1 // SPDX-License-Identifier: GPL-2.0-or-later
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
19 /* Bits in SRR1 that are copied from MSR */
20 #define MSR_MASK 0xffffffff87c0ffffUL
22 #define MSR_MASK 0x87c0ffff
26 #define XER_SO 0x80000000U
27 #define XER_OV 0x40000000U
28 #define XER_CA 0x20000000U
29 #define XER_OV32 0x00080000U
30 #define XER_CA32 0x00040000U
33 #define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe))
38 * Functions in ldstfp.S
40 extern void get_fpr(int rn, double *p);
41 extern void put_fpr(int rn, const double *p);
42 extern void get_vr(int rn, __vector128 *p);
43 extern void put_vr(int rn, __vector128 *p);
44 extern void load_vsrn(int vsr, const void *p);
45 extern void store_vsrn(int vsr, void *p);
46 extern void conv_sp_to_dp(const float *sp, double *dp);
47 extern void conv_dp_to_sp(const double *dp, float *sp);
54 extern int do_lq(unsigned long ea, unsigned long *regs);
55 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
56 extern int do_lqarx(unsigned long ea, unsigned long *regs);
57 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61 #ifdef __LITTLE_ENDIAN__
70 * Emulate the truncation of 64 bit values in 32-bit mode.
72 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
75 if ((msr & MSR_64BIT) == 0)
81 * Determine whether a conditional branch instruction would branch.
83 static nokprobe_inline int branch_taken(unsigned int instr,
84 const struct pt_regs *regs,
85 struct instruction_op *op)
87 unsigned int bo = (instr >> 21) & 0x1f;
91 /* decrement counter */
93 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
96 if ((bo & 0x10) == 0) {
97 /* check bit from CR */
98 bi = (instr >> 16) & 0x1f;
99 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
105 static nokprobe_inline long address_ok(struct pt_regs *regs,
106 unsigned long ea, int nb)
108 if (!user_mode(regs))
110 if (access_ok((void __user *)ea, nb))
112 if (access_ok((void __user *)ea, 1))
113 /* Access overlaps the end of the user region */
114 regs->dar = TASK_SIZE_MAX - 1;
121 * Calculate effective address for a D-form instruction
123 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
124 const struct pt_regs *regs)
129 ra = (instr >> 16) & 0x1f;
130 ea = (signed short) instr; /* sign-extend */
139 * Calculate effective address for a DS-form instruction
141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
142 const struct pt_regs *regs)
147 ra = (instr >> 16) & 0x1f;
148 ea = (signed short) (instr & ~3); /* sign-extend */
156 * Calculate effective address for a DQ-form instruction
158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
159 const struct pt_regs *regs)
164 ra = (instr >> 16) & 0x1f;
165 ea = (signed short) (instr & ~0xf); /* sign-extend */
171 #endif /* __powerpc64 */
174 * Calculate effective address for an X-form instruction
176 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
177 const struct pt_regs *regs)
182 ra = (instr >> 16) & 0x1f;
183 rb = (instr >> 11) & 0x1f;
192 * Calculate effective address for a MLS:D-form / 8LS:D-form
193 * prefixed instruction
195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
197 const struct pt_regs *regs)
201 unsigned long ea, d0, d1, d;
203 prefix_r = GET_PREFIX_R(instr);
204 ra = GET_PREFIX_RA(suffix);
206 d0 = instr & 0x3ffff;
207 d1 = suffix & 0xffff;
211 * sign extend a 34 bit number
213 dd = (unsigned int)(d >> 2);
215 ea = (ea << 2) | (d & 0x3);
219 else if (!prefix_r && !ra)
220 ; /* Leave ea as is */
225 * (prefix_r && ra) is an invalid form. Should already be
226 * checked for by caller!
233 * Return the largest power of 2, not greater than sizeof(unsigned long),
234 * such that x is a multiple of it.
236 static nokprobe_inline unsigned long max_align(unsigned long x)
238 x |= sizeof(unsigned long);
239 return x & -x; /* isolates rightmost bit */
242 static nokprobe_inline unsigned long byterev_2(unsigned long x)
244 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
247 static nokprobe_inline unsigned long byterev_4(unsigned long x)
249 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
250 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
254 static nokprobe_inline unsigned long byterev_8(unsigned long x)
256 return (byterev_4(x) << 32) | byterev_4(x >> 32);
260 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
264 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
267 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
271 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
274 unsigned long *up = (unsigned long *)ptr;
276 tmp = byterev_8(up[0]);
277 up[0] = byterev_8(up[1]);
282 unsigned long *up = (unsigned long *)ptr;
285 tmp = byterev_8(up[0]);
286 up[0] = byterev_8(up[3]);
288 tmp = byterev_8(up[2]);
289 up[2] = byterev_8(up[1]);
300 static __always_inline int
301 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
307 unsafe_get_user(x, (unsigned char __user *)ea, Efault);
310 unsafe_get_user(x, (unsigned short __user *)ea, Efault);
313 unsafe_get_user(x, (unsigned int __user *)ea, Efault);
317 unsafe_get_user(x, (unsigned long __user *)ea, Efault);
329 static nokprobe_inline int
330 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
334 if (is_kernel_addr(ea))
335 return __read_mem_aligned(dest, ea, nb, regs);
337 if (user_read_access_begin((void __user *)ea, nb)) {
338 err = __read_mem_aligned(dest, ea, nb, regs);
339 user_read_access_end();
349 * Copy from userspace to a buffer, using the largest possible
350 * aligned accesses, up to sizeof(long).
352 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
356 for (; nb > 0; nb -= c) {
362 unsafe_get_user(*dest, (u8 __user *)ea, Efault);
365 unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
368 unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
372 unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
386 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
390 if (is_kernel_addr(ea))
391 return __copy_mem_in(dest, ea, nb, regs);
393 if (user_read_access_begin((void __user *)ea, nb)) {
394 err = __copy_mem_in(dest, ea, nb, regs);
395 user_read_access_end();
404 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
405 unsigned long ea, int nb,
406 struct pt_regs *regs)
410 u8 b[sizeof(unsigned long)];
416 i = IS_BE ? sizeof(unsigned long) - nb : 0;
417 err = copy_mem_in(&u.b[i], ea, nb, regs);
424 * Read memory at address ea for nb bytes, return 0 for success
425 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
426 * If nb < sizeof(long), the result is right-justified on BE systems.
428 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
429 struct pt_regs *regs)
431 if (!address_ok(regs, ea, nb))
433 if ((ea & (nb - 1)) == 0)
434 return read_mem_aligned(dest, ea, nb, regs);
435 return read_mem_unaligned(dest, ea, nb, regs);
437 NOKPROBE_SYMBOL(read_mem);
439 static __always_inline int
440 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
444 unsafe_put_user(val, (unsigned char __user *)ea, Efault);
447 unsafe_put_user(val, (unsigned short __user *)ea, Efault);
450 unsafe_put_user(val, (unsigned int __user *)ea, Efault);
454 unsafe_put_user(val, (unsigned long __user *)ea, Efault);
465 static nokprobe_inline int
466 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
470 if (is_kernel_addr(ea))
471 return __write_mem_aligned(val, ea, nb, regs);
473 if (user_write_access_begin((void __user *)ea, nb)) {
474 err = __write_mem_aligned(val, ea, nb, regs);
475 user_write_access_end();
485 * Copy from a buffer to userspace, using the largest possible
486 * aligned accesses, up to sizeof(long).
488 static __always_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
492 for (; nb > 0; nb -= c) {
498 unsafe_put_user(*dest, (u8 __user *)ea, Efault);
501 unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
504 unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
508 unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
522 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
526 if (is_kernel_addr(ea))
527 return __copy_mem_out(dest, ea, nb, regs);
529 if (user_write_access_begin((void __user *)ea, nb)) {
530 err = __copy_mem_out(dest, ea, nb, regs);
531 user_write_access_end();
540 static nokprobe_inline int write_mem_unaligned(unsigned long val,
541 unsigned long ea, int nb,
542 struct pt_regs *regs)
546 u8 b[sizeof(unsigned long)];
551 i = IS_BE ? sizeof(unsigned long) - nb : 0;
552 return copy_mem_out(&u.b[i], ea, nb, regs);
556 * Write memory at address ea for nb bytes, return 0 for success
557 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
559 static int write_mem(unsigned long val, unsigned long ea, int nb,
560 struct pt_regs *regs)
562 if (!address_ok(regs, ea, nb))
564 if ((ea & (nb - 1)) == 0)
565 return write_mem_aligned(val, ea, nb, regs);
566 return write_mem_unaligned(val, ea, nb, regs);
568 NOKPROBE_SYMBOL(write_mem);
570 #ifdef CONFIG_PPC_FPU
572 * These access either the real FP register or the image in the
573 * thread_struct, depending on regs->msr & MSR_FP.
575 static int do_fp_load(struct instruction_op *op, unsigned long ea,
576 struct pt_regs *regs, bool cross_endian)
585 u8 b[2 * sizeof(double)];
588 nb = GETSIZE(op->type);
591 if (!address_ok(regs, ea, nb))
594 err = copy_mem_in(u.b, ea, nb, regs);
597 if (unlikely(cross_endian)) {
598 do_byte_reverse(u.b, min(nb, 8));
600 do_byte_reverse(&u.b[8], 8);
604 if (op->type & FPCONV)
605 conv_sp_to_dp(&u.f, &u.d[0]);
606 else if (op->type & SIGNEXT)
611 if (regs->msr & MSR_FP)
612 put_fpr(rn, &u.d[0]);
614 current->thread.TS_FPR(rn) = u.l[0];
618 if (regs->msr & MSR_FP)
619 put_fpr(rn, &u.d[1]);
621 current->thread.TS_FPR(rn) = u.l[1];
626 NOKPROBE_SYMBOL(do_fp_load);
628 static int do_fp_store(struct instruction_op *op, unsigned long ea,
629 struct pt_regs *regs, bool cross_endian)
637 u8 b[2 * sizeof(double)];
640 nb = GETSIZE(op->type);
643 if (!address_ok(regs, ea, nb))
647 if (regs->msr & MSR_FP)
648 get_fpr(rn, &u.d[0]);
650 u.l[0] = current->thread.TS_FPR(rn);
652 if (op->type & FPCONV)
653 conv_dp_to_sp(&u.d[0], &u.f);
659 if (regs->msr & MSR_FP)
660 get_fpr(rn, &u.d[1]);
662 u.l[1] = current->thread.TS_FPR(rn);
665 if (unlikely(cross_endian)) {
666 do_byte_reverse(u.b, min(nb, 8));
668 do_byte_reverse(&u.b[8], 8);
670 return copy_mem_out(u.b, ea, nb, regs);
672 NOKPROBE_SYMBOL(do_fp_store);
675 #ifdef CONFIG_ALTIVEC
676 /* For Altivec/VMX, no need to worry about alignment */
677 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
678 int size, struct pt_regs *regs,
684 u8 b[sizeof(__vector128)];
687 if (size > sizeof(u))
690 if (!address_ok(regs, ea & ~0xfUL, 16))
692 /* align to multiple of size */
694 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
697 if (unlikely(cross_endian))
698 do_byte_reverse(&u.b[ea & 0xf], min_t(size_t, size, sizeof(u)));
700 if (regs->msr & MSR_VEC)
703 current->thread.vr_state.vr[rn] = u.v;
708 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
709 int size, struct pt_regs *regs,
714 u8 b[sizeof(__vector128)];
717 if (size > sizeof(u))
720 if (!address_ok(regs, ea & ~0xfUL, 16))
722 /* align to multiple of size */
726 if (regs->msr & MSR_VEC)
729 u.v = current->thread.vr_state.vr[rn];
731 if (unlikely(cross_endian))
732 do_byte_reverse(&u.b[ea & 0xf], min_t(size_t, size, sizeof(u)));
733 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
735 #endif /* CONFIG_ALTIVEC */
738 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
739 int reg, bool cross_endian)
743 if (!address_ok(regs, ea, 16))
745 /* if aligned, should be atomic */
746 if ((ea & 0xf) == 0) {
747 err = do_lq(ea, ®s->gpr[reg]);
749 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
751 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
753 if (!err && unlikely(cross_endian))
754 do_byte_reverse(®s->gpr[reg], 16);
758 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
759 int reg, bool cross_endian)
762 unsigned long vals[2];
764 if (!address_ok(regs, ea, 16))
766 vals[0] = regs->gpr[reg];
767 vals[1] = regs->gpr[reg + 1];
768 if (unlikely(cross_endian))
769 do_byte_reverse(vals, 16);
771 /* if aligned, should be atomic */
773 return do_stq(ea, vals[0], vals[1]);
775 err = write_mem(vals[IS_LE], ea, 8, regs);
777 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
780 #endif /* __powerpc64 */
783 static nokprobe_inline void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
784 const void *mem, bool rev)
788 const unsigned int *wp;
789 const unsigned short *hp;
790 const unsigned char *bp;
792 size = GETSIZE(op->type);
793 reg->d[0] = reg->d[1] = 0;
795 switch (op->element_size) {
799 /* whole vector; lxv[x] or lxvl[l] */
802 memcpy(reg, mem, size);
803 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
806 do_byte_reverse(reg, size);
809 /* scalar loads, lxvd2x, lxvdsx */
810 read_size = (size >= 8) ? 8 : size;
811 i = IS_LE ? 8 : 8 - read_size;
812 memcpy(®->b[i], mem, read_size);
814 do_byte_reverse(®->b[i], 8);
816 if (op->type & SIGNEXT) {
817 /* size == 4 is the only case here */
818 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
819 } else if (op->vsx_flags & VSX_FPCONV) {
821 conv_sp_to_dp(®->fp[1 + IS_LE],
827 unsigned long v = *(unsigned long *)(mem + 8);
828 reg->d[IS_BE] = !rev ? v : byterev_8(v);
829 } else if (op->vsx_flags & VSX_SPLAT)
830 reg->d[IS_BE] = reg->d[IS_LE];
836 for (j = 0; j < size / 4; ++j) {
837 i = IS_LE ? 3 - j : j;
838 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
840 if (op->vsx_flags & VSX_SPLAT) {
841 u32 val = reg->w[IS_LE ? 3 : 0];
843 i = IS_LE ? 3 - j : j;
851 for (j = 0; j < size / 2; ++j) {
852 i = IS_LE ? 7 - j : j;
853 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
859 for (j = 0; j < size; ++j) {
860 i = IS_LE ? 15 - j : j;
867 static nokprobe_inline void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
870 int size, write_size;
877 size = GETSIZE(op->type);
879 switch (op->element_size) {
885 /* reverse 32 bytes */
886 union vsx_reg buf32[2];
887 buf32[0].d[0] = byterev_8(reg[1].d[1]);
888 buf32[0].d[1] = byterev_8(reg[1].d[0]);
889 buf32[1].d[0] = byterev_8(reg[0].d[1]);
890 buf32[1].d[1] = byterev_8(reg[0].d[0]);
891 memcpy(mem, buf32, size);
893 memcpy(mem, reg, size);
897 /* stxv, stxvx, stxvl, stxvll */
900 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
903 /* reverse 16 bytes */
904 buf.d[0] = byterev_8(reg->d[1]);
905 buf.d[1] = byterev_8(reg->d[0]);
908 memcpy(mem, reg, size);
911 /* scalar stores, stxvd2x */
912 write_size = (size >= 8) ? 8 : size;
913 i = IS_LE ? 8 : 8 - write_size;
914 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
915 buf.d[0] = buf.d[1] = 0;
917 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
921 memcpy(mem, ®->b[i], write_size);
923 memcpy(mem + 8, ®->d[IS_BE], 8);
925 do_byte_reverse(mem, write_size);
927 do_byte_reverse(mem + 8, 8);
933 for (j = 0; j < size / 4; ++j) {
934 i = IS_LE ? 3 - j : j;
935 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
941 for (j = 0; j < size / 2; ++j) {
942 i = IS_LE ? 7 - j : j;
943 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
949 for (j = 0; j < size; ++j) {
950 i = IS_LE ? 15 - j : j;
957 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
958 unsigned long ea, struct pt_regs *regs,
962 int i, j, nr_vsx_regs;
964 union vsx_reg buf[2];
965 int size = GETSIZE(op->type);
967 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
970 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
971 emulate_vsx_load(op, buf, mem, cross_endian);
974 /* FP regs + extensions */
975 if (regs->msr & MSR_FP) {
976 for (i = 0; i < nr_vsx_regs; i++) {
977 j = IS_LE ? nr_vsx_regs - i - 1 : i;
978 load_vsrn(reg + i, &buf[j].v);
981 for (i = 0; i < nr_vsx_regs; i++) {
982 j = IS_LE ? nr_vsx_regs - i - 1 : i;
983 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
984 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
988 if (regs->msr & MSR_VEC) {
989 for (i = 0; i < nr_vsx_regs; i++) {
990 j = IS_LE ? nr_vsx_regs - i - 1 : i;
991 load_vsrn(reg + i, &buf[j].v);
994 for (i = 0; i < nr_vsx_regs; i++) {
995 j = IS_LE ? nr_vsx_regs - i - 1 : i;
996 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
1004 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1005 unsigned long ea, struct pt_regs *regs,
1009 int i, j, nr_vsx_regs;
1011 union vsx_reg buf[2];
1012 int size = GETSIZE(op->type);
1014 if (!address_ok(regs, ea, size))
1017 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1020 /* FP regs + extensions */
1021 if (regs->msr & MSR_FP) {
1022 for (i = 0; i < nr_vsx_regs; i++) {
1023 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1024 store_vsrn(reg + i, &buf[j].v);
1027 for (i = 0; i < nr_vsx_regs; i++) {
1028 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1029 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1030 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1034 if (regs->msr & MSR_VEC) {
1035 for (i = 0; i < nr_vsx_regs; i++) {
1036 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1037 store_vsrn(reg + i, &buf[j].v);
1040 for (i = 0; i < nr_vsx_regs; i++) {
1041 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1042 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1047 emulate_vsx_store(op, buf, mem, cross_endian);
1048 return copy_mem_out(mem, ea, size, regs);
1050 #endif /* CONFIG_VSX */
1052 static __always_inline int __emulate_dcbz(unsigned long ea)
1055 unsigned long size = l1_dcache_bytes();
1057 for (i = 0; i < size; i += sizeof(long))
1058 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1066 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1069 unsigned long size = l1_dcache_bytes();
1071 ea = truncate_if_32bit(regs->msr, ea);
1073 if (!address_ok(regs, ea, size))
1076 if (is_kernel_addr(ea)) {
1077 err = __emulate_dcbz(ea);
1078 } else if (user_write_access_begin((void __user *)ea, size)) {
1079 err = __emulate_dcbz(ea);
1080 user_write_access_end();
1091 NOKPROBE_SYMBOL(emulate_dcbz);
1093 #define __put_user_asmx(x, addr, err, op, cr) \
1094 __asm__ __volatile__( \
1096 ".machine power8\n" \
1097 "1: " op " %2,0,%3\n" \
1101 ".section .fixup,\"ax\"\n" \
1106 : "=r" (err), "=r" (cr) \
1107 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1109 #define __get_user_asmx(x, addr, err, op) \
1110 __asm__ __volatile__( \
1112 ".machine power8\n" \
1113 "1: "op" %1,0,%2\n" \
1116 ".section .fixup,\"ax\"\n" \
1121 : "=r" (err), "=r" (x) \
1122 : "r" (addr), "i" (-EFAULT), "0" (err))
1124 #define __cacheop_user_asmx(addr, err, op) \
1125 __asm__ __volatile__( \
1128 ".section .fixup,\"ax\"\n" \
1134 : "r" (addr), "i" (-EFAULT), "0" (err))
1136 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1137 struct instruction_op *op)
1142 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1143 if (!(regs->msr & MSR_64BIT))
1146 op->ccval |= 0x80000000;
1148 op->ccval |= 0x40000000;
1150 op->ccval |= 0x20000000;
1153 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1155 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1157 op->xerval |= XER_CA32;
1159 op->xerval &= ~XER_CA32;
1163 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1164 struct instruction_op *op, int rd,
1165 unsigned long val1, unsigned long val2,
1166 unsigned long carry_in)
1168 unsigned long val = val1 + val2;
1172 op->type = COMPUTE | SETREG | SETXER;
1175 val = truncate_if_32bit(regs->msr, val);
1176 val1 = truncate_if_32bit(regs->msr, val1);
1177 op->xerval = regs->xer;
1178 if (val < val1 || (carry_in && val == val1))
1179 op->xerval |= XER_CA;
1181 op->xerval &= ~XER_CA;
1183 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1184 (carry_in && (unsigned int)val == (unsigned int)val1));
1187 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1188 struct instruction_op *op,
1189 long v1, long v2, int crfld)
1191 unsigned int crval, shift;
1193 op->type = COMPUTE | SETCC;
1194 crval = (regs->xer >> 31) & 1; /* get SO bit */
1201 shift = (7 - crfld) * 4;
1202 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1205 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1206 struct instruction_op *op,
1208 unsigned long v2, int crfld)
1210 unsigned int crval, shift;
1212 op->type = COMPUTE | SETCC;
1213 crval = (regs->xer >> 31) & 1; /* get SO bit */
1220 shift = (7 - crfld) * 4;
1221 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1224 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1225 struct instruction_op *op,
1226 unsigned long v1, unsigned long v2)
1228 unsigned long long out_val, mask;
1232 for (i = 0; i < 8; i++) {
1233 mask = 0xffUL << (i * 8);
1234 if ((v1 & mask) == (v2 & mask))
1241 * The size parameter is used to adjust the equivalent popcnt instruction.
1242 * popcntb = 8, popcntw = 32, popcntd = 64
1244 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1245 struct instruction_op *op,
1246 unsigned long v1, int size)
1248 unsigned long long out = v1;
1250 out -= (out >> 1) & 0x5555555555555555ULL;
1251 out = (0x3333333333333333ULL & out) +
1252 (0x3333333333333333ULL & (out >> 2));
1253 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1255 if (size == 8) { /* popcntb */
1261 if (size == 32) { /* popcntw */
1262 op->val = out & 0x0000003f0000003fULL;
1266 out = (out + (out >> 32)) & 0x7f;
1267 op->val = out; /* popcntd */
1271 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1272 struct instruction_op *op,
1273 unsigned long v1, unsigned long v2)
1275 unsigned char perm, idx;
1279 for (i = 0; i < 8; i++) {
1280 idx = (v1 >> (i * 8)) & 0xff;
1282 if (v2 & PPC_BIT(idx))
1287 #endif /* CONFIG_PPC64 */
1289 * The size parameter adjusts the equivalent prty instruction.
1290 * prtyw = 32, prtyd = 64
1292 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1293 struct instruction_op *op,
1294 unsigned long v, int size)
1296 unsigned long long res = v ^ (v >> 8);
1299 if (size == 32) { /* prtyw */
1300 op->val = res & 0x0000000100000001ULL;
1305 op->val = res & 1; /*prtyd */
1308 static nokprobe_inline int trap_compare(long v1, long v2)
1318 if ((unsigned long)v1 < (unsigned long)v2)
1320 else if ((unsigned long)v1 > (unsigned long)v2)
1326 * Elements of 32-bit rotate and mask instructions.
1328 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1329 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1330 #ifdef __powerpc64__
1331 #define MASK64_L(mb) (~0UL >> (mb))
1332 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1333 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1334 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1336 #define DATA32(x) (x)
1338 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1341 * Decode an instruction, and return information about it in *op
1342 * without changing *regs.
1343 * Integer arithmetic and logical instructions, branches, and barrier
1344 * instructions can be emulated just using the information in *op.
1346 * Return value is 1 if the instruction can be emulated just by
1347 * updating *regs with the information in *op, -1 if we need the
1348 * GPRs but *regs doesn't contain the full register set, or 0
1351 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1355 unsigned int suffixopcode, prefixtype, prefix_r;
1357 unsigned int opcode, ra, rb, rc, rd, spr, u;
1358 unsigned long int imm;
1359 unsigned long int val, val2;
1360 unsigned int mb, me, sh;
1361 unsigned int word, suffix;
1364 word = ppc_inst_val(instr);
1365 suffix = ppc_inst_suffix(instr);
1369 opcode = ppc_inst_primary_opcode(instr);
1373 imm = (signed short)(word & 0xfffc);
1374 if ((word & 2) == 0)
1376 op->val = truncate_if_32bit(regs->msr, imm);
1379 if (branch_taken(word, regs, op))
1380 op->type |= BRTAKEN;
1383 if ((word & 0xfe2) == 2)
1385 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1386 (word & 0xfe3) == 1) { /* scv */
1387 op->type = SYSCALL_VECTORED_0;
1388 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1389 goto unknown_opcode;
1394 op->type = BRANCH | BRTAKEN;
1395 imm = word & 0x03fffffc;
1396 if (imm & 0x02000000)
1398 if ((word & 2) == 0)
1400 op->val = truncate_if_32bit(regs->msr, imm);
1405 switch ((word >> 1) & 0x3ff) {
1407 op->type = COMPUTE + SETCC;
1408 rd = 7 - ((word >> 23) & 0x7);
1409 ra = 7 - ((word >> 18) & 0x7);
1412 val = (regs->ccr >> ra) & 0xf;
1413 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1417 case 528: /* bcctr */
1419 imm = (word & 0x400)? regs->ctr: regs->link;
1420 op->val = truncate_if_32bit(regs->msr, imm);
1423 if (branch_taken(word, regs, op))
1424 op->type |= BRTAKEN;
1427 case 18: /* rfid, scary */
1428 if (user_mode(regs))
1433 case 150: /* isync */
1434 op->type = BARRIER | BARRIER_ISYNC;
1437 case 33: /* crnor */
1438 case 129: /* crandc */
1439 case 193: /* crxor */
1440 case 225: /* crnand */
1441 case 257: /* crand */
1442 case 289: /* creqv */
1443 case 417: /* crorc */
1444 case 449: /* cror */
1445 op->type = COMPUTE + SETCC;
1446 ra = (word >> 16) & 0x1f;
1447 rb = (word >> 11) & 0x1f;
1448 rd = (word >> 21) & 0x1f;
1449 ra = (regs->ccr >> (31 - ra)) & 1;
1450 rb = (regs->ccr >> (31 - rb)) & 1;
1451 val = (word >> (6 + ra * 2 + rb)) & 1;
1452 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1458 switch ((word >> 1) & 0x3ff) {
1459 case 598: /* sync */
1460 op->type = BARRIER + BARRIER_SYNC;
1461 #ifdef __powerpc64__
1462 switch ((word >> 21) & 3) {
1463 case 1: /* lwsync */
1464 op->type = BARRIER + BARRIER_LWSYNC;
1466 case 2: /* ptesync */
1467 op->type = BARRIER + BARRIER_PTESYNC;
1473 case 854: /* eieio */
1474 op->type = BARRIER + BARRIER_EIEIO;
1480 rd = (word >> 21) & 0x1f;
1481 ra = (word >> 16) & 0x1f;
1482 rb = (word >> 11) & 0x1f;
1483 rc = (word >> 6) & 0x1f;
1486 #ifdef __powerpc64__
1488 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1489 goto unknown_opcode;
1491 prefix_r = GET_PREFIX_R(word);
1492 ra = GET_PREFIX_RA(suffix);
1493 rd = (suffix >> 21) & 0x1f;
1495 op->val = regs->gpr[rd];
1496 suffixopcode = get_op(suffix);
1497 prefixtype = (word >> 24) & 0x3;
1498 switch (prefixtype) {
1502 switch (suffixopcode) {
1503 case 14: /* paddi */
1504 op->type = COMPUTE | PREFIXED;
1505 op->val = mlsd_8lsd_ea(word, suffix, regs);
1511 if (rd & trap_compare(regs->gpr[ra], (short) word))
1516 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1520 #ifdef __powerpc64__
1523 * There are very many instructions with this primary opcode
1524 * introduced in the ISA as early as v2.03. However, the ones
1525 * we currently emulate were all introduced with ISA 3.0
1527 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1528 goto unknown_opcode;
1530 switch (word & 0x3f) {
1531 case 48: /* maddhd */
1532 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1533 "=r" (op->val) : "r" (regs->gpr[ra]),
1534 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1537 case 49: /* maddhdu */
1538 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1539 "=r" (op->val) : "r" (regs->gpr[ra]),
1540 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1543 case 51: /* maddld */
1544 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1545 "=r" (op->val) : "r" (regs->gpr[ra]),
1546 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1551 * There are other instructions from ISA 3.0 with the same
1552 * primary opcode which do not have emulation support yet.
1554 goto unknown_opcode;
1558 op->val = regs->gpr[ra] * (short) word;
1561 case 8: /* subfic */
1563 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1566 case 10: /* cmpli */
1567 imm = (unsigned short) word;
1568 val = regs->gpr[ra];
1569 #ifdef __powerpc64__
1571 val = (unsigned int) val;
1573 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1578 val = regs->gpr[ra];
1579 #ifdef __powerpc64__
1583 do_cmp_signed(regs, op, val, imm, rd >> 2);
1586 case 12: /* addic */
1588 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1591 case 13: /* addic. */
1593 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1600 imm += regs->gpr[ra];
1604 case 15: /* addis */
1605 imm = ((short) word) << 16;
1607 imm += regs->gpr[ra];
1612 if (((word >> 1) & 0x1f) == 2) {
1614 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1615 goto unknown_opcode;
1616 imm = (short) (word & 0xffc1); /* d0 + d2 fields */
1617 imm |= (word >> 15) & 0x3e; /* d1 field */
1618 op->val = regs->nip + (imm << 16) + 4;
1624 case 20: /* rlwimi */
1625 mb = (word >> 6) & 0x1f;
1626 me = (word >> 1) & 0x1f;
1627 val = DATA32(regs->gpr[rd]);
1628 imm = MASK32(mb, me);
1629 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1632 case 21: /* rlwinm */
1633 mb = (word >> 6) & 0x1f;
1634 me = (word >> 1) & 0x1f;
1635 val = DATA32(regs->gpr[rd]);
1636 op->val = ROTATE(val, rb) & MASK32(mb, me);
1639 case 23: /* rlwnm */
1640 mb = (word >> 6) & 0x1f;
1641 me = (word >> 1) & 0x1f;
1642 rb = regs->gpr[rb] & 0x1f;
1643 val = DATA32(regs->gpr[rd]);
1644 op->val = ROTATE(val, rb) & MASK32(mb, me);
1648 op->val = regs->gpr[rd] | (unsigned short) word;
1649 goto logical_done_nocc;
1652 imm = (unsigned short) word;
1653 op->val = regs->gpr[rd] | (imm << 16);
1654 goto logical_done_nocc;
1657 op->val = regs->gpr[rd] ^ (unsigned short) word;
1658 goto logical_done_nocc;
1660 case 27: /* xoris */
1661 imm = (unsigned short) word;
1662 op->val = regs->gpr[rd] ^ (imm << 16);
1663 goto logical_done_nocc;
1665 case 28: /* andi. */
1666 op->val = regs->gpr[rd] & (unsigned short) word;
1668 goto logical_done_nocc;
1670 case 29: /* andis. */
1671 imm = (unsigned short) word;
1672 op->val = regs->gpr[rd] & (imm << 16);
1674 goto logical_done_nocc;
1676 #ifdef __powerpc64__
1678 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1679 val = regs->gpr[rd];
1680 if ((word & 0x10) == 0) {
1681 sh = rb | ((word & 2) << 4);
1682 val = ROTATE(val, sh);
1683 switch ((word >> 2) & 3) {
1684 case 0: /* rldicl */
1685 val &= MASK64_L(mb);
1687 case 1: /* rldicr */
1688 val &= MASK64_R(mb);
1691 val &= MASK64(mb, 63 - sh);
1693 case 3: /* rldimi */
1694 imm = MASK64(mb, 63 - sh);
1695 val = (regs->gpr[ra] & ~imm) |
1701 sh = regs->gpr[rb] & 0x3f;
1702 val = ROTATE(val, sh);
1703 switch ((word >> 1) & 7) {
1705 op->val = val & MASK64_L(mb);
1708 op->val = val & MASK64_R(mb);
1713 op->type = UNKNOWN; /* illegal instruction */
1717 /* isel occupies 32 minor opcodes */
1718 if (((word >> 1) & 0x1f) == 15) {
1719 mb = (word >> 6) & 0x1f; /* bc field */
1720 val = (regs->ccr >> (31 - mb)) & 1;
1721 val2 = (ra) ? regs->gpr[ra] : 0;
1723 op->val = (val) ? val2 : regs->gpr[rb];
1727 switch ((word >> 1) & 0x3ff) {
1730 (rd & trap_compare((int)regs->gpr[ra],
1731 (int)regs->gpr[rb])))
1734 #ifdef __powerpc64__
1736 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1740 case 83: /* mfmsr */
1741 if (user_mode(regs))
1746 case 146: /* mtmsr */
1747 if (user_mode(regs))
1751 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1754 case 178: /* mtmsrd */
1755 if (user_mode(regs))
1759 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1760 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1761 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1768 if ((word >> 20) & 1) {
1770 for (sh = 0; sh < 8; ++sh) {
1771 if (word & (0x80000 >> sh))
1776 op->val = regs->ccr & imm;
1779 case 128: /* setb */
1780 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1781 goto unknown_opcode;
1783 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1784 * Since each CR field is 4 bits,
1785 * we can simply mask off the bottom two bits (bfa * 4)
1786 * to yield the first bit in the CR field.
1789 /* 'val' stores bits of the CR field (bfa) */
1790 val = regs->ccr >> (CR0_SHIFT - ra);
1791 /* checks if the LT bit of CR field (bfa) is set */
1794 /* checks if the GT bit of CR field (bfa) is set */
1801 case 144: /* mtcrf */
1802 op->type = COMPUTE + SETCC;
1804 val = regs->gpr[rd];
1805 op->ccval = regs->ccr;
1806 for (sh = 0; sh < 8; ++sh) {
1807 if (word & (0x80000 >> sh))
1808 op->ccval = (op->ccval & ~imm) |
1814 case 339: /* mfspr */
1815 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1819 if (spr == SPRN_XER || spr == SPRN_LR ||
1824 case 467: /* mtspr */
1825 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1827 op->val = regs->gpr[rd];
1829 if (spr == SPRN_XER || spr == SPRN_LR ||
1835 * Compare instructions
1838 val = regs->gpr[ra];
1839 val2 = regs->gpr[rb];
1840 #ifdef __powerpc64__
1841 if ((rd & 1) == 0) {
1842 /* word (32-bit) compare */
1847 do_cmp_signed(regs, op, val, val2, rd >> 2);
1851 val = regs->gpr[ra];
1852 val2 = regs->gpr[rb];
1853 #ifdef __powerpc64__
1854 if ((rd & 1) == 0) {
1855 /* word (32-bit) compare */
1856 val = (unsigned int) val;
1857 val2 = (unsigned int) val2;
1860 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1863 case 508: /* cmpb */
1864 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1865 goto logical_done_nocc;
1868 * Arithmetic instructions
1871 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1874 #ifdef __powerpc64__
1875 case 9: /* mulhdu */
1876 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1877 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1881 add_with_carry(regs, op, rd, regs->gpr[ra],
1885 case 11: /* mulhwu */
1886 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1887 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1891 op->val = regs->gpr[rb] - regs->gpr[ra];
1893 #ifdef __powerpc64__
1894 case 73: /* mulhd */
1895 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1896 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1899 case 75: /* mulhw */
1900 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1901 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1905 op->val = -regs->gpr[ra];
1908 case 136: /* subfe */
1909 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1910 regs->gpr[rb], regs->xer & XER_CA);
1913 case 138: /* adde */
1914 add_with_carry(regs, op, rd, regs->gpr[ra],
1915 regs->gpr[rb], regs->xer & XER_CA);
1918 case 200: /* subfze */
1919 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1920 regs->xer & XER_CA);
1923 case 202: /* addze */
1924 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1925 regs->xer & XER_CA);
1928 case 232: /* subfme */
1929 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1930 regs->xer & XER_CA);
1932 #ifdef __powerpc64__
1933 case 233: /* mulld */
1934 op->val = regs->gpr[ra] * regs->gpr[rb];
1937 case 234: /* addme */
1938 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1939 regs->xer & XER_CA);
1942 case 235: /* mullw */
1943 op->val = (long)(int) regs->gpr[ra] *
1944 (int) regs->gpr[rb];
1947 #ifdef __powerpc64__
1948 case 265: /* modud */
1949 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1950 goto unknown_opcode;
1951 op->val = regs->gpr[ra] % regs->gpr[rb];
1955 op->val = regs->gpr[ra] + regs->gpr[rb];
1958 case 267: /* moduw */
1959 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1960 goto unknown_opcode;
1961 op->val = (unsigned int) regs->gpr[ra] %
1962 (unsigned int) regs->gpr[rb];
1964 #ifdef __powerpc64__
1965 case 457: /* divdu */
1966 op->val = regs->gpr[ra] / regs->gpr[rb];
1969 case 459: /* divwu */
1970 op->val = (unsigned int) regs->gpr[ra] /
1971 (unsigned int) regs->gpr[rb];
1973 #ifdef __powerpc64__
1974 case 489: /* divd */
1975 op->val = (long int) regs->gpr[ra] /
1976 (long int) regs->gpr[rb];
1979 case 491: /* divw */
1980 op->val = (int) regs->gpr[ra] /
1981 (int) regs->gpr[rb];
1983 #ifdef __powerpc64__
1984 case 425: /* divde[.] */
1985 asm volatile(PPC_DIVDE(%0, %1, %2) :
1986 "=r" (op->val) : "r" (regs->gpr[ra]),
1987 "r" (regs->gpr[rb]));
1989 case 393: /* divdeu[.] */
1990 asm volatile(PPC_DIVDEU(%0, %1, %2) :
1991 "=r" (op->val) : "r" (regs->gpr[ra]),
1992 "r" (regs->gpr[rb]));
1995 case 755: /* darn */
1996 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1997 goto unknown_opcode;
2000 /* 32-bit conditioned */
2001 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
2005 /* 64-bit conditioned */
2006 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2011 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2015 goto unknown_opcode;
2016 #ifdef __powerpc64__
2017 case 777: /* modsd */
2018 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2019 goto unknown_opcode;
2020 op->val = (long int) regs->gpr[ra] %
2021 (long int) regs->gpr[rb];
2024 case 779: /* modsw */
2025 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2026 goto unknown_opcode;
2027 op->val = (int) regs->gpr[ra] %
2028 (int) regs->gpr[rb];
2033 * Logical instructions
2035 case 26: /* cntlzw */
2036 val = (unsigned int) regs->gpr[rd];
2037 op->val = ( val ? __builtin_clz(val) : 32 );
2039 #ifdef __powerpc64__
2040 case 58: /* cntlzd */
2041 val = regs->gpr[rd];
2042 op->val = ( val ? __builtin_clzl(val) : 64 );
2046 op->val = regs->gpr[rd] & regs->gpr[rb];
2050 op->val = regs->gpr[rd] & ~regs->gpr[rb];
2053 case 122: /* popcntb */
2054 do_popcnt(regs, op, regs->gpr[rd], 8);
2055 goto logical_done_nocc;
2058 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2061 case 154: /* prtyw */
2062 do_prty(regs, op, regs->gpr[rd], 32);
2063 goto logical_done_nocc;
2065 case 186: /* prtyd */
2066 do_prty(regs, op, regs->gpr[rd], 64);
2067 goto logical_done_nocc;
2069 case 252: /* bpermd */
2070 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2071 goto logical_done_nocc;
2074 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2078 op->val = regs->gpr[rd] ^ regs->gpr[rb];
2081 case 378: /* popcntw */
2082 do_popcnt(regs, op, regs->gpr[rd], 32);
2083 goto logical_done_nocc;
2086 op->val = regs->gpr[rd] | ~regs->gpr[rb];
2090 op->val = regs->gpr[rd] | regs->gpr[rb];
2093 case 476: /* nand */
2094 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2097 case 506: /* popcntd */
2098 do_popcnt(regs, op, regs->gpr[rd], 64);
2099 goto logical_done_nocc;
2101 case 538: /* cnttzw */
2102 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2103 goto unknown_opcode;
2104 val = (unsigned int) regs->gpr[rd];
2105 op->val = (val ? __builtin_ctz(val) : 32);
2107 #ifdef __powerpc64__
2108 case 570: /* cnttzd */
2109 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2110 goto unknown_opcode;
2111 val = regs->gpr[rd];
2112 op->val = (val ? __builtin_ctzl(val) : 64);
2115 case 922: /* extsh */
2116 op->val = (signed short) regs->gpr[rd];
2119 case 954: /* extsb */
2120 op->val = (signed char) regs->gpr[rd];
2122 #ifdef __powerpc64__
2123 case 986: /* extsw */
2124 op->val = (signed int) regs->gpr[rd];
2129 * Shift instructions
2132 sh = regs->gpr[rb] & 0x3f;
2134 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2140 sh = regs->gpr[rb] & 0x3f;
2142 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2147 case 792: /* sraw */
2148 op->type = COMPUTE + SETREG + SETXER;
2149 sh = regs->gpr[rb] & 0x3f;
2150 ival = (signed int) regs->gpr[rd];
2151 op->val = ival >> (sh < 32 ? sh : 31);
2152 op->xerval = regs->xer;
2153 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2154 op->xerval |= XER_CA;
2156 op->xerval &= ~XER_CA;
2157 set_ca32(op, op->xerval & XER_CA);
2160 case 824: /* srawi */
2161 op->type = COMPUTE + SETREG + SETXER;
2163 ival = (signed int) regs->gpr[rd];
2164 op->val = ival >> sh;
2165 op->xerval = regs->xer;
2166 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2167 op->xerval |= XER_CA;
2169 op->xerval &= ~XER_CA;
2170 set_ca32(op, op->xerval & XER_CA);
2173 #ifdef __powerpc64__
2175 sh = regs->gpr[rb] & 0x7f;
2177 op->val = regs->gpr[rd] << sh;
2183 sh = regs->gpr[rb] & 0x7f;
2185 op->val = regs->gpr[rd] >> sh;
2190 case 794: /* srad */
2191 op->type = COMPUTE + SETREG + SETXER;
2192 sh = regs->gpr[rb] & 0x7f;
2193 ival = (signed long int) regs->gpr[rd];
2194 op->val = ival >> (sh < 64 ? sh : 63);
2195 op->xerval = regs->xer;
2196 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2197 op->xerval |= XER_CA;
2199 op->xerval &= ~XER_CA;
2200 set_ca32(op, op->xerval & XER_CA);
2203 case 826: /* sradi with sh_5 = 0 */
2204 case 827: /* sradi with sh_5 = 1 */
2205 op->type = COMPUTE + SETREG + SETXER;
2206 sh = rb | ((word & 2) << 4);
2207 ival = (signed long int) regs->gpr[rd];
2208 op->val = ival >> sh;
2209 op->xerval = regs->xer;
2210 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2211 op->xerval |= XER_CA;
2213 op->xerval &= ~XER_CA;
2214 set_ca32(op, op->xerval & XER_CA);
2217 case 890: /* extswsli with sh_5 = 0 */
2218 case 891: /* extswsli with sh_5 = 1 */
2219 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2220 goto unknown_opcode;
2221 op->type = COMPUTE + SETREG;
2222 sh = rb | ((word & 2) << 4);
2223 val = (signed int) regs->gpr[rd];
2225 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2230 #endif /* __powerpc64__ */
2233 * Cache instructions
2235 case 54: /* dcbst */
2236 op->type = MKOP(CACHEOP, DCBST, 0);
2237 op->ea = xform_ea(word, regs);
2241 op->type = MKOP(CACHEOP, DCBF, 0);
2242 op->ea = xform_ea(word, regs);
2245 case 246: /* dcbtst */
2246 op->type = MKOP(CACHEOP, DCBTST, 0);
2247 op->ea = xform_ea(word, regs);
2251 case 278: /* dcbt */
2252 op->type = MKOP(CACHEOP, DCBTST, 0);
2253 op->ea = xform_ea(word, regs);
2257 case 982: /* icbi */
2258 op->type = MKOP(CACHEOP, ICBI, 0);
2259 op->ea = xform_ea(word, regs);
2262 case 1014: /* dcbz */
2263 op->type = MKOP(CACHEOP, DCBZ, 0);
2264 op->ea = xform_ea(word, regs);
2274 op->update_reg = ra;
2276 op->val = regs->gpr[rd];
2277 u = (word >> 20) & UPDATE;
2283 op->ea = xform_ea(word, regs);
2284 switch ((word >> 1) & 0x3ff) {
2285 case 20: /* lwarx */
2286 op->type = MKOP(LARX, 0, 4);
2289 case 150: /* stwcx. */
2290 op->type = MKOP(STCX, 0, 4);
2293 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
2294 case 52: /* lbarx */
2295 op->type = MKOP(LARX, 0, 1);
2298 case 694: /* stbcx. */
2299 op->type = MKOP(STCX, 0, 1);
2302 case 116: /* lharx */
2303 op->type = MKOP(LARX, 0, 2);
2306 case 726: /* sthcx. */
2307 op->type = MKOP(STCX, 0, 2);
2310 #ifdef __powerpc64__
2311 case 84: /* ldarx */
2312 op->type = MKOP(LARX, 0, 8);
2315 case 214: /* stdcx. */
2316 op->type = MKOP(STCX, 0, 8);
2319 case 276: /* lqarx */
2320 if (!((rd & 1) || rd == ra || rd == rb))
2321 op->type = MKOP(LARX, 0, 16);
2324 case 182: /* stqcx. */
2326 op->type = MKOP(STCX, 0, 16);
2331 case 55: /* lwzux */
2332 op->type = MKOP(LOAD, u, 4);
2336 case 119: /* lbzux */
2337 op->type = MKOP(LOAD, u, 1);
2340 #ifdef CONFIG_ALTIVEC
2342 * Note: for the load/store vector element instructions,
2343 * bits of the EA say which field of the VMX register to use.
2346 op->type = MKOP(LOAD_VMX, 0, 1);
2347 op->element_size = 1;
2350 case 39: /* lvehx */
2351 op->type = MKOP(LOAD_VMX, 0, 2);
2352 op->element_size = 2;
2355 case 71: /* lvewx */
2356 op->type = MKOP(LOAD_VMX, 0, 4);
2357 op->element_size = 4;
2361 case 359: /* lvxl */
2362 op->type = MKOP(LOAD_VMX, 0, 16);
2363 op->element_size = 16;
2366 case 135: /* stvebx */
2367 op->type = MKOP(STORE_VMX, 0, 1);
2368 op->element_size = 1;
2371 case 167: /* stvehx */
2372 op->type = MKOP(STORE_VMX, 0, 2);
2373 op->element_size = 2;
2376 case 199: /* stvewx */
2377 op->type = MKOP(STORE_VMX, 0, 4);
2378 op->element_size = 4;
2381 case 231: /* stvx */
2382 case 487: /* stvxl */
2383 op->type = MKOP(STORE_VMX, 0, 16);
2385 #endif /* CONFIG_ALTIVEC */
2387 #ifdef __powerpc64__
2390 op->type = MKOP(LOAD, u, 8);
2393 case 149: /* stdx */
2394 case 181: /* stdux */
2395 op->type = MKOP(STORE, u, 8);
2399 case 151: /* stwx */
2400 case 183: /* stwux */
2401 op->type = MKOP(STORE, u, 4);
2404 case 215: /* stbx */
2405 case 247: /* stbux */
2406 op->type = MKOP(STORE, u, 1);
2409 case 279: /* lhzx */
2410 case 311: /* lhzux */
2411 op->type = MKOP(LOAD, u, 2);
2414 #ifdef __powerpc64__
2415 case 341: /* lwax */
2416 case 373: /* lwaux */
2417 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2421 case 343: /* lhax */
2422 case 375: /* lhaux */
2423 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2426 case 407: /* sthx */
2427 case 439: /* sthux */
2428 op->type = MKOP(STORE, u, 2);
2431 #ifdef __powerpc64__
2432 case 532: /* ldbrx */
2433 op->type = MKOP(LOAD, BYTEREV, 8);
2437 case 533: /* lswx */
2438 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2441 case 534: /* lwbrx */
2442 op->type = MKOP(LOAD, BYTEREV, 4);
2445 case 597: /* lswi */
2447 rb = 32; /* # bytes to load */
2448 op->type = MKOP(LOAD_MULTI, 0, rb);
2449 op->ea = ra ? regs->gpr[ra] : 0;
2452 #ifdef CONFIG_PPC_FPU
2453 case 535: /* lfsx */
2454 case 567: /* lfsux */
2455 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2458 case 599: /* lfdx */
2459 case 631: /* lfdux */
2460 op->type = MKOP(LOAD_FP, u, 8);
2463 case 663: /* stfsx */
2464 case 695: /* stfsux */
2465 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2468 case 727: /* stfdx */
2469 case 759: /* stfdux */
2470 op->type = MKOP(STORE_FP, u, 8);
2473 #ifdef __powerpc64__
2474 case 791: /* lfdpx */
2475 op->type = MKOP(LOAD_FP, 0, 16);
2478 case 855: /* lfiwax */
2479 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2482 case 887: /* lfiwzx */
2483 op->type = MKOP(LOAD_FP, 0, 4);
2486 case 919: /* stfdpx */
2487 op->type = MKOP(STORE_FP, 0, 16);
2490 case 983: /* stfiwx */
2491 op->type = MKOP(STORE_FP, 0, 4);
2493 #endif /* __powerpc64 */
2494 #endif /* CONFIG_PPC_FPU */
2496 #ifdef __powerpc64__
2497 case 660: /* stdbrx */
2498 op->type = MKOP(STORE, BYTEREV, 8);
2499 op->val = byterev_8(regs->gpr[rd]);
2503 case 661: /* stswx */
2504 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2507 case 662: /* stwbrx */
2508 op->type = MKOP(STORE, BYTEREV, 4);
2509 op->val = byterev_4(regs->gpr[rd]);
2512 case 725: /* stswi */
2514 rb = 32; /* # bytes to store */
2515 op->type = MKOP(STORE_MULTI, 0, rb);
2516 op->ea = ra ? regs->gpr[ra] : 0;
2519 case 790: /* lhbrx */
2520 op->type = MKOP(LOAD, BYTEREV, 2);
2523 case 918: /* sthbrx */
2524 op->type = MKOP(STORE, BYTEREV, 2);
2525 op->val = byterev_2(regs->gpr[rd]);
2529 case 12: /* lxsiwzx */
2530 op->reg = rd | ((word & 1) << 5);
2531 op->type = MKOP(LOAD_VSX, 0, 4);
2532 op->element_size = 8;
2535 case 76: /* lxsiwax */
2536 op->reg = rd | ((word & 1) << 5);
2537 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2538 op->element_size = 8;
2541 case 140: /* stxsiwx */
2542 op->reg = rd | ((word & 1) << 5);
2543 op->type = MKOP(STORE_VSX, 0, 4);
2544 op->element_size = 8;
2547 case 268: /* lxvx */
2548 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2549 goto unknown_opcode;
2550 op->reg = rd | ((word & 1) << 5);
2551 op->type = MKOP(LOAD_VSX, 0, 16);
2552 op->element_size = 16;
2553 op->vsx_flags = VSX_CHECK_VEC;
2556 case 269: /* lxvl */
2557 case 301: { /* lxvll */
2559 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2560 goto unknown_opcode;
2561 op->reg = rd | ((word & 1) << 5);
2562 op->ea = ra ? regs->gpr[ra] : 0;
2563 nb = regs->gpr[rb] & 0xff;
2566 op->type = MKOP(LOAD_VSX, 0, nb);
2567 op->element_size = 16;
2568 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2572 case 332: /* lxvdsx */
2573 op->reg = rd | ((word & 1) << 5);
2574 op->type = MKOP(LOAD_VSX, 0, 8);
2575 op->element_size = 8;
2576 op->vsx_flags = VSX_SPLAT;
2579 case 333: /* lxvpx */
2580 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2581 goto unknown_opcode;
2582 op->reg = VSX_REGISTER_XTP(rd);
2583 op->type = MKOP(LOAD_VSX, 0, 32);
2584 op->element_size = 32;
2587 case 364: /* lxvwsx */
2588 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2589 goto unknown_opcode;
2590 op->reg = rd | ((word & 1) << 5);
2591 op->type = MKOP(LOAD_VSX, 0, 4);
2592 op->element_size = 4;
2593 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2596 case 396: /* stxvx */
2597 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2598 goto unknown_opcode;
2599 op->reg = rd | ((word & 1) << 5);
2600 op->type = MKOP(STORE_VSX, 0, 16);
2601 op->element_size = 16;
2602 op->vsx_flags = VSX_CHECK_VEC;
2605 case 397: /* stxvl */
2606 case 429: { /* stxvll */
2608 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2609 goto unknown_opcode;
2610 op->reg = rd | ((word & 1) << 5);
2611 op->ea = ra ? regs->gpr[ra] : 0;
2612 nb = regs->gpr[rb] & 0xff;
2615 op->type = MKOP(STORE_VSX, 0, nb);
2616 op->element_size = 16;
2617 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2621 case 461: /* stxvpx */
2622 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2623 goto unknown_opcode;
2624 op->reg = VSX_REGISTER_XTP(rd);
2625 op->type = MKOP(STORE_VSX, 0, 32);
2626 op->element_size = 32;
2628 case 524: /* lxsspx */
2629 op->reg = rd | ((word & 1) << 5);
2630 op->type = MKOP(LOAD_VSX, 0, 4);
2631 op->element_size = 8;
2632 op->vsx_flags = VSX_FPCONV;
2635 case 588: /* lxsdx */
2636 op->reg = rd | ((word & 1) << 5);
2637 op->type = MKOP(LOAD_VSX, 0, 8);
2638 op->element_size = 8;
2641 case 652: /* stxsspx */
2642 op->reg = rd | ((word & 1) << 5);
2643 op->type = MKOP(STORE_VSX, 0, 4);
2644 op->element_size = 8;
2645 op->vsx_flags = VSX_FPCONV;
2648 case 716: /* stxsdx */
2649 op->reg = rd | ((word & 1) << 5);
2650 op->type = MKOP(STORE_VSX, 0, 8);
2651 op->element_size = 8;
2654 case 780: /* lxvw4x */
2655 op->reg = rd | ((word & 1) << 5);
2656 op->type = MKOP(LOAD_VSX, 0, 16);
2657 op->element_size = 4;
2660 case 781: /* lxsibzx */
2661 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2662 goto unknown_opcode;
2663 op->reg = rd | ((word & 1) << 5);
2664 op->type = MKOP(LOAD_VSX, 0, 1);
2665 op->element_size = 8;
2666 op->vsx_flags = VSX_CHECK_VEC;
2669 case 812: /* lxvh8x */
2670 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2671 goto unknown_opcode;
2672 op->reg = rd | ((word & 1) << 5);
2673 op->type = MKOP(LOAD_VSX, 0, 16);
2674 op->element_size = 2;
2675 op->vsx_flags = VSX_CHECK_VEC;
2678 case 813: /* lxsihzx */
2679 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2680 goto unknown_opcode;
2681 op->reg = rd | ((word & 1) << 5);
2682 op->type = MKOP(LOAD_VSX, 0, 2);
2683 op->element_size = 8;
2684 op->vsx_flags = VSX_CHECK_VEC;
2687 case 844: /* lxvd2x */
2688 op->reg = rd | ((word & 1) << 5);
2689 op->type = MKOP(LOAD_VSX, 0, 16);
2690 op->element_size = 8;
2693 case 876: /* lxvb16x */
2694 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2695 goto unknown_opcode;
2696 op->reg = rd | ((word & 1) << 5);
2697 op->type = MKOP(LOAD_VSX, 0, 16);
2698 op->element_size = 1;
2699 op->vsx_flags = VSX_CHECK_VEC;
2702 case 908: /* stxvw4x */
2703 op->reg = rd | ((word & 1) << 5);
2704 op->type = MKOP(STORE_VSX, 0, 16);
2705 op->element_size = 4;
2708 case 909: /* stxsibx */
2709 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2710 goto unknown_opcode;
2711 op->reg = rd | ((word & 1) << 5);
2712 op->type = MKOP(STORE_VSX, 0, 1);
2713 op->element_size = 8;
2714 op->vsx_flags = VSX_CHECK_VEC;
2717 case 940: /* stxvh8x */
2718 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2719 goto unknown_opcode;
2720 op->reg = rd | ((word & 1) << 5);
2721 op->type = MKOP(STORE_VSX, 0, 16);
2722 op->element_size = 2;
2723 op->vsx_flags = VSX_CHECK_VEC;
2726 case 941: /* stxsihx */
2727 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2728 goto unknown_opcode;
2729 op->reg = rd | ((word & 1) << 5);
2730 op->type = MKOP(STORE_VSX, 0, 2);
2731 op->element_size = 8;
2732 op->vsx_flags = VSX_CHECK_VEC;
2735 case 972: /* stxvd2x */
2736 op->reg = rd | ((word & 1) << 5);
2737 op->type = MKOP(STORE_VSX, 0, 16);
2738 op->element_size = 8;
2741 case 1004: /* stxvb16x */
2742 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2743 goto unknown_opcode;
2744 op->reg = rd | ((word & 1) << 5);
2745 op->type = MKOP(STORE_VSX, 0, 16);
2746 op->element_size = 1;
2747 op->vsx_flags = VSX_CHECK_VEC;
2750 #endif /* CONFIG_VSX */
2756 op->type = MKOP(LOAD, u, 4);
2757 op->ea = dform_ea(word, regs);
2762 op->type = MKOP(LOAD, u, 1);
2763 op->ea = dform_ea(word, regs);
2768 op->type = MKOP(STORE, u, 4);
2769 op->ea = dform_ea(word, regs);
2774 op->type = MKOP(STORE, u, 1);
2775 op->ea = dform_ea(word, regs);
2780 op->type = MKOP(LOAD, u, 2);
2781 op->ea = dform_ea(word, regs);
2786 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2787 op->ea = dform_ea(word, regs);
2792 op->type = MKOP(STORE, u, 2);
2793 op->ea = dform_ea(word, regs);
2798 break; /* invalid form, ra in range to load */
2799 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2800 op->ea = dform_ea(word, regs);
2804 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2805 op->ea = dform_ea(word, regs);
2808 #ifdef CONFIG_PPC_FPU
2811 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2812 op->ea = dform_ea(word, regs);
2817 op->type = MKOP(LOAD_FP, u, 8);
2818 op->ea = dform_ea(word, regs);
2822 case 53: /* stfsu */
2823 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2824 op->ea = dform_ea(word, regs);
2828 case 55: /* stfdu */
2829 op->type = MKOP(STORE_FP, u, 8);
2830 op->ea = dform_ea(word, regs);
2834 #ifdef __powerpc64__
2836 if (!((rd & 1) || (rd == ra)))
2837 op->type = MKOP(LOAD, 0, 16);
2838 op->ea = dqform_ea(word, regs);
2843 case 57: /* lfdp, lxsd, lxssp */
2844 op->ea = dsform_ea(word, regs);
2848 break; /* reg must be even */
2849 op->type = MKOP(LOAD_FP, 0, 16);
2852 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2853 goto unknown_opcode;
2855 op->type = MKOP(LOAD_VSX, 0, 8);
2856 op->element_size = 8;
2857 op->vsx_flags = VSX_CHECK_VEC;
2860 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2861 goto unknown_opcode;
2863 op->type = MKOP(LOAD_VSX, 0, 4);
2864 op->element_size = 8;
2865 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2869 #endif /* CONFIG_VSX */
2871 #ifdef __powerpc64__
2872 case 58: /* ld[u], lwa */
2873 op->ea = dsform_ea(word, regs);
2876 op->type = MKOP(LOAD, 0, 8);
2879 op->type = MKOP(LOAD, UPDATE, 8);
2882 op->type = MKOP(LOAD, SIGNEXT, 4);
2890 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2891 goto unknown_opcode;
2892 op->ea = dqform_ea(word, regs);
2893 op->reg = VSX_REGISTER_XTP(rd);
2894 op->element_size = 32;
2895 switch (word & 0xf) {
2897 op->type = MKOP(LOAD_VSX, 0, 32);
2900 op->type = MKOP(STORE_VSX, 0, 32);
2905 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2907 case 0: /* stfdp with LSB of DS field = 0 */
2908 case 4: /* stfdp with LSB of DS field = 1 */
2909 op->ea = dsform_ea(word, regs);
2910 op->type = MKOP(STORE_FP, 0, 16);
2914 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2915 goto unknown_opcode;
2916 op->ea = dqform_ea(word, regs);
2919 op->type = MKOP(LOAD_VSX, 0, 16);
2920 op->element_size = 16;
2921 op->vsx_flags = VSX_CHECK_VEC;
2924 case 2: /* stxsd with LSB of DS field = 0 */
2925 case 6: /* stxsd with LSB of DS field = 1 */
2926 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2927 goto unknown_opcode;
2928 op->ea = dsform_ea(word, regs);
2930 op->type = MKOP(STORE_VSX, 0, 8);
2931 op->element_size = 8;
2932 op->vsx_flags = VSX_CHECK_VEC;
2935 case 3: /* stxssp with LSB of DS field = 0 */
2936 case 7: /* stxssp with LSB of DS field = 1 */
2937 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2938 goto unknown_opcode;
2939 op->ea = dsform_ea(word, regs);
2941 op->type = MKOP(STORE_VSX, 0, 4);
2942 op->element_size = 8;
2943 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2947 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2948 goto unknown_opcode;
2949 op->ea = dqform_ea(word, regs);
2952 op->type = MKOP(STORE_VSX, 0, 16);
2953 op->element_size = 16;
2954 op->vsx_flags = VSX_CHECK_VEC;
2958 #endif /* CONFIG_VSX */
2960 #ifdef __powerpc64__
2961 case 62: /* std[u] */
2962 op->ea = dsform_ea(word, regs);
2965 op->type = MKOP(STORE, 0, 8);
2968 op->type = MKOP(STORE, UPDATE, 8);
2972 op->type = MKOP(STORE, 0, 16);
2976 case 1: /* Prefixed instructions */
2977 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2978 goto unknown_opcode;
2980 prefix_r = GET_PREFIX_R(word);
2981 ra = GET_PREFIX_RA(suffix);
2982 op->update_reg = ra;
2983 rd = (suffix >> 21) & 0x1f;
2985 op->val = regs->gpr[rd];
2987 suffixopcode = get_op(suffix);
2988 prefixtype = (word >> 24) & 0x3;
2989 switch (prefixtype) {
2990 case 0: /* Type 00 Eight-Byte Load/Store */
2993 op->ea = mlsd_8lsd_ea(word, suffix, regs);
2994 switch (suffixopcode) {
2996 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2999 case 42: /* plxsd */
3001 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
3002 op->element_size = 8;
3003 op->vsx_flags = VSX_CHECK_VEC;
3005 case 43: /* plxssp */
3007 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3008 op->element_size = 8;
3009 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3011 case 46: /* pstxsd */
3013 op->type = MKOP(STORE_VSX, PREFIXED, 8);
3014 op->element_size = 8;
3015 op->vsx_flags = VSX_CHECK_VEC;
3017 case 47: /* pstxssp */
3019 op->type = MKOP(STORE_VSX, PREFIXED, 4);
3020 op->element_size = 8;
3021 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3023 case 51: /* plxv1 */
3026 case 50: /* plxv0 */
3027 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3028 op->element_size = 16;
3029 op->vsx_flags = VSX_CHECK_VEC;
3031 case 55: /* pstxv1 */
3034 case 54: /* pstxv0 */
3035 op->type = MKOP(STORE_VSX, PREFIXED, 16);
3036 op->element_size = 16;
3037 op->vsx_flags = VSX_CHECK_VEC;
3039 #endif /* CONFIG_VSX */
3041 op->type = MKOP(LOAD, PREFIXED, 16);
3044 op->type = MKOP(LOAD, PREFIXED, 8);
3047 case 58: /* plxvp */
3048 op->reg = VSX_REGISTER_XTP(rd);
3049 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3050 op->element_size = 32;
3052 #endif /* CONFIG_VSX */
3054 op->type = MKOP(STORE, PREFIXED, 16);
3057 op->type = MKOP(STORE, PREFIXED, 8);
3060 case 62: /* pstxvp */
3061 op->reg = VSX_REGISTER_XTP(rd);
3062 op->type = MKOP(STORE_VSX, PREFIXED, 32);
3063 op->element_size = 32;
3065 #endif /* CONFIG_VSX */
3068 case 1: /* Type 01 Eight-Byte Register-to-Register */
3070 case 2: /* Type 10 Modified Load/Store */
3073 op->ea = mlsd_8lsd_ea(word, suffix, regs);
3074 switch (suffixopcode) {
3076 op->type = MKOP(LOAD, PREFIXED, 4);
3079 op->type = MKOP(LOAD, PREFIXED, 1);
3082 op->type = MKOP(STORE, PREFIXED, 4);
3085 op->type = MKOP(STORE, PREFIXED, 1);
3088 op->type = MKOP(LOAD, PREFIXED, 2);
3091 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3094 op->type = MKOP(STORE, PREFIXED, 2);
3097 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3100 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3102 case 52: /* pstfs */
3103 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3105 case 54: /* pstfd */
3106 op->type = MKOP(STORE_FP, PREFIXED, 8);
3110 case 3: /* Type 11 Modified Register-to-Register */
3113 #endif /* __powerpc64__ */
3117 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3118 switch (GETTYPE(op->type)) {
3121 goto unknown_opcode;
3127 goto unknown_opcode;
3132 if ((GETTYPE(op->type) == LOAD_VSX ||
3133 GETTYPE(op->type) == STORE_VSX) &&
3134 !cpu_has_feature(CPU_FTR_VSX)) {
3137 #endif /* CONFIG_VSX */
3162 op->type = INTERRUPT | 0x700;
3163 op->val = SRR1_PROGPRIV;
3167 op->type = INTERRUPT | 0x700;
3168 op->val = SRR1_PROGTRAP;
3171 EXPORT_SYMBOL_GPL(analyse_instr);
3172 NOKPROBE_SYMBOL(analyse_instr);
3175 * For PPC32 we always use stwu with r1 to change the stack pointer.
3176 * So this emulated store may corrupt the exception frame, now we
3177 * have to provide the exception frame trampoline, which is pushed
3178 * below the kprobed function stack. So we only update gpr[1] but
3179 * don't emulate the real store operation. We will do real store
3180 * operation safely in exception return code by checking this flag.
3182 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3185 * Check if we already set since that means we'll
3186 * lose the previous value.
3188 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3189 set_thread_flag(TIF_EMULATE_STACK_STORE);
3193 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3197 *valp = (signed short) *valp;
3200 *valp = (signed int) *valp;
3205 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3209 *valp = byterev_2(*valp);
3212 *valp = byterev_4(*valp);
3214 #ifdef __powerpc64__
3216 *valp = byterev_8(*valp);
3223 * Emulate an instruction that can be executed just by updating
3226 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3228 unsigned long next_pc;
3230 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3231 switch (GETTYPE(op->type)) {
3233 if (op->type & SETREG)
3234 regs->gpr[op->reg] = op->val;
3235 if (op->type & SETCC)
3236 regs->ccr = op->ccval;
3237 if (op->type & SETXER)
3238 regs->xer = op->xerval;
3242 if (op->type & SETLK)
3243 regs->link = next_pc;
3244 if (op->type & BRTAKEN)
3246 if (op->type & DECCTR)
3251 switch (op->type & BARRIER_MASK) {
3262 case BARRIER_LWSYNC:
3263 asm volatile("lwsync" : : : "memory");
3265 case BARRIER_PTESYNC:
3266 asm volatile("ptesync" : : : "memory");
3275 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3278 regs->gpr[op->reg] = regs->link;
3281 regs->gpr[op->reg] = regs->ctr;
3291 regs->xer = op->val & 0xffffffffUL;
3294 regs->link = op->val;
3297 regs->ctr = op->val;
3307 regs_set_return_ip(regs, next_pc);
3309 NOKPROBE_SYMBOL(emulate_update_regs);
3312 * Emulate a previously-analysed load or store instruction.
3313 * Return values are:
3314 * 0 = instruction emulated successfully
3315 * -EFAULT = address out of range or access faulted (regs->dar
3316 * contains the faulting address)
3317 * -EACCES = misaligned access, instruction requires alignment
3318 * -EINVAL = unknown operation in *op
3320 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3322 int err, size, type;
3330 size = GETSIZE(op->type);
3331 type = GETTYPE(op->type);
3332 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3333 ea = truncate_if_32bit(regs->msr, op->ea);
3337 if (ea & (size - 1))
3338 return -EACCES; /* can't handle misaligned */
3339 if (!address_ok(regs, ea, size))
3344 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
3346 __get_user_asmx(val, ea, err, "lbarx");
3349 __get_user_asmx(val, ea, err, "lharx");
3353 __get_user_asmx(val, ea, err, "lwarx");
3355 #ifdef __powerpc64__
3357 __get_user_asmx(val, ea, err, "ldarx");
3360 err = do_lqarx(ea, ®s->gpr[op->reg]);
3371 regs->gpr[op->reg] = val;
3375 if (ea & (size - 1))
3376 return -EACCES; /* can't handle misaligned */
3377 if (!address_ok(regs, ea, size))
3381 #ifdef __powerpc64__
3383 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3386 __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3390 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3392 #ifdef __powerpc64__
3394 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3397 err = do_stqcx(ea, regs->gpr[op->reg],
3398 regs->gpr[op->reg + 1], &cr);
3405 regs->ccr = (regs->ccr & 0x0fffffff) |
3407 ((regs->xer >> 3) & 0x10000000);
3413 #ifdef __powerpc64__
3415 err = emulate_lq(regs, ea, op->reg, cross_endian);
3419 err = read_mem(®s->gpr[op->reg], ea, size, regs);
3421 if (op->type & SIGNEXT)
3422 do_signext(®s->gpr[op->reg], size);
3423 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3424 do_byterev(®s->gpr[op->reg], size);
3428 #ifdef CONFIG_PPC_FPU
3431 * If the instruction is in userspace, we can emulate it even
3432 * if the VMX state is not live, because we have the state
3433 * stored in the thread_struct. If the instruction is in
3434 * the kernel, we must not touch the state in the thread_struct.
3436 if (!user_mode(regs) && !(regs->msr & MSR_FP))
3438 err = do_fp_load(op, ea, regs, cross_endian);
3441 #ifdef CONFIG_ALTIVEC
3443 if (!user_mode(regs) && !(regs->msr & MSR_VEC))
3445 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3450 unsigned long msrbit = MSR_VSX;
3453 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3454 * when the target of the instruction is a vector register.
3456 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3458 if (!user_mode(regs) && !(regs->msr & msrbit))
3460 err = do_vsx_load(op, ea, regs, cross_endian);
3465 if (!address_ok(regs, ea, size))
3468 for (i = 0; i < size; i += 4) {
3469 unsigned int v32 = 0;
3474 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3477 if (unlikely(cross_endian))
3478 v32 = byterev_4(v32);
3479 regs->gpr[rd] = v32;
3481 /* reg number wraps from 31 to 0 for lsw[ix] */
3482 rd = (rd + 1) & 0x1f;
3487 #ifdef __powerpc64__
3489 err = emulate_stq(regs, ea, op->reg, cross_endian);
3493 if ((op->type & UPDATE) && size == sizeof(long) &&
3494 op->reg == 1 && op->update_reg == 1 && !user_mode(regs) &&
3495 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3496 err = handle_stack_update(ea, regs);
3499 if (unlikely(cross_endian))
3500 do_byterev(&op->val, size);
3501 err = write_mem(op->val, ea, size, regs);
3504 #ifdef CONFIG_PPC_FPU
3506 if (!user_mode(regs) && !(regs->msr & MSR_FP))
3508 err = do_fp_store(op, ea, regs, cross_endian);
3511 #ifdef CONFIG_ALTIVEC
3513 if (!user_mode(regs) && !(regs->msr & MSR_VEC))
3515 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3520 unsigned long msrbit = MSR_VSX;
3523 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3524 * when the target of the instruction is a vector register.
3526 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3528 if (!user_mode(regs) && !(regs->msr & msrbit))
3530 err = do_vsx_store(op, ea, regs, cross_endian);
3535 if (!address_ok(regs, ea, size))
3538 for (i = 0; i < size; i += 4) {
3539 unsigned int v32 = regs->gpr[rd];
3544 if (unlikely(cross_endian))
3545 v32 = byterev_4(v32);
3546 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3550 /* reg number wraps from 31 to 0 for stsw[ix] */
3551 rd = (rd + 1) & 0x1f;
3562 if (op->type & UPDATE)
3563 regs->gpr[op->update_reg] = op->ea;
3567 NOKPROBE_SYMBOL(emulate_loadstore);
3570 * Emulate instructions that cause a transfer of control,
3571 * loads and stores, and a few other instructions.
3572 * Returns 1 if the step was emulated, 0 if not,
3573 * or -1 if the instruction is one that should not be stepped,
3574 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3576 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3578 struct instruction_op op;
3583 r = analyse_instr(&op, regs, instr);
3587 emulate_update_regs(regs, &op);
3592 type = GETTYPE(op.type);
3594 if (OP_IS_LOAD_STORE(type)) {
3595 err = emulate_loadstore(regs, &op);
3603 ea = truncate_if_32bit(regs->msr, op.ea);
3604 if (!address_ok(regs, ea, 8))
3606 switch (op.type & CACHEOP_MASK) {
3608 __cacheop_user_asmx(ea, err, "dcbst");
3611 __cacheop_user_asmx(ea, err, "dcbf");
3615 prefetchw((void *) ea);
3619 prefetch((void *) ea);
3622 __cacheop_user_asmx(ea, err, "icbi");
3625 err = emulate_dcbz(ea, regs);
3635 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3639 val = regs->gpr[op.reg];
3640 if ((val & MSR_RI) == 0)
3641 /* can't step mtmsr[d] that would clear MSR_RI */
3643 /* here op.val is the mask of bits to change */
3644 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3647 case SYSCALL: /* sc */
3649 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
3650 * single step a system call instruction:
3652 * Successful completion for an instruction means that the
3653 * instruction caused no other interrupt. Thus a Trace
3654 * interrupt never occurs for a System Call or System Call
3655 * Vectored instruction, or for a Trap instruction that
3659 case SYSCALL_VECTORED_0: /* scv 0 */
3667 regs_set_return_ip(regs,
3668 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3671 NOKPROBE_SYMBOL(emulate_step);