]> Git Repo - J-linux.git/blob - arch/x86/kernel/machine_kexec_64.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <[email protected]>
5  */
6
7 #define pr_fmt(fmt)     "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31 #include <asm/efi.h>
32
33 #ifdef CONFIG_ACPI
34 /*
35  * Used while adding mapping for ACPI tables.
36  * Can be reused when other iomem regions need be mapped
37  */
38 struct init_pgtable_data {
39         struct x86_mapping_info *info;
40         pgd_t *level4p;
41 };
42
43 static int mem_region_callback(struct resource *res, void *arg)
44 {
45         struct init_pgtable_data *data = arg;
46
47         return kernel_ident_mapping_init(data->info, data->level4p,
48                                          res->start, res->end + 1);
49 }
50
51 static int
52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53 {
54         struct init_pgtable_data data;
55         unsigned long flags;
56         int ret;
57
58         data.info = info;
59         data.level4p = level4p;
60         flags = IORESOURCE_MEM | IORESOURCE_BUSY;
61
62         ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63                                   &data, mem_region_callback);
64         if (ret && ret != -EINVAL)
65                 return ret;
66
67         /* ACPI tables could be located in ACPI Non-volatile Storage region */
68         ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69                                   &data, mem_region_callback);
70         if (ret && ret != -EINVAL)
71                 return ret;
72
73         return 0;
74 }
75 #else
76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77 #endif
78
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops * const kexec_file_loaders[] = {
81                 &kexec_bzImage64_ops,
82                 NULL
83 };
84 #endif
85
86 static int
87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88 {
89 #ifdef CONFIG_EFI
90         unsigned long mstart, mend;
91         void *kaddr;
92         int ret;
93
94         if (!efi_enabled(EFI_BOOT))
95                 return 0;
96
97         mstart = (boot_params.efi_info.efi_systab |
98                         ((u64)boot_params.efi_info.efi_systab_hi<<32));
99
100         if (efi_enabled(EFI_64BIT))
101                 mend = mstart + sizeof(efi_system_table_64_t);
102         else
103                 mend = mstart + sizeof(efi_system_table_32_t);
104
105         if (!mstart)
106                 return 0;
107
108         ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
109         if (ret)
110                 return ret;
111
112         kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
113         if (!kaddr) {
114                 pr_err("Could not map UEFI system table\n");
115                 return -ENOMEM;
116         }
117
118         mstart = efi_config_table;
119
120         if (efi_enabled(EFI_64BIT)) {
121                 efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
122
123                 mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
124         } else {
125                 efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
126
127                 mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
128         }
129
130         memunmap(kaddr);
131
132         return kernel_ident_mapping_init(info, level4p, mstart, mend);
133 #endif
134         return 0;
135 }
136
137 static void free_transition_pgtable(struct kimage *image)
138 {
139         free_page((unsigned long)image->arch.p4d);
140         image->arch.p4d = NULL;
141         free_page((unsigned long)image->arch.pud);
142         image->arch.pud = NULL;
143         free_page((unsigned long)image->arch.pmd);
144         image->arch.pmd = NULL;
145         free_page((unsigned long)image->arch.pte);
146         image->arch.pte = NULL;
147 }
148
149 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
150 {
151         pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
152         unsigned long vaddr, paddr;
153         int result = -ENOMEM;
154         p4d_t *p4d;
155         pud_t *pud;
156         pmd_t *pmd;
157         pte_t *pte;
158
159         vaddr = (unsigned long)relocate_kernel;
160         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
161         pgd += pgd_index(vaddr);
162         if (!pgd_present(*pgd)) {
163                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
164                 if (!p4d)
165                         goto err;
166                 image->arch.p4d = p4d;
167                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
168         }
169         p4d = p4d_offset(pgd, vaddr);
170         if (!p4d_present(*p4d)) {
171                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
172                 if (!pud)
173                         goto err;
174                 image->arch.pud = pud;
175                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
176         }
177         pud = pud_offset(p4d, vaddr);
178         if (!pud_present(*pud)) {
179                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
180                 if (!pmd)
181                         goto err;
182                 image->arch.pmd = pmd;
183                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
184         }
185         pmd = pmd_offset(pud, vaddr);
186         if (!pmd_present(*pmd)) {
187                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
188                 if (!pte)
189                         goto err;
190                 image->arch.pte = pte;
191                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
192         }
193         pte = pte_offset_kernel(pmd, vaddr);
194
195         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
196                 prot = PAGE_KERNEL_EXEC;
197
198         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
199         return 0;
200 err:
201         return result;
202 }
203
204 static void *alloc_pgt_page(void *data)
205 {
206         struct kimage *image = (struct kimage *)data;
207         struct page *page;
208         void *p = NULL;
209
210         page = kimage_alloc_control_pages(image, 0);
211         if (page) {
212                 p = page_address(page);
213                 clear_page(p);
214         }
215
216         return p;
217 }
218
219 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
220 {
221         struct x86_mapping_info info = {
222                 .alloc_pgt_page = alloc_pgt_page,
223                 .context        = image,
224                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
225                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
226         };
227         unsigned long mstart, mend;
228         pgd_t *level4p;
229         int result;
230         int i;
231
232         level4p = (pgd_t *)__va(start_pgtable);
233         clear_page(level4p);
234
235         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
236                 info.page_flag   |= _PAGE_ENC;
237                 info.kernpg_flag |= _PAGE_ENC;
238         }
239
240         if (direct_gbpages)
241                 info.direct_gbpages = true;
242
243         for (i = 0; i < nr_pfn_mapped; i++) {
244                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
245                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
246
247                 result = kernel_ident_mapping_init(&info,
248                                                  level4p, mstart, mend);
249                 if (result)
250                         return result;
251         }
252
253         /*
254          * segments's mem ranges could be outside 0 ~ max_pfn,
255          * for example when jump back to original kernel from kexeced kernel.
256          * or first kernel is booted with user mem map, and second kernel
257          * could be loaded out of that range.
258          */
259         for (i = 0; i < image->nr_segments; i++) {
260                 mstart = image->segment[i].mem;
261                 mend   = mstart + image->segment[i].memsz;
262
263                 result = kernel_ident_mapping_init(&info,
264                                                  level4p, mstart, mend);
265
266                 if (result)
267                         return result;
268         }
269
270         /*
271          * Prepare EFI systab and ACPI tables for kexec kernel since they are
272          * not covered by pfn_mapped.
273          */
274         result = map_efi_systab(&info, level4p);
275         if (result)
276                 return result;
277
278         result = map_acpi_tables(&info, level4p);
279         if (result)
280                 return result;
281
282         return init_transition_pgtable(image, level4p);
283 }
284
285 static void load_segments(void)
286 {
287         __asm__ __volatile__ (
288                 "\tmovl %0,%%ds\n"
289                 "\tmovl %0,%%es\n"
290                 "\tmovl %0,%%ss\n"
291                 "\tmovl %0,%%fs\n"
292                 "\tmovl %0,%%gs\n"
293                 : : "a" (__KERNEL_DS) : "memory"
294                 );
295 }
296
297 int machine_kexec_prepare(struct kimage *image)
298 {
299         unsigned long start_pgtable;
300         int result;
301
302         /* Calculate the offsets */
303         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
304
305         /* Setup the identity mapped 64bit page table */
306         result = init_pgtable(image, start_pgtable);
307         if (result)
308                 return result;
309
310         return 0;
311 }
312
313 void machine_kexec_cleanup(struct kimage *image)
314 {
315         free_transition_pgtable(image);
316 }
317
318 /*
319  * Do not allocate memory (or fail in any way) in machine_kexec().
320  * We are past the point of no return, committed to rebooting now.
321  */
322 void machine_kexec(struct kimage *image)
323 {
324         unsigned long page_list[PAGES_NR];
325         unsigned int host_mem_enc_active;
326         int save_ftrace_enabled;
327         void *control_page;
328
329         /*
330          * This must be done before load_segments() since if call depth tracking
331          * is used then GS must be valid to make any function calls.
332          */
333         host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
334
335 #ifdef CONFIG_KEXEC_JUMP
336         if (image->preserve_context)
337                 save_processor_state();
338 #endif
339
340         save_ftrace_enabled = __ftrace_enabled_save();
341
342         /* Interrupts aren't acceptable while we reboot */
343         local_irq_disable();
344         hw_breakpoint_disable();
345         cet_disable();
346
347         if (image->preserve_context) {
348 #ifdef CONFIG_X86_IO_APIC
349                 /*
350                  * We need to put APICs in legacy mode so that we can
351                  * get timer interrupts in second kernel. kexec/kdump
352                  * paths already have calls to restore_boot_irq_mode()
353                  * in one form or other. kexec jump path also need one.
354                  */
355                 clear_IO_APIC();
356                 restore_boot_irq_mode();
357 #endif
358         }
359
360         control_page = page_address(image->control_code_page) + PAGE_SIZE;
361         __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
362
363         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
364         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
365         page_list[PA_TABLE_PAGE] =
366           (unsigned long)__pa(page_address(image->control_code_page));
367
368         if (image->type == KEXEC_TYPE_DEFAULT)
369                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
370                                                 << PAGE_SHIFT);
371
372         /*
373          * The segment registers are funny things, they have both a
374          * visible and an invisible part.  Whenever the visible part is
375          * set to a specific selector, the invisible part is loaded
376          * with from a table in memory.  At no other time is the
377          * descriptor table in memory accessed.
378          *
379          * I take advantage of this here by force loading the
380          * segments, before I zap the gdt with an invalid value.
381          */
382         load_segments();
383         /*
384          * The gdt & idt are now invalid.
385          * If you want to load them you must set up your own idt & gdt.
386          */
387         native_idt_invalidate();
388         native_gdt_invalidate();
389
390         /* now call it */
391         image->start = relocate_kernel((unsigned long)image->head,
392                                        (unsigned long)page_list,
393                                        image->start,
394                                        image->preserve_context,
395                                        host_mem_enc_active);
396
397 #ifdef CONFIG_KEXEC_JUMP
398         if (image->preserve_context)
399                 restore_processor_state();
400 #endif
401
402         __ftrace_enabled_restore(save_ftrace_enabled);
403 }
404
405 /* arch-dependent functionality related to kexec file-based syscall */
406
407 #ifdef CONFIG_KEXEC_FILE
408 /*
409  * Apply purgatory relocations.
410  *
411  * @pi:         Purgatory to be relocated.
412  * @section:    Section relocations applying to.
413  * @relsec:     Section containing RELAs.
414  * @symtabsec:  Corresponding symtab.
415  *
416  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
417  */
418 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
419                                      Elf_Shdr *section, const Elf_Shdr *relsec,
420                                      const Elf_Shdr *symtabsec)
421 {
422         unsigned int i;
423         Elf64_Rela *rel;
424         Elf64_Sym *sym;
425         void *location;
426         unsigned long address, sec_base, value;
427         const char *strtab, *name, *shstrtab;
428         const Elf_Shdr *sechdrs;
429
430         /* String & section header string table */
431         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
432         strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
433         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
434
435         rel = (void *)pi->ehdr + relsec->sh_offset;
436
437         pr_debug("Applying relocate section %s to %u\n",
438                  shstrtab + relsec->sh_name, relsec->sh_info);
439
440         for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
441
442                 /*
443                  * rel[i].r_offset contains byte offset from beginning
444                  * of section to the storage unit affected.
445                  *
446                  * This is location to update. This is temporary buffer
447                  * where section is currently loaded. This will finally be
448                  * loaded to a different address later, pointed to by
449                  * ->sh_addr. kexec takes care of moving it
450                  *  (kexec_load_segment()).
451                  */
452                 location = pi->purgatory_buf;
453                 location += section->sh_offset;
454                 location += rel[i].r_offset;
455
456                 /* Final address of the location */
457                 address = section->sh_addr + rel[i].r_offset;
458
459                 /*
460                  * rel[i].r_info contains information about symbol table index
461                  * w.r.t which relocation must be made and type of relocation
462                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
463                  * these respectively.
464                  */
465                 sym = (void *)pi->ehdr + symtabsec->sh_offset;
466                 sym += ELF64_R_SYM(rel[i].r_info);
467
468                 if (sym->st_name)
469                         name = strtab + sym->st_name;
470                 else
471                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
472
473                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
474                          name, sym->st_info, sym->st_shndx, sym->st_value,
475                          sym->st_size);
476
477                 if (sym->st_shndx == SHN_UNDEF) {
478                         pr_err("Undefined symbol: %s\n", name);
479                         return -ENOEXEC;
480                 }
481
482                 if (sym->st_shndx == SHN_COMMON) {
483                         pr_err("symbol '%s' in common section\n", name);
484                         return -ENOEXEC;
485                 }
486
487                 if (sym->st_shndx == SHN_ABS)
488                         sec_base = 0;
489                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
490                         pr_err("Invalid section %d for symbol %s\n",
491                                sym->st_shndx, name);
492                         return -ENOEXEC;
493                 } else
494                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
495
496                 value = sym->st_value;
497                 value += sec_base;
498                 value += rel[i].r_addend;
499
500                 switch (ELF64_R_TYPE(rel[i].r_info)) {
501                 case R_X86_64_NONE:
502                         break;
503                 case R_X86_64_64:
504                         *(u64 *)location = value;
505                         break;
506                 case R_X86_64_32:
507                         *(u32 *)location = value;
508                         if (value != *(u32 *)location)
509                                 goto overflow;
510                         break;
511                 case R_X86_64_32S:
512                         *(s32 *)location = value;
513                         if ((s64)value != *(s32 *)location)
514                                 goto overflow;
515                         break;
516                 case R_X86_64_PC32:
517                 case R_X86_64_PLT32:
518                         value -= (u64)address;
519                         *(u32 *)location = value;
520                         break;
521                 default:
522                         pr_err("Unknown rela relocation: %llu\n",
523                                ELF64_R_TYPE(rel[i].r_info));
524                         return -ENOEXEC;
525                 }
526         }
527         return 0;
528
529 overflow:
530         pr_err("Overflow in relocation type %d value 0x%lx\n",
531                (int)ELF64_R_TYPE(rel[i].r_info), value);
532         return -ENOEXEC;
533 }
534
535 int arch_kimage_file_post_load_cleanup(struct kimage *image)
536 {
537         vfree(image->elf_headers);
538         image->elf_headers = NULL;
539         image->elf_headers_sz = 0;
540
541         return kexec_image_post_load_cleanup_default(image);
542 }
543 #endif /* CONFIG_KEXEC_FILE */
544
545 #ifdef CONFIG_CRASH_DUMP
546
547 static int
548 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
549 {
550         struct page *page;
551         unsigned int nr_pages;
552
553         /*
554          * For physical range: [start, end]. We must skip the unassigned
555          * crashk resource with zero-valued "end" member.
556          */
557         if (!end || start > end)
558                 return 0;
559
560         page = pfn_to_page(start >> PAGE_SHIFT);
561         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
562         if (protect)
563                 return set_pages_ro(page, nr_pages);
564         else
565                 return set_pages_rw(page, nr_pages);
566 }
567
568 static void kexec_mark_crashkres(bool protect)
569 {
570         unsigned long control;
571
572         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
573
574         /* Don't touch the control code page used in crash_kexec().*/
575         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
576         /* Control code page is located in the 2nd page. */
577         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
578         control += KEXEC_CONTROL_PAGE_SIZE;
579         kexec_mark_range(control, crashk_res.end, protect);
580 }
581
582 void arch_kexec_protect_crashkres(void)
583 {
584         kexec_mark_crashkres(true);
585 }
586
587 void arch_kexec_unprotect_crashkres(void)
588 {
589         kexec_mark_crashkres(false);
590 }
591 #endif
592
593 /*
594  * During a traditional boot under SME, SME will encrypt the kernel,
595  * so the SME kexec kernel also needs to be un-encrypted in order to
596  * replicate a normal SME boot.
597  *
598  * During a traditional boot under SEV, the kernel has already been
599  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
600  * order to replicate a normal SEV boot.
601  */
602 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
603 {
604         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
605                 return 0;
606
607         /*
608          * If host memory encryption is active we need to be sure that kexec
609          * pages are not encrypted because when we boot to the new kernel the
610          * pages won't be accessed encrypted (initially).
611          */
612         return set_memory_decrypted((unsigned long)vaddr, pages);
613 }
614
615 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
616 {
617         if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
618                 return;
619
620         /*
621          * If host memory encryption is active we need to reset the pages back
622          * to being an encrypted mapping before freeing them.
623          */
624         set_memory_encrypted((unsigned long)vaddr, pages);
625 }
This page took 0.061444 seconds and 4 git commands to generate.