]> Git Repo - J-linux.git/blob - arch/powerpc/lib/sstep.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / powerpc / lib / sstep.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <[email protected]>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17
18 #ifdef CONFIG_PPC64
19 /* Bits in SRR1 that are copied from MSR */
20 #define MSR_MASK        0xffffffff87c0ffffUL
21 #else
22 #define MSR_MASK        0x87c0ffff
23 #endif
24
25 /* Bits in XER */
26 #define XER_SO          0x80000000U
27 #define XER_OV          0x40000000U
28 #define XER_CA          0x20000000U
29 #define XER_OV32        0x00080000U
30 #define XER_CA32        0x00040000U
31
32 #ifdef CONFIG_VSX
33 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
34 #endif
35
36 #ifdef CONFIG_PPC_FPU
37 /*
38  * Functions in ldstfp.S
39  */
40 extern void get_fpr(int rn, double *p);
41 extern void put_fpr(int rn, const double *p);
42 extern void get_vr(int rn, __vector128 *p);
43 extern void put_vr(int rn, __vector128 *p);
44 extern void load_vsrn(int vsr, const void *p);
45 extern void store_vsrn(int vsr, void *p);
46 extern void conv_sp_to_dp(const float *sp, double *dp);
47 extern void conv_dp_to_sp(const double *dp, float *sp);
48 #endif
49
50 #ifdef __powerpc64__
51 /*
52  * Functions in quad.S
53  */
54 extern int do_lq(unsigned long ea, unsigned long *regs);
55 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
56 extern int do_lqarx(unsigned long ea, unsigned long *regs);
57 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
58                     unsigned int *crp);
59 #endif
60
61 #ifdef __LITTLE_ENDIAN__
62 #define IS_LE   1
63 #define IS_BE   0
64 #else
65 #define IS_LE   0
66 #define IS_BE   1
67 #endif
68
69 /*
70  * Emulate the truncation of 64 bit values in 32-bit mode.
71  */
72 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
73                                                         unsigned long val)
74 {
75         if ((msr & MSR_64BIT) == 0)
76                 val &= 0xffffffffUL;
77         return val;
78 }
79
80 /*
81  * Determine whether a conditional branch instruction would branch.
82  */
83 static nokprobe_inline int branch_taken(unsigned int instr,
84                                         const struct pt_regs *regs,
85                                         struct instruction_op *op)
86 {
87         unsigned int bo = (instr >> 21) & 0x1f;
88         unsigned int bi;
89
90         if ((bo & 4) == 0) {
91                 /* decrement counter */
92                 op->type |= DECCTR;
93                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
94                         return 0;
95         }
96         if ((bo & 0x10) == 0) {
97                 /* check bit from CR */
98                 bi = (instr >> 16) & 0x1f;
99                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
100                         return 0;
101         }
102         return 1;
103 }
104
105 static nokprobe_inline long address_ok(struct pt_regs *regs,
106                                        unsigned long ea, int nb)
107 {
108         if (!user_mode(regs))
109                 return 1;
110         if (access_ok((void __user *)ea, nb))
111                 return 1;
112         if (access_ok((void __user *)ea, 1))
113                 /* Access overlaps the end of the user region */
114                 regs->dar = TASK_SIZE_MAX - 1;
115         else
116                 regs->dar = ea;
117         return 0;
118 }
119
120 /*
121  * Calculate effective address for a D-form instruction
122  */
123 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
124                                               const struct pt_regs *regs)
125 {
126         int ra;
127         unsigned long ea;
128
129         ra = (instr >> 16) & 0x1f;
130         ea = (signed short) instr;              /* sign-extend */
131         if (ra)
132                 ea += regs->gpr[ra];
133
134         return ea;
135 }
136
137 #ifdef __powerpc64__
138 /*
139  * Calculate effective address for a DS-form instruction
140  */
141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
142                                                const struct pt_regs *regs)
143 {
144         int ra;
145         unsigned long ea;
146
147         ra = (instr >> 16) & 0x1f;
148         ea = (signed short) (instr & ~3);       /* sign-extend */
149         if (ra)
150                 ea += regs->gpr[ra];
151
152         return ea;
153 }
154
155 /*
156  * Calculate effective address for a DQ-form instruction
157  */
158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
159                                                const struct pt_regs *regs)
160 {
161         int ra;
162         unsigned long ea;
163
164         ra = (instr >> 16) & 0x1f;
165         ea = (signed short) (instr & ~0xf);     /* sign-extend */
166         if (ra)
167                 ea += regs->gpr[ra];
168
169         return ea;
170 }
171 #endif /* __powerpc64 */
172
173 /*
174  * Calculate effective address for an X-form instruction
175  */
176 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
177                                               const struct pt_regs *regs)
178 {
179         int ra, rb;
180         unsigned long ea;
181
182         ra = (instr >> 16) & 0x1f;
183         rb = (instr >> 11) & 0x1f;
184         ea = regs->gpr[rb];
185         if (ra)
186                 ea += regs->gpr[ra];
187
188         return ea;
189 }
190
191 /*
192  * Calculate effective address for a MLS:D-form / 8LS:D-form
193  * prefixed instruction
194  */
195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
196                                                   unsigned int suffix,
197                                                   const struct pt_regs *regs)
198 {
199         int ra, prefix_r;
200         unsigned int  dd;
201         unsigned long ea, d0, d1, d;
202
203         prefix_r = GET_PREFIX_R(instr);
204         ra = GET_PREFIX_RA(suffix);
205
206         d0 = instr & 0x3ffff;
207         d1 = suffix & 0xffff;
208         d = (d0 << 16) | d1;
209
210         /*
211          * sign extend a 34 bit number
212          */
213         dd = (unsigned int)(d >> 2);
214         ea = (signed int)dd;
215         ea = (ea << 2) | (d & 0x3);
216
217         if (!prefix_r && ra)
218                 ea += regs->gpr[ra];
219         else if (!prefix_r && !ra)
220                 ; /* Leave ea as is */
221         else if (prefix_r)
222                 ea += regs->nip;
223
224         /*
225          * (prefix_r && ra) is an invalid form. Should already be
226          * checked for by caller!
227          */
228
229         return ea;
230 }
231
232 /*
233  * Return the largest power of 2, not greater than sizeof(unsigned long),
234  * such that x is a multiple of it.
235  */
236 static nokprobe_inline unsigned long max_align(unsigned long x)
237 {
238         x |= sizeof(unsigned long);
239         return x & -x;          /* isolates rightmost bit */
240 }
241
242 static nokprobe_inline unsigned long byterev_2(unsigned long x)
243 {
244         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
245 }
246
247 static nokprobe_inline unsigned long byterev_4(unsigned long x)
248 {
249         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
250                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
251 }
252
253 #ifdef __powerpc64__
254 static nokprobe_inline unsigned long byterev_8(unsigned long x)
255 {
256         return (byterev_4(x) << 32) | byterev_4(x >> 32);
257 }
258 #endif
259
260 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
261 {
262         switch (nb) {
263         case 2:
264                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
265                 break;
266         case 4:
267                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
268                 break;
269 #ifdef __powerpc64__
270         case 8:
271                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
272                 break;
273         case 16: {
274                 unsigned long *up = (unsigned long *)ptr;
275                 unsigned long tmp;
276                 tmp = byterev_8(up[0]);
277                 up[0] = byterev_8(up[1]);
278                 up[1] = tmp;
279                 break;
280         }
281         case 32: {
282                 unsigned long *up = (unsigned long *)ptr;
283                 unsigned long tmp;
284
285                 tmp = byterev_8(up[0]);
286                 up[0] = byterev_8(up[3]);
287                 up[3] = tmp;
288                 tmp = byterev_8(up[2]);
289                 up[2] = byterev_8(up[1]);
290                 up[1] = tmp;
291                 break;
292         }
293
294 #endif
295         default:
296                 WARN_ON_ONCE(1);
297         }
298 }
299
300 static __always_inline int
301 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
302 {
303         unsigned long x = 0;
304
305         switch (nb) {
306         case 1:
307                 unsafe_get_user(x, (unsigned char __user *)ea, Efault);
308                 break;
309         case 2:
310                 unsafe_get_user(x, (unsigned short __user *)ea, Efault);
311                 break;
312         case 4:
313                 unsafe_get_user(x, (unsigned int __user *)ea, Efault);
314                 break;
315 #ifdef __powerpc64__
316         case 8:
317                 unsafe_get_user(x, (unsigned long __user *)ea, Efault);
318                 break;
319 #endif
320         }
321         *dest = x;
322         return 0;
323
324 Efault:
325         regs->dar = ea;
326         return -EFAULT;
327 }
328
329 static nokprobe_inline int
330 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
331 {
332         int err;
333
334         if (is_kernel_addr(ea))
335                 return __read_mem_aligned(dest, ea, nb, regs);
336
337         if (user_read_access_begin((void __user *)ea, nb)) {
338                 err = __read_mem_aligned(dest, ea, nb, regs);
339                 user_read_access_end();
340         } else {
341                 err = -EFAULT;
342                 regs->dar = ea;
343         }
344
345         return err;
346 }
347
348 /*
349  * Copy from userspace to a buffer, using the largest possible
350  * aligned accesses, up to sizeof(long).
351  */
352 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
353 {
354         int c;
355
356         for (; nb > 0; nb -= c) {
357                 c = max_align(ea);
358                 if (c > nb)
359                         c = max_align(nb);
360                 switch (c) {
361                 case 1:
362                         unsafe_get_user(*dest, (u8 __user *)ea, Efault);
363                         break;
364                 case 2:
365                         unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
366                         break;
367                 case 4:
368                         unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
369                         break;
370 #ifdef __powerpc64__
371                 case 8:
372                         unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
373                         break;
374 #endif
375                 }
376                 dest += c;
377                 ea += c;
378         }
379         return 0;
380
381 Efault:
382         regs->dar = ea;
383         return -EFAULT;
384 }
385
386 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
387 {
388         int err;
389
390         if (is_kernel_addr(ea))
391                 return __copy_mem_in(dest, ea, nb, regs);
392
393         if (user_read_access_begin((void __user *)ea, nb)) {
394                 err = __copy_mem_in(dest, ea, nb, regs);
395                 user_read_access_end();
396         } else {
397                 err = -EFAULT;
398                 regs->dar = ea;
399         }
400
401         return err;
402 }
403
404 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
405                                               unsigned long ea, int nb,
406                                               struct pt_regs *regs)
407 {
408         union {
409                 unsigned long ul;
410                 u8 b[sizeof(unsigned long)];
411         } u;
412         int i;
413         int err;
414
415         u.ul = 0;
416         i = IS_BE ? sizeof(unsigned long) - nb : 0;
417         err = copy_mem_in(&u.b[i], ea, nb, regs);
418         if (!err)
419                 *dest = u.ul;
420         return err;
421 }
422
423 /*
424  * Read memory at address ea for nb bytes, return 0 for success
425  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
426  * If nb < sizeof(long), the result is right-justified on BE systems.
427  */
428 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
429                               struct pt_regs *regs)
430 {
431         if (!address_ok(regs, ea, nb))
432                 return -EFAULT;
433         if ((ea & (nb - 1)) == 0)
434                 return read_mem_aligned(dest, ea, nb, regs);
435         return read_mem_unaligned(dest, ea, nb, regs);
436 }
437 NOKPROBE_SYMBOL(read_mem);
438
439 static __always_inline int
440 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
441 {
442         switch (nb) {
443         case 1:
444                 unsafe_put_user(val, (unsigned char __user *)ea, Efault);
445                 break;
446         case 2:
447                 unsafe_put_user(val, (unsigned short __user *)ea, Efault);
448                 break;
449         case 4:
450                 unsafe_put_user(val, (unsigned int __user *)ea, Efault);
451                 break;
452 #ifdef __powerpc64__
453         case 8:
454                 unsafe_put_user(val, (unsigned long __user *)ea, Efault);
455                 break;
456 #endif
457         }
458         return 0;
459
460 Efault:
461         regs->dar = ea;
462         return -EFAULT;
463 }
464
465 static nokprobe_inline int
466 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
467 {
468         int err;
469
470         if (is_kernel_addr(ea))
471                 return __write_mem_aligned(val, ea, nb, regs);
472
473         if (user_write_access_begin((void __user *)ea, nb)) {
474                 err = __write_mem_aligned(val, ea, nb, regs);
475                 user_write_access_end();
476         } else {
477                 err = -EFAULT;
478                 regs->dar = ea;
479         }
480
481         return err;
482 }
483
484 /*
485  * Copy from a buffer to userspace, using the largest possible
486  * aligned accesses, up to sizeof(long).
487  */
488 static __always_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
489 {
490         int c;
491
492         for (; nb > 0; nb -= c) {
493                 c = max_align(ea);
494                 if (c > nb)
495                         c = max_align(nb);
496                 switch (c) {
497                 case 1:
498                         unsafe_put_user(*dest, (u8 __user *)ea, Efault);
499                         break;
500                 case 2:
501                         unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
502                         break;
503                 case 4:
504                         unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
505                         break;
506 #ifdef __powerpc64__
507                 case 8:
508                         unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
509                         break;
510 #endif
511                 }
512                 dest += c;
513                 ea += c;
514         }
515         return 0;
516
517 Efault:
518         regs->dar = ea;
519         return -EFAULT;
520 }
521
522 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
523 {
524         int err;
525
526         if (is_kernel_addr(ea))
527                 return __copy_mem_out(dest, ea, nb, regs);
528
529         if (user_write_access_begin((void __user *)ea, nb)) {
530                 err = __copy_mem_out(dest, ea, nb, regs);
531                 user_write_access_end();
532         } else {
533                 err = -EFAULT;
534                 regs->dar = ea;
535         }
536
537         return err;
538 }
539
540 static nokprobe_inline int write_mem_unaligned(unsigned long val,
541                                                unsigned long ea, int nb,
542                                                struct pt_regs *regs)
543 {
544         union {
545                 unsigned long ul;
546                 u8 b[sizeof(unsigned long)];
547         } u;
548         int i;
549
550         u.ul = val;
551         i = IS_BE ? sizeof(unsigned long) - nb : 0;
552         return copy_mem_out(&u.b[i], ea, nb, regs);
553 }
554
555 /*
556  * Write memory at address ea for nb bytes, return 0 for success
557  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
558  */
559 static int write_mem(unsigned long val, unsigned long ea, int nb,
560                                struct pt_regs *regs)
561 {
562         if (!address_ok(regs, ea, nb))
563                 return -EFAULT;
564         if ((ea & (nb - 1)) == 0)
565                 return write_mem_aligned(val, ea, nb, regs);
566         return write_mem_unaligned(val, ea, nb, regs);
567 }
568 NOKPROBE_SYMBOL(write_mem);
569
570 #ifdef CONFIG_PPC_FPU
571 /*
572  * These access either the real FP register or the image in the
573  * thread_struct, depending on regs->msr & MSR_FP.
574  */
575 static int do_fp_load(struct instruction_op *op, unsigned long ea,
576                       struct pt_regs *regs, bool cross_endian)
577 {
578         int err, rn, nb;
579         union {
580                 int i;
581                 unsigned int u;
582                 float f;
583                 double d[2];
584                 unsigned long l[2];
585                 u8 b[2 * sizeof(double)];
586         } u;
587
588         nb = GETSIZE(op->type);
589         if (nb > sizeof(u))
590                 return -EINVAL;
591         if (!address_ok(regs, ea, nb))
592                 return -EFAULT;
593         rn = op->reg;
594         err = copy_mem_in(u.b, ea, nb, regs);
595         if (err)
596                 return err;
597         if (unlikely(cross_endian)) {
598                 do_byte_reverse(u.b, min(nb, 8));
599                 if (nb == 16)
600                         do_byte_reverse(&u.b[8], 8);
601         }
602         preempt_disable();
603         if (nb == 4) {
604                 if (op->type & FPCONV)
605                         conv_sp_to_dp(&u.f, &u.d[0]);
606                 else if (op->type & SIGNEXT)
607                         u.l[0] = u.i;
608                 else
609                         u.l[0] = u.u;
610         }
611         if (regs->msr & MSR_FP)
612                 put_fpr(rn, &u.d[0]);
613         else
614                 current->thread.TS_FPR(rn) = u.l[0];
615         if (nb == 16) {
616                 /* lfdp */
617                 rn |= 1;
618                 if (regs->msr & MSR_FP)
619                         put_fpr(rn, &u.d[1]);
620                 else
621                         current->thread.TS_FPR(rn) = u.l[1];
622         }
623         preempt_enable();
624         return 0;
625 }
626 NOKPROBE_SYMBOL(do_fp_load);
627
628 static int do_fp_store(struct instruction_op *op, unsigned long ea,
629                        struct pt_regs *regs, bool cross_endian)
630 {
631         int rn, nb;
632         union {
633                 unsigned int u;
634                 float f;
635                 double d[2];
636                 unsigned long l[2];
637                 u8 b[2 * sizeof(double)];
638         } u;
639
640         nb = GETSIZE(op->type);
641         if (nb > sizeof(u))
642                 return -EINVAL;
643         if (!address_ok(regs, ea, nb))
644                 return -EFAULT;
645         rn = op->reg;
646         preempt_disable();
647         if (regs->msr & MSR_FP)
648                 get_fpr(rn, &u.d[0]);
649         else
650                 u.l[0] = current->thread.TS_FPR(rn);
651         if (nb == 4) {
652                 if (op->type & FPCONV)
653                         conv_dp_to_sp(&u.d[0], &u.f);
654                 else
655                         u.u = u.l[0];
656         }
657         if (nb == 16) {
658                 rn |= 1;
659                 if (regs->msr & MSR_FP)
660                         get_fpr(rn, &u.d[1]);
661                 else
662                         u.l[1] = current->thread.TS_FPR(rn);
663         }
664         preempt_enable();
665         if (unlikely(cross_endian)) {
666                 do_byte_reverse(u.b, min(nb, 8));
667                 if (nb == 16)
668                         do_byte_reverse(&u.b[8], 8);
669         }
670         return copy_mem_out(u.b, ea, nb, regs);
671 }
672 NOKPROBE_SYMBOL(do_fp_store);
673 #endif
674
675 #ifdef CONFIG_ALTIVEC
676 /* For Altivec/VMX, no need to worry about alignment */
677 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
678                                        int size, struct pt_regs *regs,
679                                        bool cross_endian)
680 {
681         int err;
682         union {
683                 __vector128 v;
684                 u8 b[sizeof(__vector128)];
685         } u = {};
686
687         if (size > sizeof(u))
688                 return -EINVAL;
689
690         if (!address_ok(regs, ea & ~0xfUL, 16))
691                 return -EFAULT;
692         /* align to multiple of size */
693         ea &= ~(size - 1);
694         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
695         if (err)
696                 return err;
697         if (unlikely(cross_endian))
698                 do_byte_reverse(&u.b[ea & 0xf], min_t(size_t, size, sizeof(u)));
699         preempt_disable();
700         if (regs->msr & MSR_VEC)
701                 put_vr(rn, &u.v);
702         else
703                 current->thread.vr_state.vr[rn] = u.v;
704         preempt_enable();
705         return 0;
706 }
707
708 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
709                                         int size, struct pt_regs *regs,
710                                         bool cross_endian)
711 {
712         union {
713                 __vector128 v;
714                 u8 b[sizeof(__vector128)];
715         } u;
716
717         if (size > sizeof(u))
718                 return -EINVAL;
719
720         if (!address_ok(regs, ea & ~0xfUL, 16))
721                 return -EFAULT;
722         /* align to multiple of size */
723         ea &= ~(size - 1);
724
725         preempt_disable();
726         if (regs->msr & MSR_VEC)
727                 get_vr(rn, &u.v);
728         else
729                 u.v = current->thread.vr_state.vr[rn];
730         preempt_enable();
731         if (unlikely(cross_endian))
732                 do_byte_reverse(&u.b[ea & 0xf], min_t(size_t, size, sizeof(u)));
733         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
734 }
735 #endif /* CONFIG_ALTIVEC */
736
737 #ifdef __powerpc64__
738 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
739                                       int reg, bool cross_endian)
740 {
741         int err;
742
743         if (!address_ok(regs, ea, 16))
744                 return -EFAULT;
745         /* if aligned, should be atomic */
746         if ((ea & 0xf) == 0) {
747                 err = do_lq(ea, &regs->gpr[reg]);
748         } else {
749                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
750                 if (!err)
751                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
752         }
753         if (!err && unlikely(cross_endian))
754                 do_byte_reverse(&regs->gpr[reg], 16);
755         return err;
756 }
757
758 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
759                                        int reg, bool cross_endian)
760 {
761         int err;
762         unsigned long vals[2];
763
764         if (!address_ok(regs, ea, 16))
765                 return -EFAULT;
766         vals[0] = regs->gpr[reg];
767         vals[1] = regs->gpr[reg + 1];
768         if (unlikely(cross_endian))
769                 do_byte_reverse(vals, 16);
770
771         /* if aligned, should be atomic */
772         if ((ea & 0xf) == 0)
773                 return do_stq(ea, vals[0], vals[1]);
774
775         err = write_mem(vals[IS_LE], ea, 8, regs);
776         if (!err)
777                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
778         return err;
779 }
780 #endif /* __powerpc64 */
781
782 #ifdef CONFIG_VSX
783 static nokprobe_inline void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
784                                              const void *mem, bool rev)
785 {
786         int size, read_size;
787         int i, j;
788         const unsigned int *wp;
789         const unsigned short *hp;
790         const unsigned char *bp;
791
792         size = GETSIZE(op->type);
793         reg->d[0] = reg->d[1] = 0;
794
795         switch (op->element_size) {
796         case 32:
797                 /* [p]lxvp[x] */
798         case 16:
799                 /* whole vector; lxv[x] or lxvl[l] */
800                 if (size == 0)
801                         break;
802                 memcpy(reg, mem, size);
803                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
804                         rev = !rev;
805                 if (rev)
806                         do_byte_reverse(reg, size);
807                 break;
808         case 8:
809                 /* scalar loads, lxvd2x, lxvdsx */
810                 read_size = (size >= 8) ? 8 : size;
811                 i = IS_LE ? 8 : 8 - read_size;
812                 memcpy(&reg->b[i], mem, read_size);
813                 if (rev)
814                         do_byte_reverse(&reg->b[i], 8);
815                 if (size < 8) {
816                         if (op->type & SIGNEXT) {
817                                 /* size == 4 is the only case here */
818                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
819                         } else if (op->vsx_flags & VSX_FPCONV) {
820                                 preempt_disable();
821                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
822                                               &reg->dp[IS_LE]);
823                                 preempt_enable();
824                         }
825                 } else {
826                         if (size == 16) {
827                                 unsigned long v = *(unsigned long *)(mem + 8);
828                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
829                         } else if (op->vsx_flags & VSX_SPLAT)
830                                 reg->d[IS_BE] = reg->d[IS_LE];
831                 }
832                 break;
833         case 4:
834                 /* lxvw4x, lxvwsx */
835                 wp = mem;
836                 for (j = 0; j < size / 4; ++j) {
837                         i = IS_LE ? 3 - j : j;
838                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
839                 }
840                 if (op->vsx_flags & VSX_SPLAT) {
841                         u32 val = reg->w[IS_LE ? 3 : 0];
842                         for (; j < 4; ++j) {
843                                 i = IS_LE ? 3 - j : j;
844                                 reg->w[i] = val;
845                         }
846                 }
847                 break;
848         case 2:
849                 /* lxvh8x */
850                 hp = mem;
851                 for (j = 0; j < size / 2; ++j) {
852                         i = IS_LE ? 7 - j : j;
853                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
854                 }
855                 break;
856         case 1:
857                 /* lxvb16x */
858                 bp = mem;
859                 for (j = 0; j < size; ++j) {
860                         i = IS_LE ? 15 - j : j;
861                         reg->b[i] = *bp++;
862                 }
863                 break;
864         }
865 }
866
867 static nokprobe_inline void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
868                                               void *mem, bool rev)
869 {
870         int size, write_size;
871         int i, j;
872         union vsx_reg buf;
873         unsigned int *wp;
874         unsigned short *hp;
875         unsigned char *bp;
876
877         size = GETSIZE(op->type);
878
879         switch (op->element_size) {
880         case 32:
881                 /* [p]stxvp[x] */
882                 if (size == 0)
883                         break;
884                 if (rev) {
885                         /* reverse 32 bytes */
886                         union vsx_reg buf32[2];
887                         buf32[0].d[0] = byterev_8(reg[1].d[1]);
888                         buf32[0].d[1] = byterev_8(reg[1].d[0]);
889                         buf32[1].d[0] = byterev_8(reg[0].d[1]);
890                         buf32[1].d[1] = byterev_8(reg[0].d[0]);
891                         memcpy(mem, buf32, size);
892                 } else {
893                         memcpy(mem, reg, size);
894                 }
895                 break;
896         case 16:
897                 /* stxv, stxvx, stxvl, stxvll */
898                 if (size == 0)
899                         break;
900                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
901                         rev = !rev;
902                 if (rev) {
903                         /* reverse 16 bytes */
904                         buf.d[0] = byterev_8(reg->d[1]);
905                         buf.d[1] = byterev_8(reg->d[0]);
906                         reg = &buf;
907                 }
908                 memcpy(mem, reg, size);
909                 break;
910         case 8:
911                 /* scalar stores, stxvd2x */
912                 write_size = (size >= 8) ? 8 : size;
913                 i = IS_LE ? 8 : 8 - write_size;
914                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
915                         buf.d[0] = buf.d[1] = 0;
916                         preempt_disable();
917                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
918                         preempt_enable();
919                         reg = &buf;
920                 }
921                 memcpy(mem, &reg->b[i], write_size);
922                 if (size == 16)
923                         memcpy(mem + 8, &reg->d[IS_BE], 8);
924                 if (unlikely(rev)) {
925                         do_byte_reverse(mem, write_size);
926                         if (size == 16)
927                                 do_byte_reverse(mem + 8, 8);
928                 }
929                 break;
930         case 4:
931                 /* stxvw4x */
932                 wp = mem;
933                 for (j = 0; j < size / 4; ++j) {
934                         i = IS_LE ? 3 - j : j;
935                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
936                 }
937                 break;
938         case 2:
939                 /* stxvh8x */
940                 hp = mem;
941                 for (j = 0; j < size / 2; ++j) {
942                         i = IS_LE ? 7 - j : j;
943                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
944                 }
945                 break;
946         case 1:
947                 /* stvxb16x */
948                 bp = mem;
949                 for (j = 0; j < size; ++j) {
950                         i = IS_LE ? 15 - j : j;
951                         *bp++ = reg->b[i];
952                 }
953                 break;
954         }
955 }
956
957 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
958                                        unsigned long ea, struct pt_regs *regs,
959                                        bool cross_endian)
960 {
961         int reg = op->reg;
962         int i, j, nr_vsx_regs;
963         u8 mem[32];
964         union vsx_reg buf[2];
965         int size = GETSIZE(op->type);
966
967         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
968                 return -EFAULT;
969
970         nr_vsx_regs = max(1ul, size / sizeof(__vector128));
971         emulate_vsx_load(op, buf, mem, cross_endian);
972         preempt_disable();
973         if (reg < 32) {
974                 /* FP regs + extensions */
975                 if (regs->msr & MSR_FP) {
976                         for (i = 0; i < nr_vsx_regs; i++) {
977                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
978                                 load_vsrn(reg + i, &buf[j].v);
979                         }
980                 } else {
981                         for (i = 0; i < nr_vsx_regs; i++) {
982                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
983                                 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
984                                 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
985                         }
986                 }
987         } else {
988                 if (regs->msr & MSR_VEC) {
989                         for (i = 0; i < nr_vsx_regs; i++) {
990                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
991                                 load_vsrn(reg + i, &buf[j].v);
992                         }
993                 } else {
994                         for (i = 0; i < nr_vsx_regs; i++) {
995                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
996                                 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
997                         }
998                 }
999         }
1000         preempt_enable();
1001         return 0;
1002 }
1003
1004 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1005                                         unsigned long ea, struct pt_regs *regs,
1006                                         bool cross_endian)
1007 {
1008         int reg = op->reg;
1009         int i, j, nr_vsx_regs;
1010         u8 mem[32];
1011         union vsx_reg buf[2];
1012         int size = GETSIZE(op->type);
1013
1014         if (!address_ok(regs, ea, size))
1015                 return -EFAULT;
1016
1017         nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1018         preempt_disable();
1019         if (reg < 32) {
1020                 /* FP regs + extensions */
1021                 if (regs->msr & MSR_FP) {
1022                         for (i = 0; i < nr_vsx_regs; i++) {
1023                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1024                                 store_vsrn(reg + i, &buf[j].v);
1025                         }
1026                 } else {
1027                         for (i = 0; i < nr_vsx_regs; i++) {
1028                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1029                                 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1030                                 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1031                         }
1032                 }
1033         } else {
1034                 if (regs->msr & MSR_VEC) {
1035                         for (i = 0; i < nr_vsx_regs; i++) {
1036                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1037                                 store_vsrn(reg + i, &buf[j].v);
1038                         }
1039                 } else {
1040                         for (i = 0; i < nr_vsx_regs; i++) {
1041                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1042                                 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1043                         }
1044                 }
1045         }
1046         preempt_enable();
1047         emulate_vsx_store(op, buf, mem, cross_endian);
1048         return  copy_mem_out(mem, ea, size, regs);
1049 }
1050 #endif /* CONFIG_VSX */
1051
1052 static __always_inline int __emulate_dcbz(unsigned long ea)
1053 {
1054         unsigned long i;
1055         unsigned long size = l1_dcache_bytes();
1056
1057         for (i = 0; i < size; i += sizeof(long))
1058                 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1059
1060         return 0;
1061
1062 Efault:
1063         return -EFAULT;
1064 }
1065
1066 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1067 {
1068         int err;
1069         unsigned long size = l1_dcache_bytes();
1070
1071         ea = truncate_if_32bit(regs->msr, ea);
1072         ea &= ~(size - 1);
1073         if (!address_ok(regs, ea, size))
1074                 return -EFAULT;
1075
1076         if (is_kernel_addr(ea)) {
1077                 err = __emulate_dcbz(ea);
1078         } else if (user_write_access_begin((void __user *)ea, size)) {
1079                 err = __emulate_dcbz(ea);
1080                 user_write_access_end();
1081         } else {
1082                 err = -EFAULT;
1083         }
1084
1085         if (err)
1086                 regs->dar = ea;
1087
1088
1089         return err;
1090 }
1091 NOKPROBE_SYMBOL(emulate_dcbz);
1092
1093 #define __put_user_asmx(x, addr, err, op, cr)           \
1094         __asm__ __volatile__(                           \
1095                 ".machine push\n"                       \
1096                 ".machine power8\n"                     \
1097                 "1:     " op " %2,0,%3\n"               \
1098                 ".machine pop\n"                        \
1099                 "       mfcr    %1\n"                   \
1100                 "2:\n"                                  \
1101                 ".section .fixup,\"ax\"\n"              \
1102                 "3:     li      %0,%4\n"                \
1103                 "       b       2b\n"                   \
1104                 ".previous\n"                           \
1105                 EX_TABLE(1b, 3b)                        \
1106                 : "=r" (err), "=r" (cr)                 \
1107                 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1108
1109 #define __get_user_asmx(x, addr, err, op)               \
1110         __asm__ __volatile__(                           \
1111                 ".machine push\n"                       \
1112                 ".machine power8\n"                     \
1113                 "1:     "op" %1,0,%2\n"                 \
1114                 ".machine pop\n"                        \
1115                 "2:\n"                                  \
1116                 ".section .fixup,\"ax\"\n"              \
1117                 "3:     li      %0,%3\n"                \
1118                 "       b       2b\n"                   \
1119                 ".previous\n"                           \
1120                 EX_TABLE(1b, 3b)                        \
1121                 : "=r" (err), "=r" (x)                  \
1122                 : "r" (addr), "i" (-EFAULT), "0" (err))
1123
1124 #define __cacheop_user_asmx(addr, err, op)              \
1125         __asm__ __volatile__(                           \
1126                 "1:     "op" 0,%1\n"                    \
1127                 "2:\n"                                  \
1128                 ".section .fixup,\"ax\"\n"              \
1129                 "3:     li      %0,%3\n"                \
1130                 "       b       2b\n"                   \
1131                 ".previous\n"                           \
1132                 EX_TABLE(1b, 3b)                        \
1133                 : "=r" (err)                            \
1134                 : "r" (addr), "i" (-EFAULT), "0" (err))
1135
1136 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1137                                     struct instruction_op *op)
1138 {
1139         long val = op->val;
1140
1141         op->type |= SETCC;
1142         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1143         if (!(regs->msr & MSR_64BIT))
1144                 val = (int) val;
1145         if (val < 0)
1146                 op->ccval |= 0x80000000;
1147         else if (val > 0)
1148                 op->ccval |= 0x40000000;
1149         else
1150                 op->ccval |= 0x20000000;
1151 }
1152
1153 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1154 {
1155         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1156                 if (val)
1157                         op->xerval |= XER_CA32;
1158                 else
1159                         op->xerval &= ~XER_CA32;
1160         }
1161 }
1162
1163 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1164                                      struct instruction_op *op, int rd,
1165                                      unsigned long val1, unsigned long val2,
1166                                      unsigned long carry_in)
1167 {
1168         unsigned long val = val1 + val2;
1169
1170         if (carry_in)
1171                 ++val;
1172         op->type = COMPUTE | SETREG | SETXER;
1173         op->reg = rd;
1174         op->val = val;
1175         val = truncate_if_32bit(regs->msr, val);
1176         val1 = truncate_if_32bit(regs->msr, val1);
1177         op->xerval = regs->xer;
1178         if (val < val1 || (carry_in && val == val1))
1179                 op->xerval |= XER_CA;
1180         else
1181                 op->xerval &= ~XER_CA;
1182
1183         set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1184                         (carry_in && (unsigned int)val == (unsigned int)val1));
1185 }
1186
1187 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1188                                           struct instruction_op *op,
1189                                           long v1, long v2, int crfld)
1190 {
1191         unsigned int crval, shift;
1192
1193         op->type = COMPUTE | SETCC;
1194         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1195         if (v1 < v2)
1196                 crval |= 8;
1197         else if (v1 > v2)
1198                 crval |= 4;
1199         else
1200                 crval |= 2;
1201         shift = (7 - crfld) * 4;
1202         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1203 }
1204
1205 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1206                                             struct instruction_op *op,
1207                                             unsigned long v1,
1208                                             unsigned long v2, int crfld)
1209 {
1210         unsigned int crval, shift;
1211
1212         op->type = COMPUTE | SETCC;
1213         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1214         if (v1 < v2)
1215                 crval |= 8;
1216         else if (v1 > v2)
1217                 crval |= 4;
1218         else
1219                 crval |= 2;
1220         shift = (7 - crfld) * 4;
1221         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1222 }
1223
1224 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1225                                     struct instruction_op *op,
1226                                     unsigned long v1, unsigned long v2)
1227 {
1228         unsigned long long out_val, mask;
1229         int i;
1230
1231         out_val = 0;
1232         for (i = 0; i < 8; i++) {
1233                 mask = 0xffUL << (i * 8);
1234                 if ((v1 & mask) == (v2 & mask))
1235                         out_val |= mask;
1236         }
1237         op->val = out_val;
1238 }
1239
1240 /*
1241  * The size parameter is used to adjust the equivalent popcnt instruction.
1242  * popcntb = 8, popcntw = 32, popcntd = 64
1243  */
1244 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1245                                       struct instruction_op *op,
1246                                       unsigned long v1, int size)
1247 {
1248         unsigned long long out = v1;
1249
1250         out -= (out >> 1) & 0x5555555555555555ULL;
1251         out = (0x3333333333333333ULL & out) +
1252               (0x3333333333333333ULL & (out >> 2));
1253         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1254
1255         if (size == 8) {        /* popcntb */
1256                 op->val = out;
1257                 return;
1258         }
1259         out += out >> 8;
1260         out += out >> 16;
1261         if (size == 32) {       /* popcntw */
1262                 op->val = out & 0x0000003f0000003fULL;
1263                 return;
1264         }
1265
1266         out = (out + (out >> 32)) & 0x7f;
1267         op->val = out;  /* popcntd */
1268 }
1269
1270 #ifdef CONFIG_PPC64
1271 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1272                                       struct instruction_op *op,
1273                                       unsigned long v1, unsigned long v2)
1274 {
1275         unsigned char perm, idx;
1276         unsigned int i;
1277
1278         perm = 0;
1279         for (i = 0; i < 8; i++) {
1280                 idx = (v1 >> (i * 8)) & 0xff;
1281                 if (idx < 64)
1282                         if (v2 & PPC_BIT(idx))
1283                                 perm |= 1 << i;
1284         }
1285         op->val = perm;
1286 }
1287 #endif /* CONFIG_PPC64 */
1288 /*
1289  * The size parameter adjusts the equivalent prty instruction.
1290  * prtyw = 32, prtyd = 64
1291  */
1292 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1293                                     struct instruction_op *op,
1294                                     unsigned long v, int size)
1295 {
1296         unsigned long long res = v ^ (v >> 8);
1297
1298         res ^= res >> 16;
1299         if (size == 32) {               /* prtyw */
1300                 op->val = res & 0x0000000100000001ULL;
1301                 return;
1302         }
1303
1304         res ^= res >> 32;
1305         op->val = res & 1;      /*prtyd */
1306 }
1307
1308 static nokprobe_inline int trap_compare(long v1, long v2)
1309 {
1310         int ret = 0;
1311
1312         if (v1 < v2)
1313                 ret |= 0x10;
1314         else if (v1 > v2)
1315                 ret |= 0x08;
1316         else
1317                 ret |= 0x04;
1318         if ((unsigned long)v1 < (unsigned long)v2)
1319                 ret |= 0x02;
1320         else if ((unsigned long)v1 > (unsigned long)v2)
1321                 ret |= 0x01;
1322         return ret;
1323 }
1324
1325 /*
1326  * Elements of 32-bit rotate and mask instructions.
1327  */
1328 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1329                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1330 #ifdef __powerpc64__
1331 #define MASK64_L(mb)    (~0UL >> (mb))
1332 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1333 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1334 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1335 #else
1336 #define DATA32(x)       (x)
1337 #endif
1338 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1339
1340 /*
1341  * Decode an instruction, and return information about it in *op
1342  * without changing *regs.
1343  * Integer arithmetic and logical instructions, branches, and barrier
1344  * instructions can be emulated just using the information in *op.
1345  *
1346  * Return value is 1 if the instruction can be emulated just by
1347  * updating *regs with the information in *op, -1 if we need the
1348  * GPRs but *regs doesn't contain the full register set, or 0
1349  * otherwise.
1350  */
1351 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1352                   ppc_inst_t instr)
1353 {
1354 #ifdef CONFIG_PPC64
1355         unsigned int suffixopcode, prefixtype, prefix_r;
1356 #endif
1357         unsigned int opcode, ra, rb, rc, rd, spr, u;
1358         unsigned long int imm;
1359         unsigned long int val, val2;
1360         unsigned int mb, me, sh;
1361         unsigned int word, suffix;
1362         long ival;
1363
1364         word = ppc_inst_val(instr);
1365         suffix = ppc_inst_suffix(instr);
1366
1367         op->type = COMPUTE;
1368
1369         opcode = ppc_inst_primary_opcode(instr);
1370         switch (opcode) {
1371         case 16:        /* bc */
1372                 op->type = BRANCH;
1373                 imm = (signed short)(word & 0xfffc);
1374                 if ((word & 2) == 0)
1375                         imm += regs->nip;
1376                 op->val = truncate_if_32bit(regs->msr, imm);
1377                 if (word & 1)
1378                         op->type |= SETLK;
1379                 if (branch_taken(word, regs, op))
1380                         op->type |= BRTAKEN;
1381                 return 1;
1382         case 17:        /* sc */
1383                 if ((word & 0xfe2) == 2)
1384                         op->type = SYSCALL;
1385                 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1386                                 (word & 0xfe3) == 1) {  /* scv */
1387                         op->type = SYSCALL_VECTORED_0;
1388                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1389                                 goto unknown_opcode;
1390                 } else
1391                         op->type = UNKNOWN;
1392                 return 0;
1393         case 18:        /* b */
1394                 op->type = BRANCH | BRTAKEN;
1395                 imm = word & 0x03fffffc;
1396                 if (imm & 0x02000000)
1397                         imm -= 0x04000000;
1398                 if ((word & 2) == 0)
1399                         imm += regs->nip;
1400                 op->val = truncate_if_32bit(regs->msr, imm);
1401                 if (word & 1)
1402                         op->type |= SETLK;
1403                 return 1;
1404         case 19:
1405                 switch ((word >> 1) & 0x3ff) {
1406                 case 0:         /* mcrf */
1407                         op->type = COMPUTE + SETCC;
1408                         rd = 7 - ((word >> 23) & 0x7);
1409                         ra = 7 - ((word >> 18) & 0x7);
1410                         rd *= 4;
1411                         ra *= 4;
1412                         val = (regs->ccr >> ra) & 0xf;
1413                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1414                         return 1;
1415
1416                 case 16:        /* bclr */
1417                 case 528:       /* bcctr */
1418                         op->type = BRANCH;
1419                         imm = (word & 0x400)? regs->ctr: regs->link;
1420                         op->val = truncate_if_32bit(regs->msr, imm);
1421                         if (word & 1)
1422                                 op->type |= SETLK;
1423                         if (branch_taken(word, regs, op))
1424                                 op->type |= BRTAKEN;
1425                         return 1;
1426
1427                 case 18:        /* rfid, scary */
1428                         if (user_mode(regs))
1429                                 goto priv;
1430                         op->type = RFI;
1431                         return 0;
1432
1433                 case 150:       /* isync */
1434                         op->type = BARRIER | BARRIER_ISYNC;
1435                         return 1;
1436
1437                 case 33:        /* crnor */
1438                 case 129:       /* crandc */
1439                 case 193:       /* crxor */
1440                 case 225:       /* crnand */
1441                 case 257:       /* crand */
1442                 case 289:       /* creqv */
1443                 case 417:       /* crorc */
1444                 case 449:       /* cror */
1445                         op->type = COMPUTE + SETCC;
1446                         ra = (word >> 16) & 0x1f;
1447                         rb = (word >> 11) & 0x1f;
1448                         rd = (word >> 21) & 0x1f;
1449                         ra = (regs->ccr >> (31 - ra)) & 1;
1450                         rb = (regs->ccr >> (31 - rb)) & 1;
1451                         val = (word >> (6 + ra * 2 + rb)) & 1;
1452                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1453                                 (val << (31 - rd));
1454                         return 1;
1455                 }
1456                 break;
1457         case 31:
1458                 switch ((word >> 1) & 0x3ff) {
1459                 case 598:       /* sync */
1460                         op->type = BARRIER + BARRIER_SYNC;
1461 #ifdef __powerpc64__
1462                         switch ((word >> 21) & 3) {
1463                         case 1:         /* lwsync */
1464                                 op->type = BARRIER + BARRIER_LWSYNC;
1465                                 break;
1466                         case 2:         /* ptesync */
1467                                 op->type = BARRIER + BARRIER_PTESYNC;
1468                                 break;
1469                         }
1470 #endif
1471                         return 1;
1472
1473                 case 854:       /* eieio */
1474                         op->type = BARRIER + BARRIER_EIEIO;
1475                         return 1;
1476                 }
1477                 break;
1478         }
1479
1480         rd = (word >> 21) & 0x1f;
1481         ra = (word >> 16) & 0x1f;
1482         rb = (word >> 11) & 0x1f;
1483         rc = (word >> 6) & 0x1f;
1484
1485         switch (opcode) {
1486 #ifdef __powerpc64__
1487         case 1:
1488                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1489                         goto unknown_opcode;
1490
1491                 prefix_r = GET_PREFIX_R(word);
1492                 ra = GET_PREFIX_RA(suffix);
1493                 rd = (suffix >> 21) & 0x1f;
1494                 op->reg = rd;
1495                 op->val = regs->gpr[rd];
1496                 suffixopcode = get_op(suffix);
1497                 prefixtype = (word >> 24) & 0x3;
1498                 switch (prefixtype) {
1499                 case 2:
1500                         if (prefix_r && ra)
1501                                 return 0;
1502                         switch (suffixopcode) {
1503                         case 14:        /* paddi */
1504                                 op->type = COMPUTE | PREFIXED;
1505                                 op->val = mlsd_8lsd_ea(word, suffix, regs);
1506                                 goto compute_done;
1507                         }
1508                 }
1509                 break;
1510         case 2:         /* tdi */
1511                 if (rd & trap_compare(regs->gpr[ra], (short) word))
1512                         goto trap;
1513                 return 1;
1514 #endif
1515         case 3:         /* twi */
1516                 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1517                         goto trap;
1518                 return 1;
1519
1520 #ifdef __powerpc64__
1521         case 4:
1522                 /*
1523                  * There are very many instructions with this primary opcode
1524                  * introduced in the ISA as early as v2.03. However, the ones
1525                  * we currently emulate were all introduced with ISA 3.0
1526                  */
1527                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1528                         goto unknown_opcode;
1529
1530                 switch (word & 0x3f) {
1531                 case 48:        /* maddhd */
1532                         asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1533                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1534                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1535                         goto compute_done;
1536
1537                 case 49:        /* maddhdu */
1538                         asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1539                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1540                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1541                         goto compute_done;
1542
1543                 case 51:        /* maddld */
1544                         asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1545                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1546                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1547                         goto compute_done;
1548                 }
1549
1550                 /*
1551                  * There are other instructions from ISA 3.0 with the same
1552                  * primary opcode which do not have emulation support yet.
1553                  */
1554                 goto unknown_opcode;
1555 #endif
1556
1557         case 7:         /* mulli */
1558                 op->val = regs->gpr[ra] * (short) word;
1559                 goto compute_done;
1560
1561         case 8:         /* subfic */
1562                 imm = (short) word;
1563                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1564                 return 1;
1565
1566         case 10:        /* cmpli */
1567                 imm = (unsigned short) word;
1568                 val = regs->gpr[ra];
1569 #ifdef __powerpc64__
1570                 if ((rd & 1) == 0)
1571                         val = (unsigned int) val;
1572 #endif
1573                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1574                 return 1;
1575
1576         case 11:        /* cmpi */
1577                 imm = (short) word;
1578                 val = regs->gpr[ra];
1579 #ifdef __powerpc64__
1580                 if ((rd & 1) == 0)
1581                         val = (int) val;
1582 #endif
1583                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1584                 return 1;
1585
1586         case 12:        /* addic */
1587                 imm = (short) word;
1588                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1589                 return 1;
1590
1591         case 13:        /* addic. */
1592                 imm = (short) word;
1593                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1594                 set_cr0(regs, op);
1595                 return 1;
1596
1597         case 14:        /* addi */
1598                 imm = (short) word;
1599                 if (ra)
1600                         imm += regs->gpr[ra];
1601                 op->val = imm;
1602                 goto compute_done;
1603
1604         case 15:        /* addis */
1605                 imm = ((short) word) << 16;
1606                 if (ra)
1607                         imm += regs->gpr[ra];
1608                 op->val = imm;
1609                 goto compute_done;
1610
1611         case 19:
1612                 if (((word >> 1) & 0x1f) == 2) {
1613                         /* addpcis */
1614                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1615                                 goto unknown_opcode;
1616                         imm = (short) (word & 0xffc1);  /* d0 + d2 fields */
1617                         imm |= (word >> 15) & 0x3e;     /* d1 field */
1618                         op->val = regs->nip + (imm << 16) + 4;
1619                         goto compute_done;
1620                 }
1621                 op->type = UNKNOWN;
1622                 return 0;
1623
1624         case 20:        /* rlwimi */
1625                 mb = (word >> 6) & 0x1f;
1626                 me = (word >> 1) & 0x1f;
1627                 val = DATA32(regs->gpr[rd]);
1628                 imm = MASK32(mb, me);
1629                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1630                 goto logical_done;
1631
1632         case 21:        /* rlwinm */
1633                 mb = (word >> 6) & 0x1f;
1634                 me = (word >> 1) & 0x1f;
1635                 val = DATA32(regs->gpr[rd]);
1636                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1637                 goto logical_done;
1638
1639         case 23:        /* rlwnm */
1640                 mb = (word >> 6) & 0x1f;
1641                 me = (word >> 1) & 0x1f;
1642                 rb = regs->gpr[rb] & 0x1f;
1643                 val = DATA32(regs->gpr[rd]);
1644                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1645                 goto logical_done;
1646
1647         case 24:        /* ori */
1648                 op->val = regs->gpr[rd] | (unsigned short) word;
1649                 goto logical_done_nocc;
1650
1651         case 25:        /* oris */
1652                 imm = (unsigned short) word;
1653                 op->val = regs->gpr[rd] | (imm << 16);
1654                 goto logical_done_nocc;
1655
1656         case 26:        /* xori */
1657                 op->val = regs->gpr[rd] ^ (unsigned short) word;
1658                 goto logical_done_nocc;
1659
1660         case 27:        /* xoris */
1661                 imm = (unsigned short) word;
1662                 op->val = regs->gpr[rd] ^ (imm << 16);
1663                 goto logical_done_nocc;
1664
1665         case 28:        /* andi. */
1666                 op->val = regs->gpr[rd] & (unsigned short) word;
1667                 set_cr0(regs, op);
1668                 goto logical_done_nocc;
1669
1670         case 29:        /* andis. */
1671                 imm = (unsigned short) word;
1672                 op->val = regs->gpr[rd] & (imm << 16);
1673                 set_cr0(regs, op);
1674                 goto logical_done_nocc;
1675
1676 #ifdef __powerpc64__
1677         case 30:        /* rld* */
1678                 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1679                 val = regs->gpr[rd];
1680                 if ((word & 0x10) == 0) {
1681                         sh = rb | ((word & 2) << 4);
1682                         val = ROTATE(val, sh);
1683                         switch ((word >> 2) & 3) {
1684                         case 0:         /* rldicl */
1685                                 val &= MASK64_L(mb);
1686                                 break;
1687                         case 1:         /* rldicr */
1688                                 val &= MASK64_R(mb);
1689                                 break;
1690                         case 2:         /* rldic */
1691                                 val &= MASK64(mb, 63 - sh);
1692                                 break;
1693                         case 3:         /* rldimi */
1694                                 imm = MASK64(mb, 63 - sh);
1695                                 val = (regs->gpr[ra] & ~imm) |
1696                                         (val & imm);
1697                         }
1698                         op->val = val;
1699                         goto logical_done;
1700                 } else {
1701                         sh = regs->gpr[rb] & 0x3f;
1702                         val = ROTATE(val, sh);
1703                         switch ((word >> 1) & 7) {
1704                         case 0:         /* rldcl */
1705                                 op->val = val & MASK64_L(mb);
1706                                 goto logical_done;
1707                         case 1:         /* rldcr */
1708                                 op->val = val & MASK64_R(mb);
1709                                 goto logical_done;
1710                         }
1711                 }
1712 #endif
1713                 op->type = UNKNOWN;     /* illegal instruction */
1714                 return 0;
1715
1716         case 31:
1717                 /* isel occupies 32 minor opcodes */
1718                 if (((word >> 1) & 0x1f) == 15) {
1719                         mb = (word >> 6) & 0x1f; /* bc field */
1720                         val = (regs->ccr >> (31 - mb)) & 1;
1721                         val2 = (ra) ? regs->gpr[ra] : 0;
1722
1723                         op->val = (val) ? val2 : regs->gpr[rb];
1724                         goto compute_done;
1725                 }
1726
1727                 switch ((word >> 1) & 0x3ff) {
1728                 case 4:         /* tw */
1729                         if (rd == 0x1f ||
1730                             (rd & trap_compare((int)regs->gpr[ra],
1731                                                (int)regs->gpr[rb])))
1732                                 goto trap;
1733                         return 1;
1734 #ifdef __powerpc64__
1735                 case 68:        /* td */
1736                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1737                                 goto trap;
1738                         return 1;
1739 #endif
1740                 case 83:        /* mfmsr */
1741                         if (user_mode(regs))
1742                                 goto priv;
1743                         op->type = MFMSR;
1744                         op->reg = rd;
1745                         return 0;
1746                 case 146:       /* mtmsr */
1747                         if (user_mode(regs))
1748                                 goto priv;
1749                         op->type = MTMSR;
1750                         op->reg = rd;
1751                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1752                         return 0;
1753 #ifdef CONFIG_PPC64
1754                 case 178:       /* mtmsrd */
1755                         if (user_mode(regs))
1756                                 goto priv;
1757                         op->type = MTMSR;
1758                         op->reg = rd;
1759                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1760                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1761                         imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1762                         op->val = imm;
1763                         return 0;
1764 #endif
1765
1766                 case 19:        /* mfcr */
1767                         imm = 0xffffffffUL;
1768                         if ((word >> 20) & 1) {
1769                                 imm = 0xf0000000UL;
1770                                 for (sh = 0; sh < 8; ++sh) {
1771                                         if (word & (0x80000 >> sh))
1772                                                 break;
1773                                         imm >>= 4;
1774                                 }
1775                         }
1776                         op->val = regs->ccr & imm;
1777                         goto compute_done;
1778
1779                 case 128:       /* setb */
1780                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1781                                 goto unknown_opcode;
1782                         /*
1783                          * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1784                          * Since each CR field is 4 bits,
1785                          * we can simply mask off the bottom two bits (bfa * 4)
1786                          * to yield the first bit in the CR field.
1787                          */
1788                         ra = ra & ~0x3;
1789                         /* 'val' stores bits of the CR field (bfa) */
1790                         val = regs->ccr >> (CR0_SHIFT - ra);
1791                         /* checks if the LT bit of CR field (bfa) is set */
1792                         if (val & 8)
1793                                 op->val = -1;
1794                         /* checks if the GT bit of CR field (bfa) is set */
1795                         else if (val & 4)
1796                                 op->val = 1;
1797                         else
1798                                 op->val = 0;
1799                         goto compute_done;
1800
1801                 case 144:       /* mtcrf */
1802                         op->type = COMPUTE + SETCC;
1803                         imm = 0xf0000000UL;
1804                         val = regs->gpr[rd];
1805                         op->ccval = regs->ccr;
1806                         for (sh = 0; sh < 8; ++sh) {
1807                                 if (word & (0x80000 >> sh))
1808                                         op->ccval = (op->ccval & ~imm) |
1809                                                 (val & imm);
1810                                 imm >>= 4;
1811                         }
1812                         return 1;
1813
1814                 case 339:       /* mfspr */
1815                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1816                         op->type = MFSPR;
1817                         op->reg = rd;
1818                         op->spr = spr;
1819                         if (spr == SPRN_XER || spr == SPRN_LR ||
1820                             spr == SPRN_CTR)
1821                                 return 1;
1822                         return 0;
1823
1824                 case 467:       /* mtspr */
1825                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1826                         op->type = MTSPR;
1827                         op->val = regs->gpr[rd];
1828                         op->spr = spr;
1829                         if (spr == SPRN_XER || spr == SPRN_LR ||
1830                             spr == SPRN_CTR)
1831                                 return 1;
1832                         return 0;
1833
1834 /*
1835  * Compare instructions
1836  */
1837                 case 0: /* cmp */
1838                         val = regs->gpr[ra];
1839                         val2 = regs->gpr[rb];
1840 #ifdef __powerpc64__
1841                         if ((rd & 1) == 0) {
1842                                 /* word (32-bit) compare */
1843                                 val = (int) val;
1844                                 val2 = (int) val2;
1845                         }
1846 #endif
1847                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1848                         return 1;
1849
1850                 case 32:        /* cmpl */
1851                         val = regs->gpr[ra];
1852                         val2 = regs->gpr[rb];
1853 #ifdef __powerpc64__
1854                         if ((rd & 1) == 0) {
1855                                 /* word (32-bit) compare */
1856                                 val = (unsigned int) val;
1857                                 val2 = (unsigned int) val2;
1858                         }
1859 #endif
1860                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1861                         return 1;
1862
1863                 case 508: /* cmpb */
1864                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1865                         goto logical_done_nocc;
1866
1867 /*
1868  * Arithmetic instructions
1869  */
1870                 case 8: /* subfc */
1871                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1872                                        regs->gpr[rb], 1);
1873                         goto arith_done;
1874 #ifdef __powerpc64__
1875                 case 9: /* mulhdu */
1876                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1877                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1878                         goto arith_done;
1879 #endif
1880                 case 10:        /* addc */
1881                         add_with_carry(regs, op, rd, regs->gpr[ra],
1882                                        regs->gpr[rb], 0);
1883                         goto arith_done;
1884
1885                 case 11:        /* mulhwu */
1886                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1887                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1888                         goto arith_done;
1889
1890                 case 40:        /* subf */
1891                         op->val = regs->gpr[rb] - regs->gpr[ra];
1892                         goto arith_done;
1893 #ifdef __powerpc64__
1894                 case 73:        /* mulhd */
1895                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1896                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1897                         goto arith_done;
1898 #endif
1899                 case 75:        /* mulhw */
1900                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1901                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1902                         goto arith_done;
1903
1904                 case 104:       /* neg */
1905                         op->val = -regs->gpr[ra];
1906                         goto arith_done;
1907
1908                 case 136:       /* subfe */
1909                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1910                                        regs->gpr[rb], regs->xer & XER_CA);
1911                         goto arith_done;
1912
1913                 case 138:       /* adde */
1914                         add_with_carry(regs, op, rd, regs->gpr[ra],
1915                                        regs->gpr[rb], regs->xer & XER_CA);
1916                         goto arith_done;
1917
1918                 case 200:       /* subfze */
1919                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1920                                        regs->xer & XER_CA);
1921                         goto arith_done;
1922
1923                 case 202:       /* addze */
1924                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1925                                        regs->xer & XER_CA);
1926                         goto arith_done;
1927
1928                 case 232:       /* subfme */
1929                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1930                                        regs->xer & XER_CA);
1931                         goto arith_done;
1932 #ifdef __powerpc64__
1933                 case 233:       /* mulld */
1934                         op->val = regs->gpr[ra] * regs->gpr[rb];
1935                         goto arith_done;
1936 #endif
1937                 case 234:       /* addme */
1938                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1939                                        regs->xer & XER_CA);
1940                         goto arith_done;
1941
1942                 case 235:       /* mullw */
1943                         op->val = (long)(int) regs->gpr[ra] *
1944                                 (int) regs->gpr[rb];
1945
1946                         goto arith_done;
1947 #ifdef __powerpc64__
1948                 case 265:       /* modud */
1949                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1950                                 goto unknown_opcode;
1951                         op->val = regs->gpr[ra] % regs->gpr[rb];
1952                         goto compute_done;
1953 #endif
1954                 case 266:       /* add */
1955                         op->val = regs->gpr[ra] + regs->gpr[rb];
1956                         goto arith_done;
1957
1958                 case 267:       /* moduw */
1959                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1960                                 goto unknown_opcode;
1961                         op->val = (unsigned int) regs->gpr[ra] %
1962                                 (unsigned int) regs->gpr[rb];
1963                         goto compute_done;
1964 #ifdef __powerpc64__
1965                 case 457:       /* divdu */
1966                         op->val = regs->gpr[ra] / regs->gpr[rb];
1967                         goto arith_done;
1968 #endif
1969                 case 459:       /* divwu */
1970                         op->val = (unsigned int) regs->gpr[ra] /
1971                                 (unsigned int) regs->gpr[rb];
1972                         goto arith_done;
1973 #ifdef __powerpc64__
1974                 case 489:       /* divd */
1975                         op->val = (long int) regs->gpr[ra] /
1976                                 (long int) regs->gpr[rb];
1977                         goto arith_done;
1978 #endif
1979                 case 491:       /* divw */
1980                         op->val = (int) regs->gpr[ra] /
1981                                 (int) regs->gpr[rb];
1982                         goto arith_done;
1983 #ifdef __powerpc64__
1984                 case 425:       /* divde[.] */
1985                         asm volatile(PPC_DIVDE(%0, %1, %2) :
1986                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1987                                 "r" (regs->gpr[rb]));
1988                         goto arith_done;
1989                 case 393:       /* divdeu[.] */
1990                         asm volatile(PPC_DIVDEU(%0, %1, %2) :
1991                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1992                                 "r" (regs->gpr[rb]));
1993                         goto arith_done;
1994 #endif
1995                 case 755:       /* darn */
1996                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1997                                 goto unknown_opcode;
1998                         switch (ra & 0x3) {
1999                         case 0:
2000                                 /* 32-bit conditioned */
2001                                 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
2002                                 goto compute_done;
2003
2004                         case 1:
2005                                 /* 64-bit conditioned */
2006                                 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2007                                 goto compute_done;
2008
2009                         case 2:
2010                                 /* 64-bit raw */
2011                                 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2012                                 goto compute_done;
2013                         }
2014
2015                         goto unknown_opcode;
2016 #ifdef __powerpc64__
2017                 case 777:       /* modsd */
2018                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2019                                 goto unknown_opcode;
2020                         op->val = (long int) regs->gpr[ra] %
2021                                 (long int) regs->gpr[rb];
2022                         goto compute_done;
2023 #endif
2024                 case 779:       /* modsw */
2025                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2026                                 goto unknown_opcode;
2027                         op->val = (int) regs->gpr[ra] %
2028                                 (int) regs->gpr[rb];
2029                         goto compute_done;
2030
2031
2032 /*
2033  * Logical instructions
2034  */
2035                 case 26:        /* cntlzw */
2036                         val = (unsigned int) regs->gpr[rd];
2037                         op->val = ( val ? __builtin_clz(val) : 32 );
2038                         goto logical_done;
2039 #ifdef __powerpc64__
2040                 case 58:        /* cntlzd */
2041                         val = regs->gpr[rd];
2042                         op->val = ( val ? __builtin_clzl(val) : 64 );
2043                         goto logical_done;
2044 #endif
2045                 case 28:        /* and */
2046                         op->val = regs->gpr[rd] & regs->gpr[rb];
2047                         goto logical_done;
2048
2049                 case 60:        /* andc */
2050                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
2051                         goto logical_done;
2052
2053                 case 122:       /* popcntb */
2054                         do_popcnt(regs, op, regs->gpr[rd], 8);
2055                         goto logical_done_nocc;
2056
2057                 case 124:       /* nor */
2058                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2059                         goto logical_done;
2060
2061                 case 154:       /* prtyw */
2062                         do_prty(regs, op, regs->gpr[rd], 32);
2063                         goto logical_done_nocc;
2064
2065                 case 186:       /* prtyd */
2066                         do_prty(regs, op, regs->gpr[rd], 64);
2067                         goto logical_done_nocc;
2068 #ifdef CONFIG_PPC64
2069                 case 252:       /* bpermd */
2070                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2071                         goto logical_done_nocc;
2072 #endif
2073                 case 284:       /* xor */
2074                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2075                         goto logical_done;
2076
2077                 case 316:       /* xor */
2078                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
2079                         goto logical_done;
2080
2081                 case 378:       /* popcntw */
2082                         do_popcnt(regs, op, regs->gpr[rd], 32);
2083                         goto logical_done_nocc;
2084
2085                 case 412:       /* orc */
2086                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
2087                         goto logical_done;
2088
2089                 case 444:       /* or */
2090                         op->val = regs->gpr[rd] | regs->gpr[rb];
2091                         goto logical_done;
2092
2093                 case 476:       /* nand */
2094                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2095                         goto logical_done;
2096 #ifdef CONFIG_PPC64
2097                 case 506:       /* popcntd */
2098                         do_popcnt(regs, op, regs->gpr[rd], 64);
2099                         goto logical_done_nocc;
2100 #endif
2101                 case 538:       /* cnttzw */
2102                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2103                                 goto unknown_opcode;
2104                         val = (unsigned int) regs->gpr[rd];
2105                         op->val = (val ? __builtin_ctz(val) : 32);
2106                         goto logical_done;
2107 #ifdef __powerpc64__
2108                 case 570:       /* cnttzd */
2109                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2110                                 goto unknown_opcode;
2111                         val = regs->gpr[rd];
2112                         op->val = (val ? __builtin_ctzl(val) : 64);
2113                         goto logical_done;
2114 #endif
2115                 case 922:       /* extsh */
2116                         op->val = (signed short) regs->gpr[rd];
2117                         goto logical_done;
2118
2119                 case 954:       /* extsb */
2120                         op->val = (signed char) regs->gpr[rd];
2121                         goto logical_done;
2122 #ifdef __powerpc64__
2123                 case 986:       /* extsw */
2124                         op->val = (signed int) regs->gpr[rd];
2125                         goto logical_done;
2126 #endif
2127
2128 /*
2129  * Shift instructions
2130  */
2131                 case 24:        /* slw */
2132                         sh = regs->gpr[rb] & 0x3f;
2133                         if (sh < 32)
2134                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2135                         else
2136                                 op->val = 0;
2137                         goto logical_done;
2138
2139                 case 536:       /* srw */
2140                         sh = regs->gpr[rb] & 0x3f;
2141                         if (sh < 32)
2142                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2143                         else
2144                                 op->val = 0;
2145                         goto logical_done;
2146
2147                 case 792:       /* sraw */
2148                         op->type = COMPUTE + SETREG + SETXER;
2149                         sh = regs->gpr[rb] & 0x3f;
2150                         ival = (signed int) regs->gpr[rd];
2151                         op->val = ival >> (sh < 32 ? sh : 31);
2152                         op->xerval = regs->xer;
2153                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2154                                 op->xerval |= XER_CA;
2155                         else
2156                                 op->xerval &= ~XER_CA;
2157                         set_ca32(op, op->xerval & XER_CA);
2158                         goto logical_done;
2159
2160                 case 824:       /* srawi */
2161                         op->type = COMPUTE + SETREG + SETXER;
2162                         sh = rb;
2163                         ival = (signed int) regs->gpr[rd];
2164                         op->val = ival >> sh;
2165                         op->xerval = regs->xer;
2166                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2167                                 op->xerval |= XER_CA;
2168                         else
2169                                 op->xerval &= ~XER_CA;
2170                         set_ca32(op, op->xerval & XER_CA);
2171                         goto logical_done;
2172
2173 #ifdef __powerpc64__
2174                 case 27:        /* sld */
2175                         sh = regs->gpr[rb] & 0x7f;
2176                         if (sh < 64)
2177                                 op->val = regs->gpr[rd] << sh;
2178                         else
2179                                 op->val = 0;
2180                         goto logical_done;
2181
2182                 case 539:       /* srd */
2183                         sh = regs->gpr[rb] & 0x7f;
2184                         if (sh < 64)
2185                                 op->val = regs->gpr[rd] >> sh;
2186                         else
2187                                 op->val = 0;
2188                         goto logical_done;
2189
2190                 case 794:       /* srad */
2191                         op->type = COMPUTE + SETREG + SETXER;
2192                         sh = regs->gpr[rb] & 0x7f;
2193                         ival = (signed long int) regs->gpr[rd];
2194                         op->val = ival >> (sh < 64 ? sh : 63);
2195                         op->xerval = regs->xer;
2196                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2197                                 op->xerval |= XER_CA;
2198                         else
2199                                 op->xerval &= ~XER_CA;
2200                         set_ca32(op, op->xerval & XER_CA);
2201                         goto logical_done;
2202
2203                 case 826:       /* sradi with sh_5 = 0 */
2204                 case 827:       /* sradi with sh_5 = 1 */
2205                         op->type = COMPUTE + SETREG + SETXER;
2206                         sh = rb | ((word & 2) << 4);
2207                         ival = (signed long int) regs->gpr[rd];
2208                         op->val = ival >> sh;
2209                         op->xerval = regs->xer;
2210                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2211                                 op->xerval |= XER_CA;
2212                         else
2213                                 op->xerval &= ~XER_CA;
2214                         set_ca32(op, op->xerval & XER_CA);
2215                         goto logical_done;
2216
2217                 case 890:       /* extswsli with sh_5 = 0 */
2218                 case 891:       /* extswsli with sh_5 = 1 */
2219                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2220                                 goto unknown_opcode;
2221                         op->type = COMPUTE + SETREG;
2222                         sh = rb | ((word & 2) << 4);
2223                         val = (signed int) regs->gpr[rd];
2224                         if (sh)
2225                                 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2226                         else
2227                                 op->val = val;
2228                         goto logical_done;
2229
2230 #endif /* __powerpc64__ */
2231
2232 /*
2233  * Cache instructions
2234  */
2235                 case 54:        /* dcbst */
2236                         op->type = MKOP(CACHEOP, DCBST, 0);
2237                         op->ea = xform_ea(word, regs);
2238                         return 0;
2239
2240                 case 86:        /* dcbf */
2241                         op->type = MKOP(CACHEOP, DCBF, 0);
2242                         op->ea = xform_ea(word, regs);
2243                         return 0;
2244
2245                 case 246:       /* dcbtst */
2246                         op->type = MKOP(CACHEOP, DCBTST, 0);
2247                         op->ea = xform_ea(word, regs);
2248                         op->reg = rd;
2249                         return 0;
2250
2251                 case 278:       /* dcbt */
2252                         op->type = MKOP(CACHEOP, DCBTST, 0);
2253                         op->ea = xform_ea(word, regs);
2254                         op->reg = rd;
2255                         return 0;
2256
2257                 case 982:       /* icbi */
2258                         op->type = MKOP(CACHEOP, ICBI, 0);
2259                         op->ea = xform_ea(word, regs);
2260                         return 0;
2261
2262                 case 1014:      /* dcbz */
2263                         op->type = MKOP(CACHEOP, DCBZ, 0);
2264                         op->ea = xform_ea(word, regs);
2265                         return 0;
2266                 }
2267                 break;
2268         }
2269
2270 /*
2271  * Loads and stores.
2272  */
2273         op->type = UNKNOWN;
2274         op->update_reg = ra;
2275         op->reg = rd;
2276         op->val = regs->gpr[rd];
2277         u = (word >> 20) & UPDATE;
2278         op->vsx_flags = 0;
2279
2280         switch (opcode) {
2281         case 31:
2282                 u = word & UPDATE;
2283                 op->ea = xform_ea(word, regs);
2284                 switch ((word >> 1) & 0x3ff) {
2285                 case 20:        /* lwarx */
2286                         op->type = MKOP(LARX, 0, 4);
2287                         break;
2288
2289                 case 150:       /* stwcx. */
2290                         op->type = MKOP(STCX, 0, 4);
2291                         break;
2292
2293 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
2294                 case 52:        /* lbarx */
2295                         op->type = MKOP(LARX, 0, 1);
2296                         break;
2297
2298                 case 694:       /* stbcx. */
2299                         op->type = MKOP(STCX, 0, 1);
2300                         break;
2301
2302                 case 116:       /* lharx */
2303                         op->type = MKOP(LARX, 0, 2);
2304                         break;
2305
2306                 case 726:       /* sthcx. */
2307                         op->type = MKOP(STCX, 0, 2);
2308                         break;
2309 #endif
2310 #ifdef __powerpc64__
2311                 case 84:        /* ldarx */
2312                         op->type = MKOP(LARX, 0, 8);
2313                         break;
2314
2315                 case 214:       /* stdcx. */
2316                         op->type = MKOP(STCX, 0, 8);
2317                         break;
2318
2319                 case 276:       /* lqarx */
2320                         if (!((rd & 1) || rd == ra || rd == rb))
2321                                 op->type = MKOP(LARX, 0, 16);
2322                         break;
2323
2324                 case 182:       /* stqcx. */
2325                         if (!(rd & 1))
2326                                 op->type = MKOP(STCX, 0, 16);
2327                         break;
2328 #endif
2329
2330                 case 23:        /* lwzx */
2331                 case 55:        /* lwzux */
2332                         op->type = MKOP(LOAD, u, 4);
2333                         break;
2334
2335                 case 87:        /* lbzx */
2336                 case 119:       /* lbzux */
2337                         op->type = MKOP(LOAD, u, 1);
2338                         break;
2339
2340 #ifdef CONFIG_ALTIVEC
2341                 /*
2342                  * Note: for the load/store vector element instructions,
2343                  * bits of the EA say which field of the VMX register to use.
2344                  */
2345                 case 7:         /* lvebx */
2346                         op->type = MKOP(LOAD_VMX, 0, 1);
2347                         op->element_size = 1;
2348                         break;
2349
2350                 case 39:        /* lvehx */
2351                         op->type = MKOP(LOAD_VMX, 0, 2);
2352                         op->element_size = 2;
2353                         break;
2354
2355                 case 71:        /* lvewx */
2356                         op->type = MKOP(LOAD_VMX, 0, 4);
2357                         op->element_size = 4;
2358                         break;
2359
2360                 case 103:       /* lvx */
2361                 case 359:       /* lvxl */
2362                         op->type = MKOP(LOAD_VMX, 0, 16);
2363                         op->element_size = 16;
2364                         break;
2365
2366                 case 135:       /* stvebx */
2367                         op->type = MKOP(STORE_VMX, 0, 1);
2368                         op->element_size = 1;
2369                         break;
2370
2371                 case 167:       /* stvehx */
2372                         op->type = MKOP(STORE_VMX, 0, 2);
2373                         op->element_size = 2;
2374                         break;
2375
2376                 case 199:       /* stvewx */
2377                         op->type = MKOP(STORE_VMX, 0, 4);
2378                         op->element_size = 4;
2379                         break;
2380
2381                 case 231:       /* stvx */
2382                 case 487:       /* stvxl */
2383                         op->type = MKOP(STORE_VMX, 0, 16);
2384                         break;
2385 #endif /* CONFIG_ALTIVEC */
2386
2387 #ifdef __powerpc64__
2388                 case 21:        /* ldx */
2389                 case 53:        /* ldux */
2390                         op->type = MKOP(LOAD, u, 8);
2391                         break;
2392
2393                 case 149:       /* stdx */
2394                 case 181:       /* stdux */
2395                         op->type = MKOP(STORE, u, 8);
2396                         break;
2397 #endif
2398
2399                 case 151:       /* stwx */
2400                 case 183:       /* stwux */
2401                         op->type = MKOP(STORE, u, 4);
2402                         break;
2403
2404                 case 215:       /* stbx */
2405                 case 247:       /* stbux */
2406                         op->type = MKOP(STORE, u, 1);
2407                         break;
2408
2409                 case 279:       /* lhzx */
2410                 case 311:       /* lhzux */
2411                         op->type = MKOP(LOAD, u, 2);
2412                         break;
2413
2414 #ifdef __powerpc64__
2415                 case 341:       /* lwax */
2416                 case 373:       /* lwaux */
2417                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2418                         break;
2419 #endif
2420
2421                 case 343:       /* lhax */
2422                 case 375:       /* lhaux */
2423                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2424                         break;
2425
2426                 case 407:       /* sthx */
2427                 case 439:       /* sthux */
2428                         op->type = MKOP(STORE, u, 2);
2429                         break;
2430
2431 #ifdef __powerpc64__
2432                 case 532:       /* ldbrx */
2433                         op->type = MKOP(LOAD, BYTEREV, 8);
2434                         break;
2435
2436 #endif
2437                 case 533:       /* lswx */
2438                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2439                         break;
2440
2441                 case 534:       /* lwbrx */
2442                         op->type = MKOP(LOAD, BYTEREV, 4);
2443                         break;
2444
2445                 case 597:       /* lswi */
2446                         if (rb == 0)
2447                                 rb = 32;        /* # bytes to load */
2448                         op->type = MKOP(LOAD_MULTI, 0, rb);
2449                         op->ea = ra ? regs->gpr[ra] : 0;
2450                         break;
2451
2452 #ifdef CONFIG_PPC_FPU
2453                 case 535:       /* lfsx */
2454                 case 567:       /* lfsux */
2455                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2456                         break;
2457
2458                 case 599:       /* lfdx */
2459                 case 631:       /* lfdux */
2460                         op->type = MKOP(LOAD_FP, u, 8);
2461                         break;
2462
2463                 case 663:       /* stfsx */
2464                 case 695:       /* stfsux */
2465                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2466                         break;
2467
2468                 case 727:       /* stfdx */
2469                 case 759:       /* stfdux */
2470                         op->type = MKOP(STORE_FP, u, 8);
2471                         break;
2472
2473 #ifdef __powerpc64__
2474                 case 791:       /* lfdpx */
2475                         op->type = MKOP(LOAD_FP, 0, 16);
2476                         break;
2477
2478                 case 855:       /* lfiwax */
2479                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2480                         break;
2481
2482                 case 887:       /* lfiwzx */
2483                         op->type = MKOP(LOAD_FP, 0, 4);
2484                         break;
2485
2486                 case 919:       /* stfdpx */
2487                         op->type = MKOP(STORE_FP, 0, 16);
2488                         break;
2489
2490                 case 983:       /* stfiwx */
2491                         op->type = MKOP(STORE_FP, 0, 4);
2492                         break;
2493 #endif /* __powerpc64 */
2494 #endif /* CONFIG_PPC_FPU */
2495
2496 #ifdef __powerpc64__
2497                 case 660:       /* stdbrx */
2498                         op->type = MKOP(STORE, BYTEREV, 8);
2499                         op->val = byterev_8(regs->gpr[rd]);
2500                         break;
2501
2502 #endif
2503                 case 661:       /* stswx */
2504                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2505                         break;
2506
2507                 case 662:       /* stwbrx */
2508                         op->type = MKOP(STORE, BYTEREV, 4);
2509                         op->val = byterev_4(regs->gpr[rd]);
2510                         break;
2511
2512                 case 725:       /* stswi */
2513                         if (rb == 0)
2514                                 rb = 32;        /* # bytes to store */
2515                         op->type = MKOP(STORE_MULTI, 0, rb);
2516                         op->ea = ra ? regs->gpr[ra] : 0;
2517                         break;
2518
2519                 case 790:       /* lhbrx */
2520                         op->type = MKOP(LOAD, BYTEREV, 2);
2521                         break;
2522
2523                 case 918:       /* sthbrx */
2524                         op->type = MKOP(STORE, BYTEREV, 2);
2525                         op->val = byterev_2(regs->gpr[rd]);
2526                         break;
2527
2528 #ifdef CONFIG_VSX
2529                 case 12:        /* lxsiwzx */
2530                         op->reg = rd | ((word & 1) << 5);
2531                         op->type = MKOP(LOAD_VSX, 0, 4);
2532                         op->element_size = 8;
2533                         break;
2534
2535                 case 76:        /* lxsiwax */
2536                         op->reg = rd | ((word & 1) << 5);
2537                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2538                         op->element_size = 8;
2539                         break;
2540
2541                 case 140:       /* stxsiwx */
2542                         op->reg = rd | ((word & 1) << 5);
2543                         op->type = MKOP(STORE_VSX, 0, 4);
2544                         op->element_size = 8;
2545                         break;
2546
2547                 case 268:       /* lxvx */
2548                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2549                                 goto unknown_opcode;
2550                         op->reg = rd | ((word & 1) << 5);
2551                         op->type = MKOP(LOAD_VSX, 0, 16);
2552                         op->element_size = 16;
2553                         op->vsx_flags = VSX_CHECK_VEC;
2554                         break;
2555
2556                 case 269:       /* lxvl */
2557                 case 301: {     /* lxvll */
2558                         int nb;
2559                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2560                                 goto unknown_opcode;
2561                         op->reg = rd | ((word & 1) << 5);
2562                         op->ea = ra ? regs->gpr[ra] : 0;
2563                         nb = regs->gpr[rb] & 0xff;
2564                         if (nb > 16)
2565                                 nb = 16;
2566                         op->type = MKOP(LOAD_VSX, 0, nb);
2567                         op->element_size = 16;
2568                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2569                                 VSX_CHECK_VEC;
2570                         break;
2571                 }
2572                 case 332:       /* lxvdsx */
2573                         op->reg = rd | ((word & 1) << 5);
2574                         op->type = MKOP(LOAD_VSX, 0, 8);
2575                         op->element_size = 8;
2576                         op->vsx_flags = VSX_SPLAT;
2577                         break;
2578
2579                 case 333:       /* lxvpx */
2580                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2581                                 goto unknown_opcode;
2582                         op->reg = VSX_REGISTER_XTP(rd);
2583                         op->type = MKOP(LOAD_VSX, 0, 32);
2584                         op->element_size = 32;
2585                         break;
2586
2587                 case 364:       /* lxvwsx */
2588                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2589                                 goto unknown_opcode;
2590                         op->reg = rd | ((word & 1) << 5);
2591                         op->type = MKOP(LOAD_VSX, 0, 4);
2592                         op->element_size = 4;
2593                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2594                         break;
2595
2596                 case 396:       /* stxvx */
2597                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2598                                 goto unknown_opcode;
2599                         op->reg = rd | ((word & 1) << 5);
2600                         op->type = MKOP(STORE_VSX, 0, 16);
2601                         op->element_size = 16;
2602                         op->vsx_flags = VSX_CHECK_VEC;
2603                         break;
2604
2605                 case 397:       /* stxvl */
2606                 case 429: {     /* stxvll */
2607                         int nb;
2608                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2609                                 goto unknown_opcode;
2610                         op->reg = rd | ((word & 1) << 5);
2611                         op->ea = ra ? regs->gpr[ra] : 0;
2612                         nb = regs->gpr[rb] & 0xff;
2613                         if (nb > 16)
2614                                 nb = 16;
2615                         op->type = MKOP(STORE_VSX, 0, nb);
2616                         op->element_size = 16;
2617                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2618                                 VSX_CHECK_VEC;
2619                         break;
2620                 }
2621                 case 461:       /* stxvpx */
2622                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2623                                 goto unknown_opcode;
2624                         op->reg = VSX_REGISTER_XTP(rd);
2625                         op->type = MKOP(STORE_VSX, 0, 32);
2626                         op->element_size = 32;
2627                         break;
2628                 case 524:       /* lxsspx */
2629                         op->reg = rd | ((word & 1) << 5);
2630                         op->type = MKOP(LOAD_VSX, 0, 4);
2631                         op->element_size = 8;
2632                         op->vsx_flags = VSX_FPCONV;
2633                         break;
2634
2635                 case 588:       /* lxsdx */
2636                         op->reg = rd | ((word & 1) << 5);
2637                         op->type = MKOP(LOAD_VSX, 0, 8);
2638                         op->element_size = 8;
2639                         break;
2640
2641                 case 652:       /* stxsspx */
2642                         op->reg = rd | ((word & 1) << 5);
2643                         op->type = MKOP(STORE_VSX, 0, 4);
2644                         op->element_size = 8;
2645                         op->vsx_flags = VSX_FPCONV;
2646                         break;
2647
2648                 case 716:       /* stxsdx */
2649                         op->reg = rd | ((word & 1) << 5);
2650                         op->type = MKOP(STORE_VSX, 0, 8);
2651                         op->element_size = 8;
2652                         break;
2653
2654                 case 780:       /* lxvw4x */
2655                         op->reg = rd | ((word & 1) << 5);
2656                         op->type = MKOP(LOAD_VSX, 0, 16);
2657                         op->element_size = 4;
2658                         break;
2659
2660                 case 781:       /* lxsibzx */
2661                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2662                                 goto unknown_opcode;
2663                         op->reg = rd | ((word & 1) << 5);
2664                         op->type = MKOP(LOAD_VSX, 0, 1);
2665                         op->element_size = 8;
2666                         op->vsx_flags = VSX_CHECK_VEC;
2667                         break;
2668
2669                 case 812:       /* lxvh8x */
2670                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2671                                 goto unknown_opcode;
2672                         op->reg = rd | ((word & 1) << 5);
2673                         op->type = MKOP(LOAD_VSX, 0, 16);
2674                         op->element_size = 2;
2675                         op->vsx_flags = VSX_CHECK_VEC;
2676                         break;
2677
2678                 case 813:       /* lxsihzx */
2679                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2680                                 goto unknown_opcode;
2681                         op->reg = rd | ((word & 1) << 5);
2682                         op->type = MKOP(LOAD_VSX, 0, 2);
2683                         op->element_size = 8;
2684                         op->vsx_flags = VSX_CHECK_VEC;
2685                         break;
2686
2687                 case 844:       /* lxvd2x */
2688                         op->reg = rd | ((word & 1) << 5);
2689                         op->type = MKOP(LOAD_VSX, 0, 16);
2690                         op->element_size = 8;
2691                         break;
2692
2693                 case 876:       /* lxvb16x */
2694                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2695                                 goto unknown_opcode;
2696                         op->reg = rd | ((word & 1) << 5);
2697                         op->type = MKOP(LOAD_VSX, 0, 16);
2698                         op->element_size = 1;
2699                         op->vsx_flags = VSX_CHECK_VEC;
2700                         break;
2701
2702                 case 908:       /* stxvw4x */
2703                         op->reg = rd | ((word & 1) << 5);
2704                         op->type = MKOP(STORE_VSX, 0, 16);
2705                         op->element_size = 4;
2706                         break;
2707
2708                 case 909:       /* stxsibx */
2709                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2710                                 goto unknown_opcode;
2711                         op->reg = rd | ((word & 1) << 5);
2712                         op->type = MKOP(STORE_VSX, 0, 1);
2713                         op->element_size = 8;
2714                         op->vsx_flags = VSX_CHECK_VEC;
2715                         break;
2716
2717                 case 940:       /* stxvh8x */
2718                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2719                                 goto unknown_opcode;
2720                         op->reg = rd | ((word & 1) << 5);
2721                         op->type = MKOP(STORE_VSX, 0, 16);
2722                         op->element_size = 2;
2723                         op->vsx_flags = VSX_CHECK_VEC;
2724                         break;
2725
2726                 case 941:       /* stxsihx */
2727                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2728                                 goto unknown_opcode;
2729                         op->reg = rd | ((word & 1) << 5);
2730                         op->type = MKOP(STORE_VSX, 0, 2);
2731                         op->element_size = 8;
2732                         op->vsx_flags = VSX_CHECK_VEC;
2733                         break;
2734
2735                 case 972:       /* stxvd2x */
2736                         op->reg = rd | ((word & 1) << 5);
2737                         op->type = MKOP(STORE_VSX, 0, 16);
2738                         op->element_size = 8;
2739                         break;
2740
2741                 case 1004:      /* stxvb16x */
2742                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2743                                 goto unknown_opcode;
2744                         op->reg = rd | ((word & 1) << 5);
2745                         op->type = MKOP(STORE_VSX, 0, 16);
2746                         op->element_size = 1;
2747                         op->vsx_flags = VSX_CHECK_VEC;
2748                         break;
2749
2750 #endif /* CONFIG_VSX */
2751                 }
2752                 break;
2753
2754         case 32:        /* lwz */
2755         case 33:        /* lwzu */
2756                 op->type = MKOP(LOAD, u, 4);
2757                 op->ea = dform_ea(word, regs);
2758                 break;
2759
2760         case 34:        /* lbz */
2761         case 35:        /* lbzu */
2762                 op->type = MKOP(LOAD, u, 1);
2763                 op->ea = dform_ea(word, regs);
2764                 break;
2765
2766         case 36:        /* stw */
2767         case 37:        /* stwu */
2768                 op->type = MKOP(STORE, u, 4);
2769                 op->ea = dform_ea(word, regs);
2770                 break;
2771
2772         case 38:        /* stb */
2773         case 39:        /* stbu */
2774                 op->type = MKOP(STORE, u, 1);
2775                 op->ea = dform_ea(word, regs);
2776                 break;
2777
2778         case 40:        /* lhz */
2779         case 41:        /* lhzu */
2780                 op->type = MKOP(LOAD, u, 2);
2781                 op->ea = dform_ea(word, regs);
2782                 break;
2783
2784         case 42:        /* lha */
2785         case 43:        /* lhau */
2786                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2787                 op->ea = dform_ea(word, regs);
2788                 break;
2789
2790         case 44:        /* sth */
2791         case 45:        /* sthu */
2792                 op->type = MKOP(STORE, u, 2);
2793                 op->ea = dform_ea(word, regs);
2794                 break;
2795
2796         case 46:        /* lmw */
2797                 if (ra >= rd)
2798                         break;          /* invalid form, ra in range to load */
2799                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2800                 op->ea = dform_ea(word, regs);
2801                 break;
2802
2803         case 47:        /* stmw */
2804                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2805                 op->ea = dform_ea(word, regs);
2806                 break;
2807
2808 #ifdef CONFIG_PPC_FPU
2809         case 48:        /* lfs */
2810         case 49:        /* lfsu */
2811                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2812                 op->ea = dform_ea(word, regs);
2813                 break;
2814
2815         case 50:        /* lfd */
2816         case 51:        /* lfdu */
2817                 op->type = MKOP(LOAD_FP, u, 8);
2818                 op->ea = dform_ea(word, regs);
2819                 break;
2820
2821         case 52:        /* stfs */
2822         case 53:        /* stfsu */
2823                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2824                 op->ea = dform_ea(word, regs);
2825                 break;
2826
2827         case 54:        /* stfd */
2828         case 55:        /* stfdu */
2829                 op->type = MKOP(STORE_FP, u, 8);
2830                 op->ea = dform_ea(word, regs);
2831                 break;
2832 #endif
2833
2834 #ifdef __powerpc64__
2835         case 56:        /* lq */
2836                 if (!((rd & 1) || (rd == ra)))
2837                         op->type = MKOP(LOAD, 0, 16);
2838                 op->ea = dqform_ea(word, regs);
2839                 break;
2840 #endif
2841
2842 #ifdef CONFIG_VSX
2843         case 57:        /* lfdp, lxsd, lxssp */
2844                 op->ea = dsform_ea(word, regs);
2845                 switch (word & 3) {
2846                 case 0:         /* lfdp */
2847                         if (rd & 1)
2848                                 break;          /* reg must be even */
2849                         op->type = MKOP(LOAD_FP, 0, 16);
2850                         break;
2851                 case 2:         /* lxsd */
2852                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2853                                 goto unknown_opcode;
2854                         op->reg = rd + 32;
2855                         op->type = MKOP(LOAD_VSX, 0, 8);
2856                         op->element_size = 8;
2857                         op->vsx_flags = VSX_CHECK_VEC;
2858                         break;
2859                 case 3:         /* lxssp */
2860                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2861                                 goto unknown_opcode;
2862                         op->reg = rd + 32;
2863                         op->type = MKOP(LOAD_VSX, 0, 4);
2864                         op->element_size = 8;
2865                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2866                         break;
2867                 }
2868                 break;
2869 #endif /* CONFIG_VSX */
2870
2871 #ifdef __powerpc64__
2872         case 58:        /* ld[u], lwa */
2873                 op->ea = dsform_ea(word, regs);
2874                 switch (word & 3) {
2875                 case 0:         /* ld */
2876                         op->type = MKOP(LOAD, 0, 8);
2877                         break;
2878                 case 1:         /* ldu */
2879                         op->type = MKOP(LOAD, UPDATE, 8);
2880                         break;
2881                 case 2:         /* lwa */
2882                         op->type = MKOP(LOAD, SIGNEXT, 4);
2883                         break;
2884                 }
2885                 break;
2886 #endif
2887
2888 #ifdef CONFIG_VSX
2889         case 6:
2890                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2891                         goto unknown_opcode;
2892                 op->ea = dqform_ea(word, regs);
2893                 op->reg = VSX_REGISTER_XTP(rd);
2894                 op->element_size = 32;
2895                 switch (word & 0xf) {
2896                 case 0:         /* lxvp */
2897                         op->type = MKOP(LOAD_VSX, 0, 32);
2898                         break;
2899                 case 1:         /* stxvp */
2900                         op->type = MKOP(STORE_VSX, 0, 32);
2901                         break;
2902                 }
2903                 break;
2904
2905         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2906                 switch (word & 7) {
2907                 case 0:         /* stfdp with LSB of DS field = 0 */
2908                 case 4:         /* stfdp with LSB of DS field = 1 */
2909                         op->ea = dsform_ea(word, regs);
2910                         op->type = MKOP(STORE_FP, 0, 16);
2911                         break;
2912
2913                 case 1:         /* lxv */
2914                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2915                                 goto unknown_opcode;
2916                         op->ea = dqform_ea(word, regs);
2917                         if (word & 8)
2918                                 op->reg = rd + 32;
2919                         op->type = MKOP(LOAD_VSX, 0, 16);
2920                         op->element_size = 16;
2921                         op->vsx_flags = VSX_CHECK_VEC;
2922                         break;
2923
2924                 case 2:         /* stxsd with LSB of DS field = 0 */
2925                 case 6:         /* stxsd with LSB of DS field = 1 */
2926                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2927                                 goto unknown_opcode;
2928                         op->ea = dsform_ea(word, regs);
2929                         op->reg = rd + 32;
2930                         op->type = MKOP(STORE_VSX, 0, 8);
2931                         op->element_size = 8;
2932                         op->vsx_flags = VSX_CHECK_VEC;
2933                         break;
2934
2935                 case 3:         /* stxssp with LSB of DS field = 0 */
2936                 case 7:         /* stxssp with LSB of DS field = 1 */
2937                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2938                                 goto unknown_opcode;
2939                         op->ea = dsform_ea(word, regs);
2940                         op->reg = rd + 32;
2941                         op->type = MKOP(STORE_VSX, 0, 4);
2942                         op->element_size = 8;
2943                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2944                         break;
2945
2946                 case 5:         /* stxv */
2947                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2948                                 goto unknown_opcode;
2949                         op->ea = dqform_ea(word, regs);
2950                         if (word & 8)
2951                                 op->reg = rd + 32;
2952                         op->type = MKOP(STORE_VSX, 0, 16);
2953                         op->element_size = 16;
2954                         op->vsx_flags = VSX_CHECK_VEC;
2955                         break;
2956                 }
2957                 break;
2958 #endif /* CONFIG_VSX */
2959
2960 #ifdef __powerpc64__
2961         case 62:        /* std[u] */
2962                 op->ea = dsform_ea(word, regs);
2963                 switch (word & 3) {
2964                 case 0:         /* std */
2965                         op->type = MKOP(STORE, 0, 8);
2966                         break;
2967                 case 1:         /* stdu */
2968                         op->type = MKOP(STORE, UPDATE, 8);
2969                         break;
2970                 case 2:         /* stq */
2971                         if (!(rd & 1))
2972                                 op->type = MKOP(STORE, 0, 16);
2973                         break;
2974                 }
2975                 break;
2976         case 1: /* Prefixed instructions */
2977                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2978                         goto unknown_opcode;
2979
2980                 prefix_r = GET_PREFIX_R(word);
2981                 ra = GET_PREFIX_RA(suffix);
2982                 op->update_reg = ra;
2983                 rd = (suffix >> 21) & 0x1f;
2984                 op->reg = rd;
2985                 op->val = regs->gpr[rd];
2986
2987                 suffixopcode = get_op(suffix);
2988                 prefixtype = (word >> 24) & 0x3;
2989                 switch (prefixtype) {
2990                 case 0: /* Type 00  Eight-Byte Load/Store */
2991                         if (prefix_r && ra)
2992                                 break;
2993                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
2994                         switch (suffixopcode) {
2995                         case 41:        /* plwa */
2996                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2997                                 break;
2998 #ifdef CONFIG_VSX
2999                         case 42:        /* plxsd */
3000                                 op->reg = rd + 32;
3001                                 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
3002                                 op->element_size = 8;
3003                                 op->vsx_flags = VSX_CHECK_VEC;
3004                                 break;
3005                         case 43:        /* plxssp */
3006                                 op->reg = rd + 32;
3007                                 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3008                                 op->element_size = 8;
3009                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3010                                 break;
3011                         case 46:        /* pstxsd */
3012                                 op->reg = rd + 32;
3013                                 op->type = MKOP(STORE_VSX, PREFIXED, 8);
3014                                 op->element_size = 8;
3015                                 op->vsx_flags = VSX_CHECK_VEC;
3016                                 break;
3017                         case 47:        /* pstxssp */
3018                                 op->reg = rd + 32;
3019                                 op->type = MKOP(STORE_VSX, PREFIXED, 4);
3020                                 op->element_size = 8;
3021                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3022                                 break;
3023                         case 51:        /* plxv1 */
3024                                 op->reg += 32;
3025                                 fallthrough;
3026                         case 50:        /* plxv0 */
3027                                 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3028                                 op->element_size = 16;
3029                                 op->vsx_flags = VSX_CHECK_VEC;
3030                                 break;
3031                         case 55:        /* pstxv1 */
3032                                 op->reg = rd + 32;
3033                                 fallthrough;
3034                         case 54:        /* pstxv0 */
3035                                 op->type = MKOP(STORE_VSX, PREFIXED, 16);
3036                                 op->element_size = 16;
3037                                 op->vsx_flags = VSX_CHECK_VEC;
3038                                 break;
3039 #endif /* CONFIG_VSX */
3040                         case 56:        /* plq */
3041                                 op->type = MKOP(LOAD, PREFIXED, 16);
3042                                 break;
3043                         case 57:        /* pld */
3044                                 op->type = MKOP(LOAD, PREFIXED, 8);
3045                                 break;
3046 #ifdef CONFIG_VSX
3047                         case 58:        /* plxvp */
3048                                 op->reg = VSX_REGISTER_XTP(rd);
3049                                 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3050                                 op->element_size = 32;
3051                                 break;
3052 #endif /* CONFIG_VSX */
3053                         case 60:        /* pstq */
3054                                 op->type = MKOP(STORE, PREFIXED, 16);
3055                                 break;
3056                         case 61:        /* pstd */
3057                                 op->type = MKOP(STORE, PREFIXED, 8);
3058                                 break;
3059 #ifdef CONFIG_VSX
3060                         case 62:        /* pstxvp */
3061                                 op->reg = VSX_REGISTER_XTP(rd);
3062                                 op->type = MKOP(STORE_VSX, PREFIXED, 32);
3063                                 op->element_size = 32;
3064                                 break;
3065 #endif /* CONFIG_VSX */
3066                         }
3067                         break;
3068                 case 1: /* Type 01 Eight-Byte Register-to-Register */
3069                         break;
3070                 case 2: /* Type 10 Modified Load/Store */
3071                         if (prefix_r && ra)
3072                                 break;
3073                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
3074                         switch (suffixopcode) {
3075                         case 32:        /* plwz */
3076                                 op->type = MKOP(LOAD, PREFIXED, 4);
3077                                 break;
3078                         case 34:        /* plbz */
3079                                 op->type = MKOP(LOAD, PREFIXED, 1);
3080                                 break;
3081                         case 36:        /* pstw */
3082                                 op->type = MKOP(STORE, PREFIXED, 4);
3083                                 break;
3084                         case 38:        /* pstb */
3085                                 op->type = MKOP(STORE, PREFIXED, 1);
3086                                 break;
3087                         case 40:        /* plhz */
3088                                 op->type = MKOP(LOAD, PREFIXED, 2);
3089                                 break;
3090                         case 42:        /* plha */
3091                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3092                                 break;
3093                         case 44:        /* psth */
3094                                 op->type = MKOP(STORE, PREFIXED, 2);
3095                                 break;
3096                         case 48:        /* plfs */
3097                                 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3098                                 break;
3099                         case 50:        /* plfd */
3100                                 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3101                                 break;
3102                         case 52:        /* pstfs */
3103                                 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3104                                 break;
3105                         case 54:        /* pstfd */
3106                                 op->type = MKOP(STORE_FP, PREFIXED, 8);
3107                                 break;
3108                         }
3109                         break;
3110                 case 3: /* Type 11 Modified Register-to-Register */
3111                         break;
3112                 }
3113 #endif /* __powerpc64__ */
3114
3115         }
3116
3117         if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3118                 switch (GETTYPE(op->type)) {
3119                 case LOAD:
3120                         if (ra == rd)
3121                                 goto unknown_opcode;
3122                         fallthrough;
3123                 case STORE:
3124                 case LOAD_FP:
3125                 case STORE_FP:
3126                         if (ra == 0)
3127                                 goto unknown_opcode;
3128                 }
3129         }
3130
3131 #ifdef CONFIG_VSX
3132         if ((GETTYPE(op->type) == LOAD_VSX ||
3133              GETTYPE(op->type) == STORE_VSX) &&
3134             !cpu_has_feature(CPU_FTR_VSX)) {
3135                 return -1;
3136         }
3137 #endif /* CONFIG_VSX */
3138
3139         return 0;
3140
3141  unknown_opcode:
3142         op->type = UNKNOWN;
3143         return 0;
3144
3145  logical_done:
3146         if (word & 1)
3147                 set_cr0(regs, op);
3148  logical_done_nocc:
3149         op->reg = ra;
3150         op->type |= SETREG;
3151         return 1;
3152
3153  arith_done:
3154         if (word & 1)
3155                 set_cr0(regs, op);
3156  compute_done:
3157         op->reg = rd;
3158         op->type |= SETREG;
3159         return 1;
3160
3161  priv:
3162         op->type = INTERRUPT | 0x700;
3163         op->val = SRR1_PROGPRIV;
3164         return 0;
3165
3166  trap:
3167         op->type = INTERRUPT | 0x700;
3168         op->val = SRR1_PROGTRAP;
3169         return 0;
3170 }
3171 EXPORT_SYMBOL_GPL(analyse_instr);
3172 NOKPROBE_SYMBOL(analyse_instr);
3173
3174 /*
3175  * For PPC32 we always use stwu with r1 to change the stack pointer.
3176  * So this emulated store may corrupt the exception frame, now we
3177  * have to provide the exception frame trampoline, which is pushed
3178  * below the kprobed function stack. So we only update gpr[1] but
3179  * don't emulate the real store operation. We will do real store
3180  * operation safely in exception return code by checking this flag.
3181  */
3182 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3183 {
3184         /*
3185          * Check if we already set since that means we'll
3186          * lose the previous value.
3187          */
3188         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3189         set_thread_flag(TIF_EMULATE_STACK_STORE);
3190         return 0;
3191 }
3192
3193 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3194 {
3195         switch (size) {
3196         case 2:
3197                 *valp = (signed short) *valp;
3198                 break;
3199         case 4:
3200                 *valp = (signed int) *valp;
3201                 break;
3202         }
3203 }
3204
3205 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3206 {
3207         switch (size) {
3208         case 2:
3209                 *valp = byterev_2(*valp);
3210                 break;
3211         case 4:
3212                 *valp = byterev_4(*valp);
3213                 break;
3214 #ifdef __powerpc64__
3215         case 8:
3216                 *valp = byterev_8(*valp);
3217                 break;
3218 #endif
3219         }
3220 }
3221
3222 /*
3223  * Emulate an instruction that can be executed just by updating
3224  * fields in *regs.
3225  */
3226 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3227 {
3228         unsigned long next_pc;
3229
3230         next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3231         switch (GETTYPE(op->type)) {
3232         case COMPUTE:
3233                 if (op->type & SETREG)
3234                         regs->gpr[op->reg] = op->val;
3235                 if (op->type & SETCC)
3236                         regs->ccr = op->ccval;
3237                 if (op->type & SETXER)
3238                         regs->xer = op->xerval;
3239                 break;
3240
3241         case BRANCH:
3242                 if (op->type & SETLK)
3243                         regs->link = next_pc;
3244                 if (op->type & BRTAKEN)
3245                         next_pc = op->val;
3246                 if (op->type & DECCTR)
3247                         --regs->ctr;
3248                 break;
3249
3250         case BARRIER:
3251                 switch (op->type & BARRIER_MASK) {
3252                 case BARRIER_SYNC:
3253                         mb();
3254                         break;
3255                 case BARRIER_ISYNC:
3256                         isync();
3257                         break;
3258                 case BARRIER_EIEIO:
3259                         eieio();
3260                         break;
3261 #ifdef CONFIG_PPC64
3262                 case BARRIER_LWSYNC:
3263                         asm volatile("lwsync" : : : "memory");
3264                         break;
3265                 case BARRIER_PTESYNC:
3266                         asm volatile("ptesync" : : : "memory");
3267                         break;
3268 #endif
3269                 }
3270                 break;
3271
3272         case MFSPR:
3273                 switch (op->spr) {
3274                 case SPRN_XER:
3275                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3276                         break;
3277                 case SPRN_LR:
3278                         regs->gpr[op->reg] = regs->link;
3279                         break;
3280                 case SPRN_CTR:
3281                         regs->gpr[op->reg] = regs->ctr;
3282                         break;
3283                 default:
3284                         WARN_ON_ONCE(1);
3285                 }
3286                 break;
3287
3288         case MTSPR:
3289                 switch (op->spr) {
3290                 case SPRN_XER:
3291                         regs->xer = op->val & 0xffffffffUL;
3292                         break;
3293                 case SPRN_LR:
3294                         regs->link = op->val;
3295                         break;
3296                 case SPRN_CTR:
3297                         regs->ctr = op->val;
3298                         break;
3299                 default:
3300                         WARN_ON_ONCE(1);
3301                 }
3302                 break;
3303
3304         default:
3305                 WARN_ON_ONCE(1);
3306         }
3307         regs_set_return_ip(regs, next_pc);
3308 }
3309 NOKPROBE_SYMBOL(emulate_update_regs);
3310
3311 /*
3312  * Emulate a previously-analysed load or store instruction.
3313  * Return values are:
3314  * 0 = instruction emulated successfully
3315  * -EFAULT = address out of range or access faulted (regs->dar
3316  *           contains the faulting address)
3317  * -EACCES = misaligned access, instruction requires alignment
3318  * -EINVAL = unknown operation in *op
3319  */
3320 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3321 {
3322         int err, size, type;
3323         int i, rd, nb;
3324         unsigned int cr;
3325         unsigned long val;
3326         unsigned long ea;
3327         bool cross_endian;
3328
3329         err = 0;
3330         size = GETSIZE(op->type);
3331         type = GETTYPE(op->type);
3332         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3333         ea = truncate_if_32bit(regs->msr, op->ea);
3334
3335         switch (type) {
3336         case LARX:
3337                 if (ea & (size - 1))
3338                         return -EACCES;         /* can't handle misaligned */
3339                 if (!address_ok(regs, ea, size))
3340                         return -EFAULT;
3341                 err = 0;
3342                 val = 0;
3343                 switch (size) {
3344 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
3345                 case 1:
3346                         __get_user_asmx(val, ea, err, "lbarx");
3347                         break;
3348                 case 2:
3349                         __get_user_asmx(val, ea, err, "lharx");
3350                         break;
3351 #endif
3352                 case 4:
3353                         __get_user_asmx(val, ea, err, "lwarx");
3354                         break;
3355 #ifdef __powerpc64__
3356                 case 8:
3357                         __get_user_asmx(val, ea, err, "ldarx");
3358                         break;
3359                 case 16:
3360                         err = do_lqarx(ea, &regs->gpr[op->reg]);
3361                         break;
3362 #endif
3363                 default:
3364                         return -EINVAL;
3365                 }
3366                 if (err) {
3367                         regs->dar = ea;
3368                         break;
3369                 }
3370                 if (size < 16)
3371                         regs->gpr[op->reg] = val;
3372                 break;
3373
3374         case STCX:
3375                 if (ea & (size - 1))
3376                         return -EACCES;         /* can't handle misaligned */
3377                 if (!address_ok(regs, ea, size))
3378                         return -EFAULT;
3379                 err = 0;
3380                 switch (size) {
3381 #ifdef __powerpc64__
3382                 case 1:
3383                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3384                         break;
3385                 case 2:
3386                         __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3387                         break;
3388 #endif
3389                 case 4:
3390                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3391                         break;
3392 #ifdef __powerpc64__
3393                 case 8:
3394                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3395                         break;
3396                 case 16:
3397                         err = do_stqcx(ea, regs->gpr[op->reg],
3398                                        regs->gpr[op->reg + 1], &cr);
3399                         break;
3400 #endif
3401                 default:
3402                         return -EINVAL;
3403                 }
3404                 if (!err)
3405                         regs->ccr = (regs->ccr & 0x0fffffff) |
3406                                 (cr & 0xe0000000) |
3407                                 ((regs->xer >> 3) & 0x10000000);
3408                 else
3409                         regs->dar = ea;
3410                 break;
3411
3412         case LOAD:
3413 #ifdef __powerpc64__
3414                 if (size == 16) {
3415                         err = emulate_lq(regs, ea, op->reg, cross_endian);
3416                         break;
3417                 }
3418 #endif
3419                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3420                 if (!err) {
3421                         if (op->type & SIGNEXT)
3422                                 do_signext(&regs->gpr[op->reg], size);
3423                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3424                                 do_byterev(&regs->gpr[op->reg], size);
3425                 }
3426                 break;
3427
3428 #ifdef CONFIG_PPC_FPU
3429         case LOAD_FP:
3430                 /*
3431                  * If the instruction is in userspace, we can emulate it even
3432                  * if the VMX state is not live, because we have the state
3433                  * stored in the thread_struct.  If the instruction is in
3434                  * the kernel, we must not touch the state in the thread_struct.
3435                  */
3436                 if (!user_mode(regs) && !(regs->msr & MSR_FP))
3437                         return 0;
3438                 err = do_fp_load(op, ea, regs, cross_endian);
3439                 break;
3440 #endif
3441 #ifdef CONFIG_ALTIVEC
3442         case LOAD_VMX:
3443                 if (!user_mode(regs) && !(regs->msr & MSR_VEC))
3444                         return 0;
3445                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3446                 break;
3447 #endif
3448 #ifdef CONFIG_VSX
3449         case LOAD_VSX: {
3450                 unsigned long msrbit = MSR_VSX;
3451
3452                 /*
3453                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3454                  * when the target of the instruction is a vector register.
3455                  */
3456                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3457                         msrbit = MSR_VEC;
3458                 if (!user_mode(regs) && !(regs->msr & msrbit))
3459                         return 0;
3460                 err = do_vsx_load(op, ea, regs, cross_endian);
3461                 break;
3462         }
3463 #endif
3464         case LOAD_MULTI:
3465                 if (!address_ok(regs, ea, size))
3466                         return -EFAULT;
3467                 rd = op->reg;
3468                 for (i = 0; i < size; i += 4) {
3469                         unsigned int v32 = 0;
3470
3471                         nb = size - i;
3472                         if (nb > 4)
3473                                 nb = 4;
3474                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3475                         if (err)
3476                                 break;
3477                         if (unlikely(cross_endian))
3478                                 v32 = byterev_4(v32);
3479                         regs->gpr[rd] = v32;
3480                         ea += 4;
3481                         /* reg number wraps from 31 to 0 for lsw[ix] */
3482                         rd = (rd + 1) & 0x1f;
3483                 }
3484                 break;
3485
3486         case STORE:
3487 #ifdef __powerpc64__
3488                 if (size == 16) {
3489                         err = emulate_stq(regs, ea, op->reg, cross_endian);
3490                         break;
3491                 }
3492 #endif
3493                 if ((op->type & UPDATE) && size == sizeof(long) &&
3494                     op->reg == 1 && op->update_reg == 1 && !user_mode(regs) &&
3495                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3496                         err = handle_stack_update(ea, regs);
3497                         break;
3498                 }
3499                 if (unlikely(cross_endian))
3500                         do_byterev(&op->val, size);
3501                 err = write_mem(op->val, ea, size, regs);
3502                 break;
3503
3504 #ifdef CONFIG_PPC_FPU
3505         case STORE_FP:
3506                 if (!user_mode(regs) && !(regs->msr & MSR_FP))
3507                         return 0;
3508                 err = do_fp_store(op, ea, regs, cross_endian);
3509                 break;
3510 #endif
3511 #ifdef CONFIG_ALTIVEC
3512         case STORE_VMX:
3513                 if (!user_mode(regs) && !(regs->msr & MSR_VEC))
3514                         return 0;
3515                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3516                 break;
3517 #endif
3518 #ifdef CONFIG_VSX
3519         case STORE_VSX: {
3520                 unsigned long msrbit = MSR_VSX;
3521
3522                 /*
3523                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3524                  * when the target of the instruction is a vector register.
3525                  */
3526                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3527                         msrbit = MSR_VEC;
3528                 if (!user_mode(regs) && !(regs->msr & msrbit))
3529                         return 0;
3530                 err = do_vsx_store(op, ea, regs, cross_endian);
3531                 break;
3532         }
3533 #endif
3534         case STORE_MULTI:
3535                 if (!address_ok(regs, ea, size))
3536                         return -EFAULT;
3537                 rd = op->reg;
3538                 for (i = 0; i < size; i += 4) {
3539                         unsigned int v32 = regs->gpr[rd];
3540
3541                         nb = size - i;
3542                         if (nb > 4)
3543                                 nb = 4;
3544                         if (unlikely(cross_endian))
3545                                 v32 = byterev_4(v32);
3546                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3547                         if (err)
3548                                 break;
3549                         ea += 4;
3550                         /* reg number wraps from 31 to 0 for stsw[ix] */
3551                         rd = (rd + 1) & 0x1f;
3552                 }
3553                 break;
3554
3555         default:
3556                 return -EINVAL;
3557         }
3558
3559         if (err)
3560                 return err;
3561
3562         if (op->type & UPDATE)
3563                 regs->gpr[op->update_reg] = op->ea;
3564
3565         return 0;
3566 }
3567 NOKPROBE_SYMBOL(emulate_loadstore);
3568
3569 /*
3570  * Emulate instructions that cause a transfer of control,
3571  * loads and stores, and a few other instructions.
3572  * Returns 1 if the step was emulated, 0 if not,
3573  * or -1 if the instruction is one that should not be stepped,
3574  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3575  */
3576 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3577 {
3578         struct instruction_op op;
3579         int r, err, type;
3580         unsigned long val;
3581         unsigned long ea;
3582
3583         r = analyse_instr(&op, regs, instr);
3584         if (r < 0)
3585                 return r;
3586         if (r > 0) {
3587                 emulate_update_regs(regs, &op);
3588                 return 1;
3589         }
3590
3591         err = 0;
3592         type = GETTYPE(op.type);
3593
3594         if (OP_IS_LOAD_STORE(type)) {
3595                 err = emulate_loadstore(regs, &op);
3596                 if (err)
3597                         return 0;
3598                 goto instr_done;
3599         }
3600
3601         switch (type) {
3602         case CACHEOP:
3603                 ea = truncate_if_32bit(regs->msr, op.ea);
3604                 if (!address_ok(regs, ea, 8))
3605                         return 0;
3606                 switch (op.type & CACHEOP_MASK) {
3607                 case DCBST:
3608                         __cacheop_user_asmx(ea, err, "dcbst");
3609                         break;
3610                 case DCBF:
3611                         __cacheop_user_asmx(ea, err, "dcbf");
3612                         break;
3613                 case DCBTST:
3614                         if (op.reg == 0)
3615                                 prefetchw((void *) ea);
3616                         break;
3617                 case DCBT:
3618                         if (op.reg == 0)
3619                                 prefetch((void *) ea);
3620                         break;
3621                 case ICBI:
3622                         __cacheop_user_asmx(ea, err, "icbi");
3623                         break;
3624                 case DCBZ:
3625                         err = emulate_dcbz(ea, regs);
3626                         break;
3627                 }
3628                 if (err) {
3629                         regs->dar = ea;
3630                         return 0;
3631                 }
3632                 goto instr_done;
3633
3634         case MFMSR:
3635                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3636                 goto instr_done;
3637
3638         case MTMSR:
3639                 val = regs->gpr[op.reg];
3640                 if ((val & MSR_RI) == 0)
3641                         /* can't step mtmsr[d] that would clear MSR_RI */
3642                         return -1;
3643                 /* here op.val is the mask of bits to change */
3644                 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3645                 goto instr_done;
3646
3647         case SYSCALL:   /* sc */
3648                 /*
3649                  * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
3650                  * single step a system call instruction:
3651                  *
3652                  *   Successful completion for an instruction means that the
3653                  *   instruction caused no other interrupt. Thus a Trace
3654                  *   interrupt never occurs for a System Call or System Call
3655                  *   Vectored instruction, or for a Trap instruction that
3656                  *   traps.
3657                  */
3658                 return -1;
3659         case SYSCALL_VECTORED_0:        /* scv 0 */
3660                 return -1;
3661         case RFI:
3662                 return -1;
3663         }
3664         return 0;
3665
3666  instr_done:
3667         regs_set_return_ip(regs,
3668                 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3669         return 1;
3670 }
3671 NOKPROBE_SYMBOL(emulate_step);
This page took 0.236808 seconds and 4 git commands to generate.