]> Git Repo - J-linux.git/blob - arch/sparc/kernel/smp_64.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / sparc / kernel / smp_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc64 SMP support.
3  *
4  * Copyright (C) 1997, 2007, 2008 David S. Miller ([email protected])
5  */
6
7 #include <linux/export.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/hotplug.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/jiffies.h>
24 #include <linux/profile.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/ftrace.h>
28 #include <linux/cpu.h>
29 #include <linux/slab.h>
30 #include <linux/kgdb.h>
31
32 #include <asm/head.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cpudata.h>
38 #include <asm/hvtramp.h>
39 #include <asm/io.h>
40 #include <asm/timer.h>
41 #include <asm/setup.h>
42
43 #include <asm/irq.h>
44 #include <asm/irq_regs.h>
45 #include <asm/page.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/pgalloc.h>
51 #include <asm/sections.h>
52 #include <asm/prom.h>
53 #include <asm/mdesc.h>
54 #include <asm/ldc.h>
55 #include <asm/hypervisor.h>
56 #include <asm/pcr.h>
57
58 #include "cpumap.h"
59 #include "kernel.h"
60
61 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
62 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
64
65 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66         [0 ... NR_CPUS-1] = CPU_MASK_NONE };
67
68 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69         [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
70
71 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72 EXPORT_SYMBOL(cpu_core_map);
73 EXPORT_SYMBOL(cpu_core_sib_map);
74 EXPORT_SYMBOL(cpu_core_sib_cache_map);
75
76 static cpumask_t smp_commenced_mask;
77
78 static DEFINE_PER_CPU(bool, poke);
79 static bool cpu_poke;
80
81 void smp_info(struct seq_file *m)
82 {
83         int i;
84         
85         seq_printf(m, "State:\n");
86         for_each_online_cpu(i)
87                 seq_printf(m, "CPU%d:\t\tonline\n", i);
88 }
89
90 void smp_bogo(struct seq_file *m)
91 {
92         int i;
93         
94         for_each_online_cpu(i)
95                 seq_printf(m,
96                            "Cpu%dClkTck\t: %016lx\n",
97                            i, cpu_data(i).clock_tick);
98 }
99
100 extern void setup_sparc64_timer(void);
101
102 static volatile unsigned long callin_flag = 0;
103
104 void smp_callin(void)
105 {
106         int cpuid = hard_smp_processor_id();
107
108         __local_per_cpu_offset = __per_cpu_offset(cpuid);
109
110         if (tlb_type == hypervisor)
111                 sun4v_ktsb_register();
112
113         __flush_tlb_all();
114
115         setup_sparc64_timer();
116
117         if (cheetah_pcache_forced_on)
118                 cheetah_enable_pcache();
119
120         callin_flag = 1;
121         __asm__ __volatile__("membar #Sync\n\t"
122                              "flush  %%g6" : : : "memory");
123
124         /* Clear this or we will die instantly when we
125          * schedule back to this idler...
126          */
127         current_thread_info()->new_child = 0;
128
129         /* Attach to the address space of init_task. */
130         mmgrab(&init_mm);
131         current->active_mm = &init_mm;
132
133         /* inform the notifiers about the new cpu */
134         notify_cpu_starting(cpuid);
135
136         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
137                 rmb();
138
139         set_cpu_online(cpuid, true);
140
141         local_irq_enable();
142
143         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
144 }
145
146 void cpu_panic(void)
147 {
148         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
149         panic("SMP bolixed\n");
150 }
151
152 /* This tick register synchronization scheme is taken entirely from
153  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154  *
155  * The only change I've made is to rework it so that the master
156  * initiates the synchonization instead of the slave. -DaveM
157  */
158
159 #define MASTER  0
160 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
161
162 #define NUM_ROUNDS      64      /* magic value */
163 #define NUM_ITERS       5       /* likewise */
164
165 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
166 static unsigned long go[SLAVE + 1];
167
168 #define DEBUG_TICK_SYNC 0
169
170 static inline long get_delta (long *rt, long *master)
171 {
172         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173         unsigned long tcenter, t0, t1, tm;
174         unsigned long i;
175
176         for (i = 0; i < NUM_ITERS; i++) {
177                 t0 = tick_ops->get_tick();
178                 go[MASTER] = 1;
179                 membar_safe("#StoreLoad");
180                 while (!(tm = go[SLAVE]))
181                         rmb();
182                 go[SLAVE] = 0;
183                 wmb();
184                 t1 = tick_ops->get_tick();
185
186                 if (t1 - t0 < best_t1 - best_t0)
187                         best_t0 = t0, best_t1 = t1, best_tm = tm;
188         }
189
190         *rt = best_t1 - best_t0;
191         *master = best_tm - best_t0;
192
193         /* average best_t0 and best_t1 without overflow: */
194         tcenter = (best_t0/2 + best_t1/2);
195         if (best_t0 % 2 + best_t1 % 2 == 2)
196                 tcenter++;
197         return tcenter - best_tm;
198 }
199
200 void smp_synchronize_tick_client(void)
201 {
202         long i, delta, adj, adjust_latency = 0, done = 0;
203         unsigned long flags, rt, master_time_stamp;
204 #if DEBUG_TICK_SYNC
205         struct {
206                 long rt;        /* roundtrip time */
207                 long master;    /* master's timestamp */
208                 long diff;      /* difference between midpoint and master's timestamp */
209                 long lat;       /* estimate of itc adjustment latency */
210         } t[NUM_ROUNDS];
211 #endif
212
213         go[MASTER] = 1;
214
215         while (go[MASTER])
216                 rmb();
217
218         local_irq_save(flags);
219         {
220                 for (i = 0; i < NUM_ROUNDS; i++) {
221                         delta = get_delta(&rt, &master_time_stamp);
222                         if (delta == 0)
223                                 done = 1;       /* let's lock on to this... */
224
225                         if (!done) {
226                                 if (i > 0) {
227                                         adjust_latency += -delta;
228                                         adj = -delta + adjust_latency/4;
229                                 } else
230                                         adj = -delta;
231
232                                 tick_ops->add_tick(adj);
233                         }
234 #if DEBUG_TICK_SYNC
235                         t[i].rt = rt;
236                         t[i].master = master_time_stamp;
237                         t[i].diff = delta;
238                         t[i].lat = adjust_latency/4;
239 #endif
240                 }
241         }
242         local_irq_restore(flags);
243
244 #if DEBUG_TICK_SYNC
245         for (i = 0; i < NUM_ROUNDS; i++)
246                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
248 #endif
249
250         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
251                "(last diff %ld cycles, maxerr %lu cycles)\n",
252                smp_processor_id(), delta, rt);
253 }
254
255 static void smp_start_sync_tick_client(int cpu);
256
257 static void smp_synchronize_one_tick(int cpu)
258 {
259         unsigned long flags, i;
260
261         go[MASTER] = 0;
262
263         smp_start_sync_tick_client(cpu);
264
265         /* wait for client to be ready */
266         while (!go[MASTER])
267                 rmb();
268
269         /* now let the client proceed into his loop */
270         go[MASTER] = 0;
271         membar_safe("#StoreLoad");
272
273         raw_spin_lock_irqsave(&itc_sync_lock, flags);
274         {
275                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
276                         while (!go[MASTER])
277                                 rmb();
278                         go[MASTER] = 0;
279                         wmb();
280                         go[SLAVE] = tick_ops->get_tick();
281                         membar_safe("#StoreLoad");
282                 }
283         }
284         raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
285 }
286
287 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
288 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
289                                 void **descrp)
290 {
291         extern unsigned long sparc64_ttable_tl0;
292         extern unsigned long kern_locked_tte_data;
293         struct hvtramp_descr *hdesc;
294         unsigned long trampoline_ra;
295         struct trap_per_cpu *tb;
296         u64 tte_vaddr, tte_data;
297         unsigned long hv_err;
298         int i;
299
300         hdesc = kzalloc(struct_size(hdesc, maps, num_kernel_image_mappings),
301                         GFP_KERNEL);
302         if (!hdesc) {
303                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
304                        "hvtramp_descr.\n");
305                 return;
306         }
307         *descrp = hdesc;
308
309         hdesc->cpu = cpu;
310         hdesc->num_mappings = num_kernel_image_mappings;
311
312         tb = &trap_block[cpu];
313
314         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316
317         hdesc->thread_reg = thread_reg;
318
319         tte_vaddr = (unsigned long) KERNBASE;
320         tte_data = kern_locked_tte_data;
321
322         for (i = 0; i < hdesc->num_mappings; i++) {
323                 hdesc->maps[i].vaddr = tte_vaddr;
324                 hdesc->maps[i].tte   = tte_data;
325                 tte_vaddr += 0x400000;
326                 tte_data  += 0x400000;
327         }
328
329         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330
331         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
333                                  __pa(hdesc));
334         if (hv_err)
335                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336                        "gives error %lu\n", hv_err);
337 }
338 #endif
339
340 extern unsigned long sparc64_cpu_startup;
341
342 /* The OBP cpu startup callback truncates the 3rd arg cookie to
343  * 32-bits (I think) so to be safe we have it read the pointer
344  * contained here so we work on >4GB machines. -DaveM
345  */
346 static struct thread_info *cpu_new_thread = NULL;
347
348 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
349 {
350         unsigned long entry =
351                 (unsigned long)(&sparc64_cpu_startup);
352         unsigned long cookie =
353                 (unsigned long)(&cpu_new_thread);
354         void *descr = NULL;
355         int timeout, ret;
356
357         callin_flag = 0;
358         cpu_new_thread = task_thread_info(idle);
359
360         if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362                 if (ldom_domaining_enabled)
363                         ldom_startcpu_cpuid(cpu,
364                                             (unsigned long) cpu_new_thread,
365                                             &descr);
366                 else
367 #endif
368                         prom_startcpu_cpuid(cpu, entry, cookie);
369         } else {
370                 struct device_node *dp = of_find_node_by_cpuid(cpu);
371
372                 prom_startcpu(dp->phandle, entry, cookie);
373         }
374
375         for (timeout = 0; timeout < 50000; timeout++) {
376                 if (callin_flag)
377                         break;
378                 udelay(100);
379         }
380
381         if (callin_flag) {
382                 ret = 0;
383         } else {
384                 printk("Processor %d is stuck.\n", cpu);
385                 ret = -ENODEV;
386         }
387         cpu_new_thread = NULL;
388
389         kfree(descr);
390
391         return ret;
392 }
393
394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395 {
396         u64 result, target;
397         int stuck, tmp;
398
399         if (this_is_starfire) {
400                 /* map to real upaid */
401                 cpu = (((cpu & 0x3c) << 1) |
402                         ((cpu & 0x40) >> 4) |
403                         (cpu & 0x3));
404         }
405
406         target = (cpu << 14) | 0x70;
407 again:
408         /* Ok, this is the real Spitfire Errata #54.
409          * One must read back from a UDB internal register
410          * after writes to the UDB interrupt dispatch, but
411          * before the membar Sync for that write.
412          * So we use the high UDB control register (ASI 0x7f,
413          * ADDR 0x20) for the dummy read. -DaveM
414          */
415         tmp = 0x40;
416         __asm__ __volatile__(
417         "wrpr   %1, %2, %%pstate\n\t"
418         "stxa   %4, [%0] %3\n\t"
419         "stxa   %5, [%0+%8] %3\n\t"
420         "add    %0, %8, %0\n\t"
421         "stxa   %6, [%0+%8] %3\n\t"
422         "membar #Sync\n\t"
423         "stxa   %%g0, [%7] %3\n\t"
424         "membar #Sync\n\t"
425         "mov    0x20, %%g1\n\t"
426         "ldxa   [%%g1] 0x7f, %%g0\n\t"
427         "membar #Sync"
428         : "=r" (tmp)
429         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430           "r" (data0), "r" (data1), "r" (data2), "r" (target),
431           "r" (0x10), "0" (tmp)
432         : "g1");
433
434         /* NOTE: PSTATE_IE is still clear. */
435         stuck = 100000;
436         do {
437                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
438                         : "=r" (result)
439                         : "i" (ASI_INTR_DISPATCH_STAT));
440                 if (result == 0) {
441                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442                                              : : "r" (pstate));
443                         return;
444                 }
445                 stuck -= 1;
446                 if (stuck == 0)
447                         break;
448         } while (result & 0x1);
449         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450                              : : "r" (pstate));
451         if (stuck == 0) {
452                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453                        smp_processor_id(), result);
454         } else {
455                 udelay(2);
456                 goto again;
457         }
458 }
459
460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461 {
462         u64 *mondo, data0, data1, data2;
463         u16 *cpu_list;
464         u64 pstate;
465         int i;
466
467         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468         cpu_list = __va(tb->cpu_list_pa);
469         mondo = __va(tb->cpu_mondo_block_pa);
470         data0 = mondo[0];
471         data1 = mondo[1];
472         data2 = mondo[2];
473         for (i = 0; i < cnt; i++)
474                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475 }
476
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478  * packet, but we have no use for that.  However we do take advantage of
479  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480  */
481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482 {
483         int nack_busy_id, is_jbus, need_more;
484         u64 *mondo, pstate, ver, busy_mask;
485         u16 *cpu_list;
486
487         cpu_list = __va(tb->cpu_list_pa);
488         mondo = __va(tb->cpu_mondo_block_pa);
489
490         /* Unfortunately, someone at Sun had the brilliant idea to make the
491          * busy/nack fields hard-coded by ITID number for this Ultra-III
492          * derivative processor.
493          */
494         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
495         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496                    (ver >> 32) == __SERRANO_ID);
497
498         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499
500 retry:
501         need_more = 0;
502         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503                              : : "r" (pstate), "i" (PSTATE_IE));
504
505         /* Setup the dispatch data registers. */
506         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
507                              "stxa      %1, [%4] %6\n\t"
508                              "stxa      %2, [%5] %6\n\t"
509                              "membar    #Sync\n\t"
510                              : /* no outputs */
511                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512                                "r" (0x40), "r" (0x50), "r" (0x60),
513                                "i" (ASI_INTR_W));
514
515         nack_busy_id = 0;
516         busy_mask = 0;
517         {
518                 int i;
519
520                 for (i = 0; i < cnt; i++) {
521                         u64 target, nr;
522
523                         nr = cpu_list[i];
524                         if (nr == 0xffff)
525                                 continue;
526
527                         target = (nr << 14) | 0x70;
528                         if (is_jbus) {
529                                 busy_mask |= (0x1UL << (nr * 2));
530                         } else {
531                                 target |= (nack_busy_id << 24);
532                                 busy_mask |= (0x1UL <<
533                                               (nack_busy_id * 2));
534                         }
535                         __asm__ __volatile__(
536                                 "stxa   %%g0, [%0] %1\n\t"
537                                 "membar #Sync\n\t"
538                                 : /* no outputs */
539                                 : "r" (target), "i" (ASI_INTR_W));
540                         nack_busy_id++;
541                         if (nack_busy_id == 32) {
542                                 need_more = 1;
543                                 break;
544                         }
545                 }
546         }
547
548         /* Now, poll for completion. */
549         {
550                 u64 dispatch_stat, nack_mask;
551                 long stuck;
552
553                 stuck = 100000 * nack_busy_id;
554                 nack_mask = busy_mask << 1;
555                 do {
556                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
557                                              : "=r" (dispatch_stat)
558                                              : "i" (ASI_INTR_DISPATCH_STAT));
559                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
560                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561                                                      : : "r" (pstate));
562                                 if (unlikely(need_more)) {
563                                         int i, this_cnt = 0;
564                                         for (i = 0; i < cnt; i++) {
565                                                 if (cpu_list[i] == 0xffff)
566                                                         continue;
567                                                 cpu_list[i] = 0xffff;
568                                                 this_cnt++;
569                                                 if (this_cnt == 32)
570                                                         break;
571                                         }
572                                         goto retry;
573                                 }
574                                 return;
575                         }
576                         if (!--stuck)
577                                 break;
578                 } while (dispatch_stat & busy_mask);
579
580                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581                                      : : "r" (pstate));
582
583                 if (dispatch_stat & busy_mask) {
584                         /* Busy bits will not clear, continue instead
585                          * of freezing up on this cpu.
586                          */
587                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588                                smp_processor_id(), dispatch_stat);
589                 } else {
590                         int i, this_busy_nack = 0;
591
592                         /* Delay some random time with interrupts enabled
593                          * to prevent deadlock.
594                          */
595                         udelay(2 * nack_busy_id);
596
597                         /* Clear out the mask bits for cpus which did not
598                          * NACK us.
599                          */
600                         for (i = 0; i < cnt; i++) {
601                                 u64 check_mask, nr;
602
603                                 nr = cpu_list[i];
604                                 if (nr == 0xffff)
605                                         continue;
606
607                                 if (is_jbus)
608                                         check_mask = (0x2UL << (2*nr));
609                                 else
610                                         check_mask = (0x2UL <<
611                                                       this_busy_nack);
612                                 if ((dispatch_stat & check_mask) == 0)
613                                         cpu_list[i] = 0xffff;
614                                 this_busy_nack += 2;
615                                 if (this_busy_nack == 64)
616                                         break;
617                         }
618
619                         goto retry;
620                 }
621         }
622 }
623
624 #define CPU_MONDO_COUNTER(cpuid)        (cpu_mondo_counter[cpuid])
625 #define MONDO_USEC_WAIT_MIN             2
626 #define MONDO_USEC_WAIT_MAX             100
627 #define MONDO_RETRY_LIMIT               500000
628
629 /* Multi-cpu list version.
630  *
631  * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
632  * Sometimes not all cpus receive the mondo, requiring us to re-send
633  * the mondo until all cpus have received, or cpus are truly stuck
634  * unable to receive mondo, and we timeout.
635  * Occasionally a target cpu strand is borrowed briefly by hypervisor to
636  * perform guest service, such as PCIe error handling. Consider the
637  * service time, 1 second overall wait is reasonable for 1 cpu.
638  * Here two in-between mondo check wait time are defined: 2 usec for
639  * single cpu quick turn around and up to 100usec for large cpu count.
640  * Deliver mondo to large number of cpus could take longer, we adjusts
641  * the retry count as long as target cpus are making forward progress.
642  */
643 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
644 {
645         int this_cpu, tot_cpus, prev_sent, i, rem;
646         int usec_wait, retries, tot_retries;
647         u16 first_cpu = 0xffff;
648         unsigned long xc_rcvd = 0;
649         unsigned long status;
650         int ecpuerror_id = 0;
651         int enocpu_id = 0;
652         u16 *cpu_list;
653         u16 cpu;
654
655         this_cpu = smp_processor_id();
656         cpu_list = __va(tb->cpu_list_pa);
657         usec_wait = cnt * MONDO_USEC_WAIT_MIN;
658         if (usec_wait > MONDO_USEC_WAIT_MAX)
659                 usec_wait = MONDO_USEC_WAIT_MAX;
660         retries = tot_retries = 0;
661         tot_cpus = cnt;
662         prev_sent = 0;
663
664         do {
665                 int n_sent, mondo_delivered, target_cpu_busy;
666
667                 status = sun4v_cpu_mondo_send(cnt,
668                                               tb->cpu_list_pa,
669                                               tb->cpu_mondo_block_pa);
670
671                 /* HV_EOK means all cpus received the xcall, we're done.  */
672                 if (likely(status == HV_EOK))
673                         goto xcall_done;
674
675                 /* If not these non-fatal errors, panic */
676                 if (unlikely((status != HV_EWOULDBLOCK) &&
677                         (status != HV_ECPUERROR) &&
678                         (status != HV_ENOCPU)))
679                         goto fatal_errors;
680
681                 /* First, see if we made any forward progress.
682                  *
683                  * Go through the cpu_list, count the target cpus that have
684                  * received our mondo (n_sent), and those that did not (rem).
685                  * Re-pack cpu_list with the cpus remain to be retried in the
686                  * front - this simplifies tracking the truly stalled cpus.
687                  *
688                  * The hypervisor indicates successful sends by setting
689                  * cpu list entries to the value 0xffff.
690                  *
691                  * EWOULDBLOCK means some target cpus did not receive the
692                  * mondo and retry usually helps.
693                  *
694                  * ECPUERROR means at least one target cpu is in error state,
695                  * it's usually safe to skip the faulty cpu and retry.
696                  *
697                  * ENOCPU means one of the target cpu doesn't belong to the
698                  * domain, perhaps offlined which is unexpected, but not
699                  * fatal and it's okay to skip the offlined cpu.
700                  */
701                 rem = 0;
702                 n_sent = 0;
703                 for (i = 0; i < cnt; i++) {
704                         cpu = cpu_list[i];
705                         if (likely(cpu == 0xffff)) {
706                                 n_sent++;
707                         } else if ((status == HV_ECPUERROR) &&
708                                 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
709                                 ecpuerror_id = cpu + 1;
710                         } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
711                                 enocpu_id = cpu + 1;
712                         } else {
713                                 cpu_list[rem++] = cpu;
714                         }
715                 }
716
717                 /* No cpu remained, we're done. */
718                 if (rem == 0)
719                         break;
720
721                 /* Otherwise, update the cpu count for retry. */
722                 cnt = rem;
723
724                 /* Record the overall number of mondos received by the
725                  * first of the remaining cpus.
726                  */
727                 if (first_cpu != cpu_list[0]) {
728                         first_cpu = cpu_list[0];
729                         xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
730                 }
731
732                 /* Was any mondo delivered successfully? */
733                 mondo_delivered = (n_sent > prev_sent);
734                 prev_sent = n_sent;
735
736                 /* or, was any target cpu busy processing other mondos? */
737                 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
738                 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
739
740                 /* Retry count is for no progress. If we're making progress,
741                  * reset the retry count.
742                  */
743                 if (likely(mondo_delivered || target_cpu_busy)) {
744                         tot_retries += retries;
745                         retries = 0;
746                 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
747                         goto fatal_mondo_timeout;
748                 }
749
750                 /* Delay a little bit to let other cpus catch up on
751                  * their cpu mondo queue work.
752                  */
753                 if (!mondo_delivered)
754                         udelay(usec_wait);
755
756                 retries++;
757         } while (1);
758
759 xcall_done:
760         if (unlikely(ecpuerror_id > 0)) {
761                 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
762                        this_cpu, ecpuerror_id - 1);
763         } else if (unlikely(enocpu_id > 0)) {
764                 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
765                        this_cpu, enocpu_id - 1);
766         }
767         return;
768
769 fatal_errors:
770         /* fatal errors include bad alignment, etc */
771         pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
772                this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
773         panic("Unexpected SUN4V mondo error %lu\n", status);
774
775 fatal_mondo_timeout:
776         /* some cpus being non-responsive to the cpu mondo */
777         pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
778                this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
779         panic("SUN4V mondo timeout panic\n");
780 }
781
782 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
783
784 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
785 {
786         struct trap_per_cpu *tb;
787         int this_cpu, i, cnt;
788         unsigned long flags;
789         u16 *cpu_list;
790         u64 *mondo;
791
792         /* We have to do this whole thing with interrupts fully disabled.
793          * Otherwise if we send an xcall from interrupt context it will
794          * corrupt both our mondo block and cpu list state.
795          *
796          * One consequence of this is that we cannot use timeout mechanisms
797          * that depend upon interrupts being delivered locally.  So, for
798          * example, we cannot sample jiffies and expect it to advance.
799          *
800          * Fortunately, udelay() uses %stick/%tick so we can use that.
801          */
802         local_irq_save(flags);
803
804         this_cpu = smp_processor_id();
805         tb = &trap_block[this_cpu];
806
807         mondo = __va(tb->cpu_mondo_block_pa);
808         mondo[0] = data0;
809         mondo[1] = data1;
810         mondo[2] = data2;
811         wmb();
812
813         cpu_list = __va(tb->cpu_list_pa);
814
815         /* Setup the initial cpu list.  */
816         cnt = 0;
817         for_each_cpu(i, mask) {
818                 if (i == this_cpu || !cpu_online(i))
819                         continue;
820                 cpu_list[cnt++] = i;
821         }
822
823         if (cnt)
824                 xcall_deliver_impl(tb, cnt);
825
826         local_irq_restore(flags);
827 }
828
829 /* Send cross call to all processors mentioned in MASK_P
830  * except self.  Really, there are only two cases currently,
831  * "cpu_online_mask" and "mm_cpumask(mm)".
832  */
833 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
834 {
835         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
836
837         xcall_deliver(data0, data1, data2, mask);
838 }
839
840 /* Send cross call to all processors except self. */
841 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
842 {
843         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
844 }
845
846 extern unsigned long xcall_sync_tick;
847
848 static void smp_start_sync_tick_client(int cpu)
849 {
850         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
851                       cpumask_of(cpu));
852 }
853
854 extern unsigned long xcall_call_function;
855
856 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
857 {
858         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
859 }
860
861 extern unsigned long xcall_call_function_single;
862
863 void arch_send_call_function_single_ipi(int cpu)
864 {
865         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
866                       cpumask_of(cpu));
867 }
868
869 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
870 {
871         clear_softint(1 << irq);
872         irq_enter();
873         generic_smp_call_function_interrupt();
874         irq_exit();
875 }
876
877 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
878 {
879         clear_softint(1 << irq);
880         irq_enter();
881         generic_smp_call_function_single_interrupt();
882         irq_exit();
883 }
884
885 static void tsb_sync(void *info)
886 {
887         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
888         struct mm_struct *mm = info;
889
890         /* It is not valid to test "current->active_mm == mm" here.
891          *
892          * The value of "current" is not changed atomically with
893          * switch_mm().  But that's OK, we just need to check the
894          * current cpu's trap block PGD physical address.
895          */
896         if (tp->pgd_paddr == __pa(mm->pgd))
897                 tsb_context_switch(mm);
898 }
899
900 void smp_tsb_sync(struct mm_struct *mm)
901 {
902         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
903 }
904
905 extern unsigned long xcall_flush_tlb_mm;
906 extern unsigned long xcall_flush_tlb_page;
907 extern unsigned long xcall_flush_tlb_kernel_range;
908 extern unsigned long xcall_fetch_glob_regs;
909 extern unsigned long xcall_fetch_glob_pmu;
910 extern unsigned long xcall_fetch_glob_pmu_n4;
911 extern unsigned long xcall_receive_signal;
912 extern unsigned long xcall_new_mmu_context_version;
913 #ifdef CONFIG_KGDB
914 extern unsigned long xcall_kgdb_capture;
915 #endif
916
917 #ifdef DCACHE_ALIASING_POSSIBLE
918 extern unsigned long xcall_flush_dcache_page_cheetah;
919 #endif
920 extern unsigned long xcall_flush_dcache_page_spitfire;
921
922 static inline void __local_flush_dcache_folio(struct folio *folio)
923 {
924         unsigned int i, nr = folio_nr_pages(folio);
925
926 #ifdef DCACHE_ALIASING_POSSIBLE
927         for (i = 0; i < nr; i++)
928                 __flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
929                             ((tlb_type == spitfire) &&
930                              folio_flush_mapping(folio) != NULL));
931 #else
932         if (folio_flush_mapping(folio) != NULL &&
933             tlb_type == spitfire) {
934                 unsigned long pfn = folio_pfn(folio)
935                 for (i = 0; i < nr; i++)
936                         __flush_icache_page((pfn + i) * PAGE_SIZE);
937         }
938 #endif
939 }
940
941 void smp_flush_dcache_folio_impl(struct folio *folio, int cpu)
942 {
943         int this_cpu;
944
945         if (tlb_type == hypervisor)
946                 return;
947
948 #ifdef CONFIG_DEBUG_DCFLUSH
949         atomic_inc(&dcpage_flushes);
950 #endif
951
952         this_cpu = get_cpu();
953
954         if (cpu == this_cpu) {
955                 __local_flush_dcache_folio(folio);
956         } else if (cpu_online(cpu)) {
957                 void *pg_addr = folio_address(folio);
958                 u64 data0 = 0;
959
960                 if (tlb_type == spitfire) {
961                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
962                         if (folio_flush_mapping(folio) != NULL)
963                                 data0 |= ((u64)1 << 32);
964                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
965 #ifdef DCACHE_ALIASING_POSSIBLE
966                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
967 #endif
968                 }
969                 if (data0) {
970                         unsigned int i, nr = folio_nr_pages(folio);
971
972                         for (i = 0; i < nr; i++) {
973                                 xcall_deliver(data0, __pa(pg_addr),
974                                               (u64) pg_addr, cpumask_of(cpu));
975 #ifdef CONFIG_DEBUG_DCFLUSH
976                                 atomic_inc(&dcpage_flushes_xcall);
977 #endif
978                                 pg_addr += PAGE_SIZE;
979                         }
980                 }
981         }
982
983         put_cpu();
984 }
985
986 void flush_dcache_folio_all(struct mm_struct *mm, struct folio *folio)
987 {
988         void *pg_addr;
989         u64 data0;
990
991         if (tlb_type == hypervisor)
992                 return;
993
994         preempt_disable();
995
996 #ifdef CONFIG_DEBUG_DCFLUSH
997         atomic_inc(&dcpage_flushes);
998 #endif
999         data0 = 0;
1000         pg_addr = folio_address(folio);
1001         if (tlb_type == spitfire) {
1002                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1003                 if (folio_flush_mapping(folio) != NULL)
1004                         data0 |= ((u64)1 << 32);
1005         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1006 #ifdef DCACHE_ALIASING_POSSIBLE
1007                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1008 #endif
1009         }
1010         if (data0) {
1011                 unsigned int i, nr = folio_nr_pages(folio);
1012
1013                 for (i = 0; i < nr; i++) {
1014                         xcall_deliver(data0, __pa(pg_addr),
1015                                       (u64) pg_addr, cpu_online_mask);
1016 #ifdef CONFIG_DEBUG_DCFLUSH
1017                         atomic_inc(&dcpage_flushes_xcall);
1018 #endif
1019                         pg_addr += PAGE_SIZE;
1020                 }
1021         }
1022         __local_flush_dcache_folio(folio);
1023
1024         preempt_enable();
1025 }
1026
1027 #ifdef CONFIG_KGDB
1028 void kgdb_roundup_cpus(void)
1029 {
1030         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1031 }
1032 #endif
1033
1034 void smp_fetch_global_regs(void)
1035 {
1036         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1037 }
1038
1039 void smp_fetch_global_pmu(void)
1040 {
1041         if (tlb_type == hypervisor &&
1042             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1043                 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1044         else
1045                 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1046 }
1047
1048 /* We know that the window frames of the user have been flushed
1049  * to the stack before we get here because all callers of us
1050  * are flush_tlb_*() routines, and these run after flush_cache_*()
1051  * which performs the flushw.
1052  *
1053  * mm->cpu_vm_mask is a bit mask of which cpus an address
1054  * space has (potentially) executed on, this is the heuristic
1055  * we use to limit cross calls.
1056  */
1057
1058 /* This currently is only used by the hugetlb arch pre-fault
1059  * hook on UltraSPARC-III+ and later when changing the pagesize
1060  * bits of the context register for an address space.
1061  */
1062 void smp_flush_tlb_mm(struct mm_struct *mm)
1063 {
1064         u32 ctx = CTX_HWBITS(mm->context);
1065
1066         get_cpu();
1067
1068         smp_cross_call_masked(&xcall_flush_tlb_mm,
1069                               ctx, 0, 0,
1070                               mm_cpumask(mm));
1071
1072         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074         put_cpu();
1075 }
1076
1077 struct tlb_pending_info {
1078         unsigned long ctx;
1079         unsigned long nr;
1080         unsigned long *vaddrs;
1081 };
1082
1083 static void tlb_pending_func(void *info)
1084 {
1085         struct tlb_pending_info *t = info;
1086
1087         __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088 }
1089
1090 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091 {
1092         u32 ctx = CTX_HWBITS(mm->context);
1093         struct tlb_pending_info info;
1094
1095         get_cpu();
1096
1097         info.ctx = ctx;
1098         info.nr = nr;
1099         info.vaddrs = vaddrs;
1100
1101         smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1102                                &info, 1);
1103
1104         __flush_tlb_pending(ctx, nr, vaddrs);
1105
1106         put_cpu();
1107 }
1108
1109 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1110 {
1111         unsigned long context = CTX_HWBITS(mm->context);
1112
1113         get_cpu();
1114
1115         smp_cross_call_masked(&xcall_flush_tlb_page,
1116                               context, vaddr, 0,
1117                               mm_cpumask(mm));
1118
1119         __flush_tlb_page(context, vaddr);
1120
1121         put_cpu();
1122 }
1123
1124 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1125 {
1126         start &= PAGE_MASK;
1127         end    = PAGE_ALIGN(end);
1128         if (start != end) {
1129                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1130                                0, start, end);
1131
1132                 __flush_tlb_kernel_range(start, end);
1133         }
1134 }
1135
1136 /* CPU capture. */
1137 /* #define CAPTURE_DEBUG */
1138 extern unsigned long xcall_capture;
1139
1140 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1141 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1142 static unsigned long penguins_are_doing_time;
1143
1144 void smp_capture(void)
1145 {
1146         int result = atomic_add_return(1, &smp_capture_depth);
1147
1148         if (result == 1) {
1149                 int ncpus = num_online_cpus();
1150
1151 #ifdef CAPTURE_DEBUG
1152                 printk("CPU[%d]: Sending penguins to jail...",
1153                        smp_processor_id());
1154 #endif
1155                 penguins_are_doing_time = 1;
1156                 atomic_inc(&smp_capture_registry);
1157                 smp_cross_call(&xcall_capture, 0, 0, 0);
1158                 while (atomic_read(&smp_capture_registry) != ncpus)
1159                         rmb();
1160 #ifdef CAPTURE_DEBUG
1161                 printk("done\n");
1162 #endif
1163         }
1164 }
1165
1166 void smp_release(void)
1167 {
1168         if (atomic_dec_and_test(&smp_capture_depth)) {
1169 #ifdef CAPTURE_DEBUG
1170                 printk("CPU[%d]: Giving pardon to "
1171                        "imprisoned penguins\n",
1172                        smp_processor_id());
1173 #endif
1174                 penguins_are_doing_time = 0;
1175                 membar_safe("#StoreLoad");
1176                 atomic_dec(&smp_capture_registry);
1177         }
1178 }
1179
1180 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1181  * set, so they can service tlb flush xcalls...
1182  */
1183 extern void prom_world(int);
1184
1185 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1186 {
1187         clear_softint(1 << irq);
1188
1189         preempt_disable();
1190
1191         __asm__ __volatile__("flushw");
1192         prom_world(1);
1193         atomic_inc(&smp_capture_registry);
1194         membar_safe("#StoreLoad");
1195         while (penguins_are_doing_time)
1196                 rmb();
1197         atomic_dec(&smp_capture_registry);
1198         prom_world(0);
1199
1200         preempt_enable();
1201 }
1202
1203 void __init smp_prepare_cpus(unsigned int max_cpus)
1204 {
1205 }
1206
1207 void __init smp_setup_processor_id(void)
1208 {
1209         if (tlb_type == spitfire)
1210                 xcall_deliver_impl = spitfire_xcall_deliver;
1211         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1212                 xcall_deliver_impl = cheetah_xcall_deliver;
1213         else
1214                 xcall_deliver_impl = hypervisor_xcall_deliver;
1215 }
1216
1217 void smp_fill_in_sib_core_maps(void)
1218 {
1219         unsigned int i;
1220
1221         for_each_present_cpu(i) {
1222                 unsigned int j;
1223
1224                 cpumask_clear(&cpu_core_map[i]);
1225                 if (cpu_data(i).core_id == 0) {
1226                         cpumask_set_cpu(i, &cpu_core_map[i]);
1227                         continue;
1228                 }
1229
1230                 for_each_present_cpu(j) {
1231                         if (cpu_data(i).core_id ==
1232                             cpu_data(j).core_id)
1233                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1234                 }
1235         }
1236
1237         for_each_present_cpu(i)  {
1238                 unsigned int j;
1239
1240                 for_each_present_cpu(j)  {
1241                         if (cpu_data(i).max_cache_id ==
1242                             cpu_data(j).max_cache_id)
1243                                 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1244
1245                         if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1246                                 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1247                 }
1248         }
1249
1250         for_each_present_cpu(i) {
1251                 unsigned int j;
1252
1253                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1254                 if (cpu_data(i).proc_id == -1) {
1255                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1256                         continue;
1257                 }
1258
1259                 for_each_present_cpu(j) {
1260                         if (cpu_data(i).proc_id ==
1261                             cpu_data(j).proc_id)
1262                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1263                 }
1264         }
1265 }
1266
1267 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1268 {
1269         int ret = smp_boot_one_cpu(cpu, tidle);
1270
1271         if (!ret) {
1272                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1273                 while (!cpu_online(cpu))
1274                         mb();
1275                 if (!cpu_online(cpu)) {
1276                         ret = -ENODEV;
1277                 } else {
1278                         /* On SUN4V, writes to %tick and %stick are
1279                          * not allowed.
1280                          */
1281                         if (tlb_type != hypervisor)
1282                                 smp_synchronize_one_tick(cpu);
1283                 }
1284         }
1285         return ret;
1286 }
1287
1288 #ifdef CONFIG_HOTPLUG_CPU
1289 void cpu_play_dead(void)
1290 {
1291         int cpu = smp_processor_id();
1292         unsigned long pstate;
1293
1294         idle_task_exit();
1295
1296         if (tlb_type == hypervisor) {
1297                 struct trap_per_cpu *tb = &trap_block[cpu];
1298
1299                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1300                                 tb->cpu_mondo_pa, 0);
1301                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1302                                 tb->dev_mondo_pa, 0);
1303                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1304                                 tb->resum_mondo_pa, 0);
1305                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1306                                 tb->nonresum_mondo_pa, 0);
1307         }
1308
1309         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1310         membar_safe("#Sync");
1311
1312         local_irq_disable();
1313
1314         __asm__ __volatile__(
1315                 "rdpr   %%pstate, %0\n\t"
1316                 "wrpr   %0, %1, %%pstate"
1317                 : "=r" (pstate)
1318                 : "i" (PSTATE_IE));
1319
1320         while (1)
1321                 barrier();
1322 }
1323
1324 int __cpu_disable(void)
1325 {
1326         int cpu = smp_processor_id();
1327         cpuinfo_sparc *c;
1328         int i;
1329
1330         for_each_cpu(i, &cpu_core_map[cpu])
1331                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1332         cpumask_clear(&cpu_core_map[cpu]);
1333
1334         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1335                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1336         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1337
1338         c = &cpu_data(cpu);
1339
1340         c->core_id = 0;
1341         c->proc_id = -1;
1342
1343         smp_wmb();
1344
1345         /* Make sure no interrupts point to this cpu.  */
1346         fixup_irqs();
1347
1348         local_irq_enable();
1349         mdelay(1);
1350         local_irq_disable();
1351
1352         set_cpu_online(cpu, false);
1353
1354         cpu_map_rebuild();
1355
1356         return 0;
1357 }
1358
1359 void __cpu_die(unsigned int cpu)
1360 {
1361         int i;
1362
1363         for (i = 0; i < 100; i++) {
1364                 smp_rmb();
1365                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1366                         break;
1367                 msleep(100);
1368         }
1369         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1370                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1371         } else {
1372 #if defined(CONFIG_SUN_LDOMS)
1373                 unsigned long hv_err;
1374                 int limit = 100;
1375
1376                 do {
1377                         hv_err = sun4v_cpu_stop(cpu);
1378                         if (hv_err == HV_EOK) {
1379                                 set_cpu_present(cpu, false);
1380                                 break;
1381                         }
1382                 } while (--limit > 0);
1383                 if (limit <= 0) {
1384                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1385                                hv_err);
1386                 }
1387 #endif
1388         }
1389 }
1390 #endif
1391
1392 void __init smp_cpus_done(unsigned int max_cpus)
1393 {
1394 }
1395
1396 static void send_cpu_ipi(int cpu)
1397 {
1398         xcall_deliver((u64) &xcall_receive_signal,
1399                         0, 0, cpumask_of(cpu));
1400 }
1401
1402 void scheduler_poke(void)
1403 {
1404         if (!cpu_poke)
1405                 return;
1406
1407         if (!__this_cpu_read(poke))
1408                 return;
1409
1410         __this_cpu_write(poke, false);
1411         set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1412 }
1413
1414 static unsigned long send_cpu_poke(int cpu)
1415 {
1416         unsigned long hv_err;
1417
1418         per_cpu(poke, cpu) = true;
1419         hv_err = sun4v_cpu_poke(cpu);
1420         if (hv_err != HV_EOK) {
1421                 per_cpu(poke, cpu) = false;
1422                 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1423                                     __func__, hv_err);
1424         }
1425
1426         return hv_err;
1427 }
1428
1429 void arch_smp_send_reschedule(int cpu)
1430 {
1431         if (cpu == smp_processor_id()) {
1432                 WARN_ON_ONCE(preemptible());
1433                 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1434                 return;
1435         }
1436
1437         /* Use cpu poke to resume idle cpu if supported. */
1438         if (cpu_poke && idle_cpu(cpu)) {
1439                 unsigned long ret;
1440
1441                 ret = send_cpu_poke(cpu);
1442                 if (ret == HV_EOK)
1443                         return;
1444         }
1445
1446         /* Use IPI in following cases:
1447          * - cpu poke not supported
1448          * - cpu not idle
1449          * - send_cpu_poke() returns with error
1450          */
1451         send_cpu_ipi(cpu);
1452 }
1453
1454 void smp_init_cpu_poke(void)
1455 {
1456         unsigned long major;
1457         unsigned long minor;
1458         int ret;
1459
1460         if (tlb_type != hypervisor)
1461                 return;
1462
1463         ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1464         if (ret) {
1465                 pr_debug("HV_GRP_CORE is not registered\n");
1466                 return;
1467         }
1468
1469         if (major == 1 && minor >= 6) {
1470                 /* CPU POKE is registered. */
1471                 cpu_poke = true;
1472                 return;
1473         }
1474
1475         pr_debug("CPU_POKE not supported\n");
1476 }
1477
1478 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1479 {
1480         clear_softint(1 << irq);
1481         scheduler_ipi();
1482 }
1483
1484 static void stop_this_cpu(void *dummy)
1485 {
1486         set_cpu_online(smp_processor_id(), false);
1487         prom_stopself();
1488 }
1489
1490 void smp_send_stop(void)
1491 {
1492         int cpu;
1493
1494         if (tlb_type == hypervisor) {
1495                 int this_cpu = smp_processor_id();
1496 #ifdef CONFIG_SERIAL_SUNHV
1497                 sunhv_migrate_hvcons_irq(this_cpu);
1498 #endif
1499                 for_each_online_cpu(cpu) {
1500                         if (cpu == this_cpu)
1501                                 continue;
1502
1503                         set_cpu_online(cpu, false);
1504 #ifdef CONFIG_SUN_LDOMS
1505                         if (ldom_domaining_enabled) {
1506                                 unsigned long hv_err;
1507                                 hv_err = sun4v_cpu_stop(cpu);
1508                                 if (hv_err)
1509                                         printk(KERN_ERR "sun4v_cpu_stop() "
1510                                                "failed err=%lu\n", hv_err);
1511                         } else
1512 #endif
1513                                 prom_stopcpu_cpuid(cpu);
1514                 }
1515         } else
1516                 smp_call_function(stop_this_cpu, NULL, 0);
1517 }
1518
1519 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1520 {
1521         if (cpu_to_node(from) == cpu_to_node(to))
1522                 return LOCAL_DISTANCE;
1523         else
1524                 return REMOTE_DISTANCE;
1525 }
1526
1527 static int __init pcpu_cpu_to_node(int cpu)
1528 {
1529         return cpu_to_node(cpu);
1530 }
1531
1532 void __init setup_per_cpu_areas(void)
1533 {
1534         unsigned long delta;
1535         unsigned int cpu;
1536         int rc = -EINVAL;
1537
1538         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541                                             pcpu_cpu_distance,
1542                                             pcpu_cpu_to_node);
1543                 if (rc)
1544                         pr_warn("PERCPU: %s allocator failed (%d), "
1545                                 "falling back to page size\n",
1546                                 pcpu_fc_names[pcpu_chosen_fc], rc);
1547         }
1548         if (rc < 0)
1549                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1550                                            pcpu_cpu_to_node);
1551         if (rc < 0)
1552                 panic("cannot initialize percpu area (err=%d)", rc);
1553
1554         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1555         for_each_possible_cpu(cpu)
1556                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1557
1558         /* Setup %g5 for the boot cpu.  */
1559         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1560
1561         of_fill_in_cpu_data();
1562         if (tlb_type == hypervisor)
1563                 mdesc_fill_in_cpu_data(cpu_all_mask);
1564 }
This page took 0.112474 seconds and 4 git commands to generate.