]> Git Repo - J-linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <[email protected]>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <[email protected]>
8  *    Alexander Graf <[email protected]>
9  *    Kevin Wolf <[email protected]>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <[email protected]>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46 #include <linux/smp.h>
47
48 #include <asm/ftrace.h>
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/archrandom.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/interrupt.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/pmc.h>
65 #include <asm/processor.h>
66 #include <asm/cputhreads.h>
67 #include <asm/page.h>
68 #include <asm/hvcall.h>
69 #include <asm/switch_to.h>
70 #include <asm/smp.h>
71 #include <asm/dbell.h>
72 #include <asm/hmi.h>
73 #include <asm/pnv-pci.h>
74 #include <asm/mmu.h>
75 #include <asm/opal.h>
76 #include <asm/xics.h>
77 #include <asm/xive.h>
78 #include <asm/hw_breakpoint.h>
79 #include <asm/kvm_book3s_uvmem.h>
80 #include <asm/ultravisor.h>
81 #include <asm/dtl.h>
82 #include <asm/plpar_wrappers.h>
83
84 #include <trace/events/ipi.h>
85
86 #include "book3s.h"
87 #include "book3s_hv.h"
88
89 #define CREATE_TRACE_POINTS
90 #include "trace_hv.h"
91
92 /* #define EXIT_DEBUG */
93 /* #define EXIT_DEBUG_SIMPLE */
94 /* #define EXIT_DEBUG_INT */
95
96 /* Used to indicate that a guest page fault needs to be handled */
97 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
98 /* Used to indicate that a guest passthrough interrupt needs to be handled */
99 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
100
101 /* Used as a "null" value for timebase values */
102 #define TB_NIL  (~(u64)0)
103
104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
105
106 static int dynamic_mt_modes = 6;
107 module_param(dynamic_mt_modes, int, 0644);
108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109 static int target_smt_mode;
110 module_param(target_smt_mode, int, 0644);
111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
112
113 static bool one_vm_per_core;
114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
116
117 #ifdef CONFIG_KVM_XICS
118 static const struct kernel_param_ops module_param_ops = {
119         .set = param_set_int,
120         .get = param_get_int,
121 };
122
123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
125
126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
128 #endif
129
130 /* If set, guests are allowed to create and control nested guests */
131 static bool nested = true;
132 module_param(nested, bool, S_IRUGO | S_IWUSR);
133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
134
135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136
137 /*
138  * RWMR values for POWER8.  These control the rate at which PURR
139  * and SPURR count and should be set according to the number of
140  * online threads in the vcore being run.
141  */
142 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
143 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
144 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
145 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
146 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
148 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
150
151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152         RWMR_RPA_P8_1THREAD,
153         RWMR_RPA_P8_1THREAD,
154         RWMR_RPA_P8_2THREAD,
155         RWMR_RPA_P8_3THREAD,
156         RWMR_RPA_P8_4THREAD,
157         RWMR_RPA_P8_5THREAD,
158         RWMR_RPA_P8_6THREAD,
159         RWMR_RPA_P8_7THREAD,
160         RWMR_RPA_P8_8THREAD,
161 };
162
163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164                 int *ip)
165 {
166         int i = *ip;
167         struct kvm_vcpu *vcpu;
168
169         while (++i < MAX_SMT_THREADS) {
170                 vcpu = READ_ONCE(vc->runnable_threads[i]);
171                 if (vcpu) {
172                         *ip = i;
173                         return vcpu;
174                 }
175         }
176         return NULL;
177 }
178
179 /* Used to traverse the list of runnable threads for a given vcore */
180 #define for_each_runnable_thread(i, vcpu, vc) \
181         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182
183 static bool kvmppc_ipi_thread(int cpu)
184 {
185         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186
187         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188         if (kvmhv_on_pseries())
189                 return false;
190
191         /* On POWER9 we can use msgsnd to IPI any cpu */
192         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193                 msg |= get_hard_smp_processor_id(cpu);
194                 smp_mb();
195                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196                 return true;
197         }
198
199         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
200         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201                 preempt_disable();
202                 if (cpu_first_thread_sibling(cpu) ==
203                     cpu_first_thread_sibling(smp_processor_id())) {
204                         msg |= cpu_thread_in_core(cpu);
205                         smp_mb();
206                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207                         preempt_enable();
208                         return true;
209                 }
210                 preempt_enable();
211         }
212
213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214         if (cpu >= 0 && cpu < nr_cpu_ids) {
215                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216                         xics_wake_cpu(cpu);
217                         return true;
218                 }
219                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220                 return true;
221         }
222 #endif
223
224         return false;
225 }
226
227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228 {
229         int cpu;
230         struct rcuwait *waitp;
231
232         /*
233          * rcuwait_wake_up contains smp_mb() which orders prior stores that
234          * create pending work vs below loads of cpu fields. The other side
235          * is the barrier in vcpu run that orders setting the cpu fields vs
236          * testing for pending work.
237          */
238
239         waitp = kvm_arch_vcpu_get_wait(vcpu);
240         if (rcuwait_wake_up(waitp))
241                 ++vcpu->stat.generic.halt_wakeup;
242
243         cpu = READ_ONCE(vcpu->arch.thread_cpu);
244         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245                 return;
246
247         /* CPU points to the first thread of the core */
248         cpu = vcpu->cpu;
249         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250                 smp_send_reschedule(cpu);
251 }
252
253 /*
254  * We use the vcpu_load/put functions to measure stolen time.
255  *
256  * Stolen time is counted as time when either the vcpu is able to
257  * run as part of a virtual core, but the task running the vcore
258  * is preempted or sleeping, or when the vcpu needs something done
259  * in the kernel by the task running the vcpu, but that task is
260  * preempted or sleeping.  Those two things have to be counted
261  * separately, since one of the vcpu tasks will take on the job
262  * of running the core, and the other vcpu tasks in the vcore will
263  * sleep waiting for it to do that, but that sleep shouldn't count
264  * as stolen time.
265  *
266  * Hence we accumulate stolen time when the vcpu can run as part of
267  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268  * needs its task to do other things in the kernel (for example,
269  * service a page fault) in busy_stolen.  We don't accumulate
270  * stolen time for a vcore when it is inactive, or for a vcpu
271  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
272  * a misnomer; it means that the vcpu task is not executing in
273  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274  * the kernel.  We don't have any way of dividing up that time
275  * between time that the vcpu is genuinely stopped, time that
276  * the task is actively working on behalf of the vcpu, and time
277  * that the task is preempted, so we don't count any of it as
278  * stolen.
279  *
280  * Updates to busy_stolen are protected by arch.tbacct_lock;
281  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282  * lock.  The stolen times are measured in units of timebase ticks.
283  * (Note that the != TB_NIL checks below are purely defensive;
284  * they should never fail.)
285  *
286  * The POWER9 path is simpler, one vcpu per virtual core so the
287  * former case does not exist. If a vcpu is preempted when it is
288  * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289  * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290  * state in the P9 path.
291  */
292
293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
294 {
295         unsigned long flags;
296
297         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
298
299         spin_lock_irqsave(&vc->stoltb_lock, flags);
300         vc->preempt_tb = tb;
301         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303
304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
305 {
306         unsigned long flags;
307
308         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
309
310         spin_lock_irqsave(&vc->stoltb_lock, flags);
311         if (vc->preempt_tb != TB_NIL) {
312                 vc->stolen_tb += tb - vc->preempt_tb;
313                 vc->preempt_tb = TB_NIL;
314         }
315         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
316 }
317
318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
319 {
320         struct kvmppc_vcore *vc = vcpu->arch.vcore;
321         unsigned long flags;
322         u64 now;
323
324         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325                 if (vcpu->arch.busy_preempt != TB_NIL) {
326                         WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327                         vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328                         vcpu->arch.busy_preempt = TB_NIL;
329                 }
330                 return;
331         }
332
333         now = mftb();
334
335         /*
336          * We can test vc->runner without taking the vcore lock,
337          * because only this task ever sets vc->runner to this
338          * vcpu, and once it is set to this vcpu, only this task
339          * ever sets it to NULL.
340          */
341         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342                 kvmppc_core_end_stolen(vc, now);
343
344         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346             vcpu->arch.busy_preempt != TB_NIL) {
347                 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348                 vcpu->arch.busy_preempt = TB_NIL;
349         }
350         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
351 }
352
353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
354 {
355         struct kvmppc_vcore *vc = vcpu->arch.vcore;
356         unsigned long flags;
357         u64 now;
358
359         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
360                 /*
361                  * In the P9 path, RUNNABLE is not preemptible
362                  * (nor takes host interrupts)
363                  */
364                 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
365                 /*
366                  * Account stolen time when preempted while the vcpu task is
367                  * running in the kernel (but not in qemu, which is INACTIVE).
368                  */
369                 if (task_is_running(current) &&
370                                 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371                         vcpu->arch.busy_preempt = mftb();
372                 return;
373         }
374
375         now = mftb();
376
377         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378                 kvmppc_core_start_stolen(vc, now);
379
380         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382                 vcpu->arch.busy_preempt = now;
383         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
384 }
385
386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
387 {
388         vcpu->arch.pvr = pvr;
389 }
390
391 /* Dummy value used in computing PCR value below */
392 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
393
394 static inline unsigned long map_pcr_to_cap(unsigned long pcr)
395 {
396         unsigned long cap = 0;
397
398         switch (pcr) {
399         case PCR_ARCH_300:
400                 cap = H_GUEST_CAP_POWER9;
401                 break;
402         case PCR_ARCH_31:
403                 if (cpu_has_feature(CPU_FTR_P11_PVR))
404                         cap = H_GUEST_CAP_POWER11;
405                 else
406                         cap = H_GUEST_CAP_POWER10;
407                 break;
408         default:
409                 break;
410         }
411
412         return cap;
413 }
414
415 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
416 {
417         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0;
418         struct kvmppc_vcore *vc = vcpu->arch.vcore;
419
420         /* We can (emulate) our own architecture version and anything older */
421         if (cpu_has_feature(CPU_FTR_P11_PVR) || cpu_has_feature(CPU_FTR_ARCH_31))
422                 host_pcr_bit = PCR_ARCH_31;
423         else if (cpu_has_feature(CPU_FTR_ARCH_300))
424                 host_pcr_bit = PCR_ARCH_300;
425         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
426                 host_pcr_bit = PCR_ARCH_207;
427         else if (cpu_has_feature(CPU_FTR_ARCH_206))
428                 host_pcr_bit = PCR_ARCH_206;
429         else
430                 host_pcr_bit = PCR_ARCH_205;
431
432         /* Determine lowest PCR bit needed to run guest in given PVR level */
433         guest_pcr_bit = host_pcr_bit;
434         if (arch_compat) {
435                 switch (arch_compat) {
436                 case PVR_ARCH_205:
437                         guest_pcr_bit = PCR_ARCH_205;
438                         break;
439                 case PVR_ARCH_206:
440                 case PVR_ARCH_206p:
441                         guest_pcr_bit = PCR_ARCH_206;
442                         break;
443                 case PVR_ARCH_207:
444                         guest_pcr_bit = PCR_ARCH_207;
445                         break;
446                 case PVR_ARCH_300:
447                         guest_pcr_bit = PCR_ARCH_300;
448                         break;
449                 case PVR_ARCH_31:
450                 case PVR_ARCH_31_P11:
451                         guest_pcr_bit = PCR_ARCH_31;
452                         break;
453                 default:
454                         return -EINVAL;
455                 }
456         }
457
458         /* Check requested PCR bits don't exceed our capabilities */
459         if (guest_pcr_bit > host_pcr_bit)
460                 return -EINVAL;
461
462         if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) {
463                 /*
464                  * 'arch_compat == 0' would mean the guest should default to
465                  * L1's compatibility. In this case, the guest would pick
466                  * host's PCR and evaluate the corresponding capabilities.
467                  */
468                 cap = map_pcr_to_cap(guest_pcr_bit);
469                 if (!(cap & nested_capabilities))
470                         return -EINVAL;
471         }
472
473         spin_lock(&vc->lock);
474         vc->arch_compat = arch_compat;
475         kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR);
476         /*
477          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
478          * Also set all reserved PCR bits
479          */
480         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
481         spin_unlock(&vc->lock);
482
483         return 0;
484 }
485
486 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
487 {
488         int r;
489
490         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
491         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
492                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
493         for (r = 0; r < 16; ++r)
494                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
495                        r, kvmppc_get_gpr(vcpu, r),
496                        r+16, kvmppc_get_gpr(vcpu, r+16));
497         pr_err("ctr = %.16lx  lr  = %.16lx\n",
498                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
499         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
500                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
501         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
502                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
503         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
504                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
505         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
506                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
507         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
508         pr_err("fault dar = %.16lx dsisr = %.8x\n",
509                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
510         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
511         for (r = 0; r < vcpu->arch.slb_max; ++r)
512                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
513                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
514         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
515                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
516                vcpu->arch.last_inst);
517 }
518
519 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
520 {
521         return kvm_get_vcpu_by_id(kvm, id);
522 }
523
524 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
525 {
526         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
527         vpa->yield_count = cpu_to_be32(1);
528 }
529
530 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
531                    unsigned long addr, unsigned long len)
532 {
533         /* check address is cacheline aligned */
534         if (addr & (L1_CACHE_BYTES - 1))
535                 return -EINVAL;
536         spin_lock(&vcpu->arch.vpa_update_lock);
537         if (v->next_gpa != addr || v->len != len) {
538                 v->next_gpa = addr;
539                 v->len = addr ? len : 0;
540                 v->update_pending = 1;
541         }
542         spin_unlock(&vcpu->arch.vpa_update_lock);
543         return 0;
544 }
545
546 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
547 struct reg_vpa {
548         u32 dummy;
549         union {
550                 __be16 hword;
551                 __be32 word;
552         } length;
553 };
554
555 static int vpa_is_registered(struct kvmppc_vpa *vpap)
556 {
557         if (vpap->update_pending)
558                 return vpap->next_gpa != 0;
559         return vpap->pinned_addr != NULL;
560 }
561
562 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
563                                        unsigned long flags,
564                                        unsigned long vcpuid, unsigned long vpa)
565 {
566         struct kvm *kvm = vcpu->kvm;
567         unsigned long len, nb;
568         void *va;
569         struct kvm_vcpu *tvcpu;
570         int err;
571         int subfunc;
572         struct kvmppc_vpa *vpap;
573
574         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
575         if (!tvcpu)
576                 return H_PARAMETER;
577
578         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
579         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
580             subfunc == H_VPA_REG_SLB) {
581                 /* Registering new area - address must be cache-line aligned */
582                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
583                         return H_PARAMETER;
584
585                 /* convert logical addr to kernel addr and read length */
586                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
587                 if (va == NULL)
588                         return H_PARAMETER;
589                 if (subfunc == H_VPA_REG_VPA)
590                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
591                 else
592                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
593                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
594
595                 /* Check length */
596                 if (len > nb || len < sizeof(struct reg_vpa))
597                         return H_PARAMETER;
598         } else {
599                 vpa = 0;
600                 len = 0;
601         }
602
603         err = H_PARAMETER;
604         vpap = NULL;
605         spin_lock(&tvcpu->arch.vpa_update_lock);
606
607         switch (subfunc) {
608         case H_VPA_REG_VPA:             /* register VPA */
609                 /*
610                  * The size of our lppaca is 1kB because of the way we align
611                  * it for the guest to avoid crossing a 4kB boundary. We only
612                  * use 640 bytes of the structure though, so we should accept
613                  * clients that set a size of 640.
614                  */
615                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
616                 if (len < sizeof(struct lppaca))
617                         break;
618                 vpap = &tvcpu->arch.vpa;
619                 err = 0;
620                 break;
621
622         case H_VPA_REG_DTL:             /* register DTL */
623                 if (len < sizeof(struct dtl_entry))
624                         break;
625                 len -= len % sizeof(struct dtl_entry);
626
627                 /* Check that they have previously registered a VPA */
628                 err = H_RESOURCE;
629                 if (!vpa_is_registered(&tvcpu->arch.vpa))
630                         break;
631
632                 vpap = &tvcpu->arch.dtl;
633                 err = 0;
634                 break;
635
636         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
637                 /* Check that they have previously registered a VPA */
638                 err = H_RESOURCE;
639                 if (!vpa_is_registered(&tvcpu->arch.vpa))
640                         break;
641
642                 vpap = &tvcpu->arch.slb_shadow;
643                 err = 0;
644                 break;
645
646         case H_VPA_DEREG_VPA:           /* deregister VPA */
647                 /* Check they don't still have a DTL or SLB buf registered */
648                 err = H_RESOURCE;
649                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
650                     vpa_is_registered(&tvcpu->arch.slb_shadow))
651                         break;
652
653                 vpap = &tvcpu->arch.vpa;
654                 err = 0;
655                 break;
656
657         case H_VPA_DEREG_DTL:           /* deregister DTL */
658                 vpap = &tvcpu->arch.dtl;
659                 err = 0;
660                 break;
661
662         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
663                 vpap = &tvcpu->arch.slb_shadow;
664                 err = 0;
665                 break;
666         }
667
668         if (vpap) {
669                 vpap->next_gpa = vpa;
670                 vpap->len = len;
671                 vpap->update_pending = 1;
672         }
673
674         spin_unlock(&tvcpu->arch.vpa_update_lock);
675
676         return err;
677 }
678
679 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap,
680                                struct kvmppc_vpa *old_vpap)
681 {
682         struct kvm *kvm = vcpu->kvm;
683         void *va;
684         unsigned long nb;
685         unsigned long gpa;
686
687         /*
688          * We need to pin the page pointed to by vpap->next_gpa,
689          * but we can't call kvmppc_pin_guest_page under the lock
690          * as it does get_user_pages() and down_read().  So we
691          * have to drop the lock, pin the page, then get the lock
692          * again and check that a new area didn't get registered
693          * in the meantime.
694          */
695         for (;;) {
696                 gpa = vpap->next_gpa;
697                 spin_unlock(&vcpu->arch.vpa_update_lock);
698                 va = NULL;
699                 nb = 0;
700                 if (gpa)
701                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
702                 spin_lock(&vcpu->arch.vpa_update_lock);
703                 if (gpa == vpap->next_gpa)
704                         break;
705                 /* sigh... unpin that one and try again */
706                 if (va)
707                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
708         }
709
710         vpap->update_pending = 0;
711         if (va && nb < vpap->len) {
712                 /*
713                  * If it's now too short, it must be that userspace
714                  * has changed the mappings underlying guest memory,
715                  * so unregister the region.
716                  */
717                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
718                 va = NULL;
719         }
720         *old_vpap = *vpap;
721
722         vpap->gpa = gpa;
723         vpap->pinned_addr = va;
724         vpap->dirty = false;
725         if (va)
726                 vpap->pinned_end = va + vpap->len;
727 }
728
729 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
730 {
731         struct kvm *kvm = vcpu->kvm;
732         struct kvmppc_vpa old_vpa = { 0 };
733
734         if (!(vcpu->arch.vpa.update_pending ||
735               vcpu->arch.slb_shadow.update_pending ||
736               vcpu->arch.dtl.update_pending))
737                 return;
738
739         spin_lock(&vcpu->arch.vpa_update_lock);
740         if (vcpu->arch.vpa.update_pending) {
741                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa, &old_vpa);
742                 if (old_vpa.pinned_addr) {
743                         if (kvmhv_is_nestedv2())
744                                 kvmhv_nestedv2_set_vpa(vcpu, ~0ull);
745                         kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
746                                                 old_vpa.dirty);
747                 }
748                 if (vcpu->arch.vpa.pinned_addr) {
749                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
750                         if (kvmhv_is_nestedv2())
751                                 kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr));
752                 }
753         }
754         if (vcpu->arch.dtl.update_pending) {
755                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl, &old_vpa);
756                 if (old_vpa.pinned_addr)
757                         kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
758                                                 old_vpa.dirty);
759                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
760                 vcpu->arch.dtl_index = 0;
761         }
762         if (vcpu->arch.slb_shadow.update_pending) {
763                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow, &old_vpa);
764                 if (old_vpa.pinned_addr)
765                         kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
766                                                 old_vpa.dirty);
767         }
768
769         spin_unlock(&vcpu->arch.vpa_update_lock);
770 }
771
772 /*
773  * Return the accumulated stolen time for the vcore up until `now'.
774  * The caller should hold the vcore lock.
775  */
776 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
777 {
778         u64 p;
779         unsigned long flags;
780
781         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
782
783         spin_lock_irqsave(&vc->stoltb_lock, flags);
784         p = vc->stolen_tb;
785         if (vc->vcore_state != VCORE_INACTIVE &&
786             vc->preempt_tb != TB_NIL)
787                 p += now - vc->preempt_tb;
788         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
789         return p;
790 }
791
792 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
793                                         struct lppaca *vpa,
794                                         unsigned int pcpu, u64 now,
795                                         unsigned long stolen)
796 {
797         struct dtl_entry *dt;
798
799         dt = vcpu->arch.dtl_ptr;
800
801         if (!dt)
802                 return;
803
804         dt->dispatch_reason = 7;
805         dt->preempt_reason = 0;
806         dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
807         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
808         dt->ready_to_enqueue_time = 0;
809         dt->waiting_to_ready_time = 0;
810         dt->timebase = cpu_to_be64(now);
811         dt->fault_addr = 0;
812         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
813         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
814
815         ++dt;
816         if (dt == vcpu->arch.dtl.pinned_end)
817                 dt = vcpu->arch.dtl.pinned_addr;
818         vcpu->arch.dtl_ptr = dt;
819         /* order writing *dt vs. writing vpa->dtl_idx */
820         smp_wmb();
821         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
822
823         /* vcpu->arch.dtl.dirty is set by the caller */
824 }
825
826 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
827                                        struct kvmppc_vcore *vc)
828 {
829         struct lppaca *vpa;
830         unsigned long stolen;
831         unsigned long core_stolen;
832         u64 now;
833         unsigned long flags;
834
835         vpa = vcpu->arch.vpa.pinned_addr;
836         if (!vpa)
837                 return;
838
839         now = mftb();
840
841         core_stolen = vcore_stolen_time(vc, now);
842         stolen = core_stolen - vcpu->arch.stolen_logged;
843         vcpu->arch.stolen_logged = core_stolen;
844         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
845         stolen += vcpu->arch.busy_stolen;
846         vcpu->arch.busy_stolen = 0;
847         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
848
849         vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
850
851         __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen);
852
853         vcpu->arch.vpa.dirty = true;
854 }
855
856 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
857                                        struct kvmppc_vcore *vc,
858                                        u64 now)
859 {
860         struct lppaca *vpa;
861         unsigned long stolen;
862         unsigned long stolen_delta;
863
864         vpa = vcpu->arch.vpa.pinned_addr;
865         if (!vpa)
866                 return;
867
868         stolen = vc->stolen_tb;
869         stolen_delta = stolen - vcpu->arch.stolen_logged;
870         vcpu->arch.stolen_logged = stolen;
871
872         vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
873
874         __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
875
876         vcpu->arch.vpa.dirty = true;
877 }
878
879 /* See if there is a doorbell interrupt pending for a vcpu */
880 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
881 {
882         int thr;
883         struct kvmppc_vcore *vc;
884
885         if (vcpu->arch.doorbell_request)
886                 return true;
887         if (cpu_has_feature(CPU_FTR_ARCH_300))
888                 return false;
889         /*
890          * Ensure that the read of vcore->dpdes comes after the read
891          * of vcpu->doorbell_request.  This barrier matches the
892          * smp_wmb() in kvmppc_guest_entry_inject().
893          */
894         smp_rmb();
895         vc = vcpu->arch.vcore;
896         thr = vcpu->vcpu_id - vc->first_vcpuid;
897         return !!(vc->dpdes & (1 << thr));
898 }
899
900 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
901 {
902         if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207)
903                 return true;
904         if ((!kvmppc_get_arch_compat(vcpu)) &&
905             cpu_has_feature(CPU_FTR_ARCH_207S))
906                 return true;
907         return false;
908 }
909
910 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
911                              unsigned long resource, unsigned long value1,
912                              unsigned long value2)
913 {
914         switch (resource) {
915         case H_SET_MODE_RESOURCE_SET_CIABR:
916                 if (!kvmppc_power8_compatible(vcpu))
917                         return H_P2;
918                 if (value2)
919                         return H_P4;
920                 if (mflags)
921                         return H_UNSUPPORTED_FLAG_START;
922                 /* Guests can't breakpoint the hypervisor */
923                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
924                         return H_P3;
925                 kvmppc_set_ciabr_hv(vcpu, value1);
926                 return H_SUCCESS;
927         case H_SET_MODE_RESOURCE_SET_DAWR0:
928                 if (!kvmppc_power8_compatible(vcpu))
929                         return H_P2;
930                 if (!ppc_breakpoint_available())
931                         return H_P2;
932                 if (mflags)
933                         return H_UNSUPPORTED_FLAG_START;
934                 if (value2 & DABRX_HYP)
935                         return H_P4;
936                 kvmppc_set_dawr0_hv(vcpu, value1);
937                 kvmppc_set_dawrx0_hv(vcpu, value2);
938                 return H_SUCCESS;
939         case H_SET_MODE_RESOURCE_SET_DAWR1:
940                 if (!kvmppc_power8_compatible(vcpu))
941                         return H_P2;
942                 if (!ppc_breakpoint_available())
943                         return H_P2;
944                 if (!cpu_has_feature(CPU_FTR_DAWR1))
945                         return H_P2;
946                 if (!vcpu->kvm->arch.dawr1_enabled)
947                         return H_FUNCTION;
948                 if (mflags)
949                         return H_UNSUPPORTED_FLAG_START;
950                 if (value2 & DABRX_HYP)
951                         return H_P4;
952                 kvmppc_set_dawr1_hv(vcpu, value1);
953                 kvmppc_set_dawrx1_hv(vcpu, value2);
954                 return H_SUCCESS;
955         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
956                 /*
957                  * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
958                  * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
959                  */
960                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
961                                 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
962                         return H_UNSUPPORTED_FLAG_START;
963                 return H_TOO_HARD;
964         default:
965                 return H_TOO_HARD;
966         }
967 }
968
969 /* Copy guest memory in place - must reside within a single memslot */
970 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
971                                   unsigned long len)
972 {
973         struct kvm_memory_slot *to_memslot = NULL;
974         struct kvm_memory_slot *from_memslot = NULL;
975         unsigned long to_addr, from_addr;
976         int r;
977
978         /* Get HPA for from address */
979         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
980         if (!from_memslot)
981                 return -EFAULT;
982         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
983                              << PAGE_SHIFT))
984                 return -EINVAL;
985         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
986         if (kvm_is_error_hva(from_addr))
987                 return -EFAULT;
988         from_addr |= (from & (PAGE_SIZE - 1));
989
990         /* Get HPA for to address */
991         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
992         if (!to_memslot)
993                 return -EFAULT;
994         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
995                            << PAGE_SHIFT))
996                 return -EINVAL;
997         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
998         if (kvm_is_error_hva(to_addr))
999                 return -EFAULT;
1000         to_addr |= (to & (PAGE_SIZE - 1));
1001
1002         /* Perform copy */
1003         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
1004                              len);
1005         if (r)
1006                 return -EFAULT;
1007         mark_page_dirty(kvm, to >> PAGE_SHIFT);
1008         return 0;
1009 }
1010
1011 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
1012                                unsigned long dest, unsigned long src)
1013 {
1014         u64 pg_sz = SZ_4K;              /* 4K page size */
1015         u64 pg_mask = SZ_4K - 1;
1016         int ret;
1017
1018         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1019         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1020                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1021                 return H_PARAMETER;
1022
1023         /* dest (and src if copy_page flag set) must be page aligned */
1024         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1025                 return H_PARAMETER;
1026
1027         /* zero and/or copy the page as determined by the flags */
1028         if (flags & H_COPY_PAGE) {
1029                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
1030                 if (ret < 0)
1031                         return H_PARAMETER;
1032         } else if (flags & H_ZERO_PAGE) {
1033                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
1034                 if (ret < 0)
1035                         return H_PARAMETER;
1036         }
1037
1038         /* We can ignore the remaining flags */
1039
1040         return H_SUCCESS;
1041 }
1042
1043 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
1044 {
1045         struct kvmppc_vcore *vcore = target->arch.vcore;
1046
1047         /*
1048          * We expect to have been called by the real mode handler
1049          * (kvmppc_rm_h_confer()) which would have directly returned
1050          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
1051          * have useful work to do and should not confer) so we don't
1052          * recheck that here.
1053          *
1054          * In the case of the P9 single vcpu per vcore case, the real
1055          * mode handler is not called but no other threads are in the
1056          * source vcore.
1057          */
1058         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1059                 spin_lock(&vcore->lock);
1060                 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1061                     vcore->vcore_state != VCORE_INACTIVE &&
1062                     vcore->runner)
1063                         target = vcore->runner;
1064                 spin_unlock(&vcore->lock);
1065         }
1066
1067         return kvm_vcpu_yield_to(target);
1068 }
1069
1070 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1071 {
1072         int yield_count = 0;
1073         struct lppaca *lppaca;
1074
1075         spin_lock(&vcpu->arch.vpa_update_lock);
1076         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1077         if (lppaca)
1078                 yield_count = be32_to_cpu(lppaca->yield_count);
1079         spin_unlock(&vcpu->arch.vpa_update_lock);
1080         return yield_count;
1081 }
1082
1083 /*
1084  * H_RPT_INVALIDATE hcall handler for nested guests.
1085  *
1086  * Handles only nested process-scoped invalidation requests in L0.
1087  */
1088 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1089 {
1090         unsigned long type = kvmppc_get_gpr(vcpu, 6);
1091         unsigned long pid, pg_sizes, start, end;
1092
1093         /*
1094          * The partition-scoped invalidations aren't handled here in L0.
1095          */
1096         if (type & H_RPTI_TYPE_NESTED)
1097                 return RESUME_HOST;
1098
1099         pid = kvmppc_get_gpr(vcpu, 4);
1100         pg_sizes = kvmppc_get_gpr(vcpu, 7);
1101         start = kvmppc_get_gpr(vcpu, 8);
1102         end = kvmppc_get_gpr(vcpu, 9);
1103
1104         do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1105                                 type, pg_sizes, start, end);
1106
1107         kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1108         return RESUME_GUEST;
1109 }
1110
1111 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1112                                     unsigned long id, unsigned long target,
1113                                     unsigned long type, unsigned long pg_sizes,
1114                                     unsigned long start, unsigned long end)
1115 {
1116         if (!kvm_is_radix(vcpu->kvm))
1117                 return H_UNSUPPORTED;
1118
1119         if (end < start)
1120                 return H_P5;
1121
1122         /*
1123          * Partition-scoped invalidation for nested guests.
1124          */
1125         if (type & H_RPTI_TYPE_NESTED) {
1126                 if (!nesting_enabled(vcpu->kvm))
1127                         return H_FUNCTION;
1128
1129                 /* Support only cores as target */
1130                 if (target != H_RPTI_TARGET_CMMU)
1131                         return H_P2;
1132
1133                 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1134                                                start, end);
1135         }
1136
1137         /*
1138          * Process-scoped invalidation for L1 guests.
1139          */
1140         do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1141                                 type, pg_sizes, start, end);
1142         return H_SUCCESS;
1143 }
1144
1145 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1146 {
1147         struct kvm *kvm = vcpu->kvm;
1148         unsigned long req = kvmppc_get_gpr(vcpu, 3);
1149         unsigned long target, ret = H_SUCCESS;
1150         int yield_count;
1151         struct kvm_vcpu *tvcpu;
1152         int idx, rc;
1153
1154         if (req <= MAX_HCALL_OPCODE &&
1155             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1156                 return RESUME_HOST;
1157
1158         switch (req) {
1159         case H_REMOVE:
1160                 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1161                                         kvmppc_get_gpr(vcpu, 5),
1162                                         kvmppc_get_gpr(vcpu, 6));
1163                 if (ret == H_TOO_HARD)
1164                         return RESUME_HOST;
1165                 break;
1166         case H_ENTER:
1167                 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1168                                         kvmppc_get_gpr(vcpu, 5),
1169                                         kvmppc_get_gpr(vcpu, 6),
1170                                         kvmppc_get_gpr(vcpu, 7));
1171                 if (ret == H_TOO_HARD)
1172                         return RESUME_HOST;
1173                 break;
1174         case H_READ:
1175                 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1176                                         kvmppc_get_gpr(vcpu, 5));
1177                 if (ret == H_TOO_HARD)
1178                         return RESUME_HOST;
1179                 break;
1180         case H_CLEAR_MOD:
1181                 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1182                                         kvmppc_get_gpr(vcpu, 5));
1183                 if (ret == H_TOO_HARD)
1184                         return RESUME_HOST;
1185                 break;
1186         case H_CLEAR_REF:
1187                 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1188                                         kvmppc_get_gpr(vcpu, 5));
1189                 if (ret == H_TOO_HARD)
1190                         return RESUME_HOST;
1191                 break;
1192         case H_PROTECT:
1193                 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1194                                         kvmppc_get_gpr(vcpu, 5),
1195                                         kvmppc_get_gpr(vcpu, 6));
1196                 if (ret == H_TOO_HARD)
1197                         return RESUME_HOST;
1198                 break;
1199         case H_BULK_REMOVE:
1200                 ret = kvmppc_h_bulk_remove(vcpu);
1201                 if (ret == H_TOO_HARD)
1202                         return RESUME_HOST;
1203                 break;
1204
1205         case H_CEDE:
1206                 break;
1207         case H_PROD:
1208                 target = kvmppc_get_gpr(vcpu, 4);
1209                 tvcpu = kvmppc_find_vcpu(kvm, target);
1210                 if (!tvcpu) {
1211                         ret = H_PARAMETER;
1212                         break;
1213                 }
1214                 tvcpu->arch.prodded = 1;
1215                 smp_mb(); /* This orders prodded store vs ceded load */
1216                 if (tvcpu->arch.ceded)
1217                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1218                 break;
1219         case H_CONFER:
1220                 target = kvmppc_get_gpr(vcpu, 4);
1221                 if (target == -1)
1222                         break;
1223                 tvcpu = kvmppc_find_vcpu(kvm, target);
1224                 if (!tvcpu) {
1225                         ret = H_PARAMETER;
1226                         break;
1227                 }
1228                 yield_count = kvmppc_get_gpr(vcpu, 5);
1229                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1230                         break;
1231                 kvm_arch_vcpu_yield_to(tvcpu);
1232                 break;
1233         case H_REGISTER_VPA:
1234                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1235                                         kvmppc_get_gpr(vcpu, 5),
1236                                         kvmppc_get_gpr(vcpu, 6));
1237                 break;
1238         case H_RTAS:
1239                 if (list_empty(&kvm->arch.rtas_tokens))
1240                         return RESUME_HOST;
1241
1242                 idx = srcu_read_lock(&kvm->srcu);
1243                 rc = kvmppc_rtas_hcall(vcpu);
1244                 srcu_read_unlock(&kvm->srcu, idx);
1245
1246                 if (rc == -ENOENT)
1247                         return RESUME_HOST;
1248                 else if (rc == 0)
1249                         break;
1250
1251                 /* Send the error out to userspace via KVM_RUN */
1252                 return rc;
1253         case H_LOGICAL_CI_LOAD:
1254                 ret = kvmppc_h_logical_ci_load(vcpu);
1255                 if (ret == H_TOO_HARD)
1256                         return RESUME_HOST;
1257                 break;
1258         case H_LOGICAL_CI_STORE:
1259                 ret = kvmppc_h_logical_ci_store(vcpu);
1260                 if (ret == H_TOO_HARD)
1261                         return RESUME_HOST;
1262                 break;
1263         case H_SET_MODE:
1264                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1265                                         kvmppc_get_gpr(vcpu, 5),
1266                                         kvmppc_get_gpr(vcpu, 6),
1267                                         kvmppc_get_gpr(vcpu, 7));
1268                 if (ret == H_TOO_HARD)
1269                         return RESUME_HOST;
1270                 break;
1271         case H_XIRR:
1272         case H_CPPR:
1273         case H_EOI:
1274         case H_IPI:
1275         case H_IPOLL:
1276         case H_XIRR_X:
1277                 if (kvmppc_xics_enabled(vcpu)) {
1278                         if (xics_on_xive()) {
1279                                 ret = H_NOT_AVAILABLE;
1280                                 return RESUME_GUEST;
1281                         }
1282                         ret = kvmppc_xics_hcall(vcpu, req);
1283                         break;
1284                 }
1285                 return RESUME_HOST;
1286         case H_SET_DABR:
1287                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1288                 break;
1289         case H_SET_XDABR:
1290                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1291                                                 kvmppc_get_gpr(vcpu, 5));
1292                 break;
1293 #ifdef CONFIG_SPAPR_TCE_IOMMU
1294         case H_GET_TCE:
1295                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1296                                                 kvmppc_get_gpr(vcpu, 5));
1297                 if (ret == H_TOO_HARD)
1298                         return RESUME_HOST;
1299                 break;
1300         case H_PUT_TCE:
1301                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1302                                                 kvmppc_get_gpr(vcpu, 5),
1303                                                 kvmppc_get_gpr(vcpu, 6));
1304                 if (ret == H_TOO_HARD)
1305                         return RESUME_HOST;
1306                 break;
1307         case H_PUT_TCE_INDIRECT:
1308                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1309                                                 kvmppc_get_gpr(vcpu, 5),
1310                                                 kvmppc_get_gpr(vcpu, 6),
1311                                                 kvmppc_get_gpr(vcpu, 7));
1312                 if (ret == H_TOO_HARD)
1313                         return RESUME_HOST;
1314                 break;
1315         case H_STUFF_TCE:
1316                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1317                                                 kvmppc_get_gpr(vcpu, 5),
1318                                                 kvmppc_get_gpr(vcpu, 6),
1319                                                 kvmppc_get_gpr(vcpu, 7));
1320                 if (ret == H_TOO_HARD)
1321                         return RESUME_HOST;
1322                 break;
1323 #endif
1324         case H_RANDOM: {
1325                 unsigned long rand;
1326
1327                 if (!arch_get_random_seed_longs(&rand, 1))
1328                         ret = H_HARDWARE;
1329                 kvmppc_set_gpr(vcpu, 4, rand);
1330                 break;
1331         }
1332         case H_RPT_INVALIDATE:
1333                 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1334                                               kvmppc_get_gpr(vcpu, 5),
1335                                               kvmppc_get_gpr(vcpu, 6),
1336                                               kvmppc_get_gpr(vcpu, 7),
1337                                               kvmppc_get_gpr(vcpu, 8),
1338                                               kvmppc_get_gpr(vcpu, 9));
1339                 break;
1340
1341         case H_SET_PARTITION_TABLE:
1342                 ret = H_FUNCTION;
1343                 if (nesting_enabled(kvm))
1344                         ret = kvmhv_set_partition_table(vcpu);
1345                 break;
1346         case H_ENTER_NESTED:
1347                 ret = H_FUNCTION;
1348                 if (!nesting_enabled(kvm))
1349                         break;
1350                 ret = kvmhv_enter_nested_guest(vcpu);
1351                 if (ret == H_INTERRUPT) {
1352                         kvmppc_set_gpr(vcpu, 3, 0);
1353                         vcpu->arch.hcall_needed = 0;
1354                         return -EINTR;
1355                 } else if (ret == H_TOO_HARD) {
1356                         kvmppc_set_gpr(vcpu, 3, 0);
1357                         vcpu->arch.hcall_needed = 0;
1358                         return RESUME_HOST;
1359                 }
1360                 break;
1361         case H_TLB_INVALIDATE:
1362                 ret = H_FUNCTION;
1363                 if (nesting_enabled(kvm))
1364                         ret = kvmhv_do_nested_tlbie(vcpu);
1365                 break;
1366         case H_COPY_TOFROM_GUEST:
1367                 ret = H_FUNCTION;
1368                 if (nesting_enabled(kvm))
1369                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1370                 break;
1371         case H_PAGE_INIT:
1372                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1373                                          kvmppc_get_gpr(vcpu, 5),
1374                                          kvmppc_get_gpr(vcpu, 6));
1375                 break;
1376         case H_SVM_PAGE_IN:
1377                 ret = H_UNSUPPORTED;
1378                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1379                         ret = kvmppc_h_svm_page_in(kvm,
1380                                                    kvmppc_get_gpr(vcpu, 4),
1381                                                    kvmppc_get_gpr(vcpu, 5),
1382                                                    kvmppc_get_gpr(vcpu, 6));
1383                 break;
1384         case H_SVM_PAGE_OUT:
1385                 ret = H_UNSUPPORTED;
1386                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1387                         ret = kvmppc_h_svm_page_out(kvm,
1388                                                     kvmppc_get_gpr(vcpu, 4),
1389                                                     kvmppc_get_gpr(vcpu, 5),
1390                                                     kvmppc_get_gpr(vcpu, 6));
1391                 break;
1392         case H_SVM_INIT_START:
1393                 ret = H_UNSUPPORTED;
1394                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1395                         ret = kvmppc_h_svm_init_start(kvm);
1396                 break;
1397         case H_SVM_INIT_DONE:
1398                 ret = H_UNSUPPORTED;
1399                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1400                         ret = kvmppc_h_svm_init_done(kvm);
1401                 break;
1402         case H_SVM_INIT_ABORT:
1403                 /*
1404                  * Even if that call is made by the Ultravisor, the SSR1 value
1405                  * is the guest context one, with the secure bit clear as it has
1406                  * not yet been secured. So we can't check it here.
1407                  * Instead the kvm->arch.secure_guest flag is checked inside
1408                  * kvmppc_h_svm_init_abort().
1409                  */
1410                 ret = kvmppc_h_svm_init_abort(kvm);
1411                 break;
1412
1413         default:
1414                 return RESUME_HOST;
1415         }
1416         WARN_ON_ONCE(ret == H_TOO_HARD);
1417         kvmppc_set_gpr(vcpu, 3, ret);
1418         vcpu->arch.hcall_needed = 0;
1419         return RESUME_GUEST;
1420 }
1421
1422 /*
1423  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1424  * handlers in book3s_hv_rmhandlers.S.
1425  *
1426  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1427  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1428  */
1429 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1430 {
1431         __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
1432         vcpu->arch.ceded = 1;
1433         smp_mb();
1434         if (vcpu->arch.prodded) {
1435                 vcpu->arch.prodded = 0;
1436                 smp_mb();
1437                 vcpu->arch.ceded = 0;
1438         }
1439 }
1440
1441 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1442 {
1443         switch (cmd) {
1444         case H_CEDE:
1445         case H_PROD:
1446         case H_CONFER:
1447         case H_REGISTER_VPA:
1448         case H_SET_MODE:
1449 #ifdef CONFIG_SPAPR_TCE_IOMMU
1450         case H_GET_TCE:
1451         case H_PUT_TCE:
1452         case H_PUT_TCE_INDIRECT:
1453         case H_STUFF_TCE:
1454 #endif
1455         case H_LOGICAL_CI_LOAD:
1456         case H_LOGICAL_CI_STORE:
1457 #ifdef CONFIG_KVM_XICS
1458         case H_XIRR:
1459         case H_CPPR:
1460         case H_EOI:
1461         case H_IPI:
1462         case H_IPOLL:
1463         case H_XIRR_X:
1464 #endif
1465         case H_PAGE_INIT:
1466         case H_RPT_INVALIDATE:
1467                 return 1;
1468         }
1469
1470         /* See if it's in the real-mode table */
1471         return kvmppc_hcall_impl_hv_realmode(cmd);
1472 }
1473
1474 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1475 {
1476         ppc_inst_t last_inst;
1477
1478         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1479                                         EMULATE_DONE) {
1480                 /*
1481                  * Fetch failed, so return to guest and
1482                  * try executing it again.
1483                  */
1484                 return RESUME_GUEST;
1485         }
1486
1487         if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1488                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1489                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1490                 return RESUME_HOST;
1491         } else {
1492                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1493                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1494                 return RESUME_GUEST;
1495         }
1496 }
1497
1498 static void do_nothing(void *x)
1499 {
1500 }
1501
1502 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1503 {
1504         int thr, cpu, pcpu, nthreads;
1505         struct kvm_vcpu *v;
1506         unsigned long dpdes;
1507
1508         nthreads = vcpu->kvm->arch.emul_smt_mode;
1509         dpdes = 0;
1510         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1511         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1512                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1513                 if (!v)
1514                         continue;
1515                 /*
1516                  * If the vcpu is currently running on a physical cpu thread,
1517                  * interrupt it in order to pull it out of the guest briefly,
1518                  * which will update its vcore->dpdes value.
1519                  */
1520                 pcpu = READ_ONCE(v->cpu);
1521                 if (pcpu >= 0)
1522                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1523                 if (kvmppc_doorbell_pending(v))
1524                         dpdes |= 1 << thr;
1525         }
1526         return dpdes;
1527 }
1528
1529 /*
1530  * On POWER9, emulate doorbell-related instructions in order to
1531  * give the guest the illusion of running on a multi-threaded core.
1532  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1533  * and mfspr DPDES.
1534  */
1535 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1536 {
1537         u32 inst, rb, thr;
1538         unsigned long arg;
1539         struct kvm *kvm = vcpu->kvm;
1540         struct kvm_vcpu *tvcpu;
1541         ppc_inst_t pinst;
1542
1543         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1544                 return RESUME_GUEST;
1545         inst = ppc_inst_val(pinst);
1546         if (get_op(inst) != 31)
1547                 return EMULATE_FAIL;
1548         rb = get_rb(inst);
1549         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1550         switch (get_xop(inst)) {
1551         case OP_31_XOP_MSGSNDP:
1552                 arg = kvmppc_get_gpr(vcpu, rb);
1553                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1554                         break;
1555                 arg &= 0x7f;
1556                 if (arg >= kvm->arch.emul_smt_mode)
1557                         break;
1558                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1559                 if (!tvcpu)
1560                         break;
1561                 if (!tvcpu->arch.doorbell_request) {
1562                         tvcpu->arch.doorbell_request = 1;
1563                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1564                 }
1565                 break;
1566         case OP_31_XOP_MSGCLRP:
1567                 arg = kvmppc_get_gpr(vcpu, rb);
1568                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1569                         break;
1570                 vcpu->arch.vcore->dpdes = 0;
1571                 vcpu->arch.doorbell_request = 0;
1572                 break;
1573         case OP_31_XOP_MFSPR:
1574                 switch (get_sprn(inst)) {
1575                 case SPRN_TIR:
1576                         arg = thr;
1577                         break;
1578                 case SPRN_DPDES:
1579                         arg = kvmppc_read_dpdes(vcpu);
1580                         break;
1581                 default:
1582                         return EMULATE_FAIL;
1583                 }
1584                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1585                 break;
1586         default:
1587                 return EMULATE_FAIL;
1588         }
1589         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1590         return RESUME_GUEST;
1591 }
1592
1593 /*
1594  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1595  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1596  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1597  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1598  * allow the guest access to continue.
1599  */
1600 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1601 {
1602         if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1603                 return EMULATE_FAIL;
1604
1605         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
1606
1607         return RESUME_GUEST;
1608 }
1609
1610 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1611 {
1612         if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1613                 return EMULATE_FAIL;
1614
1615         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
1616
1617         return RESUME_GUEST;
1618 }
1619
1620 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1621 {
1622         if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1623                 return EMULATE_FAIL;
1624
1625         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
1626
1627         return RESUME_GUEST;
1628 }
1629
1630 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1631                                  struct task_struct *tsk)
1632 {
1633         struct kvm_run *run = vcpu->run;
1634         int r = RESUME_HOST;
1635
1636         vcpu->stat.sum_exits++;
1637
1638         /*
1639          * This can happen if an interrupt occurs in the last stages
1640          * of guest entry or the first stages of guest exit (i.e. after
1641          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1642          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1643          * That can happen due to a bug, or due to a machine check
1644          * occurring at just the wrong time.
1645          */
1646         if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) {
1647                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1648                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1649                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1650                         vcpu->arch.shregs.msr);
1651                 kvmppc_dump_regs(vcpu);
1652                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1653                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1654                 return RESUME_HOST;
1655         }
1656         run->exit_reason = KVM_EXIT_UNKNOWN;
1657         run->ready_for_interrupt_injection = 1;
1658         switch (vcpu->arch.trap) {
1659         /* We're good on these - the host merely wanted to get our attention */
1660         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1661                 WARN_ON_ONCE(1); /* Should never happen */
1662                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1663                 fallthrough;
1664         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1665                 vcpu->stat.dec_exits++;
1666                 r = RESUME_GUEST;
1667                 break;
1668         case BOOK3S_INTERRUPT_EXTERNAL:
1669         case BOOK3S_INTERRUPT_H_DOORBELL:
1670         case BOOK3S_INTERRUPT_H_VIRT:
1671                 vcpu->stat.ext_intr_exits++;
1672                 r = RESUME_GUEST;
1673                 break;
1674         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1675         case BOOK3S_INTERRUPT_HMI:
1676         case BOOK3S_INTERRUPT_PERFMON:
1677         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1678                 r = RESUME_GUEST;
1679                 break;
1680         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1681                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1682                                               DEFAULT_RATELIMIT_BURST);
1683                 /*
1684                  * Print the MCE event to host console. Ratelimit so the guest
1685                  * can't flood the host log.
1686                  */
1687                 if (__ratelimit(&rs))
1688                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1689
1690                 /*
1691                  * If the guest can do FWNMI, exit to userspace so it can
1692                  * deliver a FWNMI to the guest.
1693                  * Otherwise we synthesize a machine check for the guest
1694                  * so that it knows that the machine check occurred.
1695                  */
1696                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1697                         ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
1698                                         (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1699                         kvmppc_core_queue_machine_check(vcpu, flags);
1700                         r = RESUME_GUEST;
1701                         break;
1702                 }
1703
1704                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1705                 run->exit_reason = KVM_EXIT_NMI;
1706                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1707                 /* Clear out the old NMI status from run->flags */
1708                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1709                 /* Now set the NMI status */
1710                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1711                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1712                 else
1713                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1714
1715                 r = RESUME_HOST;
1716                 break;
1717         }
1718         case BOOK3S_INTERRUPT_PROGRAM:
1719         {
1720                 ulong flags;
1721                 /*
1722                  * Normally program interrupts are delivered directly
1723                  * to the guest by the hardware, but we can get here
1724                  * as a result of a hypervisor emulation interrupt
1725                  * (e40) getting turned into a 700 by BML RTAS.
1726                  */
1727                 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
1728                         (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1729                 kvmppc_core_queue_program(vcpu, flags);
1730                 r = RESUME_GUEST;
1731                 break;
1732         }
1733         case BOOK3S_INTERRUPT_SYSCALL:
1734         {
1735                 int i;
1736
1737                 if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
1738                         /*
1739                          * Guest userspace executed sc 1. This can only be
1740                          * reached by the P9 path because the old path
1741                          * handles this case in realmode hcall handlers.
1742                          */
1743                         if (!kvmhv_vcpu_is_radix(vcpu)) {
1744                                 /*
1745                                  * A guest could be running PR KVM, so this
1746                                  * may be a PR KVM hcall. It must be reflected
1747                                  * to the guest kernel as a sc interrupt.
1748                                  */
1749                                 kvmppc_core_queue_syscall(vcpu);
1750                         } else {
1751                                 /*
1752                                  * Radix guests can not run PR KVM or nested HV
1753                                  * hash guests which might run PR KVM, so this
1754                                  * is always a privilege fault. Send a program
1755                                  * check to guest kernel.
1756                                  */
1757                                 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1758                         }
1759                         r = RESUME_GUEST;
1760                         break;
1761                 }
1762
1763                 /*
1764                  * hcall - gather args and set exit_reason. This will next be
1765                  * handled by kvmppc_pseries_do_hcall which may be able to deal
1766                  * with it and resume guest, or may punt to userspace.
1767                  */
1768                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1769                 for (i = 0; i < 9; ++i)
1770                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1771                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1772                 vcpu->arch.hcall_needed = 1;
1773                 r = RESUME_HOST;
1774                 break;
1775         }
1776         /*
1777          * We get these next two if the guest accesses a page which it thinks
1778          * it has mapped but which is not actually present, either because
1779          * it is for an emulated I/O device or because the corresonding
1780          * host page has been paged out.
1781          *
1782          * Any other HDSI/HISI interrupts have been handled already for P7/8
1783          * guests. For POWER9 hash guests not using rmhandlers, basic hash
1784          * fault handling is done here.
1785          */
1786         case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1787                 unsigned long vsid;
1788                 long err;
1789
1790                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1791                     unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1792                         r = RESUME_GUEST; /* Just retry if it's the canary */
1793                         break;
1794                 }
1795
1796                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1797                         /*
1798                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1799                          * already attempted to handle this in rmhandlers. The
1800                          * hash fault handling below is v3 only (it uses ASDR
1801                          * via fault_gpa).
1802                          */
1803                         r = RESUME_PAGE_FAULT;
1804                         break;
1805                 }
1806
1807                 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1808                         kvmppc_core_queue_data_storage(vcpu,
1809                                 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1810                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1811                         r = RESUME_GUEST;
1812                         break;
1813                 }
1814
1815                 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
1816                         vsid = vcpu->kvm->arch.vrma_slb_v;
1817                 else
1818                         vsid = vcpu->arch.fault_gpa;
1819
1820                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1821                                 vsid, vcpu->arch.fault_dsisr, true);
1822                 if (err == 0) {
1823                         r = RESUME_GUEST;
1824                 } else if (err == -1 || err == -2) {
1825                         r = RESUME_PAGE_FAULT;
1826                 } else {
1827                         kvmppc_core_queue_data_storage(vcpu,
1828                                 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1829                                 vcpu->arch.fault_dar, err);
1830                         r = RESUME_GUEST;
1831                 }
1832                 break;
1833         }
1834         case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1835                 unsigned long vsid;
1836                 long err;
1837
1838                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1839                 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
1840                         DSISR_SRR1_MATCH_64S;
1841                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1842                         /*
1843                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1844                          * already attempted to handle this in rmhandlers. The
1845                          * hash fault handling below is v3 only (it uses ASDR
1846                          * via fault_gpa).
1847                          */
1848                         if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1849                                 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1850                         r = RESUME_PAGE_FAULT;
1851                         break;
1852                 }
1853
1854                 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1855                         kvmppc_core_queue_inst_storage(vcpu,
1856                                 vcpu->arch.fault_dsisr |
1857                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1858                         r = RESUME_GUEST;
1859                         break;
1860                 }
1861
1862                 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
1863                         vsid = vcpu->kvm->arch.vrma_slb_v;
1864                 else
1865                         vsid = vcpu->arch.fault_gpa;
1866
1867                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1868                                 vsid, vcpu->arch.fault_dsisr, false);
1869                 if (err == 0) {
1870                         r = RESUME_GUEST;
1871                 } else if (err == -1) {
1872                         r = RESUME_PAGE_FAULT;
1873                 } else {
1874                         kvmppc_core_queue_inst_storage(vcpu,
1875                                 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1876                         r = RESUME_GUEST;
1877                 }
1878                 break;
1879         }
1880
1881         /*
1882          * This occurs if the guest executes an illegal instruction.
1883          * If the guest debug is disabled, generate a program interrupt
1884          * to the guest. If guest debug is enabled, we need to check
1885          * whether the instruction is a software breakpoint instruction.
1886          * Accordingly return to Guest or Host.
1887          */
1888         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1889                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1890                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1891                                 swab32(vcpu->arch.emul_inst) :
1892                                 vcpu->arch.emul_inst;
1893                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1894                         r = kvmppc_emulate_debug_inst(vcpu);
1895                 } else {
1896                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1897                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1898                         r = RESUME_GUEST;
1899                 }
1900                 break;
1901
1902 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1903         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1904                 /*
1905                  * This occurs for various TM-related instructions that
1906                  * we need to emulate on POWER9 DD2.2.  We have already
1907                  * handled the cases where the guest was in real-suspend
1908                  * mode and was transitioning to transactional state.
1909                  */
1910                 r = kvmhv_p9_tm_emulation(vcpu);
1911                 if (r != -1)
1912                         break;
1913                 fallthrough; /* go to facility unavailable handler */
1914 #endif
1915
1916         /*
1917          * This occurs if the guest (kernel or userspace), does something that
1918          * is prohibited by HFSCR.
1919          * On POWER9, this could be a doorbell instruction that we need
1920          * to emulate.
1921          * Otherwise, we just generate a program interrupt to the guest.
1922          */
1923         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1924                 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
1925
1926                 r = EMULATE_FAIL;
1927                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1928                         switch (cause) {
1929                         case FSCR_MSGP_LG:
1930                                 r = kvmppc_emulate_doorbell_instr(vcpu);
1931                                 break;
1932                         case FSCR_PM_LG:
1933                                 r = kvmppc_pmu_unavailable(vcpu);
1934                                 break;
1935                         case FSCR_EBB_LG:
1936                                 r = kvmppc_ebb_unavailable(vcpu);
1937                                 break;
1938                         case FSCR_TM_LG:
1939                                 r = kvmppc_tm_unavailable(vcpu);
1940                                 break;
1941                         default:
1942                                 break;
1943                         }
1944                 }
1945                 if (r == EMULATE_FAIL) {
1946                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1947                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1948                         r = RESUME_GUEST;
1949                 }
1950                 break;
1951         }
1952
1953         case BOOK3S_INTERRUPT_HV_RM_HARD:
1954                 r = RESUME_PASSTHROUGH;
1955                 break;
1956         default:
1957                 kvmppc_dump_regs(vcpu);
1958                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1959                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1960                         __kvmppc_get_msr_hv(vcpu));
1961                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1962                 r = RESUME_HOST;
1963                 break;
1964         }
1965
1966         return r;
1967 }
1968
1969 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1970 {
1971         int r;
1972         int srcu_idx;
1973
1974         vcpu->stat.sum_exits++;
1975
1976         /*
1977          * This can happen if an interrupt occurs in the last stages
1978          * of guest entry or the first stages of guest exit (i.e. after
1979          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1980          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1981          * That can happen due to a bug, or due to a machine check
1982          * occurring at just the wrong time.
1983          */
1984         if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1985                 pr_emerg("KVM trap in HV mode while nested!\n");
1986                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1987                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1988                          __kvmppc_get_msr_hv(vcpu));
1989                 kvmppc_dump_regs(vcpu);
1990                 return RESUME_HOST;
1991         }
1992         switch (vcpu->arch.trap) {
1993         /* We're good on these - the host merely wanted to get our attention */
1994         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1995                 vcpu->stat.dec_exits++;
1996                 r = RESUME_GUEST;
1997                 break;
1998         case BOOK3S_INTERRUPT_EXTERNAL:
1999                 vcpu->stat.ext_intr_exits++;
2000                 r = RESUME_HOST;
2001                 break;
2002         case BOOK3S_INTERRUPT_H_DOORBELL:
2003         case BOOK3S_INTERRUPT_H_VIRT:
2004                 vcpu->stat.ext_intr_exits++;
2005                 r = RESUME_GUEST;
2006                 break;
2007         /* These need to go to the nested HV */
2008         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
2009                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
2010                 vcpu->stat.dec_exits++;
2011                 r = RESUME_HOST;
2012                 break;
2013         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
2014         case BOOK3S_INTERRUPT_HMI:
2015         case BOOK3S_INTERRUPT_PERFMON:
2016         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2017                 r = RESUME_GUEST;
2018                 break;
2019         case BOOK3S_INTERRUPT_MACHINE_CHECK:
2020         {
2021                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
2022                                               DEFAULT_RATELIMIT_BURST);
2023                 /* Pass the machine check to the L1 guest */
2024                 r = RESUME_HOST;
2025                 /* Print the MCE event to host console. */
2026                 if (__ratelimit(&rs))
2027                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
2028                 break;
2029         }
2030         /*
2031          * We get these next two if the guest accesses a page which it thinks
2032          * it has mapped but which is not actually present, either because
2033          * it is for an emulated I/O device or because the corresonding
2034          * host page has been paged out.
2035          */
2036         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
2037                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2038                 r = kvmhv_nested_page_fault(vcpu);
2039                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2040                 break;
2041         case BOOK3S_INTERRUPT_H_INST_STORAGE:
2042                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
2043                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
2044                                          DSISR_SRR1_MATCH_64S;
2045                 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
2046                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
2047                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2048                 r = kvmhv_nested_page_fault(vcpu);
2049                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2050                 break;
2051
2052 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2053         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
2054                 /*
2055                  * This occurs for various TM-related instructions that
2056                  * we need to emulate on POWER9 DD2.2.  We have already
2057                  * handled the cases where the guest was in real-suspend
2058                  * mode and was transitioning to transactional state.
2059                  */
2060                 r = kvmhv_p9_tm_emulation(vcpu);
2061                 if (r != -1)
2062                         break;
2063                 fallthrough; /* go to facility unavailable handler */
2064 #endif
2065
2066         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
2067                 r = RESUME_HOST;
2068                 break;
2069
2070         case BOOK3S_INTERRUPT_HV_RM_HARD:
2071                 vcpu->arch.trap = 0;
2072                 r = RESUME_GUEST;
2073                 if (!xics_on_xive())
2074                         kvmppc_xics_rm_complete(vcpu, 0);
2075                 break;
2076         case BOOK3S_INTERRUPT_SYSCALL:
2077         {
2078                 unsigned long req = kvmppc_get_gpr(vcpu, 3);
2079
2080                 /*
2081                  * The H_RPT_INVALIDATE hcalls issued by nested
2082                  * guests for process-scoped invalidations when
2083                  * GTSE=0, are handled here in L0.
2084                  */
2085                 if (req == H_RPT_INVALIDATE) {
2086                         r = kvmppc_nested_h_rpt_invalidate(vcpu);
2087                         break;
2088                 }
2089
2090                 r = RESUME_HOST;
2091                 break;
2092         }
2093         default:
2094                 r = RESUME_HOST;
2095                 break;
2096         }
2097
2098         return r;
2099 }
2100
2101 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2102                                             struct kvm_sregs *sregs)
2103 {
2104         int i;
2105
2106         memset(sregs, 0, sizeof(struct kvm_sregs));
2107         sregs->pvr = vcpu->arch.pvr;
2108         for (i = 0; i < vcpu->arch.slb_max; i++) {
2109                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2110                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2111         }
2112
2113         return 0;
2114 }
2115
2116 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2117                                             struct kvm_sregs *sregs)
2118 {
2119         int i, j;
2120
2121         /* Only accept the same PVR as the host's, since we can't spoof it */
2122         if (sregs->pvr != vcpu->arch.pvr)
2123                 return -EINVAL;
2124
2125         j = 0;
2126         for (i = 0; i < vcpu->arch.slb_nr; i++) {
2127                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2128                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2129                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2130                         ++j;
2131                 }
2132         }
2133         vcpu->arch.slb_max = j;
2134
2135         return 0;
2136 }
2137
2138 /*
2139  * Enforce limits on guest LPCR values based on hardware availability,
2140  * guest configuration, and possibly hypervisor support and security
2141  * concerns.
2142  */
2143 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2144 {
2145         /* LPCR_TC only applies to HPT guests */
2146         if (kvm_is_radix(kvm))
2147                 lpcr &= ~LPCR_TC;
2148
2149         /* On POWER8 and above, userspace can modify AIL */
2150         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2151                 lpcr &= ~LPCR_AIL;
2152         if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2153                 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2154         /*
2155          * On some POWER9s we force AIL off for radix guests to prevent
2156          * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2157          * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2158          * be cached, which the host TLB management does not expect.
2159          */
2160         if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2161                 lpcr &= ~LPCR_AIL;
2162
2163         /*
2164          * On POWER9, allow userspace to enable large decrementer for the
2165          * guest, whether or not the host has it enabled.
2166          */
2167         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2168                 lpcr &= ~LPCR_LD;
2169
2170         return lpcr;
2171 }
2172
2173 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2174 {
2175         if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2176                 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2177                           lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2178         }
2179 }
2180
2181 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2182                 bool preserve_top32)
2183 {
2184         struct kvm *kvm = vcpu->kvm;
2185         struct kvmppc_vcore *vc = vcpu->arch.vcore;
2186         u64 mask;
2187
2188         spin_lock(&vc->lock);
2189
2190         /*
2191          * Userspace can only modify
2192          * DPFD (default prefetch depth), ILE (interrupt little-endian),
2193          * TC (translation control), AIL (alternate interrupt location),
2194          * LD (large decrementer).
2195          * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2196          */
2197         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2198
2199         /* Broken 32-bit version of LPCR must not clear top bits */
2200         if (preserve_top32)
2201                 mask &= 0xFFFFFFFF;
2202
2203         new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2204                         (vc->lpcr & ~mask) | (new_lpcr & mask));
2205
2206         /*
2207          * If ILE (interrupt little-endian) has changed, update the
2208          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2209          */
2210         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2211                 struct kvm_vcpu *vcpu;
2212                 unsigned long i;
2213
2214                 kvm_for_each_vcpu(i, vcpu, kvm) {
2215                         if (vcpu->arch.vcore != vc)
2216                                 continue;
2217                         if (new_lpcr & LPCR_ILE)
2218                                 vcpu->arch.intr_msr |= MSR_LE;
2219                         else
2220                                 vcpu->arch.intr_msr &= ~MSR_LE;
2221                 }
2222         }
2223
2224         vc->lpcr = new_lpcr;
2225         kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
2226
2227         spin_unlock(&vc->lock);
2228 }
2229
2230 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2231                                  union kvmppc_one_reg *val)
2232 {
2233         int r = 0;
2234         long int i;
2235
2236         switch (id) {
2237         case KVM_REG_PPC_DEBUG_INST:
2238                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2239                 break;
2240         case KVM_REG_PPC_HIOR:
2241                 *val = get_reg_val(id, 0);
2242                 break;
2243         case KVM_REG_PPC_DABR:
2244                 *val = get_reg_val(id, vcpu->arch.dabr);
2245                 break;
2246         case KVM_REG_PPC_DABRX:
2247                 *val = get_reg_val(id, vcpu->arch.dabrx);
2248                 break;
2249         case KVM_REG_PPC_DSCR:
2250                 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
2251                 break;
2252         case KVM_REG_PPC_PURR:
2253                 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
2254                 break;
2255         case KVM_REG_PPC_SPURR:
2256                 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
2257                 break;
2258         case KVM_REG_PPC_AMR:
2259                 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
2260                 break;
2261         case KVM_REG_PPC_UAMOR:
2262                 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
2263                 break;
2264         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2265                 i = id - KVM_REG_PPC_MMCR0;
2266                 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
2267                 break;
2268         case KVM_REG_PPC_MMCR2:
2269                 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
2270                 break;
2271         case KVM_REG_PPC_MMCRA:
2272                 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
2273                 break;
2274         case KVM_REG_PPC_MMCRS:
2275                 *val = get_reg_val(id, vcpu->arch.mmcrs);
2276                 break;
2277         case KVM_REG_PPC_MMCR3:
2278                 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
2279                 break;
2280         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2281                 i = id - KVM_REG_PPC_PMC1;
2282                 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
2283                 break;
2284         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2285                 i = id - KVM_REG_PPC_SPMC1;
2286                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2287                 break;
2288         case KVM_REG_PPC_SIAR:
2289                 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2290                 break;
2291         case KVM_REG_PPC_SDAR:
2292                 *val = get_reg_val(id, kvmppc_get_sdar_hv(vcpu));
2293                 break;
2294         case KVM_REG_PPC_SIER:
2295                 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
2296                 break;
2297         case KVM_REG_PPC_SIER2:
2298                 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
2299                 break;
2300         case KVM_REG_PPC_SIER3:
2301                 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
2302                 break;
2303         case KVM_REG_PPC_IAMR:
2304                 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
2305                 break;
2306         case KVM_REG_PPC_PSPB:
2307                 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
2308                 break;
2309         case KVM_REG_PPC_DPDES:
2310                 /*
2311                  * On POWER9, where we are emulating msgsndp etc.,
2312                  * we return 1 bit for each vcpu, which can come from
2313                  * either vcore->dpdes or doorbell_request.
2314                  * On POWER8, doorbell_request is 0.
2315                  */
2316                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2317                         *val = get_reg_val(id, vcpu->arch.doorbell_request);
2318                 else
2319                         *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2320                 break;
2321         case KVM_REG_PPC_VTB:
2322                 *val = get_reg_val(id, kvmppc_get_vtb(vcpu));
2323                 break;
2324         case KVM_REG_PPC_DAWR:
2325                 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
2326                 break;
2327         case KVM_REG_PPC_DAWRX:
2328                 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
2329                 break;
2330         case KVM_REG_PPC_DAWR1:
2331                 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
2332                 break;
2333         case KVM_REG_PPC_DAWRX1:
2334                 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
2335                 break;
2336         case KVM_REG_PPC_DEXCR:
2337                 *val = get_reg_val(id, kvmppc_get_dexcr_hv(vcpu));
2338                 break;
2339         case KVM_REG_PPC_HASHKEYR:
2340                 *val = get_reg_val(id, kvmppc_get_hashkeyr_hv(vcpu));
2341                 break;
2342         case KVM_REG_PPC_HASHPKEYR:
2343                 *val = get_reg_val(id, kvmppc_get_hashpkeyr_hv(vcpu));
2344                 break;
2345         case KVM_REG_PPC_CIABR:
2346                 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
2347                 break;
2348         case KVM_REG_PPC_CSIGR:
2349                 *val = get_reg_val(id, vcpu->arch.csigr);
2350                 break;
2351         case KVM_REG_PPC_TACR:
2352                 *val = get_reg_val(id, vcpu->arch.tacr);
2353                 break;
2354         case KVM_REG_PPC_TCSCR:
2355                 *val = get_reg_val(id, vcpu->arch.tcscr);
2356                 break;
2357         case KVM_REG_PPC_PID:
2358                 *val = get_reg_val(id, kvmppc_get_pid(vcpu));
2359                 break;
2360         case KVM_REG_PPC_ACOP:
2361                 *val = get_reg_val(id, vcpu->arch.acop);
2362                 break;
2363         case KVM_REG_PPC_WORT:
2364                 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
2365                 break;
2366         case KVM_REG_PPC_TIDR:
2367                 *val = get_reg_val(id, vcpu->arch.tid);
2368                 break;
2369         case KVM_REG_PPC_PSSCR:
2370                 *val = get_reg_val(id, vcpu->arch.psscr);
2371                 break;
2372         case KVM_REG_PPC_VPA_ADDR:
2373                 spin_lock(&vcpu->arch.vpa_update_lock);
2374                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2375                 spin_unlock(&vcpu->arch.vpa_update_lock);
2376                 break;
2377         case KVM_REG_PPC_VPA_SLB:
2378                 spin_lock(&vcpu->arch.vpa_update_lock);
2379                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2380                 val->vpaval.length = vcpu->arch.slb_shadow.len;
2381                 spin_unlock(&vcpu->arch.vpa_update_lock);
2382                 break;
2383         case KVM_REG_PPC_VPA_DTL:
2384                 spin_lock(&vcpu->arch.vpa_update_lock);
2385                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2386                 val->vpaval.length = vcpu->arch.dtl.len;
2387                 spin_unlock(&vcpu->arch.vpa_update_lock);
2388                 break;
2389         case KVM_REG_PPC_TB_OFFSET:
2390                 *val = get_reg_val(id, kvmppc_get_tb_offset(vcpu));
2391                 break;
2392         case KVM_REG_PPC_LPCR:
2393         case KVM_REG_PPC_LPCR_64:
2394                 *val = get_reg_val(id, kvmppc_get_lpcr(vcpu));
2395                 break;
2396         case KVM_REG_PPC_PPR:
2397                 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
2398                 break;
2399 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2400         case KVM_REG_PPC_TFHAR:
2401                 *val = get_reg_val(id, vcpu->arch.tfhar);
2402                 break;
2403         case KVM_REG_PPC_TFIAR:
2404                 *val = get_reg_val(id, vcpu->arch.tfiar);
2405                 break;
2406         case KVM_REG_PPC_TEXASR:
2407                 *val = get_reg_val(id, vcpu->arch.texasr);
2408                 break;
2409         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2410                 i = id - KVM_REG_PPC_TM_GPR0;
2411                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2412                 break;
2413         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2414         {
2415                 int j;
2416                 i = id - KVM_REG_PPC_TM_VSR0;
2417                 if (i < 32)
2418                         for (j = 0; j < TS_FPRWIDTH; j++)
2419                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2420                 else {
2421                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2422                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
2423                         else
2424                                 r = -ENXIO;
2425                 }
2426                 break;
2427         }
2428         case KVM_REG_PPC_TM_CR:
2429                 *val = get_reg_val(id, vcpu->arch.cr_tm);
2430                 break;
2431         case KVM_REG_PPC_TM_XER:
2432                 *val = get_reg_val(id, vcpu->arch.xer_tm);
2433                 break;
2434         case KVM_REG_PPC_TM_LR:
2435                 *val = get_reg_val(id, vcpu->arch.lr_tm);
2436                 break;
2437         case KVM_REG_PPC_TM_CTR:
2438                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2439                 break;
2440         case KVM_REG_PPC_TM_FPSCR:
2441                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2442                 break;
2443         case KVM_REG_PPC_TM_AMR:
2444                 *val = get_reg_val(id, vcpu->arch.amr_tm);
2445                 break;
2446         case KVM_REG_PPC_TM_PPR:
2447                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2448                 break;
2449         case KVM_REG_PPC_TM_VRSAVE:
2450                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2451                 break;
2452         case KVM_REG_PPC_TM_VSCR:
2453                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2454                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2455                 else
2456                         r = -ENXIO;
2457                 break;
2458         case KVM_REG_PPC_TM_DSCR:
2459                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2460                 break;
2461         case KVM_REG_PPC_TM_TAR:
2462                 *val = get_reg_val(id, vcpu->arch.tar_tm);
2463                 break;
2464 #endif
2465         case KVM_REG_PPC_ARCH_COMPAT:
2466                 *val = get_reg_val(id, kvmppc_get_arch_compat(vcpu));
2467                 break;
2468         case KVM_REG_PPC_DEC_EXPIRY:
2469                 *val = get_reg_val(id, kvmppc_get_dec_expires(vcpu));
2470                 break;
2471         case KVM_REG_PPC_ONLINE:
2472                 *val = get_reg_val(id, vcpu->arch.online);
2473                 break;
2474         case KVM_REG_PPC_PTCR:
2475                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2476                 break;
2477         case KVM_REG_PPC_FSCR:
2478                 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
2479                 break;
2480         default:
2481                 r = -EINVAL;
2482                 break;
2483         }
2484
2485         return r;
2486 }
2487
2488 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2489                                  union kvmppc_one_reg *val)
2490 {
2491         int r = 0;
2492         long int i;
2493         unsigned long addr, len;
2494
2495         switch (id) {
2496         case KVM_REG_PPC_HIOR:
2497                 /* Only allow this to be set to zero */
2498                 if (set_reg_val(id, *val))
2499                         r = -EINVAL;
2500                 break;
2501         case KVM_REG_PPC_DABR:
2502                 vcpu->arch.dabr = set_reg_val(id, *val);
2503                 break;
2504         case KVM_REG_PPC_DABRX:
2505                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2506                 break;
2507         case KVM_REG_PPC_DSCR:
2508                 kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
2509                 break;
2510         case KVM_REG_PPC_PURR:
2511                 kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
2512                 break;
2513         case KVM_REG_PPC_SPURR:
2514                 kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
2515                 break;
2516         case KVM_REG_PPC_AMR:
2517                 kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
2518                 break;
2519         case KVM_REG_PPC_UAMOR:
2520                 kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
2521                 break;
2522         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2523                 i = id - KVM_REG_PPC_MMCR0;
2524                 kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
2525                 break;
2526         case KVM_REG_PPC_MMCR2:
2527                 kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
2528                 break;
2529         case KVM_REG_PPC_MMCRA:
2530                 kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
2531                 break;
2532         case KVM_REG_PPC_MMCRS:
2533                 vcpu->arch.mmcrs = set_reg_val(id, *val);
2534                 break;
2535         case KVM_REG_PPC_MMCR3:
2536                 kvmppc_set_mmcr_hv(vcpu, 3, set_reg_val(id, *val));
2537                 break;
2538         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2539                 i = id - KVM_REG_PPC_PMC1;
2540                 kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
2541                 break;
2542         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2543                 i = id - KVM_REG_PPC_SPMC1;
2544                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2545                 break;
2546         case KVM_REG_PPC_SIAR:
2547                 kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
2548                 break;
2549         case KVM_REG_PPC_SDAR:
2550                 kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
2551                 break;
2552         case KVM_REG_PPC_SIER:
2553                 kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
2554                 break;
2555         case KVM_REG_PPC_SIER2:
2556                 kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
2557                 break;
2558         case KVM_REG_PPC_SIER3:
2559                 kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
2560                 break;
2561         case KVM_REG_PPC_IAMR:
2562                 kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
2563                 break;
2564         case KVM_REG_PPC_PSPB:
2565                 kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
2566                 break;
2567         case KVM_REG_PPC_DPDES:
2568                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2569                         vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2570                 else
2571                         vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2572                 break;
2573         case KVM_REG_PPC_VTB:
2574                 kvmppc_set_vtb(vcpu, set_reg_val(id, *val));
2575                 break;
2576         case KVM_REG_PPC_DAWR:
2577                 kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
2578                 break;
2579         case KVM_REG_PPC_DAWRX:
2580                 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2581                 break;
2582         case KVM_REG_PPC_DAWR1:
2583                 kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
2584                 break;
2585         case KVM_REG_PPC_DAWRX1:
2586                 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2587                 break;
2588         case KVM_REG_PPC_DEXCR:
2589                 kvmppc_set_dexcr_hv(vcpu, set_reg_val(id, *val));
2590                 break;
2591         case KVM_REG_PPC_HASHKEYR:
2592                 kvmppc_set_hashkeyr_hv(vcpu, set_reg_val(id, *val));
2593                 break;
2594         case KVM_REG_PPC_HASHPKEYR:
2595                 kvmppc_set_hashpkeyr_hv(vcpu, set_reg_val(id, *val));
2596                 break;
2597         case KVM_REG_PPC_CIABR:
2598                 kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
2599                 /* Don't allow setting breakpoints in hypervisor code */
2600                 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
2601                         kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
2602                 break;
2603         case KVM_REG_PPC_CSIGR:
2604                 vcpu->arch.csigr = set_reg_val(id, *val);
2605                 break;
2606         case KVM_REG_PPC_TACR:
2607                 vcpu->arch.tacr = set_reg_val(id, *val);
2608                 break;
2609         case KVM_REG_PPC_TCSCR:
2610                 vcpu->arch.tcscr = set_reg_val(id, *val);
2611                 break;
2612         case KVM_REG_PPC_PID:
2613                 kvmppc_set_pid(vcpu, set_reg_val(id, *val));
2614                 break;
2615         case KVM_REG_PPC_ACOP:
2616                 vcpu->arch.acop = set_reg_val(id, *val);
2617                 break;
2618         case KVM_REG_PPC_WORT:
2619                 kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
2620                 break;
2621         case KVM_REG_PPC_TIDR:
2622                 vcpu->arch.tid = set_reg_val(id, *val);
2623                 break;
2624         case KVM_REG_PPC_PSSCR:
2625                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2626                 break;
2627         case KVM_REG_PPC_VPA_ADDR:
2628                 addr = set_reg_val(id, *val);
2629                 r = -EINVAL;
2630                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2631                               vcpu->arch.dtl.next_gpa))
2632                         break;
2633                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2634                 break;
2635         case KVM_REG_PPC_VPA_SLB:
2636                 addr = val->vpaval.addr;
2637                 len = val->vpaval.length;
2638                 r = -EINVAL;
2639                 if (addr && !vcpu->arch.vpa.next_gpa)
2640                         break;
2641                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2642                 break;
2643         case KVM_REG_PPC_VPA_DTL:
2644                 addr = val->vpaval.addr;
2645                 len = val->vpaval.length;
2646                 r = -EINVAL;
2647                 if (addr && (len < sizeof(struct dtl_entry) ||
2648                              !vcpu->arch.vpa.next_gpa))
2649                         break;
2650                 len -= len % sizeof(struct dtl_entry);
2651                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2652                 break;
2653         case KVM_REG_PPC_TB_OFFSET:
2654         {
2655                 /* round up to multiple of 2^24 */
2656                 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2657
2658                 /*
2659                  * Now that we know the timebase offset, update the
2660                  * decrementer expiry with a guest timebase value. If
2661                  * the userspace does not set DEC_EXPIRY, this ensures
2662                  * a migrated vcpu at least starts with an expired
2663                  * decrementer, which is better than a large one that
2664                  * causes a hang.
2665                  */
2666                 kvmppc_set_tb_offset(vcpu, tb_offset);
2667                 if (!kvmppc_get_dec_expires(vcpu) && tb_offset)
2668                         kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset);
2669
2670                 kvmppc_set_tb_offset(vcpu, tb_offset);
2671                 break;
2672         }
2673         case KVM_REG_PPC_LPCR:
2674                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2675                 break;
2676         case KVM_REG_PPC_LPCR_64:
2677                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2678                 break;
2679         case KVM_REG_PPC_PPR:
2680                 kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
2681                 break;
2682 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2683         case KVM_REG_PPC_TFHAR:
2684                 vcpu->arch.tfhar = set_reg_val(id, *val);
2685                 break;
2686         case KVM_REG_PPC_TFIAR:
2687                 vcpu->arch.tfiar = set_reg_val(id, *val);
2688                 break;
2689         case KVM_REG_PPC_TEXASR:
2690                 vcpu->arch.texasr = set_reg_val(id, *val);
2691                 break;
2692         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2693                 i = id - KVM_REG_PPC_TM_GPR0;
2694                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2695                 break;
2696         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2697         {
2698                 int j;
2699                 i = id - KVM_REG_PPC_TM_VSR0;
2700                 if (i < 32)
2701                         for (j = 0; j < TS_FPRWIDTH; j++)
2702                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2703                 else
2704                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2705                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2706                         else
2707                                 r = -ENXIO;
2708                 break;
2709         }
2710         case KVM_REG_PPC_TM_CR:
2711                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2712                 break;
2713         case KVM_REG_PPC_TM_XER:
2714                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2715                 break;
2716         case KVM_REG_PPC_TM_LR:
2717                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2718                 break;
2719         case KVM_REG_PPC_TM_CTR:
2720                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2721                 break;
2722         case KVM_REG_PPC_TM_FPSCR:
2723                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2724                 break;
2725         case KVM_REG_PPC_TM_AMR:
2726                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2727                 break;
2728         case KVM_REG_PPC_TM_PPR:
2729                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2730                 break;
2731         case KVM_REG_PPC_TM_VRSAVE:
2732                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2733                 break;
2734         case KVM_REG_PPC_TM_VSCR:
2735                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2736                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2737                 else
2738                         r = - ENXIO;
2739                 break;
2740         case KVM_REG_PPC_TM_DSCR:
2741                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2742                 break;
2743         case KVM_REG_PPC_TM_TAR:
2744                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2745                 break;
2746 #endif
2747         case KVM_REG_PPC_ARCH_COMPAT:
2748                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2749                 break;
2750         case KVM_REG_PPC_DEC_EXPIRY:
2751                 kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val));
2752                 break;
2753         case KVM_REG_PPC_ONLINE:
2754                 i = set_reg_val(id, *val);
2755                 if (i && !vcpu->arch.online)
2756                         atomic_inc(&vcpu->arch.vcore->online_count);
2757                 else if (!i && vcpu->arch.online)
2758                         atomic_dec(&vcpu->arch.vcore->online_count);
2759                 vcpu->arch.online = i;
2760                 break;
2761         case KVM_REG_PPC_PTCR:
2762                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2763                 break;
2764         case KVM_REG_PPC_FSCR:
2765                 kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
2766                 break;
2767         default:
2768                 r = -EINVAL;
2769                 break;
2770         }
2771
2772         return r;
2773 }
2774
2775 /*
2776  * On POWER9, threads are independent and can be in different partitions.
2777  * Therefore we consider each thread to be a subcore.
2778  * There is a restriction that all threads have to be in the same
2779  * MMU mode (radix or HPT), unfortunately, but since we only support
2780  * HPT guests on a HPT host so far, that isn't an impediment yet.
2781  */
2782 static int threads_per_vcore(struct kvm *kvm)
2783 {
2784         if (cpu_has_feature(CPU_FTR_ARCH_300))
2785                 return 1;
2786         return threads_per_subcore;
2787 }
2788
2789 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2790 {
2791         struct kvmppc_vcore *vcore;
2792
2793         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2794
2795         if (vcore == NULL)
2796                 return NULL;
2797
2798         spin_lock_init(&vcore->lock);
2799         spin_lock_init(&vcore->stoltb_lock);
2800         rcuwait_init(&vcore->wait);
2801         vcore->preempt_tb = TB_NIL;
2802         vcore->lpcr = kvm->arch.lpcr;
2803         vcore->first_vcpuid = id;
2804         vcore->kvm = kvm;
2805         INIT_LIST_HEAD(&vcore->preempt_list);
2806
2807         return vcore;
2808 }
2809
2810 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2811 static struct debugfs_timings_element {
2812         const char *name;
2813         size_t offset;
2814 } timings[] = {
2815 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2816         {"vcpu_entry",  offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2817         {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
2818         {"in_guest",    offsetof(struct kvm_vcpu, arch.in_guest)},
2819         {"guest_exit",  offsetof(struct kvm_vcpu, arch.guest_exit)},
2820         {"vcpu_exit",   offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2821         {"hypercall",   offsetof(struct kvm_vcpu, arch.hcall)},
2822         {"page_fault",  offsetof(struct kvm_vcpu, arch.pg_fault)},
2823 #else
2824         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2825         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2826         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2827         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2828         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2829 #endif
2830 };
2831
2832 #define N_TIMINGS       (ARRAY_SIZE(timings))
2833
2834 struct debugfs_timings_state {
2835         struct kvm_vcpu *vcpu;
2836         unsigned int    buflen;
2837         char            buf[N_TIMINGS * 100];
2838 };
2839
2840 static int debugfs_timings_open(struct inode *inode, struct file *file)
2841 {
2842         struct kvm_vcpu *vcpu = inode->i_private;
2843         struct debugfs_timings_state *p;
2844
2845         p = kzalloc(sizeof(*p), GFP_KERNEL);
2846         if (!p)
2847                 return -ENOMEM;
2848
2849         kvm_get_kvm(vcpu->kvm);
2850         p->vcpu = vcpu;
2851         file->private_data = p;
2852
2853         return nonseekable_open(inode, file);
2854 }
2855
2856 static int debugfs_timings_release(struct inode *inode, struct file *file)
2857 {
2858         struct debugfs_timings_state *p = file->private_data;
2859
2860         kvm_put_kvm(p->vcpu->kvm);
2861         kfree(p);
2862         return 0;
2863 }
2864
2865 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2866                                     size_t len, loff_t *ppos)
2867 {
2868         struct debugfs_timings_state *p = file->private_data;
2869         struct kvm_vcpu *vcpu = p->vcpu;
2870         char *s, *buf_end;
2871         struct kvmhv_tb_accumulator tb;
2872         u64 count;
2873         loff_t pos;
2874         ssize_t n;
2875         int i, loops;
2876         bool ok;
2877
2878         if (!p->buflen) {
2879                 s = p->buf;
2880                 buf_end = s + sizeof(p->buf);
2881                 for (i = 0; i < N_TIMINGS; ++i) {
2882                         struct kvmhv_tb_accumulator *acc;
2883
2884                         acc = (struct kvmhv_tb_accumulator *)
2885                                 ((unsigned long)vcpu + timings[i].offset);
2886                         ok = false;
2887                         for (loops = 0; loops < 1000; ++loops) {
2888                                 count = acc->seqcount;
2889                                 if (!(count & 1)) {
2890                                         smp_rmb();
2891                                         tb = *acc;
2892                                         smp_rmb();
2893                                         if (count == acc->seqcount) {
2894                                                 ok = true;
2895                                                 break;
2896                                         }
2897                                 }
2898                                 udelay(1);
2899                         }
2900                         if (!ok)
2901                                 snprintf(s, buf_end - s, "%s: stuck\n",
2902                                         timings[i].name);
2903                         else
2904                                 snprintf(s, buf_end - s,
2905                                         "%s: %llu %llu %llu %llu\n",
2906                                         timings[i].name, count / 2,
2907                                         tb_to_ns(tb.tb_total),
2908                                         tb_to_ns(tb.tb_min),
2909                                         tb_to_ns(tb.tb_max));
2910                         s += strlen(s);
2911                 }
2912                 p->buflen = s - p->buf;
2913         }
2914
2915         pos = *ppos;
2916         if (pos >= p->buflen)
2917                 return 0;
2918         if (len > p->buflen - pos)
2919                 len = p->buflen - pos;
2920         n = copy_to_user(buf, p->buf + pos, len);
2921         if (n) {
2922                 if (n == len)
2923                         return -EFAULT;
2924                 len -= n;
2925         }
2926         *ppos = pos + len;
2927         return len;
2928 }
2929
2930 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2931                                      size_t len, loff_t *ppos)
2932 {
2933         return -EACCES;
2934 }
2935
2936 static const struct file_operations debugfs_timings_ops = {
2937         .owner   = THIS_MODULE,
2938         .open    = debugfs_timings_open,
2939         .release = debugfs_timings_release,
2940         .read    = debugfs_timings_read,
2941         .write   = debugfs_timings_write,
2942         .llseek  = generic_file_llseek,
2943 };
2944
2945 /* Create a debugfs directory for the vcpu */
2946 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2947 {
2948         if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2949                 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2950                                     &debugfs_timings_ops);
2951         return 0;
2952 }
2953
2954 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2955 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2956 {
2957         return 0;
2958 }
2959 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2960
2961 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2962 {
2963         int err;
2964         int core;
2965         struct kvmppc_vcore *vcore;
2966         struct kvm *kvm;
2967         unsigned int id;
2968
2969         kvm = vcpu->kvm;
2970         id = vcpu->vcpu_id;
2971
2972         vcpu->arch.shared = &vcpu->arch.shregs;
2973 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2974         /*
2975          * The shared struct is never shared on HV,
2976          * so we can always use host endianness
2977          */
2978 #ifdef __BIG_ENDIAN__
2979         vcpu->arch.shared_big_endian = true;
2980 #else
2981         vcpu->arch.shared_big_endian = false;
2982 #endif
2983 #endif
2984
2985         if (kvmhv_is_nestedv2()) {
2986                 err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io);
2987                 if (err < 0)
2988                         return err;
2989         }
2990
2991         kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
2992         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2993                 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
2994                 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
2995         }
2996
2997         kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
2998         /* default to host PVR, since we can't spoof it */
2999         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
3000         spin_lock_init(&vcpu->arch.vpa_update_lock);
3001         spin_lock_init(&vcpu->arch.tbacct_lock);
3002         vcpu->arch.busy_preempt = TB_NIL;
3003         __kvmppc_set_msr_hv(vcpu, MSR_ME);
3004         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
3005
3006         /*
3007          * Set the default HFSCR for the guest from the host value.
3008          * This value is only used on POWER9 and later.
3009          * On >= POWER9, we want to virtualize the doorbell facility, so we
3010          * don't set the HFSCR_MSGP bit, and that causes those instructions
3011          * to trap and then we emulate them.
3012          */
3013         kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
3014                             HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
3015
3016         /* On POWER10 and later, allow prefixed instructions */
3017         if (cpu_has_feature(CPU_FTR_ARCH_31))
3018                 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
3019
3020         if (cpu_has_feature(CPU_FTR_HVMODE)) {
3021                 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
3022
3023 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3024                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3025                         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
3026 #endif
3027         }
3028         if (cpu_has_feature(CPU_FTR_TM_COMP))
3029                 vcpu->arch.hfscr |= HFSCR_TM;
3030
3031         vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
3032
3033         /*
3034          * PM, EBB, TM are demand-faulted so start with it clear.
3035          */
3036         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
3037
3038         kvmppc_mmu_book3s_hv_init(vcpu);
3039
3040         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3041
3042         init_waitqueue_head(&vcpu->arch.cpu_run);
3043
3044         mutex_lock(&kvm->lock);
3045         vcore = NULL;
3046         err = -EINVAL;
3047         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3048                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
3049                         pr_devel("KVM: VCPU ID too high\n");
3050                         core = KVM_MAX_VCORES;
3051                 } else {
3052                         BUG_ON(kvm->arch.smt_mode != 1);
3053                         core = kvmppc_pack_vcpu_id(kvm, id);
3054                 }
3055         } else {
3056                 core = id / kvm->arch.smt_mode;
3057         }
3058         if (core < KVM_MAX_VCORES) {
3059                 vcore = kvm->arch.vcores[core];
3060                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
3061                         pr_devel("KVM: collision on id %u", id);
3062                         vcore = NULL;
3063                 } else if (!vcore) {
3064                         /*
3065                          * Take mmu_setup_lock for mutual exclusion
3066                          * with kvmppc_update_lpcr().
3067                          */
3068                         err = -ENOMEM;
3069                         vcore = kvmppc_vcore_create(kvm,
3070                                         id & ~(kvm->arch.smt_mode - 1));
3071                         mutex_lock(&kvm->arch.mmu_setup_lock);
3072                         kvm->arch.vcores[core] = vcore;
3073                         kvm->arch.online_vcores++;
3074                         mutex_unlock(&kvm->arch.mmu_setup_lock);
3075                 }
3076         }
3077         mutex_unlock(&kvm->lock);
3078
3079         if (!vcore)
3080                 return err;
3081
3082         spin_lock(&vcore->lock);
3083         ++vcore->num_threads;
3084         spin_unlock(&vcore->lock);
3085         vcpu->arch.vcore = vcore;
3086         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3087         vcpu->arch.thread_cpu = -1;
3088         vcpu->arch.prev_cpu = -1;
3089
3090         vcpu->arch.cpu_type = KVM_CPU_3S_64;
3091         kvmppc_sanity_check(vcpu);
3092
3093         return 0;
3094 }
3095
3096 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3097                               unsigned long flags)
3098 {
3099         int err;
3100         int esmt = 0;
3101
3102         if (flags)
3103                 return -EINVAL;
3104         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3105                 return -EINVAL;
3106         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3107                 /*
3108                  * On POWER8 (or POWER7), the threading mode is "strict",
3109                  * so we pack smt_mode vcpus per vcore.
3110                  */
3111                 if (smt_mode > threads_per_subcore)
3112                         return -EINVAL;
3113         } else {
3114                 /*
3115                  * On POWER9, the threading mode is "loose",
3116                  * so each vcpu gets its own vcore.
3117                  */
3118                 esmt = smt_mode;
3119                 smt_mode = 1;
3120         }
3121         mutex_lock(&kvm->lock);
3122         err = -EBUSY;
3123         if (!kvm->arch.online_vcores) {
3124                 kvm->arch.smt_mode = smt_mode;
3125                 kvm->arch.emul_smt_mode = esmt;
3126                 err = 0;
3127         }
3128         mutex_unlock(&kvm->lock);
3129
3130         return err;
3131 }
3132
3133 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3134 {
3135         if (vpa->pinned_addr)
3136                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3137                                         vpa->dirty);
3138 }
3139
3140 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3141 {
3142         spin_lock(&vcpu->arch.vpa_update_lock);
3143         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3144         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3145         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3146         spin_unlock(&vcpu->arch.vpa_update_lock);
3147         if (kvmhv_is_nestedv2())
3148                 kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io);
3149 }
3150
3151 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3152 {
3153         /* Indicate we want to get back into the guest */
3154         return 1;
3155 }
3156
3157 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3158 {
3159         unsigned long dec_nsec, now;
3160
3161         now = get_tb();
3162         if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3163                 /* decrementer has already gone negative */
3164                 kvmppc_core_queue_dec(vcpu);
3165                 kvmppc_core_prepare_to_enter(vcpu);
3166                 return;
3167         }
3168         dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3169         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3170         vcpu->arch.timer_running = 1;
3171 }
3172
3173 extern int __kvmppc_vcore_entry(void);
3174
3175 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3176                                    struct kvm_vcpu *vcpu, u64 tb)
3177 {
3178         u64 now;
3179
3180         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3181                 return;
3182         spin_lock_irq(&vcpu->arch.tbacct_lock);
3183         now = tb;
3184         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3185                 vcpu->arch.stolen_logged;
3186         vcpu->arch.busy_preempt = now;
3187         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3188         spin_unlock_irq(&vcpu->arch.tbacct_lock);
3189         --vc->n_runnable;
3190         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3191 }
3192
3193 static int kvmppc_grab_hwthread(int cpu)
3194 {
3195         struct paca_struct *tpaca;
3196         long timeout = 10000;
3197
3198         tpaca = paca_ptrs[cpu];
3199
3200         /* Ensure the thread won't go into the kernel if it wakes */
3201         tpaca->kvm_hstate.kvm_vcpu = NULL;
3202         tpaca->kvm_hstate.kvm_vcore = NULL;
3203         tpaca->kvm_hstate.napping = 0;
3204         smp_wmb();
3205         tpaca->kvm_hstate.hwthread_req = 1;
3206
3207         /*
3208          * If the thread is already executing in the kernel (e.g. handling
3209          * a stray interrupt), wait for it to get back to nap mode.
3210          * The smp_mb() is to ensure that our setting of hwthread_req
3211          * is visible before we look at hwthread_state, so if this
3212          * races with the code at system_reset_pSeries and the thread
3213          * misses our setting of hwthread_req, we are sure to see its
3214          * setting of hwthread_state, and vice versa.
3215          */
3216         smp_mb();
3217         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3218                 if (--timeout <= 0) {
3219                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
3220                         return -EBUSY;
3221                 }
3222                 udelay(1);
3223         }
3224         return 0;
3225 }
3226
3227 static void kvmppc_release_hwthread(int cpu)
3228 {
3229         struct paca_struct *tpaca;
3230
3231         tpaca = paca_ptrs[cpu];
3232         tpaca->kvm_hstate.hwthread_req = 0;
3233         tpaca->kvm_hstate.kvm_vcpu = NULL;
3234         tpaca->kvm_hstate.kvm_vcore = NULL;
3235         tpaca->kvm_hstate.kvm_split_mode = NULL;
3236 }
3237
3238 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3239
3240 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3241 {
3242         struct kvm_nested_guest *nested = vcpu->arch.nested;
3243         cpumask_t *need_tlb_flush;
3244         int i;
3245
3246         if (nested)
3247                 need_tlb_flush = &nested->need_tlb_flush;
3248         else
3249                 need_tlb_flush = &kvm->arch.need_tlb_flush;
3250
3251         cpu = cpu_first_tlb_thread_sibling(cpu);
3252         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3253                                         i += cpu_tlb_thread_sibling_step())
3254                 cpumask_set_cpu(i, need_tlb_flush);
3255
3256         /*
3257          * Make sure setting of bit in need_tlb_flush precedes testing of
3258          * cpu_in_guest. The matching barrier on the other side is hwsync
3259          * when switching to guest MMU mode, which happens between
3260          * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3261          * being tested.
3262          */
3263         smp_mb();
3264
3265         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3266                                         i += cpu_tlb_thread_sibling_step()) {
3267                 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3268
3269                 if (running == kvm)
3270                         smp_call_function_single(i, do_nothing, NULL, 1);
3271         }
3272 }
3273
3274 static void do_migrate_away_vcpu(void *arg)
3275 {
3276         struct kvm_vcpu *vcpu = arg;
3277         struct kvm *kvm = vcpu->kvm;
3278
3279         /*
3280          * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3281          * ptesync sequence on the old CPU before migrating to a new one, in
3282          * case we interrupted the guest between a tlbie ; eieio ;
3283          * tlbsync; ptesync sequence.
3284          *
3285          * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3286          */
3287         if (kvm->arch.lpcr & LPCR_GTSE)
3288                 asm volatile("eieio; tlbsync; ptesync");
3289         else
3290                 asm volatile("ptesync");
3291 }
3292
3293 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3294 {
3295         struct kvm_nested_guest *nested = vcpu->arch.nested;
3296         struct kvm *kvm = vcpu->kvm;
3297         int prev_cpu;
3298
3299         if (!cpu_has_feature(CPU_FTR_HVMODE))
3300                 return;
3301
3302         if (nested)
3303                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3304         else
3305                 prev_cpu = vcpu->arch.prev_cpu;
3306
3307         /*
3308          * With radix, the guest can do TLB invalidations itself,
3309          * and it could choose to use the local form (tlbiel) if
3310          * it is invalidating a translation that has only ever been
3311          * used on one vcpu.  However, that doesn't mean it has
3312          * only ever been used on one physical cpu, since vcpus
3313          * can move around between pcpus.  To cope with this, when
3314          * a vcpu moves from one pcpu to another, we need to tell
3315          * any vcpus running on the same core as this vcpu previously
3316          * ran to flush the TLB.
3317          */
3318         if (prev_cpu != pcpu) {
3319                 if (prev_cpu >= 0) {
3320                         if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3321                             cpu_first_tlb_thread_sibling(pcpu))
3322                                 radix_flush_cpu(kvm, prev_cpu, vcpu);
3323
3324                         smp_call_function_single(prev_cpu,
3325                                         do_migrate_away_vcpu, vcpu, 1);
3326                 }
3327                 if (nested)
3328                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3329                 else
3330                         vcpu->arch.prev_cpu = pcpu;
3331         }
3332 }
3333
3334 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3335 {
3336         int cpu;
3337         struct paca_struct *tpaca;
3338
3339         cpu = vc->pcpu;
3340         if (vcpu) {
3341                 if (vcpu->arch.timer_running) {
3342                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3343                         vcpu->arch.timer_running = 0;
3344                 }
3345                 cpu += vcpu->arch.ptid;
3346                 vcpu->cpu = vc->pcpu;
3347                 vcpu->arch.thread_cpu = cpu;
3348         }
3349         tpaca = paca_ptrs[cpu];
3350         tpaca->kvm_hstate.kvm_vcpu = vcpu;
3351         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3352         tpaca->kvm_hstate.fake_suspend = 0;
3353         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3354         smp_wmb();
3355         tpaca->kvm_hstate.kvm_vcore = vc;
3356         if (cpu != smp_processor_id())
3357                 kvmppc_ipi_thread(cpu);
3358 }
3359
3360 static void kvmppc_wait_for_nap(int n_threads)
3361 {
3362         int cpu = smp_processor_id();
3363         int i, loops;
3364
3365         if (n_threads <= 1)
3366                 return;
3367         for (loops = 0; loops < 1000000; ++loops) {
3368                 /*
3369                  * Check if all threads are finished.
3370                  * We set the vcore pointer when starting a thread
3371                  * and the thread clears it when finished, so we look
3372                  * for any threads that still have a non-NULL vcore ptr.
3373                  */
3374                 for (i = 1; i < n_threads; ++i)
3375                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3376                                 break;
3377                 if (i == n_threads) {
3378                         HMT_medium();
3379                         return;
3380                 }
3381                 HMT_low();
3382         }
3383         HMT_medium();
3384         for (i = 1; i < n_threads; ++i)
3385                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3386                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3387 }
3388
3389 /*
3390  * Check that we are on thread 0 and that any other threads in
3391  * this core are off-line.  Then grab the threads so they can't
3392  * enter the kernel.
3393  */
3394 static int on_primary_thread(void)
3395 {
3396         int cpu = smp_processor_id();
3397         int thr;
3398
3399         /* Are we on a primary subcore? */
3400         if (cpu_thread_in_subcore(cpu))
3401                 return 0;
3402
3403         thr = 0;
3404         while (++thr < threads_per_subcore)
3405                 if (cpu_online(cpu + thr))
3406                         return 0;
3407
3408         /* Grab all hw threads so they can't go into the kernel */
3409         for (thr = 1; thr < threads_per_subcore; ++thr) {
3410                 if (kvmppc_grab_hwthread(cpu + thr)) {
3411                         /* Couldn't grab one; let the others go */
3412                         do {
3413                                 kvmppc_release_hwthread(cpu + thr);
3414                         } while (--thr > 0);
3415                         return 0;
3416                 }
3417         }
3418         return 1;
3419 }
3420
3421 /*
3422  * A list of virtual cores for each physical CPU.
3423  * These are vcores that could run but their runner VCPU tasks are
3424  * (or may be) preempted.
3425  */
3426 struct preempted_vcore_list {
3427         struct list_head        list;
3428         spinlock_t              lock;
3429 };
3430
3431 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3432
3433 static void init_vcore_lists(void)
3434 {
3435         int cpu;
3436
3437         for_each_possible_cpu(cpu) {
3438                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3439                 spin_lock_init(&lp->lock);
3440                 INIT_LIST_HEAD(&lp->list);
3441         }
3442 }
3443
3444 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3445 {
3446         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3447
3448         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3449
3450         vc->vcore_state = VCORE_PREEMPT;
3451         vc->pcpu = smp_processor_id();
3452         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3453                 spin_lock(&lp->lock);
3454                 list_add_tail(&vc->preempt_list, &lp->list);
3455                 spin_unlock(&lp->lock);
3456         }
3457
3458         /* Start accumulating stolen time */
3459         kvmppc_core_start_stolen(vc, mftb());
3460 }
3461
3462 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3463 {
3464         struct preempted_vcore_list *lp;
3465
3466         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3467
3468         kvmppc_core_end_stolen(vc, mftb());
3469         if (!list_empty(&vc->preempt_list)) {
3470                 lp = &per_cpu(preempted_vcores, vc->pcpu);
3471                 spin_lock(&lp->lock);
3472                 list_del_init(&vc->preempt_list);
3473                 spin_unlock(&lp->lock);
3474         }
3475         vc->vcore_state = VCORE_INACTIVE;
3476 }
3477
3478 /*
3479  * This stores information about the virtual cores currently
3480  * assigned to a physical core.
3481  */
3482 struct core_info {
3483         int             n_subcores;
3484         int             max_subcore_threads;
3485         int             total_threads;
3486         int             subcore_threads[MAX_SUBCORES];
3487         struct kvmppc_vcore *vc[MAX_SUBCORES];
3488 };
3489
3490 /*
3491  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3492  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3493  */
3494 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3495
3496 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3497 {
3498         memset(cip, 0, sizeof(*cip));
3499         cip->n_subcores = 1;
3500         cip->max_subcore_threads = vc->num_threads;
3501         cip->total_threads = vc->num_threads;
3502         cip->subcore_threads[0] = vc->num_threads;
3503         cip->vc[0] = vc;
3504 }
3505
3506 static bool subcore_config_ok(int n_subcores, int n_threads)
3507 {
3508         /*
3509          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3510          * split-core mode, with one thread per subcore.
3511          */
3512         if (cpu_has_feature(CPU_FTR_ARCH_300))
3513                 return n_subcores <= 4 && n_threads == 1;
3514
3515         /* On POWER8, can only dynamically split if unsplit to begin with */
3516         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3517                 return false;
3518         if (n_subcores > MAX_SUBCORES)
3519                 return false;
3520         if (n_subcores > 1) {
3521                 if (!(dynamic_mt_modes & 2))
3522                         n_subcores = 4;
3523                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3524                         return false;
3525         }
3526
3527         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3528 }
3529
3530 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3531 {
3532         vc->entry_exit_map = 0;
3533         vc->in_guest = 0;
3534         vc->napping_threads = 0;
3535         vc->conferring_threads = 0;
3536         vc->tb_offset_applied = 0;
3537 }
3538
3539 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3540 {
3541         int n_threads = vc->num_threads;
3542         int sub;
3543
3544         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3545                 return false;
3546
3547         /* In one_vm_per_core mode, require all vcores to be from the same vm */
3548         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3549                 return false;
3550
3551         if (n_threads < cip->max_subcore_threads)
3552                 n_threads = cip->max_subcore_threads;
3553         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3554                 return false;
3555         cip->max_subcore_threads = n_threads;
3556
3557         sub = cip->n_subcores;
3558         ++cip->n_subcores;
3559         cip->total_threads += vc->num_threads;
3560         cip->subcore_threads[sub] = vc->num_threads;
3561         cip->vc[sub] = vc;
3562         init_vcore_to_run(vc);
3563         list_del_init(&vc->preempt_list);
3564
3565         return true;
3566 }
3567
3568 /*
3569  * Work out whether it is possible to piggyback the execution of
3570  * vcore *pvc onto the execution of the other vcores described in *cip.
3571  */
3572 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3573                           int target_threads)
3574 {
3575         if (cip->total_threads + pvc->num_threads > target_threads)
3576                 return false;
3577
3578         return can_dynamic_split(pvc, cip);
3579 }
3580
3581 static void prepare_threads(struct kvmppc_vcore *vc)
3582 {
3583         int i;
3584         struct kvm_vcpu *vcpu;
3585
3586         for_each_runnable_thread(i, vcpu, vc) {
3587                 if (signal_pending(vcpu->arch.run_task))
3588                         vcpu->arch.ret = -EINTR;
3589                 else if (vcpu->arch.vpa.update_pending ||
3590                          vcpu->arch.slb_shadow.update_pending ||
3591                          vcpu->arch.dtl.update_pending)
3592                         vcpu->arch.ret = RESUME_GUEST;
3593                 else
3594                         continue;
3595                 kvmppc_remove_runnable(vc, vcpu, mftb());
3596                 wake_up(&vcpu->arch.cpu_run);
3597         }
3598 }
3599
3600 static void collect_piggybacks(struct core_info *cip, int target_threads)
3601 {
3602         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3603         struct kvmppc_vcore *pvc, *vcnext;
3604
3605         spin_lock(&lp->lock);
3606         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3607                 if (!spin_trylock(&pvc->lock))
3608                         continue;
3609                 prepare_threads(pvc);
3610                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3611                         list_del_init(&pvc->preempt_list);
3612                         if (pvc->runner == NULL) {
3613                                 pvc->vcore_state = VCORE_INACTIVE;
3614                                 kvmppc_core_end_stolen(pvc, mftb());
3615                         }
3616                         spin_unlock(&pvc->lock);
3617                         continue;
3618                 }
3619                 if (!can_piggyback(pvc, cip, target_threads)) {
3620                         spin_unlock(&pvc->lock);
3621                         continue;
3622                 }
3623                 kvmppc_core_end_stolen(pvc, mftb());
3624                 pvc->vcore_state = VCORE_PIGGYBACK;
3625                 if (cip->total_threads >= target_threads)
3626                         break;
3627         }
3628         spin_unlock(&lp->lock);
3629 }
3630
3631 static bool recheck_signals_and_mmu(struct core_info *cip)
3632 {
3633         int sub, i;
3634         struct kvm_vcpu *vcpu;
3635         struct kvmppc_vcore *vc;
3636
3637         for (sub = 0; sub < cip->n_subcores; ++sub) {
3638                 vc = cip->vc[sub];
3639                 if (!vc->kvm->arch.mmu_ready)
3640                         return true;
3641                 for_each_runnable_thread(i, vcpu, vc)
3642                         if (signal_pending(vcpu->arch.run_task))
3643                                 return true;
3644         }
3645         return false;
3646 }
3647
3648 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3649 {
3650         int still_running = 0, i;
3651         u64 now;
3652         long ret;
3653         struct kvm_vcpu *vcpu;
3654
3655         spin_lock(&vc->lock);
3656         now = get_tb();
3657         for_each_runnable_thread(i, vcpu, vc) {
3658                 /*
3659                  * It's safe to unlock the vcore in the loop here, because
3660                  * for_each_runnable_thread() is safe against removal of
3661                  * the vcpu, and the vcore state is VCORE_EXITING here,
3662                  * so any vcpus becoming runnable will have their arch.trap
3663                  * set to zero and can't actually run in the guest.
3664                  */
3665                 spin_unlock(&vc->lock);
3666                 /* cancel pending dec exception if dec is positive */
3667                 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3668                     kvmppc_core_pending_dec(vcpu))
3669                         kvmppc_core_dequeue_dec(vcpu);
3670
3671                 trace_kvm_guest_exit(vcpu);
3672
3673                 ret = RESUME_GUEST;
3674                 if (vcpu->arch.trap)
3675                         ret = kvmppc_handle_exit_hv(vcpu,
3676                                                     vcpu->arch.run_task);
3677
3678                 vcpu->arch.ret = ret;
3679                 vcpu->arch.trap = 0;
3680
3681                 spin_lock(&vc->lock);
3682                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3683                         if (vcpu->arch.pending_exceptions)
3684                                 kvmppc_core_prepare_to_enter(vcpu);
3685                         if (vcpu->arch.ceded)
3686                                 kvmppc_set_timer(vcpu);
3687                         else
3688                                 ++still_running;
3689                 } else {
3690                         kvmppc_remove_runnable(vc, vcpu, mftb());
3691                         wake_up(&vcpu->arch.cpu_run);
3692                 }
3693         }
3694         if (!is_master) {
3695                 if (still_running > 0) {
3696                         kvmppc_vcore_preempt(vc);
3697                 } else if (vc->runner) {
3698                         vc->vcore_state = VCORE_PREEMPT;
3699                         kvmppc_core_start_stolen(vc, mftb());
3700                 } else {
3701                         vc->vcore_state = VCORE_INACTIVE;
3702                 }
3703                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3704                         /* make sure there's a candidate runner awake */
3705                         i = -1;
3706                         vcpu = next_runnable_thread(vc, &i);
3707                         wake_up(&vcpu->arch.cpu_run);
3708                 }
3709         }
3710         spin_unlock(&vc->lock);
3711 }
3712
3713 /*
3714  * Clear core from the list of active host cores as we are about to
3715  * enter the guest. Only do this if it is the primary thread of the
3716  * core (not if a subcore) that is entering the guest.
3717  */
3718 static inline int kvmppc_clear_host_core(unsigned int cpu)
3719 {
3720         int core;
3721
3722         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3723                 return 0;
3724         /*
3725          * Memory barrier can be omitted here as we will do a smp_wmb()
3726          * later in kvmppc_start_thread and we need ensure that state is
3727          * visible to other CPUs only after we enter guest.
3728          */
3729         core = cpu >> threads_shift;
3730         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3731         return 0;
3732 }
3733
3734 /*
3735  * Advertise this core as an active host core since we exited the guest
3736  * Only need to do this if it is the primary thread of the core that is
3737  * exiting.
3738  */
3739 static inline int kvmppc_set_host_core(unsigned int cpu)
3740 {
3741         int core;
3742
3743         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3744                 return 0;
3745
3746         /*
3747          * Memory barrier can be omitted here because we do a spin_unlock
3748          * immediately after this which provides the memory barrier.
3749          */
3750         core = cpu >> threads_shift;
3751         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3752         return 0;
3753 }
3754
3755 static void set_irq_happened(int trap)
3756 {
3757         switch (trap) {
3758         case BOOK3S_INTERRUPT_EXTERNAL:
3759                 local_paca->irq_happened |= PACA_IRQ_EE;
3760                 break;
3761         case BOOK3S_INTERRUPT_H_DOORBELL:
3762                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3763                 break;
3764         case BOOK3S_INTERRUPT_HMI:
3765                 local_paca->irq_happened |= PACA_IRQ_HMI;
3766                 break;
3767         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3768                 replay_system_reset();
3769                 break;
3770         }
3771 }
3772
3773 /*
3774  * Run a set of guest threads on a physical core.
3775  * Called with vc->lock held.
3776  */
3777 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3778 {
3779         struct kvm_vcpu *vcpu;
3780         int i;
3781         int srcu_idx;
3782         struct core_info core_info;
3783         struct kvmppc_vcore *pvc;
3784         struct kvm_split_mode split_info, *sip;
3785         int split, subcore_size, active;
3786         int sub;
3787         bool thr0_done;
3788         unsigned long cmd_bit, stat_bit;
3789         int pcpu, thr;
3790         int target_threads;
3791         int controlled_threads;
3792         int trap;
3793         bool is_power8;
3794
3795         if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3796                 return;
3797
3798         /*
3799          * Remove from the list any threads that have a signal pending
3800          * or need a VPA update done
3801          */
3802         prepare_threads(vc);
3803
3804         /* if the runner is no longer runnable, let the caller pick a new one */
3805         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3806                 return;
3807
3808         /*
3809          * Initialize *vc.
3810          */
3811         init_vcore_to_run(vc);
3812         vc->preempt_tb = TB_NIL;
3813
3814         /*
3815          * Number of threads that we will be controlling: the same as
3816          * the number of threads per subcore, except on POWER9,
3817          * where it's 1 because the threads are (mostly) independent.
3818          */
3819         controlled_threads = threads_per_vcore(vc->kvm);
3820
3821         /*
3822          * Make sure we are running on primary threads, and that secondary
3823          * threads are offline.  Also check if the number of threads in this
3824          * guest are greater than the current system threads per guest.
3825          */
3826         if ((controlled_threads > 1) &&
3827             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3828                 for_each_runnable_thread(i, vcpu, vc) {
3829                         vcpu->arch.ret = -EBUSY;
3830                         kvmppc_remove_runnable(vc, vcpu, mftb());
3831                         wake_up(&vcpu->arch.cpu_run);
3832                 }
3833                 goto out;
3834         }
3835
3836         /*
3837          * See if we could run any other vcores on the physical core
3838          * along with this one.
3839          */
3840         init_core_info(&core_info, vc);
3841         pcpu = smp_processor_id();
3842         target_threads = controlled_threads;
3843         if (target_smt_mode && target_smt_mode < target_threads)
3844                 target_threads = target_smt_mode;
3845         if (vc->num_threads < target_threads)
3846                 collect_piggybacks(&core_info, target_threads);
3847
3848         /*
3849          * Hard-disable interrupts, and check resched flag and signals.
3850          * If we need to reschedule or deliver a signal, clean up
3851          * and return without going into the guest(s).
3852          * If the mmu_ready flag has been cleared, don't go into the
3853          * guest because that means a HPT resize operation is in progress.
3854          */
3855         local_irq_disable();
3856         hard_irq_disable();
3857         if (lazy_irq_pending() || need_resched() ||
3858             recheck_signals_and_mmu(&core_info)) {
3859                 local_irq_enable();
3860                 vc->vcore_state = VCORE_INACTIVE;
3861                 /* Unlock all except the primary vcore */
3862                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3863                         pvc = core_info.vc[sub];
3864                         /* Put back on to the preempted vcores list */
3865                         kvmppc_vcore_preempt(pvc);
3866                         spin_unlock(&pvc->lock);
3867                 }
3868                 for (i = 0; i < controlled_threads; ++i)
3869                         kvmppc_release_hwthread(pcpu + i);
3870                 return;
3871         }
3872
3873         kvmppc_clear_host_core(pcpu);
3874
3875         /* Decide on micro-threading (split-core) mode */
3876         subcore_size = threads_per_subcore;
3877         cmd_bit = stat_bit = 0;
3878         split = core_info.n_subcores;
3879         sip = NULL;
3880         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3881
3882         if (split > 1) {
3883                 sip = &split_info;
3884                 memset(&split_info, 0, sizeof(split_info));
3885                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3886                         split_info.vc[sub] = core_info.vc[sub];
3887
3888                 if (is_power8) {
3889                         if (split == 2 && (dynamic_mt_modes & 2)) {
3890                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3891                                 stat_bit = HID0_POWER8_2LPARMODE;
3892                         } else {
3893                                 split = 4;
3894                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3895                                 stat_bit = HID0_POWER8_4LPARMODE;
3896                         }
3897                         subcore_size = MAX_SMT_THREADS / split;
3898                         split_info.rpr = mfspr(SPRN_RPR);
3899                         split_info.pmmar = mfspr(SPRN_PMMAR);
3900                         split_info.ldbar = mfspr(SPRN_LDBAR);
3901                         split_info.subcore_size = subcore_size;
3902                 } else {
3903                         split_info.subcore_size = 1;
3904                 }
3905
3906                 /* order writes to split_info before kvm_split_mode pointer */
3907                 smp_wmb();
3908         }
3909
3910         for (thr = 0; thr < controlled_threads; ++thr) {
3911                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3912
3913                 paca->kvm_hstate.napping = 0;
3914                 paca->kvm_hstate.kvm_split_mode = sip;
3915         }
3916
3917         /* Initiate micro-threading (split-core) on POWER8 if required */
3918         if (cmd_bit) {
3919                 unsigned long hid0 = mfspr(SPRN_HID0);
3920
3921                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3922                 mb();
3923                 mtspr(SPRN_HID0, hid0);
3924                 isync();
3925                 for (;;) {
3926                         hid0 = mfspr(SPRN_HID0);
3927                         if (hid0 & stat_bit)
3928                                 break;
3929                         cpu_relax();
3930                 }
3931         }
3932
3933         /*
3934          * On POWER8, set RWMR register.
3935          * Since it only affects PURR and SPURR, it doesn't affect
3936          * the host, so we don't save/restore the host value.
3937          */
3938         if (is_power8) {
3939                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3940                 int n_online = atomic_read(&vc->online_count);
3941
3942                 /*
3943                  * Use the 8-thread value if we're doing split-core
3944                  * or if the vcore's online count looks bogus.
3945                  */
3946                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3947                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3948                         rwmr_val = p8_rwmr_values[n_online];
3949                 mtspr(SPRN_RWMR, rwmr_val);
3950         }
3951
3952         /* Start all the threads */
3953         active = 0;
3954         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3955                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3956                 thr0_done = false;
3957                 active |= 1 << thr;
3958                 pvc = core_info.vc[sub];
3959                 pvc->pcpu = pcpu + thr;
3960                 for_each_runnable_thread(i, vcpu, pvc) {
3961                         /*
3962                          * XXX: is kvmppc_start_thread called too late here?
3963                          * It updates vcpu->cpu and vcpu->arch.thread_cpu
3964                          * which are used by kvmppc_fast_vcpu_kick_hv(), but
3965                          * kick is called after new exceptions become available
3966                          * and exceptions are checked earlier than here, by
3967                          * kvmppc_core_prepare_to_enter.
3968                          */
3969                         kvmppc_start_thread(vcpu, pvc);
3970                         kvmppc_update_vpa_dispatch(vcpu, pvc);
3971                         trace_kvm_guest_enter(vcpu);
3972                         if (!vcpu->arch.ptid)
3973                                 thr0_done = true;
3974                         active |= 1 << (thr + vcpu->arch.ptid);
3975                 }
3976                 /*
3977                  * We need to start the first thread of each subcore
3978                  * even if it doesn't have a vcpu.
3979                  */
3980                 if (!thr0_done)
3981                         kvmppc_start_thread(NULL, pvc);
3982         }
3983
3984         /*
3985          * Ensure that split_info.do_nap is set after setting
3986          * the vcore pointer in the PACA of the secondaries.
3987          */
3988         smp_mb();
3989
3990         /*
3991          * When doing micro-threading, poke the inactive threads as well.
3992          * This gets them to the nap instruction after kvm_do_nap,
3993          * which reduces the time taken to unsplit later.
3994          */
3995         if (cmd_bit) {
3996                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3997                 for (thr = 1; thr < threads_per_subcore; ++thr)
3998                         if (!(active & (1 << thr)))
3999                                 kvmppc_ipi_thread(pcpu + thr);
4000         }
4001
4002         vc->vcore_state = VCORE_RUNNING;
4003         preempt_disable();
4004
4005         trace_kvmppc_run_core(vc, 0);
4006
4007         for (sub = 0; sub < core_info.n_subcores; ++sub)
4008                 spin_unlock(&core_info.vc[sub]->lock);
4009
4010         guest_timing_enter_irqoff();
4011
4012         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
4013
4014         guest_state_enter_irqoff();
4015         this_cpu_disable_ftrace();
4016
4017         trap = __kvmppc_vcore_entry();
4018
4019         this_cpu_enable_ftrace();
4020         guest_state_exit_irqoff();
4021
4022         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
4023
4024         set_irq_happened(trap);
4025
4026         spin_lock(&vc->lock);
4027         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
4028         vc->vcore_state = VCORE_EXITING;
4029
4030         /* wait for secondary threads to finish writing their state to memory */
4031         kvmppc_wait_for_nap(controlled_threads);
4032
4033         /* Return to whole-core mode if we split the core earlier */
4034         if (cmd_bit) {
4035                 unsigned long hid0 = mfspr(SPRN_HID0);
4036
4037                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
4038                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
4039                 mb();
4040                 mtspr(SPRN_HID0, hid0);
4041                 isync();
4042                 for (;;) {
4043                         hid0 = mfspr(SPRN_HID0);
4044                         if (!(hid0 & stat_bit))
4045                                 break;
4046                         cpu_relax();
4047                 }
4048                 split_info.do_nap = 0;
4049         }
4050
4051         kvmppc_set_host_core(pcpu);
4052
4053         if (!vtime_accounting_enabled_this_cpu()) {
4054                 local_irq_enable();
4055                 /*
4056                  * Service IRQs here before guest_timing_exit_irqoff() so any
4057                  * ticks that occurred while running the guest are accounted to
4058                  * the guest. If vtime accounting is enabled, accounting uses
4059                  * TB rather than ticks, so it can be done without enabling
4060                  * interrupts here, which has the problem that it accounts
4061                  * interrupt processing overhead to the host.
4062                  */
4063                 local_irq_disable();
4064         }
4065         guest_timing_exit_irqoff();
4066
4067         local_irq_enable();
4068
4069         /* Let secondaries go back to the offline loop */
4070         for (i = 0; i < controlled_threads; ++i) {
4071                 kvmppc_release_hwthread(pcpu + i);
4072                 if (sip && sip->napped[i])
4073                         kvmppc_ipi_thread(pcpu + i);
4074         }
4075
4076         spin_unlock(&vc->lock);
4077
4078         /* make sure updates to secondary vcpu structs are visible now */
4079         smp_mb();
4080
4081         preempt_enable();
4082
4083         for (sub = 0; sub < core_info.n_subcores; ++sub) {
4084                 pvc = core_info.vc[sub];
4085                 post_guest_process(pvc, pvc == vc);
4086         }
4087
4088         spin_lock(&vc->lock);
4089
4090  out:
4091         vc->vcore_state = VCORE_INACTIVE;
4092         trace_kvmppc_run_core(vc, 1);
4093 }
4094
4095 static inline bool hcall_is_xics(unsigned long req)
4096 {
4097         return req == H_EOI || req == H_CPPR || req == H_IPI ||
4098                 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4099 }
4100
4101 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4102 {
4103         struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4104         if (lp) {
4105                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4106                 lp->yield_count = cpu_to_be32(yield_count);
4107                 vcpu->arch.vpa.dirty = 1;
4108         }
4109 }
4110
4111 /* Helper functions for reading L2's stats from L1's VPA */
4112 #ifdef CONFIG_PPC_PSERIES
4113 static DEFINE_PER_CPU(u64, l1_to_l2_cs);
4114 static DEFINE_PER_CPU(u64, l2_to_l1_cs);
4115 static DEFINE_PER_CPU(u64, l2_runtime_agg);
4116
4117 int kvmhv_get_l2_counters_status(void)
4118 {
4119         return firmware_has_feature(FW_FEATURE_LPAR) &&
4120                 get_lppaca()->l2_counters_enable;
4121 }
4122
4123 void kvmhv_set_l2_counters_status(int cpu, bool status)
4124 {
4125         if (!firmware_has_feature(FW_FEATURE_LPAR))
4126                 return;
4127         if (status)
4128                 lppaca_of(cpu).l2_counters_enable = 1;
4129         else
4130                 lppaca_of(cpu).l2_counters_enable = 0;
4131 }
4132 EXPORT_SYMBOL(kvmhv_set_l2_counters_status);
4133
4134 int kvmhv_counters_tracepoint_regfunc(void)
4135 {
4136         int cpu;
4137
4138         for_each_present_cpu(cpu) {
4139                 kvmhv_set_l2_counters_status(cpu, true);
4140         }
4141         return 0;
4142 }
4143
4144 void kvmhv_counters_tracepoint_unregfunc(void)
4145 {
4146         int cpu;
4147
4148         for_each_present_cpu(cpu) {
4149                 kvmhv_set_l2_counters_status(cpu, false);
4150         }
4151 }
4152
4153 static void do_trace_nested_cs_time(struct kvm_vcpu *vcpu)
4154 {
4155         struct lppaca *lp = get_lppaca();
4156         u64 l1_to_l2_ns, l2_to_l1_ns, l2_runtime_ns;
4157         u64 *l1_to_l2_cs_ptr = this_cpu_ptr(&l1_to_l2_cs);
4158         u64 *l2_to_l1_cs_ptr = this_cpu_ptr(&l2_to_l1_cs);
4159         u64 *l2_runtime_agg_ptr = this_cpu_ptr(&l2_runtime_agg);
4160
4161         l1_to_l2_ns = tb_to_ns(be64_to_cpu(lp->l1_to_l2_cs_tb));
4162         l2_to_l1_ns = tb_to_ns(be64_to_cpu(lp->l2_to_l1_cs_tb));
4163         l2_runtime_ns = tb_to_ns(be64_to_cpu(lp->l2_runtime_tb));
4164         trace_kvmppc_vcpu_stats(vcpu, l1_to_l2_ns - *l1_to_l2_cs_ptr,
4165                                         l2_to_l1_ns - *l2_to_l1_cs_ptr,
4166                                         l2_runtime_ns - *l2_runtime_agg_ptr);
4167         *l1_to_l2_cs_ptr = l1_to_l2_ns;
4168         *l2_to_l1_cs_ptr = l2_to_l1_ns;
4169         *l2_runtime_agg_ptr = l2_runtime_ns;
4170         vcpu->arch.l1_to_l2_cs = l1_to_l2_ns;
4171         vcpu->arch.l2_to_l1_cs = l2_to_l1_ns;
4172         vcpu->arch.l2_runtime_agg = l2_runtime_ns;
4173 }
4174
4175 u64 kvmhv_get_l1_to_l2_cs_time(void)
4176 {
4177         return tb_to_ns(be64_to_cpu(get_lppaca()->l1_to_l2_cs_tb));
4178 }
4179 EXPORT_SYMBOL(kvmhv_get_l1_to_l2_cs_time);
4180
4181 u64 kvmhv_get_l2_to_l1_cs_time(void)
4182 {
4183         return tb_to_ns(be64_to_cpu(get_lppaca()->l2_to_l1_cs_tb));
4184 }
4185 EXPORT_SYMBOL(kvmhv_get_l2_to_l1_cs_time);
4186
4187 u64 kvmhv_get_l2_runtime_agg(void)
4188 {
4189         return tb_to_ns(be64_to_cpu(get_lppaca()->l2_runtime_tb));
4190 }
4191 EXPORT_SYMBOL(kvmhv_get_l2_runtime_agg);
4192
4193 u64 kvmhv_get_l1_to_l2_cs_time_vcpu(void)
4194 {
4195         struct kvm_vcpu *vcpu;
4196         struct kvm_vcpu_arch *arch;
4197
4198         vcpu = local_paca->kvm_hstate.kvm_vcpu;
4199         if (vcpu) {
4200                 arch = &vcpu->arch;
4201                 return arch->l1_to_l2_cs;
4202         } else {
4203                 return 0;
4204         }
4205 }
4206 EXPORT_SYMBOL(kvmhv_get_l1_to_l2_cs_time_vcpu);
4207
4208 u64 kvmhv_get_l2_to_l1_cs_time_vcpu(void)
4209 {
4210         struct kvm_vcpu *vcpu;
4211         struct kvm_vcpu_arch *arch;
4212
4213         vcpu = local_paca->kvm_hstate.kvm_vcpu;
4214         if (vcpu) {
4215                 arch = &vcpu->arch;
4216                 return arch->l2_to_l1_cs;
4217         } else {
4218                 return 0;
4219         }
4220 }
4221 EXPORT_SYMBOL(kvmhv_get_l2_to_l1_cs_time_vcpu);
4222
4223 u64 kvmhv_get_l2_runtime_agg_vcpu(void)
4224 {
4225         struct kvm_vcpu *vcpu;
4226         struct kvm_vcpu_arch *arch;
4227
4228         vcpu = local_paca->kvm_hstate.kvm_vcpu;
4229         if (vcpu) {
4230                 arch = &vcpu->arch;
4231                 return arch->l2_runtime_agg;
4232         } else {
4233                 return 0;
4234         }
4235 }
4236 EXPORT_SYMBOL(kvmhv_get_l2_runtime_agg_vcpu);
4237
4238 #else
4239 int kvmhv_get_l2_counters_status(void)
4240 {
4241         return 0;
4242 }
4243
4244 static void do_trace_nested_cs_time(struct kvm_vcpu *vcpu)
4245 {
4246 }
4247 #endif
4248
4249 static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit,
4250                                      unsigned long lpcr, u64 *tb)
4251 {
4252         struct kvmhv_nestedv2_io *io;
4253         unsigned long msr, i;
4254         int trap;
4255         long rc;
4256
4257         if (vcpu->arch.doorbell_request) {
4258                 vcpu->arch.doorbell_request = 0;
4259                 kvmppc_set_dpdes(vcpu, 1);
4260         }
4261
4262         io = &vcpu->arch.nestedv2_io;
4263
4264         msr = mfmsr();
4265         kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4266         if (lazy_irq_pending())
4267                 return 0;
4268
4269         rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit);
4270         if (rc < 0)
4271                 return -EINVAL;
4272
4273         kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr);
4274
4275         accumulate_time(vcpu, &vcpu->arch.in_guest);
4276         rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id,
4277                                   &trap, &i);
4278
4279         if (rc != H_SUCCESS) {
4280                 pr_err("KVM Guest Run VCPU hcall failed\n");
4281                 if (rc == H_INVALID_ELEMENT_ID)
4282                         pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i);
4283                 else if (rc == H_INVALID_ELEMENT_SIZE)
4284                         pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i);
4285                 else if (rc == H_INVALID_ELEMENT_VALUE)
4286                         pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i);
4287                 return -EINVAL;
4288         }
4289         accumulate_time(vcpu, &vcpu->arch.guest_exit);
4290
4291         *tb = mftb();
4292         kvmppc_gsm_reset(io->vcpu_message);
4293         kvmppc_gsm_reset(io->vcore_message);
4294         kvmppc_gsbm_zero(&io->valids);
4295
4296         rc = kvmhv_nestedv2_parse_output(vcpu);
4297         if (rc < 0)
4298                 return -EINVAL;
4299
4300         timer_rearm_host_dec(*tb);
4301
4302         /* Record context switch and guest_run_time data */
4303         if (kvmhv_get_l2_counters_status())
4304                 do_trace_nested_cs_time(vcpu);
4305
4306         return trap;
4307 }
4308
4309 /* call our hypervisor to load up HV regs and go */
4310 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4311 {
4312         unsigned long host_psscr;
4313         unsigned long msr;
4314         struct hv_guest_state hvregs;
4315         struct p9_host_os_sprs host_os_sprs;
4316         s64 dec;
4317         int trap;
4318
4319         msr = mfmsr();
4320
4321         save_p9_host_os_sprs(&host_os_sprs);
4322
4323         /*
4324          * We need to save and restore the guest visible part of the
4325          * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4326          * doesn't do this for us. Note only required if pseries since
4327          * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4328          */
4329         host_psscr = mfspr(SPRN_PSSCR_PR);
4330
4331         kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4332         if (lazy_irq_pending())
4333                 return 0;
4334
4335         if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4336                 msr = mfmsr(); /* TM restore can update msr */
4337
4338         if (vcpu->arch.psscr != host_psscr)
4339                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4340
4341         kvmhv_save_hv_regs(vcpu, &hvregs);
4342         hvregs.lpcr = lpcr;
4343         hvregs.amor = ~0;
4344         vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4345         hvregs.version = HV_GUEST_STATE_VERSION;
4346         if (vcpu->arch.nested) {
4347                 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4348                 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4349         } else {
4350                 hvregs.lpid = vcpu->kvm->arch.lpid;
4351                 hvregs.vcpu_token = vcpu->vcpu_id;
4352         }
4353         hvregs.hdec_expiry = time_limit;
4354
4355         /*
4356          * hvregs has the doorbell status, so zero it here which
4357          * enables us to receive doorbells when H_ENTER_NESTED is
4358          * in progress for this vCPU
4359          */
4360
4361         if (vcpu->arch.doorbell_request)
4362                 vcpu->arch.doorbell_request = 0;
4363
4364         /*
4365          * When setting DEC, we must always deal with irq_work_raise
4366          * via NMI vs setting DEC. The problem occurs right as we
4367          * switch into guest mode if a NMI hits and sets pending work
4368          * and sets DEC, then that will apply to the guest and not
4369          * bring us back to the host.
4370          *
4371          * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4372          * for example) and set HDEC to 1? That wouldn't solve the
4373          * nested hv case which needs to abort the hcall or zero the
4374          * time limit.
4375          *
4376          * XXX: Another day's problem.
4377          */
4378         mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4379
4380         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4381         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4382         switch_pmu_to_guest(vcpu, &host_os_sprs);
4383         accumulate_time(vcpu, &vcpu->arch.in_guest);
4384         trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4385                                   __pa(&vcpu->arch.regs));
4386         accumulate_time(vcpu, &vcpu->arch.guest_exit);
4387         kvmhv_restore_hv_return_state(vcpu, &hvregs);
4388         switch_pmu_to_host(vcpu, &host_os_sprs);
4389         vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4390         vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4391         vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4392         vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4393
4394         store_vcpu_state(vcpu);
4395
4396         dec = mfspr(SPRN_DEC);
4397         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4398                 dec = (s32) dec;
4399         *tb = mftb();
4400         vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu));
4401
4402         timer_rearm_host_dec(*tb);
4403
4404         restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4405         if (vcpu->arch.psscr != host_psscr)
4406                 mtspr(SPRN_PSSCR_PR, host_psscr);
4407
4408         return trap;
4409 }
4410
4411 /*
4412  * Guest entry for POWER9 and later CPUs.
4413  */
4414 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4415                          unsigned long lpcr, u64 *tb)
4416 {
4417         struct kvm *kvm = vcpu->kvm;
4418         struct kvm_nested_guest *nested = vcpu->arch.nested;
4419         u64 next_timer;
4420         int trap;
4421
4422         next_timer = timer_get_next_tb();
4423         if (*tb >= next_timer)
4424                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4425         if (next_timer < time_limit)
4426                 time_limit = next_timer;
4427         else if (*tb >= time_limit) /* nested time limit */
4428                 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4429
4430         vcpu->arch.ceded = 0;
4431
4432         vcpu_vpa_increment_dispatch(vcpu);
4433
4434         if (kvmhv_on_pseries()) {
4435                 if (kvmhv_is_nestedv1())
4436                         trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4437                 else
4438                         trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb);
4439
4440                 /* H_CEDE has to be handled now, not later */
4441                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4442                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4443                         kvmppc_cede(vcpu);
4444                         kvmppc_set_gpr(vcpu, 3, 0);
4445                         trap = 0;
4446                 }
4447
4448         } else if (nested) {
4449                 __this_cpu_write(cpu_in_guest, kvm);
4450                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4451                 __this_cpu_write(cpu_in_guest, NULL);
4452
4453         } else {
4454                 kvmppc_xive_push_vcpu(vcpu);
4455
4456                 __this_cpu_write(cpu_in_guest, kvm);
4457                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4458                 __this_cpu_write(cpu_in_guest, NULL);
4459
4460                 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4461                     !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4462                         unsigned long req = kvmppc_get_gpr(vcpu, 3);
4463
4464                         /*
4465                          * XIVE rearm and XICS hcalls must be handled
4466                          * before xive context is pulled (is this
4467                          * true?)
4468                          */
4469                         if (req == H_CEDE) {
4470                                 /* H_CEDE has to be handled now */
4471                                 kvmppc_cede(vcpu);
4472                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4473                                         /*
4474                                          * Pending escalation so abort
4475                                          * the cede.
4476                                          */
4477                                         vcpu->arch.ceded = 0;
4478                                 }
4479                                 kvmppc_set_gpr(vcpu, 3, 0);
4480                                 trap = 0;
4481
4482                         } else if (req == H_ENTER_NESTED) {
4483                                 /*
4484                                  * L2 should not run with the L1
4485                                  * context so rearm and pull it.
4486                                  */
4487                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4488                                         /*
4489                                          * Pending escalation so abort
4490                                          * H_ENTER_NESTED.
4491                                          */
4492                                         kvmppc_set_gpr(vcpu, 3, 0);
4493                                         trap = 0;
4494                                 }
4495
4496                         } else if (hcall_is_xics(req)) {
4497                                 int ret;
4498
4499                                 ret = kvmppc_xive_xics_hcall(vcpu, req);
4500                                 if (ret != H_TOO_HARD) {
4501                                         kvmppc_set_gpr(vcpu, 3, ret);
4502                                         trap = 0;
4503                                 }
4504                         }
4505                 }
4506                 kvmppc_xive_pull_vcpu(vcpu);
4507
4508                 if (kvm_is_radix(kvm))
4509                         vcpu->arch.slb_max = 0;
4510         }
4511
4512         vcpu_vpa_increment_dispatch(vcpu);
4513
4514         return trap;
4515 }
4516
4517 /*
4518  * Wait for some other vcpu thread to execute us, and
4519  * wake us up when we need to handle something in the host.
4520  */
4521 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4522                                  struct kvm_vcpu *vcpu, int wait_state)
4523 {
4524         DEFINE_WAIT(wait);
4525
4526         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4527         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4528                 spin_unlock(&vc->lock);
4529                 schedule();
4530                 spin_lock(&vc->lock);
4531         }
4532         finish_wait(&vcpu->arch.cpu_run, &wait);
4533 }
4534
4535 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4536 {
4537         if (!halt_poll_ns_grow)
4538                 return;
4539
4540         vc->halt_poll_ns *= halt_poll_ns_grow;
4541         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4542                 vc->halt_poll_ns = halt_poll_ns_grow_start;
4543 }
4544
4545 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4546 {
4547         if (halt_poll_ns_shrink == 0)
4548                 vc->halt_poll_ns = 0;
4549         else
4550                 vc->halt_poll_ns /= halt_poll_ns_shrink;
4551 }
4552
4553 #ifdef CONFIG_KVM_XICS
4554 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4555 {
4556         if (!xics_on_xive())
4557                 return false;
4558         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4559                 vcpu->arch.xive_saved_state.cppr;
4560 }
4561 #else
4562 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4563 {
4564         return false;
4565 }
4566 #endif /* CONFIG_KVM_XICS */
4567
4568 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4569 {
4570         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4571             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4572                 return true;
4573
4574         return false;
4575 }
4576
4577 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4578 {
4579         if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4580                 return true;
4581         return false;
4582 }
4583
4584 /*
4585  * Check to see if any of the runnable vcpus on the vcore have pending
4586  * exceptions or are no longer ceded
4587  */
4588 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4589 {
4590         struct kvm_vcpu *vcpu;
4591         int i;
4592
4593         for_each_runnable_thread(i, vcpu, vc) {
4594                 if (kvmppc_vcpu_check_block(vcpu))
4595                         return 1;
4596         }
4597
4598         return 0;
4599 }
4600
4601 /*
4602  * All the vcpus in this vcore are idle, so wait for a decrementer
4603  * or external interrupt to one of the vcpus.  vc->lock is held.
4604  */
4605 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4606 {
4607         ktime_t cur, start_poll, start_wait;
4608         int do_sleep = 1;
4609         u64 block_ns;
4610
4611         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4612
4613         /* Poll for pending exceptions and ceded state */
4614         cur = start_poll = ktime_get();
4615         if (vc->halt_poll_ns) {
4616                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4617                 ++vc->runner->stat.generic.halt_attempted_poll;
4618
4619                 vc->vcore_state = VCORE_POLLING;
4620                 spin_unlock(&vc->lock);
4621
4622                 do {
4623                         if (kvmppc_vcore_check_block(vc)) {
4624                                 do_sleep = 0;
4625                                 break;
4626                         }
4627                         cur = ktime_get();
4628                 } while (kvm_vcpu_can_poll(cur, stop));
4629
4630                 spin_lock(&vc->lock);
4631                 vc->vcore_state = VCORE_INACTIVE;
4632
4633                 if (!do_sleep) {
4634                         ++vc->runner->stat.generic.halt_successful_poll;
4635                         goto out;
4636                 }
4637         }
4638
4639         prepare_to_rcuwait(&vc->wait);
4640         set_current_state(TASK_INTERRUPTIBLE);
4641         if (kvmppc_vcore_check_block(vc)) {
4642                 finish_rcuwait(&vc->wait);
4643                 do_sleep = 0;
4644                 /* If we polled, count this as a successful poll */
4645                 if (vc->halt_poll_ns)
4646                         ++vc->runner->stat.generic.halt_successful_poll;
4647                 goto out;
4648         }
4649
4650         start_wait = ktime_get();
4651
4652         vc->vcore_state = VCORE_SLEEPING;
4653         trace_kvmppc_vcore_blocked(vc->runner, 0);
4654         spin_unlock(&vc->lock);
4655         schedule();
4656         finish_rcuwait(&vc->wait);
4657         spin_lock(&vc->lock);
4658         vc->vcore_state = VCORE_INACTIVE;
4659         trace_kvmppc_vcore_blocked(vc->runner, 1);
4660         ++vc->runner->stat.halt_successful_wait;
4661
4662         cur = ktime_get();
4663
4664 out:
4665         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4666
4667         /* Attribute wait time */
4668         if (do_sleep) {
4669                 vc->runner->stat.generic.halt_wait_ns +=
4670                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
4671                 KVM_STATS_LOG_HIST_UPDATE(
4672                                 vc->runner->stat.generic.halt_wait_hist,
4673                                 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4674                 /* Attribute failed poll time */
4675                 if (vc->halt_poll_ns) {
4676                         vc->runner->stat.generic.halt_poll_fail_ns +=
4677                                 ktime_to_ns(start_wait) -
4678                                 ktime_to_ns(start_poll);
4679                         KVM_STATS_LOG_HIST_UPDATE(
4680                                 vc->runner->stat.generic.halt_poll_fail_hist,
4681                                 ktime_to_ns(start_wait) -
4682                                 ktime_to_ns(start_poll));
4683                 }
4684         } else {
4685                 /* Attribute successful poll time */
4686                 if (vc->halt_poll_ns) {
4687                         vc->runner->stat.generic.halt_poll_success_ns +=
4688                                 ktime_to_ns(cur) -
4689                                 ktime_to_ns(start_poll);
4690                         KVM_STATS_LOG_HIST_UPDATE(
4691                                 vc->runner->stat.generic.halt_poll_success_hist,
4692                                 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4693                 }
4694         }
4695
4696         /* Adjust poll time */
4697         if (halt_poll_ns) {
4698                 if (block_ns <= vc->halt_poll_ns)
4699                         ;
4700                 /* We slept and blocked for longer than the max halt time */
4701                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4702                         shrink_halt_poll_ns(vc);
4703                 /* We slept and our poll time is too small */
4704                 else if (vc->halt_poll_ns < halt_poll_ns &&
4705                                 block_ns < halt_poll_ns)
4706                         grow_halt_poll_ns(vc);
4707                 if (vc->halt_poll_ns > halt_poll_ns)
4708                         vc->halt_poll_ns = halt_poll_ns;
4709         } else
4710                 vc->halt_poll_ns = 0;
4711
4712         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4713 }
4714
4715 /*
4716  * This never fails for a radix guest, as none of the operations it does
4717  * for a radix guest can fail or have a way to report failure.
4718  */
4719 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4720 {
4721         int r = 0;
4722         struct kvm *kvm = vcpu->kvm;
4723
4724         mutex_lock(&kvm->arch.mmu_setup_lock);
4725         if (!kvm->arch.mmu_ready) {
4726                 if (!kvm_is_radix(kvm))
4727                         r = kvmppc_hv_setup_htab_rma(vcpu);
4728                 if (!r) {
4729                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4730                                 kvmppc_setup_partition_table(kvm);
4731                         kvm->arch.mmu_ready = 1;
4732                 }
4733         }
4734         mutex_unlock(&kvm->arch.mmu_setup_lock);
4735         return r;
4736 }
4737
4738 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4739 {
4740         struct kvm_run *run = vcpu->run;
4741         int n_ceded, i, r;
4742         struct kvmppc_vcore *vc;
4743         struct kvm_vcpu *v;
4744
4745         trace_kvmppc_run_vcpu_enter(vcpu);
4746
4747         run->exit_reason = 0;
4748         vcpu->arch.ret = RESUME_GUEST;
4749         vcpu->arch.trap = 0;
4750         kvmppc_update_vpas(vcpu);
4751
4752         /*
4753          * Synchronize with other threads in this virtual core
4754          */
4755         vc = vcpu->arch.vcore;
4756         spin_lock(&vc->lock);
4757         vcpu->arch.ceded = 0;
4758         vcpu->arch.run_task = current;
4759         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4760         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4761         vcpu->arch.busy_preempt = TB_NIL;
4762         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4763         ++vc->n_runnable;
4764
4765         /*
4766          * This happens the first time this is called for a vcpu.
4767          * If the vcore is already running, we may be able to start
4768          * this thread straight away and have it join in.
4769          */
4770         if (!signal_pending(current)) {
4771                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4772                      vc->vcore_state == VCORE_RUNNING) &&
4773                            !VCORE_IS_EXITING(vc)) {
4774                         kvmppc_update_vpa_dispatch(vcpu, vc);
4775                         kvmppc_start_thread(vcpu, vc);
4776                         trace_kvm_guest_enter(vcpu);
4777                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4778                         rcuwait_wake_up(&vc->wait);
4779                 }
4780
4781         }
4782
4783         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4784                !signal_pending(current)) {
4785                 /* See if the MMU is ready to go */
4786                 if (!vcpu->kvm->arch.mmu_ready) {
4787                         spin_unlock(&vc->lock);
4788                         r = kvmhv_setup_mmu(vcpu);
4789                         spin_lock(&vc->lock);
4790                         if (r) {
4791                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4792                                 run->fail_entry.
4793                                         hardware_entry_failure_reason = 0;
4794                                 vcpu->arch.ret = r;
4795                                 break;
4796                         }
4797                 }
4798
4799                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4800                         kvmppc_vcore_end_preempt(vc);
4801
4802                 if (vc->vcore_state != VCORE_INACTIVE) {
4803                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4804                         continue;
4805                 }
4806                 for_each_runnable_thread(i, v, vc) {
4807                         kvmppc_core_prepare_to_enter(v);
4808                         if (signal_pending(v->arch.run_task)) {
4809                                 kvmppc_remove_runnable(vc, v, mftb());
4810                                 v->stat.signal_exits++;
4811                                 v->run->exit_reason = KVM_EXIT_INTR;
4812                                 v->arch.ret = -EINTR;
4813                                 wake_up(&v->arch.cpu_run);
4814                         }
4815                 }
4816                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4817                         break;
4818                 n_ceded = 0;
4819                 for_each_runnable_thread(i, v, vc) {
4820                         if (!kvmppc_vcpu_woken(v))
4821                                 n_ceded += v->arch.ceded;
4822                         else
4823                                 v->arch.ceded = 0;
4824                 }
4825                 vc->runner = vcpu;
4826                 if (n_ceded == vc->n_runnable) {
4827                         kvmppc_vcore_blocked(vc);
4828                 } else if (need_resched()) {
4829                         kvmppc_vcore_preempt(vc);
4830                         /* Let something else run */
4831                         cond_resched_lock(&vc->lock);
4832                         if (vc->vcore_state == VCORE_PREEMPT)
4833                                 kvmppc_vcore_end_preempt(vc);
4834                 } else {
4835                         kvmppc_run_core(vc);
4836                 }
4837                 vc->runner = NULL;
4838         }
4839
4840         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4841                (vc->vcore_state == VCORE_RUNNING ||
4842                 vc->vcore_state == VCORE_EXITING ||
4843                 vc->vcore_state == VCORE_PIGGYBACK))
4844                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4845
4846         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4847                 kvmppc_vcore_end_preempt(vc);
4848
4849         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4850                 kvmppc_remove_runnable(vc, vcpu, mftb());
4851                 vcpu->stat.signal_exits++;
4852                 run->exit_reason = KVM_EXIT_INTR;
4853                 vcpu->arch.ret = -EINTR;
4854         }
4855
4856         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4857                 /* Wake up some vcpu to run the core */
4858                 i = -1;
4859                 v = next_runnable_thread(vc, &i);
4860                 wake_up(&v->arch.cpu_run);
4861         }
4862
4863         trace_kvmppc_run_vcpu_exit(vcpu);
4864         spin_unlock(&vc->lock);
4865         return vcpu->arch.ret;
4866 }
4867
4868 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4869                           unsigned long lpcr)
4870 {
4871         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4872         struct kvm_run *run = vcpu->run;
4873         int trap, r, pcpu;
4874         int srcu_idx;
4875         struct kvmppc_vcore *vc;
4876         struct kvm *kvm = vcpu->kvm;
4877         struct kvm_nested_guest *nested = vcpu->arch.nested;
4878         unsigned long flags;
4879         u64 tb;
4880
4881         trace_kvmppc_run_vcpu_enter(vcpu);
4882
4883         run->exit_reason = 0;
4884         vcpu->arch.ret = RESUME_GUEST;
4885         vcpu->arch.trap = 0;
4886
4887         vc = vcpu->arch.vcore;
4888         vcpu->arch.ceded = 0;
4889         vcpu->arch.run_task = current;
4890         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4891
4892         /* See if the MMU is ready to go */
4893         if (unlikely(!kvm->arch.mmu_ready)) {
4894                 r = kvmhv_setup_mmu(vcpu);
4895                 if (r) {
4896                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4897                         run->fail_entry.hardware_entry_failure_reason = 0;
4898                         vcpu->arch.ret = r;
4899                         return r;
4900                 }
4901         }
4902
4903         if (need_resched())
4904                 cond_resched();
4905
4906         kvmppc_update_vpas(vcpu);
4907
4908         preempt_disable();
4909         pcpu = smp_processor_id();
4910         if (kvm_is_radix(kvm))
4911                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4912
4913         /* flags save not required, but irq_pmu has no disable/enable API */
4914         powerpc_local_irq_pmu_save(flags);
4915
4916         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4917
4918         if (signal_pending(current))
4919                 goto sigpend;
4920         if (need_resched() || !kvm->arch.mmu_ready)
4921                 goto out;
4922
4923         vcpu->cpu = pcpu;
4924         vcpu->arch.thread_cpu = pcpu;
4925         vc->pcpu = pcpu;
4926         local_paca->kvm_hstate.kvm_vcpu = vcpu;
4927         local_paca->kvm_hstate.ptid = 0;
4928         local_paca->kvm_hstate.fake_suspend = 0;
4929
4930         /*
4931          * Orders set cpu/thread_cpu vs testing for pending interrupts and
4932          * doorbells below. The other side is when these fields are set vs
4933          * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4934          * kick a vCPU to notice the pending interrupt.
4935          */
4936         smp_mb();
4937
4938         if (!nested) {
4939                 kvmppc_core_prepare_to_enter(vcpu);
4940                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4941                              &vcpu->arch.pending_exceptions) ||
4942                     xive_interrupt_pending(vcpu)) {
4943                         /*
4944                          * For nested HV, don't synthesize but always pass MER,
4945                          * the L0 will be able to optimise that more
4946                          * effectively than manipulating registers directly.
4947                          */
4948                         if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE))
4949                                 kvmppc_inject_interrupt_hv(vcpu,
4950                                                            BOOK3S_INTERRUPT_EXTERNAL, 0);
4951                         else
4952                                 lpcr |= LPCR_MER;
4953                 } else {
4954                         /*
4955                          * L1's copy of L2's LPCR (vcpu->arch.vcore->lpcr) can get its MER bit
4956                          * unexpectedly set - for e.g. during NMI handling when all register
4957                          * states are synchronized from L0 to L1. L1 needs to inform L0 about
4958                          * MER=1 only when there are pending external interrupts.
4959                          * In the above if check, MER bit is set if there are pending
4960                          * external interrupts. Hence, explicity mask off MER bit
4961                          * here as otherwise it may generate spurious interrupts in L2 KVM
4962                          * causing an endless loop, which results in L2 guest getting hung.
4963                          */
4964                         lpcr &= ~LPCR_MER;
4965                 }
4966         } else if (vcpu->arch.pending_exceptions ||
4967                    xive_interrupt_pending(vcpu)) {
4968                 vcpu->arch.ret = RESUME_HOST;
4969                 goto out;
4970         }
4971
4972         if (vcpu->arch.timer_running) {
4973                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4974                 vcpu->arch.timer_running = 0;
4975         }
4976
4977         tb = mftb();
4978
4979         kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu));
4980
4981         trace_kvm_guest_enter(vcpu);
4982
4983         guest_timing_enter_irqoff();
4984
4985         srcu_idx = srcu_read_lock(&kvm->srcu);
4986
4987         guest_state_enter_irqoff();
4988         this_cpu_disable_ftrace();
4989
4990         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4991         vcpu->arch.trap = trap;
4992
4993         this_cpu_enable_ftrace();
4994         guest_state_exit_irqoff();
4995
4996         srcu_read_unlock(&kvm->srcu, srcu_idx);
4997
4998         set_irq_happened(trap);
4999
5000         vcpu->cpu = -1;
5001         vcpu->arch.thread_cpu = -1;
5002         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
5003
5004         if (!vtime_accounting_enabled_this_cpu()) {
5005                 powerpc_local_irq_pmu_restore(flags);
5006                 /*
5007                  * Service IRQs here before guest_timing_exit_irqoff() so any
5008                  * ticks that occurred while running the guest are accounted to
5009                  * the guest. If vtime accounting is enabled, accounting uses
5010                  * TB rather than ticks, so it can be done without enabling
5011                  * interrupts here, which has the problem that it accounts
5012                  * interrupt processing overhead to the host.
5013                  */
5014                 powerpc_local_irq_pmu_save(flags);
5015         }
5016         guest_timing_exit_irqoff();
5017
5018         powerpc_local_irq_pmu_restore(flags);
5019
5020         preempt_enable();
5021
5022         /*
5023          * cancel pending decrementer exception if DEC is now positive, or if
5024          * entering a nested guest in which case the decrementer is now owned
5025          * by L2 and the L1 decrementer is provided in hdec_expires
5026          */
5027         if (kvmppc_core_pending_dec(vcpu) &&
5028                         ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
5029                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
5030                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
5031                 kvmppc_core_dequeue_dec(vcpu);
5032
5033         trace_kvm_guest_exit(vcpu);
5034         r = RESUME_GUEST;
5035         if (trap) {
5036                 if (!nested)
5037                         r = kvmppc_handle_exit_hv(vcpu, current);
5038                 else
5039                         r = kvmppc_handle_nested_exit(vcpu);
5040         }
5041         vcpu->arch.ret = r;
5042
5043         if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
5044                 kvmppc_set_timer(vcpu);
5045
5046                 prepare_to_rcuwait(wait);
5047                 for (;;) {
5048                         set_current_state(TASK_INTERRUPTIBLE);
5049                         if (signal_pending(current)) {
5050                                 vcpu->stat.signal_exits++;
5051                                 run->exit_reason = KVM_EXIT_INTR;
5052                                 vcpu->arch.ret = -EINTR;
5053                                 break;
5054                         }
5055
5056                         if (kvmppc_vcpu_check_block(vcpu))
5057                                 break;
5058
5059                         trace_kvmppc_vcore_blocked(vcpu, 0);
5060                         schedule();
5061                         trace_kvmppc_vcore_blocked(vcpu, 1);
5062                 }
5063                 finish_rcuwait(wait);
5064         }
5065         vcpu->arch.ceded = 0;
5066
5067  done:
5068         trace_kvmppc_run_vcpu_exit(vcpu);
5069
5070         return vcpu->arch.ret;
5071
5072  sigpend:
5073         vcpu->stat.signal_exits++;
5074         run->exit_reason = KVM_EXIT_INTR;
5075         vcpu->arch.ret = -EINTR;
5076  out:
5077         vcpu->cpu = -1;
5078         vcpu->arch.thread_cpu = -1;
5079         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
5080         powerpc_local_irq_pmu_restore(flags);
5081         preempt_enable();
5082         goto done;
5083 }
5084
5085 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
5086 {
5087         struct kvm_run *run = vcpu->run;
5088         int r;
5089         int srcu_idx;
5090         struct kvm *kvm;
5091         unsigned long msr;
5092
5093         start_timing(vcpu, &vcpu->arch.vcpu_entry);
5094
5095         if (!vcpu->arch.sane) {
5096                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5097                 return -EINVAL;
5098         }
5099
5100         /* No need to go into the guest when all we'll do is come back out */
5101         if (signal_pending(current)) {
5102                 run->exit_reason = KVM_EXIT_INTR;
5103                 return -EINTR;
5104         }
5105
5106 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
5107         /*
5108          * Don't allow entry with a suspended transaction, because
5109          * the guest entry/exit code will lose it.
5110          */
5111         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
5112             (current->thread.regs->msr & MSR_TM)) {
5113                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
5114                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5115                         run->fail_entry.hardware_entry_failure_reason = 0;
5116                         return -EINVAL;
5117                 }
5118         }
5119 #endif
5120
5121         /*
5122          * Force online to 1 for the sake of old userspace which doesn't
5123          * set it.
5124          */
5125         if (!vcpu->arch.online) {
5126                 atomic_inc(&vcpu->arch.vcore->online_count);
5127                 vcpu->arch.online = 1;
5128         }
5129
5130         kvmppc_core_prepare_to_enter(vcpu);
5131
5132         kvm = vcpu->kvm;
5133         atomic_inc(&kvm->arch.vcpus_running);
5134         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
5135         smp_mb();
5136
5137         msr = 0;
5138         if (IS_ENABLED(CONFIG_PPC_FPU))
5139                 msr |= MSR_FP;
5140         if (cpu_has_feature(CPU_FTR_ALTIVEC))
5141                 msr |= MSR_VEC;
5142         if (cpu_has_feature(CPU_FTR_VSX))
5143                 msr |= MSR_VSX;
5144         if ((cpu_has_feature(CPU_FTR_TM) ||
5145             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
5146                         (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
5147                 msr |= MSR_TM;
5148         msr = msr_check_and_set(msr);
5149
5150         kvmppc_save_user_regs();
5151
5152         kvmppc_save_current_sprs();
5153
5154         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5155                 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
5156         vcpu->arch.pgdir = kvm->mm->pgd;
5157         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
5158
5159         do {
5160                 accumulate_time(vcpu, &vcpu->arch.guest_entry);
5161                 if (cpu_has_feature(CPU_FTR_ARCH_300))
5162                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
5163                                                   vcpu->arch.vcore->lpcr);
5164                 else
5165                         r = kvmppc_run_vcpu(vcpu);
5166
5167                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
5168                         accumulate_time(vcpu, &vcpu->arch.hcall);
5169
5170                         if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
5171                                 /*
5172                                  * These should have been caught reflected
5173                                  * into the guest by now. Final sanity check:
5174                                  * don't allow userspace to execute hcalls in
5175                                  * the hypervisor.
5176                                  */
5177                                 r = RESUME_GUEST;
5178                                 continue;
5179                         }
5180                         trace_kvm_hcall_enter(vcpu);
5181                         r = kvmppc_pseries_do_hcall(vcpu);
5182                         trace_kvm_hcall_exit(vcpu, r);
5183                         kvmppc_core_prepare_to_enter(vcpu);
5184                 } else if (r == RESUME_PAGE_FAULT) {
5185                         accumulate_time(vcpu, &vcpu->arch.pg_fault);
5186                         srcu_idx = srcu_read_lock(&kvm->srcu);
5187                         r = kvmppc_book3s_hv_page_fault(vcpu,
5188                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
5189                         srcu_read_unlock(&kvm->srcu, srcu_idx);
5190                 } else if (r == RESUME_PASSTHROUGH) {
5191                         if (WARN_ON(xics_on_xive()))
5192                                 r = H_SUCCESS;
5193                         else
5194                                 r = kvmppc_xics_rm_complete(vcpu, 0);
5195                 }
5196         } while (is_kvmppc_resume_guest(r));
5197         accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
5198
5199         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
5200         atomic_dec(&kvm->arch.vcpus_running);
5201
5202         srr_regs_clobbered();
5203
5204         end_timing(vcpu);
5205
5206         return r;
5207 }
5208
5209 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
5210                                      int shift, int sllp)
5211 {
5212         (*sps)->page_shift = shift;
5213         (*sps)->slb_enc = sllp;
5214         (*sps)->enc[0].page_shift = shift;
5215         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
5216         /*
5217          * Add 16MB MPSS support (may get filtered out by userspace)
5218          */
5219         if (shift != 24) {
5220                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
5221                 if (penc != -1) {
5222                         (*sps)->enc[1].page_shift = 24;
5223                         (*sps)->enc[1].pte_enc = penc;
5224                 }
5225         }
5226         (*sps)++;
5227 }
5228
5229 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
5230                                          struct kvm_ppc_smmu_info *info)
5231 {
5232         struct kvm_ppc_one_seg_page_size *sps;
5233
5234         /*
5235          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
5236          * POWER7 doesn't support keys for instruction accesses,
5237          * POWER8 and POWER9 do.
5238          */
5239         info->data_keys = 32;
5240         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
5241
5242         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
5243         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
5244         info->slb_size = 32;
5245
5246         /* We only support these sizes for now, and no muti-size segments */
5247         sps = &info->sps[0];
5248         kvmppc_add_seg_page_size(&sps, 12, 0);
5249         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
5250         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
5251
5252         /* If running as a nested hypervisor, we don't support HPT guests */
5253         if (kvmhv_on_pseries())
5254                 info->flags |= KVM_PPC_NO_HASH;
5255
5256         return 0;
5257 }
5258
5259 /*
5260  * Get (and clear) the dirty memory log for a memory slot.
5261  */
5262 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
5263                                          struct kvm_dirty_log *log)
5264 {
5265         struct kvm_memslots *slots;
5266         struct kvm_memory_slot *memslot;
5267         int r;
5268         unsigned long n, i;
5269         unsigned long *buf, *p;
5270         struct kvm_vcpu *vcpu;
5271
5272         mutex_lock(&kvm->slots_lock);
5273
5274         r = -EINVAL;
5275         if (log->slot >= KVM_USER_MEM_SLOTS)
5276                 goto out;
5277
5278         slots = kvm_memslots(kvm);
5279         memslot = id_to_memslot(slots, log->slot);
5280         r = -ENOENT;
5281         if (!memslot || !memslot->dirty_bitmap)
5282                 goto out;
5283
5284         /*
5285          * Use second half of bitmap area because both HPT and radix
5286          * accumulate bits in the first half.
5287          */
5288         n = kvm_dirty_bitmap_bytes(memslot);
5289         buf = memslot->dirty_bitmap + n / sizeof(long);
5290         memset(buf, 0, n);
5291
5292         if (kvm_is_radix(kvm))
5293                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
5294         else
5295                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
5296         if (r)
5297                 goto out;
5298
5299         /*
5300          * We accumulate dirty bits in the first half of the
5301          * memslot's dirty_bitmap area, for when pages are paged
5302          * out or modified by the host directly.  Pick up these
5303          * bits and add them to the map.
5304          */
5305         p = memslot->dirty_bitmap;
5306         for (i = 0; i < n / sizeof(long); ++i)
5307                 buf[i] |= xchg(&p[i], 0);
5308
5309         /* Harvest dirty bits from VPA and DTL updates */
5310         /* Note: we never modify the SLB shadow buffer areas */
5311         kvm_for_each_vcpu(i, vcpu, kvm) {
5312                 spin_lock(&vcpu->arch.vpa_update_lock);
5313                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5314                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5315                 spin_unlock(&vcpu->arch.vpa_update_lock);
5316         }
5317
5318         r = -EFAULT;
5319         if (copy_to_user(log->dirty_bitmap, buf, n))
5320                 goto out;
5321
5322         r = 0;
5323 out:
5324         mutex_unlock(&kvm->slots_lock);
5325         return r;
5326 }
5327
5328 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5329 {
5330         vfree(slot->arch.rmap);
5331         slot->arch.rmap = NULL;
5332 }
5333
5334 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5335                                 const struct kvm_memory_slot *old,
5336                                 struct kvm_memory_slot *new,
5337                                 enum kvm_mr_change change)
5338 {
5339         if (change == KVM_MR_CREATE) {
5340                 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5341
5342                 if ((size >> PAGE_SHIFT) > totalram_pages())
5343                         return -ENOMEM;
5344
5345                 new->arch.rmap = vzalloc(size);
5346                 if (!new->arch.rmap)
5347                         return -ENOMEM;
5348         } else if (change != KVM_MR_DELETE) {
5349                 new->arch.rmap = old->arch.rmap;
5350         }
5351
5352         return 0;
5353 }
5354
5355 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5356                                 struct kvm_memory_slot *old,
5357                                 const struct kvm_memory_slot *new,
5358                                 enum kvm_mr_change change)
5359 {
5360         /*
5361          * If we are creating or modifying a memslot, it might make
5362          * some address that was previously cached as emulated
5363          * MMIO be no longer emulated MMIO, so invalidate
5364          * all the caches of emulated MMIO translations.
5365          */
5366         if (change != KVM_MR_DELETE)
5367                 atomic64_inc(&kvm->arch.mmio_update);
5368
5369         /*
5370          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5371          * have already called kvm_arch_flush_shadow_memslot() to
5372          * flush shadow mappings.  For KVM_MR_CREATE we have no
5373          * previous mappings.  So the only case to handle is
5374          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5375          * has been changed.
5376          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5377          * to get rid of any THP PTEs in the partition-scoped page tables
5378          * so we can track dirtiness at the page level; we flush when
5379          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5380          * using THP PTEs.
5381          */
5382         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5383             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5384                 kvmppc_radix_flush_memslot(kvm, old);
5385         /*
5386          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5387          */
5388         if (!kvm->arch.secure_guest)
5389                 return;
5390
5391         switch (change) {
5392         case KVM_MR_CREATE:
5393                 /*
5394                  * @TODO kvmppc_uvmem_memslot_create() can fail and
5395                  * return error. Fix this.
5396                  */
5397                 kvmppc_uvmem_memslot_create(kvm, new);
5398                 break;
5399         case KVM_MR_DELETE:
5400                 kvmppc_uvmem_memslot_delete(kvm, old);
5401                 break;
5402         default:
5403                 /* TODO: Handle KVM_MR_MOVE */
5404                 break;
5405         }
5406 }
5407
5408 /*
5409  * Update LPCR values in kvm->arch and in vcores.
5410  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5411  * of kvm->arch.lpcr update).
5412  */
5413 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5414 {
5415         long int i;
5416         u32 cores_done = 0;
5417
5418         if ((kvm->arch.lpcr & mask) == lpcr)
5419                 return;
5420
5421         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5422
5423         for (i = 0; i < KVM_MAX_VCORES; ++i) {
5424                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5425                 if (!vc)
5426                         continue;
5427
5428                 spin_lock(&vc->lock);
5429                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5430                 verify_lpcr(kvm, vc->lpcr);
5431                 spin_unlock(&vc->lock);
5432                 if (++cores_done >= kvm->arch.online_vcores)
5433                         break;
5434         }
5435
5436         if (kvmhv_is_nestedv2()) {
5437                 struct kvm_vcpu *vcpu;
5438
5439                 kvm_for_each_vcpu(i, vcpu, kvm) {
5440                         kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
5441                 }
5442         }
5443 }
5444
5445 void kvmppc_setup_partition_table(struct kvm *kvm)
5446 {
5447         unsigned long dw0, dw1;
5448
5449         if (!kvm_is_radix(kvm)) {
5450                 /* PS field - page size for VRMA */
5451                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5452                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5453                 /* HTABSIZE and HTABORG fields */
5454                 dw0 |= kvm->arch.sdr1;
5455
5456                 /* Second dword as set by userspace */
5457                 dw1 = kvm->arch.process_table;
5458         } else {
5459                 dw0 = PATB_HR | radix__get_tree_size() |
5460                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5461                 dw1 = PATB_GR | kvm->arch.process_table;
5462         }
5463         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5464 }
5465
5466 /*
5467  * Set up HPT (hashed page table) and RMA (real-mode area).
5468  * Must be called with kvm->arch.mmu_setup_lock held.
5469  */
5470 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5471 {
5472         int err = 0;
5473         struct kvm *kvm = vcpu->kvm;
5474         unsigned long hva;
5475         struct kvm_memory_slot *memslot;
5476         struct vm_area_struct *vma;
5477         unsigned long lpcr = 0, senc;
5478         unsigned long psize, porder;
5479         int srcu_idx;
5480
5481         /* Allocate hashed page table (if not done already) and reset it */
5482         if (!kvm->arch.hpt.virt) {
5483                 int order = KVM_DEFAULT_HPT_ORDER;
5484                 struct kvm_hpt_info info;
5485
5486                 err = kvmppc_allocate_hpt(&info, order);
5487                 /* If we get here, it means userspace didn't specify a
5488                  * size explicitly.  So, try successively smaller
5489                  * sizes if the default failed. */
5490                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5491                         err  = kvmppc_allocate_hpt(&info, order);
5492
5493                 if (err < 0) {
5494                         pr_err("KVM: Couldn't alloc HPT\n");
5495                         goto out;
5496                 }
5497
5498                 kvmppc_set_hpt(kvm, &info);
5499         }
5500
5501         /* Look up the memslot for guest physical address 0 */
5502         srcu_idx = srcu_read_lock(&kvm->srcu);
5503         memslot = gfn_to_memslot(kvm, 0);
5504
5505         /* We must have some memory at 0 by now */
5506         err = -EINVAL;
5507         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5508                 goto out_srcu;
5509
5510         /* Look up the VMA for the start of this memory slot */
5511         hva = memslot->userspace_addr;
5512         mmap_read_lock(kvm->mm);
5513         vma = vma_lookup(kvm->mm, hva);
5514         if (!vma || (vma->vm_flags & VM_IO))
5515                 goto up_out;
5516
5517         psize = vma_kernel_pagesize(vma);
5518
5519         mmap_read_unlock(kvm->mm);
5520
5521         /* We can handle 4k, 64k or 16M pages in the VRMA */
5522         if (psize >= 0x1000000)
5523                 psize = 0x1000000;
5524         else if (psize >= 0x10000)
5525                 psize = 0x10000;
5526         else
5527                 psize = 0x1000;
5528         porder = __ilog2(psize);
5529
5530         senc = slb_pgsize_encoding(psize);
5531         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5532                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5533         /* Create HPTEs in the hash page table for the VRMA */
5534         kvmppc_map_vrma(vcpu, memslot, porder);
5535
5536         /* Update VRMASD field in the LPCR */
5537         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5538                 /* the -4 is to account for senc values starting at 0x10 */
5539                 lpcr = senc << (LPCR_VRMASD_SH - 4);
5540                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5541         }
5542
5543         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5544         smp_wmb();
5545         err = 0;
5546  out_srcu:
5547         srcu_read_unlock(&kvm->srcu, srcu_idx);
5548  out:
5549         return err;
5550
5551  up_out:
5552         mmap_read_unlock(kvm->mm);
5553         goto out_srcu;
5554 }
5555
5556 /*
5557  * Must be called with kvm->arch.mmu_setup_lock held and
5558  * mmu_ready = 0 and no vcpus running.
5559  */
5560 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5561 {
5562         unsigned long lpcr, lpcr_mask;
5563
5564         if (nesting_enabled(kvm))
5565                 kvmhv_release_all_nested(kvm);
5566         kvmppc_rmap_reset(kvm);
5567         kvm->arch.process_table = 0;
5568         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5569         spin_lock(&kvm->mmu_lock);
5570         kvm->arch.radix = 0;
5571         spin_unlock(&kvm->mmu_lock);
5572         kvmppc_free_radix(kvm);
5573
5574         lpcr = LPCR_VPM1;
5575         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5576         if (cpu_has_feature(CPU_FTR_ARCH_31))
5577                 lpcr_mask |= LPCR_HAIL;
5578         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5579
5580         return 0;
5581 }
5582
5583 /*
5584  * Must be called with kvm->arch.mmu_setup_lock held and
5585  * mmu_ready = 0 and no vcpus running.
5586  */
5587 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5588 {
5589         unsigned long lpcr, lpcr_mask;
5590         int err;
5591
5592         err = kvmppc_init_vm_radix(kvm);
5593         if (err)
5594                 return err;
5595         kvmppc_rmap_reset(kvm);
5596         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5597         spin_lock(&kvm->mmu_lock);
5598         kvm->arch.radix = 1;
5599         spin_unlock(&kvm->mmu_lock);
5600         kvmppc_free_hpt(&kvm->arch.hpt);
5601
5602         lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5603         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5604         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5605                 lpcr_mask |= LPCR_HAIL;
5606                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5607                                 (kvm->arch.host_lpcr & LPCR_HAIL))
5608                         lpcr |= LPCR_HAIL;
5609         }
5610         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5611
5612         return 0;
5613 }
5614
5615 #ifdef CONFIG_KVM_XICS
5616 /*
5617  * Allocate a per-core structure for managing state about which cores are
5618  * running in the host versus the guest and for exchanging data between
5619  * real mode KVM and CPU running in the host.
5620  * This is only done for the first VM.
5621  * The allocated structure stays even if all VMs have stopped.
5622  * It is only freed when the kvm-hv module is unloaded.
5623  * It's OK for this routine to fail, we just don't support host
5624  * core operations like redirecting H_IPI wakeups.
5625  */
5626 void kvmppc_alloc_host_rm_ops(void)
5627 {
5628         struct kvmppc_host_rm_ops *ops;
5629         unsigned long l_ops;
5630         int cpu, core;
5631         int size;
5632
5633         if (cpu_has_feature(CPU_FTR_ARCH_300))
5634                 return;
5635
5636         /* Not the first time here ? */
5637         if (kvmppc_host_rm_ops_hv != NULL)
5638                 return;
5639
5640         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5641         if (!ops)
5642                 return;
5643
5644         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5645         ops->rm_core = kzalloc(size, GFP_KERNEL);
5646
5647         if (!ops->rm_core) {
5648                 kfree(ops);
5649                 return;
5650         }
5651
5652         cpus_read_lock();
5653
5654         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5655                 if (!cpu_online(cpu))
5656                         continue;
5657
5658                 core = cpu >> threads_shift;
5659                 ops->rm_core[core].rm_state.in_host = 1;
5660         }
5661
5662         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5663
5664         /*
5665          * Make the contents of the kvmppc_host_rm_ops structure visible
5666          * to other CPUs before we assign it to the global variable.
5667          * Do an atomic assignment (no locks used here), but if someone
5668          * beats us to it, just free our copy and return.
5669          */
5670         smp_wmb();
5671         l_ops = (unsigned long) ops;
5672
5673         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5674                 cpus_read_unlock();
5675                 kfree(ops->rm_core);
5676                 kfree(ops);
5677                 return;
5678         }
5679
5680         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5681                                              "ppc/kvm_book3s:prepare",
5682                                              kvmppc_set_host_core,
5683                                              kvmppc_clear_host_core);
5684         cpus_read_unlock();
5685 }
5686
5687 void kvmppc_free_host_rm_ops(void)
5688 {
5689         if (kvmppc_host_rm_ops_hv) {
5690                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5691                 kfree(kvmppc_host_rm_ops_hv->rm_core);
5692                 kfree(kvmppc_host_rm_ops_hv);
5693                 kvmppc_host_rm_ops_hv = NULL;
5694         }
5695 }
5696 #endif
5697
5698 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5699 {
5700         unsigned long lpcr, lpid;
5701         int ret;
5702
5703         mutex_init(&kvm->arch.uvmem_lock);
5704         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5705         mutex_init(&kvm->arch.mmu_setup_lock);
5706
5707         /* Allocate the guest's logical partition ID */
5708
5709         if (!kvmhv_is_nestedv2()) {
5710                 lpid = kvmppc_alloc_lpid();
5711                 if ((long)lpid < 0)
5712                         return -ENOMEM;
5713                 kvm->arch.lpid = lpid;
5714         }
5715
5716         kvmppc_alloc_host_rm_ops();
5717
5718         kvmhv_vm_nested_init(kvm);
5719
5720         if (kvmhv_is_nestedv2()) {
5721                 long rc;
5722                 unsigned long guest_id;
5723
5724                 rc = plpar_guest_create(0, &guest_id);
5725
5726                 if (rc != H_SUCCESS)
5727                         pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc);
5728
5729                 switch (rc) {
5730                 case H_PARAMETER:
5731                 case H_FUNCTION:
5732                 case H_STATE:
5733                         return -EINVAL;
5734                 case H_NOT_ENOUGH_RESOURCES:
5735                 case H_ABORTED:
5736                         return -ENOMEM;
5737                 case H_AUTHORITY:
5738                         return -EPERM;
5739                 case H_NOT_AVAILABLE:
5740                         return -EBUSY;
5741                 }
5742                 kvm->arch.lpid = guest_id;
5743         }
5744
5745
5746         /*
5747          * Since we don't flush the TLB when tearing down a VM,
5748          * and this lpid might have previously been used,
5749          * make sure we flush on each core before running the new VM.
5750          * On POWER9, the tlbie in mmu_partition_table_set_entry()
5751          * does this flush for us.
5752          */
5753         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5754                 cpumask_setall(&kvm->arch.need_tlb_flush);
5755
5756         /* Start out with the default set of hcalls enabled */
5757         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5758                sizeof(kvm->arch.enabled_hcalls));
5759
5760         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5761                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5762
5763         /* Init LPCR for virtual RMA mode */
5764         if (cpu_has_feature(CPU_FTR_HVMODE)) {
5765                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5766                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5767                 lpcr &= LPCR_PECE | LPCR_LPES;
5768         } else {
5769                 /*
5770                  * The L2 LPES mode will be set by the L0 according to whether
5771                  * or not it needs to take external interrupts in HV mode.
5772                  */
5773                 lpcr = 0;
5774         }
5775         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5776                 LPCR_VPM0 | LPCR_VPM1;
5777         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5778                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5779         /* On POWER8 turn on online bit to enable PURR/SPURR */
5780         if (cpu_has_feature(CPU_FTR_ARCH_207S))
5781                 lpcr |= LPCR_ONL;
5782         /*
5783          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5784          * Set HVICE bit to enable hypervisor virtualization interrupts.
5785          * Set HEIC to prevent OS interrupts to go to hypervisor (should
5786          * be unnecessary but better safe than sorry in case we re-enable
5787          * EE in HV mode with this LPCR still set)
5788          */
5789         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5790                 lpcr &= ~LPCR_VPM0;
5791                 lpcr |= LPCR_HVICE | LPCR_HEIC;
5792
5793                 /*
5794                  * If xive is enabled, we route 0x500 interrupts directly
5795                  * to the guest.
5796                  */
5797                 if (xics_on_xive())
5798                         lpcr |= LPCR_LPES;
5799         }
5800
5801         /*
5802          * If the host uses radix, the guest starts out as radix.
5803          */
5804         if (radix_enabled()) {
5805                 kvm->arch.radix = 1;
5806                 kvm->arch.mmu_ready = 1;
5807                 lpcr &= ~LPCR_VPM1;
5808                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5809                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5810                     cpu_has_feature(CPU_FTR_ARCH_31) &&
5811                     (kvm->arch.host_lpcr & LPCR_HAIL))
5812                         lpcr |= LPCR_HAIL;
5813                 ret = kvmppc_init_vm_radix(kvm);
5814                 if (ret) {
5815                         if (kvmhv_is_nestedv2())
5816                                 plpar_guest_delete(0, kvm->arch.lpid);
5817                         else
5818                                 kvmppc_free_lpid(kvm->arch.lpid);
5819                         return ret;
5820                 }
5821                 kvmppc_setup_partition_table(kvm);
5822         }
5823
5824         verify_lpcr(kvm, lpcr);
5825         kvm->arch.lpcr = lpcr;
5826
5827         /* Initialization for future HPT resizes */
5828         kvm->arch.resize_hpt = NULL;
5829
5830         /*
5831          * Work out how many sets the TLB has, for the use of
5832          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5833          */
5834         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5835                 /*
5836                  * P10 will flush all the congruence class with a single tlbiel
5837                  */
5838                 kvm->arch.tlb_sets = 1;
5839         } else if (radix_enabled())
5840                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5841         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5842                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5843         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5844                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5845         else
5846                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5847
5848         /*
5849          * Track that we now have a HV mode VM active. This blocks secondary
5850          * CPU threads from coming online.
5851          */
5852         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5853                 kvm_hv_vm_activated();
5854
5855         /*
5856          * Initialize smt_mode depending on processor.
5857          * POWER8 and earlier have to use "strict" threading, where
5858          * all vCPUs in a vcore have to run on the same (sub)core,
5859          * whereas on POWER9 the threads can each run a different
5860          * guest.
5861          */
5862         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5863                 kvm->arch.smt_mode = threads_per_subcore;
5864         else
5865                 kvm->arch.smt_mode = 1;
5866         kvm->arch.emul_smt_mode = 1;
5867
5868         return 0;
5869 }
5870
5871 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5872 {
5873         kvmppc_mmu_debugfs_init(kvm);
5874         if (radix_enabled())
5875                 kvmhv_radix_debugfs_init(kvm);
5876         return 0;
5877 }
5878
5879 static void kvmppc_free_vcores(struct kvm *kvm)
5880 {
5881         long int i;
5882
5883         for (i = 0; i < KVM_MAX_VCORES; ++i)
5884                 kfree(kvm->arch.vcores[i]);
5885         kvm->arch.online_vcores = 0;
5886 }
5887
5888 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5889 {
5890         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5891                 kvm_hv_vm_deactivated();
5892
5893         kvmppc_free_vcores(kvm);
5894
5895
5896         if (kvm_is_radix(kvm))
5897                 kvmppc_free_radix(kvm);
5898         else
5899                 kvmppc_free_hpt(&kvm->arch.hpt);
5900
5901         /* Perform global invalidation and return lpid to the pool */
5902         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5903                 if (nesting_enabled(kvm))
5904                         kvmhv_release_all_nested(kvm);
5905                 kvm->arch.process_table = 0;
5906                 if (kvm->arch.secure_guest)
5907                         uv_svm_terminate(kvm->arch.lpid);
5908                 if (!kvmhv_is_nestedv2())
5909                         kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5910         }
5911
5912         if (kvmhv_is_nestedv2()) {
5913                 kvmhv_flush_lpid(kvm->arch.lpid);
5914                 plpar_guest_delete(0, kvm->arch.lpid);
5915         } else {
5916                 kvmppc_free_lpid(kvm->arch.lpid);
5917         }
5918
5919         kvmppc_free_pimap(kvm);
5920 }
5921
5922 /* We don't need to emulate any privileged instructions or dcbz */
5923 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5924                                      unsigned int inst, int *advance)
5925 {
5926         return EMULATE_FAIL;
5927 }
5928
5929 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5930                                         ulong spr_val)
5931 {
5932         return EMULATE_FAIL;
5933 }
5934
5935 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5936                                         ulong *spr_val)
5937 {
5938         return EMULATE_FAIL;
5939 }
5940
5941 static int kvmppc_core_check_processor_compat_hv(void)
5942 {
5943         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5944             cpu_has_feature(CPU_FTR_ARCH_206))
5945                 return 0;
5946
5947         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5948         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5949                 return 0;
5950
5951         return -EIO;
5952 }
5953
5954 #ifdef CONFIG_KVM_XICS
5955
5956 void kvmppc_free_pimap(struct kvm *kvm)
5957 {
5958         kfree(kvm->arch.pimap);
5959 }
5960
5961 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5962 {
5963         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5964 }
5965
5966 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5967 {
5968         struct irq_desc *desc;
5969         struct kvmppc_irq_map *irq_map;
5970         struct kvmppc_passthru_irqmap *pimap;
5971         struct irq_chip *chip;
5972         int i, rc = 0;
5973         struct irq_data *host_data;
5974
5975         if (!kvm_irq_bypass)
5976                 return 1;
5977
5978         desc = irq_to_desc(host_irq);
5979         if (!desc)
5980                 return -EIO;
5981
5982         mutex_lock(&kvm->lock);
5983
5984         pimap = kvm->arch.pimap;
5985         if (pimap == NULL) {
5986                 /* First call, allocate structure to hold IRQ map */
5987                 pimap = kvmppc_alloc_pimap();
5988                 if (pimap == NULL) {
5989                         mutex_unlock(&kvm->lock);
5990                         return -ENOMEM;
5991                 }
5992                 kvm->arch.pimap = pimap;
5993         }
5994
5995         /*
5996          * For now, we only support interrupts for which the EOI operation
5997          * is an OPAL call followed by a write to XIRR, since that's
5998          * what our real-mode EOI code does, or a XIVE interrupt
5999          */
6000         chip = irq_data_get_irq_chip(&desc->irq_data);
6001         if (!chip || !is_pnv_opal_msi(chip)) {
6002                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
6003                         host_irq, guest_gsi);
6004                 mutex_unlock(&kvm->lock);
6005                 return -ENOENT;
6006         }
6007
6008         /*
6009          * See if we already have an entry for this guest IRQ number.
6010          * If it's mapped to a hardware IRQ number, that's an error,
6011          * otherwise re-use this entry.
6012          */
6013         for (i = 0; i < pimap->n_mapped; i++) {
6014                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
6015                         if (pimap->mapped[i].r_hwirq) {
6016                                 mutex_unlock(&kvm->lock);
6017                                 return -EINVAL;
6018                         }
6019                         break;
6020                 }
6021         }
6022
6023         if (i == KVMPPC_PIRQ_MAPPED) {
6024                 mutex_unlock(&kvm->lock);
6025                 return -EAGAIN;         /* table is full */
6026         }
6027
6028         irq_map = &pimap->mapped[i];
6029
6030         irq_map->v_hwirq = guest_gsi;
6031         irq_map->desc = desc;
6032
6033         /*
6034          * Order the above two stores before the next to serialize with
6035          * the KVM real mode handler.
6036          */
6037         smp_wmb();
6038
6039         /*
6040          * The 'host_irq' number is mapped in the PCI-MSI domain but
6041          * the underlying calls, which will EOI the interrupt in real
6042          * mode, need an HW IRQ number mapped in the XICS IRQ domain.
6043          */
6044         host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
6045         irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
6046
6047         if (i == pimap->n_mapped)
6048                 pimap->n_mapped++;
6049
6050         if (xics_on_xive())
6051                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
6052         else
6053                 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
6054         if (rc)
6055                 irq_map->r_hwirq = 0;
6056
6057         mutex_unlock(&kvm->lock);
6058
6059         return 0;
6060 }
6061
6062 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
6063 {
6064         struct irq_desc *desc;
6065         struct kvmppc_passthru_irqmap *pimap;
6066         int i, rc = 0;
6067
6068         if (!kvm_irq_bypass)
6069                 return 0;
6070
6071         desc = irq_to_desc(host_irq);
6072         if (!desc)
6073                 return -EIO;
6074
6075         mutex_lock(&kvm->lock);
6076         if (!kvm->arch.pimap)
6077                 goto unlock;
6078
6079         pimap = kvm->arch.pimap;
6080
6081         for (i = 0; i < pimap->n_mapped; i++) {
6082                 if (guest_gsi == pimap->mapped[i].v_hwirq)
6083                         break;
6084         }
6085
6086         if (i == pimap->n_mapped) {
6087                 mutex_unlock(&kvm->lock);
6088                 return -ENODEV;
6089         }
6090
6091         if (xics_on_xive())
6092                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
6093         else
6094                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
6095
6096         /* invalidate the entry (what to do on error from the above ?) */
6097         pimap->mapped[i].r_hwirq = 0;
6098
6099         /*
6100          * We don't free this structure even when the count goes to
6101          * zero. The structure is freed when we destroy the VM.
6102          */
6103  unlock:
6104         mutex_unlock(&kvm->lock);
6105         return rc;
6106 }
6107
6108 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
6109                                              struct irq_bypass_producer *prod)
6110 {
6111         int ret = 0;
6112         struct kvm_kernel_irqfd *irqfd =
6113                 container_of(cons, struct kvm_kernel_irqfd, consumer);
6114
6115         irqfd->producer = prod;
6116
6117         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
6118         if (ret)
6119                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
6120                         prod->irq, irqfd->gsi, ret);
6121
6122         return ret;
6123 }
6124
6125 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
6126                                               struct irq_bypass_producer *prod)
6127 {
6128         int ret;
6129         struct kvm_kernel_irqfd *irqfd =
6130                 container_of(cons, struct kvm_kernel_irqfd, consumer);
6131
6132         irqfd->producer = NULL;
6133
6134         /*
6135          * When producer of consumer is unregistered, we change back to
6136          * default external interrupt handling mode - KVM real mode
6137          * will switch back to host.
6138          */
6139         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
6140         if (ret)
6141                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
6142                         prod->irq, irqfd->gsi, ret);
6143 }
6144 #endif
6145
6146 static int kvm_arch_vm_ioctl_hv(struct file *filp,
6147                                 unsigned int ioctl, unsigned long arg)
6148 {
6149         struct kvm *kvm __maybe_unused = filp->private_data;
6150         void __user *argp = (void __user *)arg;
6151         int r;
6152
6153         switch (ioctl) {
6154
6155         case KVM_PPC_ALLOCATE_HTAB: {
6156                 u32 htab_order;
6157
6158                 /* If we're a nested hypervisor, we currently only support radix */
6159                 if (kvmhv_on_pseries()) {
6160                         r = -EOPNOTSUPP;
6161                         break;
6162                 }
6163
6164                 r = -EFAULT;
6165                 if (get_user(htab_order, (u32 __user *)argp))
6166                         break;
6167                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
6168                 if (r)
6169                         break;
6170                 r = 0;
6171                 break;
6172         }
6173
6174         case KVM_PPC_GET_HTAB_FD: {
6175                 struct kvm_get_htab_fd ghf;
6176
6177                 r = -EFAULT;
6178                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
6179                         break;
6180                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
6181                 break;
6182         }
6183
6184         case KVM_PPC_RESIZE_HPT_PREPARE: {
6185                 struct kvm_ppc_resize_hpt rhpt;
6186
6187                 r = -EFAULT;
6188                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
6189                         break;
6190
6191                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
6192                 break;
6193         }
6194
6195         case KVM_PPC_RESIZE_HPT_COMMIT: {
6196                 struct kvm_ppc_resize_hpt rhpt;
6197
6198                 r = -EFAULT;
6199                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
6200                         break;
6201
6202                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
6203                 break;
6204         }
6205
6206         default:
6207                 r = -ENOTTY;
6208         }
6209
6210         return r;
6211 }
6212
6213 /*
6214  * List of hcall numbers to enable by default.
6215  * For compatibility with old userspace, we enable by default
6216  * all hcalls that were implemented before the hcall-enabling
6217  * facility was added.  Note this list should not include H_RTAS.
6218  */
6219 static unsigned int default_hcall_list[] = {
6220         H_REMOVE,
6221         H_ENTER,
6222         H_READ,
6223         H_PROTECT,
6224         H_BULK_REMOVE,
6225 #ifdef CONFIG_SPAPR_TCE_IOMMU
6226         H_GET_TCE,
6227         H_PUT_TCE,
6228 #endif
6229         H_SET_DABR,
6230         H_SET_XDABR,
6231         H_CEDE,
6232         H_PROD,
6233         H_CONFER,
6234         H_REGISTER_VPA,
6235 #ifdef CONFIG_KVM_XICS
6236         H_EOI,
6237         H_CPPR,
6238         H_IPI,
6239         H_IPOLL,
6240         H_XIRR,
6241         H_XIRR_X,
6242 #endif
6243         0
6244 };
6245
6246 static void init_default_hcalls(void)
6247 {
6248         int i;
6249         unsigned int hcall;
6250
6251         for (i = 0; default_hcall_list[i]; ++i) {
6252                 hcall = default_hcall_list[i];
6253                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
6254                 __set_bit(hcall / 4, default_enabled_hcalls);
6255         }
6256 }
6257
6258 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
6259 {
6260         unsigned long lpcr;
6261         int radix;
6262         int err;
6263
6264         /* If not on a POWER9, reject it */
6265         if (!cpu_has_feature(CPU_FTR_ARCH_300))
6266                 return -ENODEV;
6267
6268         /* If any unknown flags set, reject it */
6269         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
6270                 return -EINVAL;
6271
6272         /* GR (guest radix) bit in process_table field must match */
6273         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
6274         if (!!(cfg->process_table & PATB_GR) != radix)
6275                 return -EINVAL;
6276
6277         /* Process table size field must be reasonable, i.e. <= 24 */
6278         if ((cfg->process_table & PRTS_MASK) > 24)
6279                 return -EINVAL;
6280
6281         /* We can change a guest to/from radix now, if the host is radix */
6282         if (radix && !radix_enabled())
6283                 return -EINVAL;
6284
6285         /* If we're a nested hypervisor, we currently only support radix */
6286         if (kvmhv_on_pseries() && !radix)
6287                 return -EINVAL;
6288
6289         mutex_lock(&kvm->arch.mmu_setup_lock);
6290         if (radix != kvm_is_radix(kvm)) {
6291                 if (kvm->arch.mmu_ready) {
6292                         kvm->arch.mmu_ready = 0;
6293                         /* order mmu_ready vs. vcpus_running */
6294                         smp_mb();
6295                         if (atomic_read(&kvm->arch.vcpus_running)) {
6296                                 kvm->arch.mmu_ready = 1;
6297                                 err = -EBUSY;
6298                                 goto out_unlock;
6299                         }
6300                 }
6301                 if (radix)
6302                         err = kvmppc_switch_mmu_to_radix(kvm);
6303                 else
6304                         err = kvmppc_switch_mmu_to_hpt(kvm);
6305                 if (err)
6306                         goto out_unlock;
6307         }
6308
6309         kvm->arch.process_table = cfg->process_table;
6310         kvmppc_setup_partition_table(kvm);
6311
6312         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
6313         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
6314         err = 0;
6315
6316  out_unlock:
6317         mutex_unlock(&kvm->arch.mmu_setup_lock);
6318         return err;
6319 }
6320
6321 static int kvmhv_enable_nested(struct kvm *kvm)
6322 {
6323         if (!nested)
6324                 return -EPERM;
6325         if (!cpu_has_feature(CPU_FTR_ARCH_300))
6326                 return -ENODEV;
6327         if (!radix_enabled())
6328                 return -ENODEV;
6329         if (kvmhv_is_nestedv2())
6330                 return -ENODEV;
6331
6332         /* kvm == NULL means the caller is testing if the capability exists */
6333         if (kvm)
6334                 kvm->arch.nested_enable = true;
6335         return 0;
6336 }
6337
6338 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6339                                  int size)
6340 {
6341         int rc = -EINVAL;
6342
6343         if (kvmhv_vcpu_is_radix(vcpu)) {
6344                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
6345
6346                 if (rc > 0)
6347                         rc = -EINVAL;
6348         }
6349
6350         /* For now quadrants are the only way to access nested guest memory */
6351         if (rc && vcpu->arch.nested)
6352                 rc = -EAGAIN;
6353
6354         return rc;
6355 }
6356
6357 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6358                                 int size)
6359 {
6360         int rc = -EINVAL;
6361
6362         if (kvmhv_vcpu_is_radix(vcpu)) {
6363                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6364
6365                 if (rc > 0)
6366                         rc = -EINVAL;
6367         }
6368
6369         /* For now quadrants are the only way to access nested guest memory */
6370         if (rc && vcpu->arch.nested)
6371                 rc = -EAGAIN;
6372
6373         return rc;
6374 }
6375
6376 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6377 {
6378         unpin_vpa(kvm, vpa);
6379         vpa->gpa = 0;
6380         vpa->pinned_addr = NULL;
6381         vpa->dirty = false;
6382         vpa->update_pending = 0;
6383 }
6384
6385 /*
6386  * Enable a guest to become a secure VM, or test whether
6387  * that could be enabled.
6388  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6389  * tested (kvm == NULL) or enabled (kvm != NULL).
6390  */
6391 static int kvmhv_enable_svm(struct kvm *kvm)
6392 {
6393         if (!kvmppc_uvmem_available())
6394                 return -EINVAL;
6395         if (kvm)
6396                 kvm->arch.svm_enabled = 1;
6397         return 0;
6398 }
6399
6400 /*
6401  *  IOCTL handler to turn off secure mode of guest
6402  *
6403  * - Release all device pages
6404  * - Issue ucall to terminate the guest on the UV side
6405  * - Unpin the VPA pages.
6406  * - Reinit the partition scoped page tables
6407  */
6408 static int kvmhv_svm_off(struct kvm *kvm)
6409 {
6410         struct kvm_vcpu *vcpu;
6411         int mmu_was_ready;
6412         int srcu_idx;
6413         int ret = 0;
6414         unsigned long i;
6415
6416         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6417                 return ret;
6418
6419         mutex_lock(&kvm->arch.mmu_setup_lock);
6420         mmu_was_ready = kvm->arch.mmu_ready;
6421         if (kvm->arch.mmu_ready) {
6422                 kvm->arch.mmu_ready = 0;
6423                 /* order mmu_ready vs. vcpus_running */
6424                 smp_mb();
6425                 if (atomic_read(&kvm->arch.vcpus_running)) {
6426                         kvm->arch.mmu_ready = 1;
6427                         ret = -EBUSY;
6428                         goto out;
6429                 }
6430         }
6431
6432         srcu_idx = srcu_read_lock(&kvm->srcu);
6433         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6434                 struct kvm_memory_slot *memslot;
6435                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6436                 int bkt;
6437
6438                 if (!slots)
6439                         continue;
6440
6441                 kvm_for_each_memslot(memslot, bkt, slots) {
6442                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
6443                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6444                 }
6445         }
6446         srcu_read_unlock(&kvm->srcu, srcu_idx);
6447
6448         ret = uv_svm_terminate(kvm->arch.lpid);
6449         if (ret != U_SUCCESS) {
6450                 ret = -EINVAL;
6451                 goto out;
6452         }
6453
6454         /*
6455          * When secure guest is reset, all the guest pages are sent
6456          * to UV via UV_PAGE_IN before the non-boot vcpus get a
6457          * chance to run and unpin their VPA pages. Unpinning of all
6458          * VPA pages is done here explicitly so that VPA pages
6459          * can be migrated to the secure side.
6460          *
6461          * This is required to for the secure SMP guest to reboot
6462          * correctly.
6463          */
6464         kvm_for_each_vcpu(i, vcpu, kvm) {
6465                 spin_lock(&vcpu->arch.vpa_update_lock);
6466                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6467                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6468                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6469                 spin_unlock(&vcpu->arch.vpa_update_lock);
6470         }
6471
6472         kvmppc_setup_partition_table(kvm);
6473         kvm->arch.secure_guest = 0;
6474         kvm->arch.mmu_ready = mmu_was_ready;
6475 out:
6476         mutex_unlock(&kvm->arch.mmu_setup_lock);
6477         return ret;
6478 }
6479
6480 static int kvmhv_enable_dawr1(struct kvm *kvm)
6481 {
6482         if (!cpu_has_feature(CPU_FTR_DAWR1))
6483                 return -ENODEV;
6484
6485         /* kvm == NULL means the caller is testing if the capability exists */
6486         if (kvm)
6487                 kvm->arch.dawr1_enabled = true;
6488         return 0;
6489 }
6490
6491 static bool kvmppc_hash_v3_possible(void)
6492 {
6493         if (!cpu_has_feature(CPU_FTR_ARCH_300))
6494                 return false;
6495
6496         if (!cpu_has_feature(CPU_FTR_HVMODE))
6497                 return false;
6498
6499         /*
6500          * POWER9 chips before version 2.02 can't have some threads in
6501          * HPT mode and some in radix mode on the same core.
6502          */
6503         if (radix_enabled()) {
6504                 unsigned int pvr = mfspr(SPRN_PVR);
6505                 if ((pvr >> 16) == PVR_POWER9 &&
6506                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6507                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6508                         return false;
6509         }
6510
6511         return true;
6512 }
6513
6514 static struct kvmppc_ops kvm_ops_hv = {
6515         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6516         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6517         .get_one_reg = kvmppc_get_one_reg_hv,
6518         .set_one_reg = kvmppc_set_one_reg_hv,
6519         .vcpu_load   = kvmppc_core_vcpu_load_hv,
6520         .vcpu_put    = kvmppc_core_vcpu_put_hv,
6521         .inject_interrupt = kvmppc_inject_interrupt_hv,
6522         .set_msr     = kvmppc_set_msr_hv,
6523         .vcpu_run    = kvmppc_vcpu_run_hv,
6524         .vcpu_create = kvmppc_core_vcpu_create_hv,
6525         .vcpu_free   = kvmppc_core_vcpu_free_hv,
6526         .check_requests = kvmppc_core_check_requests_hv,
6527         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6528         .flush_memslot  = kvmppc_core_flush_memslot_hv,
6529         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6530         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6531         .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6532         .age_gfn = kvm_age_gfn_hv,
6533         .test_age_gfn = kvm_test_age_gfn_hv,
6534         .free_memslot = kvmppc_core_free_memslot_hv,
6535         .init_vm =  kvmppc_core_init_vm_hv,
6536         .destroy_vm = kvmppc_core_destroy_vm_hv,
6537         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6538         .emulate_op = kvmppc_core_emulate_op_hv,
6539         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6540         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6541         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6542         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6543         .hcall_implemented = kvmppc_hcall_impl_hv,
6544 #ifdef CONFIG_KVM_XICS
6545         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6546         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6547 #endif
6548         .configure_mmu = kvmhv_configure_mmu,
6549         .get_rmmu_info = kvmhv_get_rmmu_info,
6550         .set_smt_mode = kvmhv_set_smt_mode,
6551         .enable_nested = kvmhv_enable_nested,
6552         .load_from_eaddr = kvmhv_load_from_eaddr,
6553         .store_to_eaddr = kvmhv_store_to_eaddr,
6554         .enable_svm = kvmhv_enable_svm,
6555         .svm_off = kvmhv_svm_off,
6556         .enable_dawr1 = kvmhv_enable_dawr1,
6557         .hash_v3_possible = kvmppc_hash_v3_possible,
6558         .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6559         .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6560 };
6561
6562 static int kvm_init_subcore_bitmap(void)
6563 {
6564         int i, j;
6565         int nr_cores = cpu_nr_cores();
6566         struct sibling_subcore_state *sibling_subcore_state;
6567
6568         for (i = 0; i < nr_cores; i++) {
6569                 int first_cpu = i * threads_per_core;
6570                 int node = cpu_to_node(first_cpu);
6571
6572                 /* Ignore if it is already allocated. */
6573                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6574                         continue;
6575
6576                 sibling_subcore_state =
6577                         kzalloc_node(sizeof(struct sibling_subcore_state),
6578                                                         GFP_KERNEL, node);
6579                 if (!sibling_subcore_state)
6580                         return -ENOMEM;
6581
6582
6583                 for (j = 0; j < threads_per_core; j++) {
6584                         int cpu = first_cpu + j;
6585
6586                         paca_ptrs[cpu]->sibling_subcore_state =
6587                                                 sibling_subcore_state;
6588                 }
6589         }
6590         return 0;
6591 }
6592
6593 static int kvmppc_radix_possible(void)
6594 {
6595         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6596 }
6597
6598 static int kvmppc_book3s_init_hv(void)
6599 {
6600         int r;
6601
6602         if (!tlbie_capable) {
6603                 pr_err("KVM-HV: Host does not support TLBIE\n");
6604                 return -ENODEV;
6605         }
6606
6607         /*
6608          * FIXME!! Do we need to check on all cpus ?
6609          */
6610         r = kvmppc_core_check_processor_compat_hv();
6611         if (r < 0)
6612                 return -ENODEV;
6613
6614         r = kvmhv_nested_init();
6615         if (r)
6616                 return r;
6617
6618         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6619                 r = kvm_init_subcore_bitmap();
6620                 if (r)
6621                         goto err;
6622         }
6623
6624         /*
6625          * We need a way of accessing the XICS interrupt controller,
6626          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6627          * indirectly, via OPAL.
6628          */
6629 #ifdef CONFIG_SMP
6630         if (!xics_on_xive() && !kvmhv_on_pseries() &&
6631             !local_paca->kvm_hstate.xics_phys) {
6632                 struct device_node *np;
6633
6634                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6635                 if (!np) {
6636                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6637                         r = -ENODEV;
6638                         goto err;
6639                 }
6640                 /* presence of intc confirmed - node can be dropped again */
6641                 of_node_put(np);
6642         }
6643 #endif
6644
6645         init_default_hcalls();
6646
6647         init_vcore_lists();
6648
6649         r = kvmppc_mmu_hv_init();
6650         if (r)
6651                 goto err;
6652
6653         if (kvmppc_radix_possible()) {
6654                 r = kvmppc_radix_init();
6655                 if (r)
6656                         goto err;
6657         }
6658
6659         r = kvmppc_uvmem_init();
6660         if (r < 0) {
6661                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6662                 return r;
6663         }
6664
6665         kvm_ops_hv.owner = THIS_MODULE;
6666         kvmppc_hv_ops = &kvm_ops_hv;
6667
6668         return 0;
6669
6670 err:
6671         kvmhv_nested_exit();
6672         kvmppc_radix_exit();
6673
6674         return r;
6675 }
6676
6677 static void kvmppc_book3s_exit_hv(void)
6678 {
6679         kvmppc_uvmem_free();
6680         kvmppc_free_host_rm_ops();
6681         if (kvmppc_radix_possible())
6682                 kvmppc_radix_exit();
6683         kvmppc_hv_ops = NULL;
6684         kvmhv_nested_exit();
6685 }
6686
6687 module_init(kvmppc_book3s_init_hv);
6688 module_exit(kvmppc_book3s_exit_hv);
6689 MODULE_DESCRIPTION("KVM on Book3S (POWER8 and later) in hypervisor mode");
6690 MODULE_LICENSE("GPL");
6691 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6692 MODULE_ALIAS("devname:kvm");
This page took 0.406511 seconds and 4 git commands to generate.