]> Git Repo - J-linux.git/blob - arch/riscv/mm/context.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / riscv / mm / context.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2017 SiFive
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/cpumask.h>
10 #include <linux/mm.h>
11 #include <linux/percpu.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/static_key.h>
15 #include <asm/tlbflush.h>
16 #include <asm/cacheflush.h>
17 #include <asm/mmu_context.h>
18 #include <asm/switch_to.h>
19
20 #ifdef CONFIG_MMU
21
22 DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
23
24 static unsigned long num_asids;
25
26 static atomic_long_t current_version;
27
28 static DEFINE_RAW_SPINLOCK(context_lock);
29 static cpumask_t context_tlb_flush_pending;
30 static unsigned long *context_asid_map;
31
32 static DEFINE_PER_CPU(atomic_long_t, active_context);
33 static DEFINE_PER_CPU(unsigned long, reserved_context);
34
35 static bool check_update_reserved_context(unsigned long cntx,
36                                           unsigned long newcntx)
37 {
38         int cpu;
39         bool hit = false;
40
41         /*
42          * Iterate over the set of reserved CONTEXT looking for a match.
43          * If we find one, then we can update our mm to use new CONTEXT
44          * (i.e. the same CONTEXT in the current_version) but we can't
45          * exit the loop early, since we need to ensure that all copies
46          * of the old CONTEXT are updated to reflect the mm. Failure to do
47          * so could result in us missing the reserved CONTEXT in a future
48          * version.
49          */
50         for_each_possible_cpu(cpu) {
51                 if (per_cpu(reserved_context, cpu) == cntx) {
52                         hit = true;
53                         per_cpu(reserved_context, cpu) = newcntx;
54                 }
55         }
56
57         return hit;
58 }
59
60 static void __flush_context(void)
61 {
62         int i;
63         unsigned long cntx;
64
65         /* Must be called with context_lock held */
66         lockdep_assert_held(&context_lock);
67
68         /* Update the list of reserved ASIDs and the ASID bitmap. */
69         bitmap_zero(context_asid_map, num_asids);
70
71         /* Mark already active ASIDs as used */
72         for_each_possible_cpu(i) {
73                 cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
74                 /*
75                  * If this CPU has already been through a rollover, but
76                  * hasn't run another task in the meantime, we must preserve
77                  * its reserved CONTEXT, as this is the only trace we have of
78                  * the process it is still running.
79                  */
80                 if (cntx == 0)
81                         cntx = per_cpu(reserved_context, i);
82
83                 __set_bit(cntx2asid(cntx), context_asid_map);
84                 per_cpu(reserved_context, i) = cntx;
85         }
86
87         /* Mark ASID #0 as used because it is used at boot-time */
88         __set_bit(0, context_asid_map);
89
90         /* Queue a TLB invalidation for each CPU on next context-switch */
91         cpumask_setall(&context_tlb_flush_pending);
92 }
93
94 static unsigned long __new_context(struct mm_struct *mm)
95 {
96         static u32 cur_idx = 1;
97         unsigned long cntx = atomic_long_read(&mm->context.id);
98         unsigned long asid, ver = atomic_long_read(&current_version);
99
100         /* Must be called with context_lock held */
101         lockdep_assert_held(&context_lock);
102
103         if (cntx != 0) {
104                 unsigned long newcntx = ver | cntx2asid(cntx);
105
106                 /*
107                  * If our current CONTEXT was active during a rollover, we
108                  * can continue to use it and this was just a false alarm.
109                  */
110                 if (check_update_reserved_context(cntx, newcntx))
111                         return newcntx;
112
113                 /*
114                  * We had a valid CONTEXT in a previous life, so try to
115                  * re-use it if possible.
116                  */
117                 if (!__test_and_set_bit(cntx2asid(cntx), context_asid_map))
118                         return newcntx;
119         }
120
121         /*
122          * Allocate a free ASID. If we can't find one then increment
123          * current_version and flush all ASIDs.
124          */
125         asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
126         if (asid != num_asids)
127                 goto set_asid;
128
129         /* We're out of ASIDs, so increment current_version */
130         ver = atomic_long_add_return_relaxed(BIT(SATP_ASID_BITS), &current_version);
131
132         /* Flush everything  */
133         __flush_context();
134
135         /* We have more ASIDs than CPUs, so this will always succeed */
136         asid = find_next_zero_bit(context_asid_map, num_asids, 1);
137
138 set_asid:
139         __set_bit(asid, context_asid_map);
140         cur_idx = asid;
141         return asid | ver;
142 }
143
144 static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
145 {
146         unsigned long flags;
147         bool need_flush_tlb = false;
148         unsigned long cntx, old_active_cntx;
149
150         cntx = atomic_long_read(&mm->context.id);
151
152         /*
153          * If our active_context is non-zero and the context matches the
154          * current_version, then we update the active_context entry with a
155          * relaxed cmpxchg.
156          *
157          * Following is how we handle racing with a concurrent rollover:
158          *
159          * - We get a zero back from the cmpxchg and end up waiting on the
160          *   lock. Taking the lock synchronises with the rollover and so
161          *   we are forced to see the updated verion.
162          *
163          * - We get a valid context back from the cmpxchg then we continue
164          *   using old ASID because __flush_context() would have marked ASID
165          *   of active_context as used and next context switch we will
166          *   allocate new context.
167          */
168         old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
169         if (old_active_cntx &&
170             (cntx2version(cntx) == atomic_long_read(&current_version)) &&
171             atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
172                                         old_active_cntx, cntx))
173                 goto switch_mm_fast;
174
175         raw_spin_lock_irqsave(&context_lock, flags);
176
177         /* Check that our ASID belongs to the current_version. */
178         cntx = atomic_long_read(&mm->context.id);
179         if (cntx2version(cntx) != atomic_long_read(&current_version)) {
180                 cntx = __new_context(mm);
181                 atomic_long_set(&mm->context.id, cntx);
182         }
183
184         if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
185                 need_flush_tlb = true;
186
187         atomic_long_set(&per_cpu(active_context, cpu), cntx);
188
189         raw_spin_unlock_irqrestore(&context_lock, flags);
190
191 switch_mm_fast:
192         csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
193                   (cntx2asid(cntx) << SATP_ASID_SHIFT) |
194                   satp_mode);
195
196         if (need_flush_tlb)
197                 local_flush_tlb_all();
198 }
199
200 static void set_mm_noasid(struct mm_struct *mm)
201 {
202         /* Switch the page table and blindly nuke entire local TLB */
203         csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode);
204         local_flush_tlb_all_asid(0);
205 }
206
207 static inline void set_mm(struct mm_struct *prev,
208                           struct mm_struct *next, unsigned int cpu)
209 {
210         /*
211          * The mm_cpumask indicates which harts' TLBs contain the virtual
212          * address mapping of the mm. Compared to noasid, using asid
213          * can't guarantee that stale TLB entries are invalidated because
214          * the asid mechanism wouldn't flush TLB for every switch_mm for
215          * performance. So when using asid, keep all CPUs footmarks in
216          * cpumask() until mm reset.
217          */
218         cpumask_set_cpu(cpu, mm_cpumask(next));
219         if (static_branch_unlikely(&use_asid_allocator)) {
220                 set_mm_asid(next, cpu);
221         } else {
222                 cpumask_clear_cpu(cpu, mm_cpumask(prev));
223                 set_mm_noasid(next);
224         }
225 }
226
227 static int __init asids_init(void)
228 {
229         unsigned long asid_bits, old;
230
231         /* Figure-out number of ASID bits in HW */
232         old = csr_read(CSR_SATP);
233         asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
234         csr_write(CSR_SATP, asid_bits);
235         asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT)  & SATP_ASID_MASK;
236         asid_bits = fls_long(asid_bits);
237         csr_write(CSR_SATP, old);
238
239         /*
240          * In the process of determining number of ASID bits (above)
241          * we polluted the TLB of current HART so let's do TLB flushed
242          * to remove unwanted TLB enteries.
243          */
244         local_flush_tlb_all();
245
246         /* Pre-compute ASID details */
247         if (asid_bits) {
248                 num_asids = 1 << asid_bits;
249         }
250
251         /*
252          * Use ASID allocator only if number of HW ASIDs are
253          * at-least twice more than CPUs
254          */
255         if (num_asids > (2 * num_possible_cpus())) {
256                 atomic_long_set(&current_version, BIT(SATP_ASID_BITS));
257
258                 context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
259                 if (!context_asid_map)
260                         panic("Failed to allocate bitmap for %lu ASIDs\n",
261                               num_asids);
262
263                 __set_bit(0, context_asid_map);
264
265                 static_branch_enable(&use_asid_allocator);
266
267                 pr_info("ASID allocator using %lu bits (%lu entries)\n",
268                         asid_bits, num_asids);
269         } else {
270                 pr_info("ASID allocator disabled (%lu bits)\n", asid_bits);
271         }
272
273         return 0;
274 }
275 early_initcall(asids_init);
276 #else
277 static inline void set_mm(struct mm_struct *prev,
278                           struct mm_struct *next, unsigned int cpu)
279 {
280         /* Nothing to do here when there is no MMU */
281 }
282 #endif
283
284 /*
285  * When necessary, performs a deferred icache flush for the given MM context,
286  * on the local CPU.  RISC-V has no direct mechanism for instruction cache
287  * shoot downs, so instead we send an IPI that informs the remote harts they
288  * need to flush their local instruction caches.  To avoid pathologically slow
289  * behavior in a common case (a bunch of single-hart processes on a many-hart
290  * machine, ie 'make -j') we avoid the IPIs for harts that are not currently
291  * executing a MM context and instead schedule a deferred local instruction
292  * cache flush to be performed before execution resumes on each hart.  This
293  * actually performs that local instruction cache flush, which implicitly only
294  * refers to the current hart.
295  *
296  * The "cpu" argument must be the current local CPU number.
297  */
298 static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu,
299                                          struct task_struct *task)
300 {
301 #ifdef CONFIG_SMP
302         if (cpumask_test_and_clear_cpu(cpu, &mm->context.icache_stale_mask)) {
303                 /*
304                  * Ensure the remote hart's writes are visible to this hart.
305                  * This pairs with a barrier in flush_icache_mm.
306                  */
307                 smp_mb();
308
309                 /*
310                  * If cache will be flushed in switch_to, no need to flush here.
311                  */
312                 if (!(task && switch_to_should_flush_icache(task)))
313                         local_flush_icache_all();
314         }
315 #endif
316 }
317
318 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
319         struct task_struct *task)
320 {
321         unsigned int cpu;
322
323         if (unlikely(prev == next))
324                 return;
325
326         membarrier_arch_switch_mm(prev, next, task);
327
328         /*
329          * Mark the current MM context as inactive, and the next as
330          * active.  This is at least used by the icache flushing
331          * routines in order to determine who should be flushed.
332          */
333         cpu = smp_processor_id();
334
335         set_mm(prev, next, cpu);
336
337         flush_icache_deferred(next, cpu, task);
338 }
This page took 0.046508 seconds and 4 git commands to generate.