1047                                 goto out;
1048
1049                         cpuid_entry_override(entry, CPUID_7_2_EDX);
1050                         entry->ecx = 0;
1051                         entry->ebx = 0;
1052                         entry->eax = 0;
1053                 }
1054                 break;
1055         case 0xa: { /* Architectural Performance Monitoring */
1056                 union cpuid10_eax eax;
1057                 union cpuid10_edx edx;
1058
1059                 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1060                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1061                         break;
1062                 }
1063
1064                 eax.split.version_id = kvm_pmu_cap.version;
1065                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1066                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1067                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1068                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1069                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1070
1071                 if (kvm_pmu_cap.version)
1072                         edx.split.anythread_deprecated = 1;
1073                 edx.split.reserved1 = 0;
1074                 edx.split.reserved2 = 0;
1075
1076                 entry->eax = eax.full;
1077                 entry->ebx = kvm_pmu_cap.events_mask;
1078                 entry->ecx = 0;
1079                 entry->edx = edx.full;
1080                 break;
1081         }
1082         case 0x1f:
1083         case 0xb:
1084                 /*
1085                  * No topology; a valid topology is indicated by the presence
1086                  * of subleaf 1.
1087                  */
1088                 entry->eax = entry->ebx = entry->ecx = 0;
1089                 break;
1090         case 0xd: {
1091                 u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1092                 u64 permitted_xss = kvm_caps.supported_xss;
1093
1094                 entry->eax &= permitted_xcr0;
1095                 entry->ebx = xstate_required_size(permitted_xcr0, false);
1096                 entry->ecx = entry->ebx;
1097                 entry->edx &= permitted_xcr0 >> 32;
1098                 if (!permitted_xcr0)
1099                         break;
1100
1101                 entry = do_host_cpuid(array, function, 1);
1102                 if (!entry)
1103                         goto out;
1104
1105                 cpuid_entry_override(entry, CPUID_D_1_EAX);
1106                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1107                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1108                                                           true);
1109                 else {
1110                         WARN_ON_ONCE(permitted_xss != 0);
1111                         entry->ebx = 0;
1112                 }
1113                 entry->ecx &= permitted_xss;
1114                 entry->edx &= permitted_xss >> 32;
1115
1116                 for (i = 2; i < 64; ++i) {
1117                         bool s_state;
1118                         if (permitted_xcr0 & BIT_ULL(i))
1119                                 s_state = false;
1120                         else if (permitted_xss & BIT_ULL(i))
1121                                 s_state = true;
1122                         else
1123                                 continue;
1124
1125                         entry = do_host_cpuid(array, function, i);
1126                         if (!entry)
1127                                 goto out;
1128
1129                         /*
1130                          * The supported check above should have filtered out
1131                          * invalid sub-leafs.  Only valid sub-leafs should
1132                          * reach this point, and they should have a non-zero
1133                          * save state size.  Furthermore, check whether the
1134                          * processor agrees with permitted_xcr0/permitted_xss
1135                          * on whether this is an XCR0- or IA32_XSS-managed area.
1136                          */
1137                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1138                                 --array->nent;
1139                                 continue;
1140                         }
1141
1142                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1143                                 entry->ecx &= ~BIT_ULL(2);
1144                         entry->edx = 0;
1145                 }
1146                 break;
1147         }
1148         case 0x12:
1149                 /* Intel SGX */
1150                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1151                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1152                         break;
1153                 }
1154
1155                 /*
1156                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1157                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1158                  * are restricted by kernel and KVM capabilities (like most
1159                  * feature flags), while enclave size is unrestricted.
1160                  */
1161                 cpuid_entry_override(entry, CPUID_12_EAX);
1162                 entry->ebx &= SGX_MISC_EXINFO;
1163
1164                 entry = do_host_cpuid(array, function, 1);
1165                 if (!entry)
1166                         goto out;
1167
1168                 /*
1169                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1170                  * feature flags.  Advertise all supported flags, including
1171                  * privileged attributes that require explicit opt-in from
1172                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1173                  * expected to derive it from supported XCR0.
1174                  */
1175                 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1176                 entry->ebx &= 0;
1177                 break;
1178         /* Intel PT */
1179         case 0x14:
1180                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1181                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1182                         break;
1183                 }
1184
1185                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1186                         if (!do_host_cpuid(array, function, i))
1187                                 goto out;
1188                 }
1189                 break;
1190         /* Intel AMX TILE */
1191         case 0x1d:
1192                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1193                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1194                         break;
1195                 }
1196
1197                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1198                         if (!do_host_cpuid(array, function, i))
1199                                 goto out;
1200                 }
1201                 break;
1202         case 0x1e: /* TMUL information */
1203                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1204                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1205                         break;
1206                 }
1207                 break;
1208         case 0x24: {
1209                 u8 avx10_version;
1210
1211                 if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1212                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1213                         break;
1214                 }
1215
1216                 /*
1217                  * The AVX10 version is encoded in EBX[7:0].  Note, the version
1218                  * is guaranteed to be >=1 if AVX10 is supported.  Note #2, the
1219                  * version needs to be captured before overriding EBX features!
1220                  */
1221                 avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1222                 cpuid_entry_override(entry, CPUID_24_0_EBX);
1223                 entry->ebx |= avx10_version;
1224
1225                 entry->eax = 0;
1226                 entry->ecx = 0;
1227                 entry->edx = 0;
1228                 break;
1229         }
1230         case KVM_CPUID_SIGNATURE: {
1231                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1232                 entry->eax = KVM_CPUID_FEATURES;
1233                 entry->ebx = sigptr[0];
1234                 entry->ecx = sigptr[1];
1235                 entry->edx = sigptr[2];
1236                 break;
1237         }
1238         case KVM_CPUID_FEATURES:
1239                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1240                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1241                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1242                              (1 << KVM_FEATURE_ASYNC_PF) |
1243                              (1 << KVM_FEATURE_PV_EOI) |
1244                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1245                              (1 << KVM_FEATURE_PV_UNHALT) |
1246                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1247                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1248                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1249                              (1 << KVM_FEATURE_POLL_CONTROL) |
1250                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1251                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1252
1253                 if (sched_info_on())
1254                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1255
1256                 entry->ebx = 0;
1257                 entry->ecx = 0;
1258                 entry->edx = 0;
1259                 break;
1260         case 0x80000000:
1261                 entry->eax = min(entry->eax, 0x80000022);
1262                 /*
1263                  * Serializing LFENCE is reported in a multitude of ways, and
1264                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1265                  * userspace by providing the CPUID leaf ourselves.
1266                  *
1267                  * However, only do it if the host has CPUID leaf 0x8000001d.
1268                  * QEMU thinks that it can query the host blindly for that
1269                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1270                  * above.  The processor merrily returns values from the
1271                  * highest Intel leaf which QEMU tries to use as the guest's
1272                  * 0x8000001d.  Even worse, this can result in an infinite
1273                  * loop if said highest leaf has no subleaves indexed by ECX.
1274                  */
1275                 if (entry->eax >= 0x8000001d &&
1276                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1277                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1278                         entry->eax = max(entry->eax, 0x80000021);
1279                 break;
1280         case 0x80000001:
1281                 entry->ebx &= ~GENMASK(27, 16);
1282                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1283                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1284                 break;
1285         case 0x80000005:
1286                 /*  Pass host L1 cache and TLB info. */
1287                 break;
1288         case 0x80000006:
1289                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1290                 entry->edx &= ~GENMASK(17, 16);
1291                 break;
1292         case 0x80000007: /* Advanced power management */
1293                 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1294
1295                 /* mask against host */
1296                 entry->edx &= boot_cpu_data.x86_power;
1297                 entry->eax = entry->ebx = entry->ecx = 0;
1298                 break;
1299         case 0x80000008: {
1300                 /*
1301                  * GuestPhysAddrSize (EAX[23:16]) is intended for software
1302                  * use.
1303                  *
1304                  * KVM's ABI is to report the effective MAXPHYADDR for the
1305                  * guest in PhysAddrSize (phys_as), and the maximum
1306                  * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1307                  *
1308                  * GuestPhysAddrSize is valid if and only if TDP is enabled,
1309                  * in which case the max GPA that can be addressed by KVM may
1310                  * be less than the max GPA that can be legally generated by
1311                  * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1312                  * support 5-level TDP.
1313                  */
1314                 unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1315                 unsigned int phys_as, g_phys_as;
1316
1317                 /*
1318                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1319                  * the guest operates in the same PA space as the host, i.e.
1320                  * reductions in MAXPHYADDR for memory encryption affect shadow
1321                  * paging, too.
1322                  *
1323                  * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1324                  * reductions to the HPAs do not affect GPAs.  The max
1325                  * addressable GPA is the same as the max effective GPA, except
1326                  * that it's capped at 48 bits if 5-level TDP isn't supported
1327                  * (hardware processes bits 51:48 only when walking the fifth
1328                  * level page table).
1329                  */
1330                 if (!tdp_enabled) {
1331                         phys_as = boot_cpu_data.x86_phys_bits;
1332                         g_phys_as = 0;
1333                 } else {
1334                         phys_as = entry->eax & 0xff;
1335                         g_phys_as = phys_as;
1336                         if (kvm_mmu_get_max_tdp_level() < 5)
1337                                 g_phys_as = min(g_phys_as, 48);
1338                 }
1339
1340                 entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1341                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1342                 entry->edx = 0;
1343                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1344                 break;
1345         }
1346         case 0x8000000A:
1347                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1348                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1349                         break;
1350                 }
1351                 entry->eax = 1; /* SVM revision 1 */
1352                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1353                                    ASID emulation to nested SVM */
1354                 entry->ecx = 0; /* Reserved */
1355                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1356                 break;
1357         case 0x80000019:
1358                 entry->ecx = entry->edx = 0;
1359                 break;
1360         case 0x8000001a:
1361                 entry->eax &= GENMASK(2, 0);
1362                 entry->ebx = entry->ecx = entry->edx = 0;
1363                 break;
1364         case 0x8000001e:
1365                 /* Do not return host topology information.  */
1366                 entry->eax = entry->ebx = entry->ecx = 0;
1367                 entry->edx = 0; /* reserved */
1368                 break;
1369         case 0x8000001F:
1370                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1371                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1372                 } else {
1373                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1374                         /* Clear NumVMPL since KVM does not support VMPL.  */
1375                         entry->ebx &= ~GENMASK(31, 12);
1376                         /*
1377                          * Enumerate '0' for "PA bits reduction", the adjusted
1378                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1379                          */
1380                         entry->ebx &= ~GENMASK(11, 6);
1381                 }
1382                 break;
1383         case 0x80000020:
1384                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1385                 break;
1386         case 0x80000021:
1387                 entry->ebx = entry->ecx = entry->edx = 0;
1388                 cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1389                 break;
1390         /* AMD Extended Performance Monitoring and Debug */
1391         case 0x80000022: {
1392                 union cpuid_0x80000022_ebx ebx;
1393
1394                 entry->ecx = entry->edx = 0;
1395                 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1396                         entry->eax = entry->ebx;
1397                         break;
1398                 }
1399
1400                 cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1401
1402                 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1403                         ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1404                 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1405                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1406                 else
1407                         ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1408
1409                 entry->ebx = ebx.full;
1410                 break;
1411         }
1412         /*Add support for Centaur's CPUID instruction*/
1413         case 0xC0000000:
1414                 /*Just support up to 0xC0000004 now*/
1415                 entry->eax = min(entry->eax, 0xC0000004);
1416                 break;
1417         case 0xC0000001:
1418                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1419                 break;
1420         case 3: /* Processor serial number */
1421         case 5: /* MONITOR/MWAIT */
1422         case 0xC0000002:
1423         case 0xC0000003:
1424         case 0xC0000004:
1425         default:
1426                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1427                 break;
1428         }
1429
1430         r = 0;
1431
1432 out:
1433         put_cpu();
1434
1435         return r;
1436 }
1437
1438 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1439                          unsigned int type)
1440 {
1441         if (type == KVM_GET_EMULATED_CPUID)
1442                 return __do_cpuid_func_emulated(array, func);
1443
1444         return __do_cpuid_func(array, func);
1445 }
1446
1447 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1448
1449 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1450                           unsigned int type)
1451 {
1452         u32 limit;
1453         int r;
1454
1455         if (func == CENTAUR_CPUID_SIGNATURE &&
1456             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1457                 return 0;
1458
1459         r = do_cpuid_func(array, func, type);
1460         if (r)
1461                 return r;
1462
1463         limit = array->entries[array->nent - 1].eax;
1464         for (func = func + 1; func <= limit; ++func) {
1465                 r = do_cpuid_func(array, func, type);
1466                 if (r)
1467                         break;
1468         }
1469
1470         return r;
1471 }
1472
1473 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1474                                  __u32 num_entries, unsigned int ioctl_type)
1475 {
1476         int i;
1477         __u32 pad[3];
1478
1479         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1480                 return false;
1481
1482         /*
1483          * We want to make sure that ->padding is being passed clean from
1484          * userspace in case we want to use it for something in the future.
1485          *
1486          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1487          * have to give ourselves satisfied only with the emulated side. /me
1488          * sheds a tear.
1489          */
1490         for (i = 0; i < num_entries; i++) {
1491                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1492                         return true;
1493
1494                 if (pad[0] || pad[1] || pad[2])
1495                         return true;
1496         }
1497         return false;
1498 }
1499
1500 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1501                             struct kvm_cpuid_entry2 __user *entries,
1502                             unsigned int type)
1503 {
1504         static const u32 funcs[] = {
1505                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1506         };
1507
1508         struct kvm_cpuid_array array = {
1509                 .nent = 0,
1510         };
1511         int r, i;
1512
1513         if (cpuid->nent < 1)
1514                 return -E2BIG;
1515         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1516                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1517
1518         if (sanity_check_entries(entries, cpuid->nent, type))
1519                 return -EINVAL;
1520
1521         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1522         if (!array.entries)
1523                 return -ENOMEM;
1524
1525         array.maxnent = cpuid->nent;
1526
1527         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1528                 r = get_cpuid_func(&array, funcs[i], type);
1529                 if (r)
1530                         goto out_free;
1531         }
1532         cpuid->nent = array.nent;
1533
1534         if (copy_to_user(entries, array.entries,
1535                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1536                 r = -EFAULT;
1537
1538 out_free:
1539         kvfree(array.entries);
1540         return r;
1541 }
1542
1543 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1544                                                     u32 function, u32 index)
1545 {
1546         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1547                                  function, index);
1548 }
1549 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1550
1551 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1552                                               u32 function)
1553 {
1554         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1555                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1558
1559 /*
1560  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1561  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1562  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1563  * range.  Centaur/VIA follows Intel semantics.
1564  *
1565  * A leaf is considered out-of-range if its function is higher than the maximum
1566  * supported leaf of its associated class or if its associated class does not
1567  * exist.
1568  *
1569  * There are three primary classes to be considered, with their respective
1570  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1571  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1572  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1573  *
1574  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1575  *  - Hypervisor: 0x40000000 - 0x4fffffff
1576  *  - Extended:   0x80000000 - 0xbfffffff
1577  *  - Centaur:    0xc0000000 - 0xcfffffff
1578  *
1579  * The Hypervisor class is further subdivided into sub-classes that each act as
1580  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1581  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1582  * CPUID sub-classes are:
1583  *
1584  *  - HyperV:     0x40000000 - 0x400000ff
1585  *  - KVM:        0x40000100 - 0x400001ff
1586  */
1587 static struct kvm_cpuid_entry2 *
1588 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1589 {
1590         struct kvm_cpuid_entry2 *basic, *class;
1591         u32 function = *fn_ptr;
1592
1593         basic = kvm_find_cpuid_entry(vcpu, 0);
1594         if (!basic)
1595                 return NULL;
1596
1597         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1598             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1599                 return NULL;
1600
1601         if (function >= 0x40000000 && function <= 0x4fffffff)
1602                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1603         else if (function >= 0xc0000000)
1604                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1605         else
1606                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1607
1608         if (class && function <= class->eax)
1609                 return NULL;
1610
1611         /*
1612          * Leaf specific adjustments are also applied when redirecting to the
1613          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1614          * entry for CPUID.0xb.index (see below), then the output value for EDX
1615          * needs to be pulled from CPUID.0xb.1.
1616          */
1617         *fn_ptr = basic->eax;
1618
1619         /*
1620          * The class does not exist or the requested function is out of range;
1621          * the effective CPUID entry is the max basic leaf.  Note, the index of
1622          * the original requested leaf is observed!
1623          */
1624         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1625 }
1626
1627 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1628                u32 *ecx, u32 *edx, bool exact_only)
1629 {
1630         u32 orig_function = *eax, function = *eax, index = *ecx;
1631         struct kvm_cpuid_entry2 *entry;
1632         bool exact, used_max_basic = false;
1633
1634         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1635         exact = !!entry;
1636
1637         if (!entry && !exact_only) {
1638                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1639                 used_max_basic = !!entry;
1640         }
1641
1642         if (entry) {
1643                 *eax = entry->eax;
1644                 *ebx = entry->ebx;
1645                 *ecx = entry->ecx;
1646                 *edx = entry->edx;
1647                 if (function == 7 && index == 0) {
1648                         u64 data;
1649                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1650                             (data & TSX_CTRL_CPUID_CLEAR))
1651                                 *ebx &= ~(F(RTM) | F(HLE));
1652                 } else if (function == 0x80000007) {
1653                         if (kvm_hv_invtsc_suppressed(vcpu))
1654                                 *edx &= ~SF(CONSTANT_TSC);
1655                 }
1656         } else {
1657                 *eax = *ebx = *ecx = *edx = 0;
1658                 /*
1659                  * When leaf 0BH or 1FH is defined, CL is pass-through
1660                  * and EDX is always the x2APIC ID, even for undefined
1661                  * subleaves. Index 1 will exist iff the leaf is
1662                  * implemented, so we pass through CL iff leaf 1
1663                  * exists. EDX can be copied from any existing index.
1664                  */
1665                 if (function == 0xb || function == 0x1f) {
1666                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1667                         if (entry) {
1668                                 *ecx = index & 0xff;
1669                                 *edx = entry->edx;
1670                         }
1671                 }
1672         }
1673         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1674                         used_max_basic);
1675         return exact;
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_cpuid);
1678
1679 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1680 {
1681         u32 eax, ebx, ecx, edx;
1682
1683         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1684                 return 1;
1685
1686         eax = kvm_rax_read(vcpu);
1687         ecx = kvm_rcx_read(vcpu);
1688         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1689         kvm_rax_write(vcpu, eax);
1690         kvm_rbx_write(vcpu, ebx);
1691         kvm_rcx_write(vcpu, ecx);
1692         kvm_rdx_write(vcpu, edx);
1693         return kvm_skip_emulated_instruction(vcpu);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
This page took 0.12049 seconds and 4 git commands to generate.