]> Git Repo - J-linux.git/blob - arch/powerpc/kernel/rtas.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / powerpc / kernel / rtas.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Procedures for interfacing to the RTAS on CHRP machines.
5  *
6  * Peter Bergner, IBM   March 2001.
7  * Copyright (C) 2001 IBM.
8  */
9
10 #define pr_fmt(fmt)     "rtas: " fmt
11
12 #include <linux/bsearch.h>
13 #include <linux/capability.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/kconfig.h>
18 #include <linux/kernel.h>
19 #include <linux/lockdep.h>
20 #include <linux/memblock.h>
21 #include <linux/mutex.h>
22 #include <linux/nospec.h>
23 #include <linux/of.h>
24 #include <linux/of_fdt.h>
25 #include <linux/reboot.h>
26 #include <linux/sched.h>
27 #include <linux/security.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/stdarg.h>
31 #include <linux/syscalls.h>
32 #include <linux/types.h>
33 #include <linux/uaccess.h>
34 #include <linux/xarray.h>
35
36 #include <asm/delay.h>
37 #include <asm/firmware.h>
38 #include <asm/interrupt.h>
39 #include <asm/machdep.h>
40 #include <asm/mmu.h>
41 #include <asm/page.h>
42 #include <asm/rtas-work-area.h>
43 #include <asm/rtas.h>
44 #include <asm/time.h>
45 #include <asm/trace.h>
46 #include <asm/udbg.h>
47
48 struct rtas_filter {
49         /* Indexes into the args buffer, -1 if not used */
50         const int buf_idx1;
51         const int size_idx1;
52         const int buf_idx2;
53         const int size_idx2;
54         /*
55          * Assumed buffer size per the spec if the function does not
56          * have a size parameter, e.g. ibm,errinjct. 0 if unused.
57          */
58         const int fixed_size;
59 };
60
61 /**
62  * struct rtas_function - Descriptor for RTAS functions.
63  *
64  * @token: Value of @name if it exists under the /rtas node.
65  * @name: Function name.
66  * @filter: If non-NULL, invoking this function via the rtas syscall is
67  *          generally allowed, and @filter describes constraints on the
68  *          arguments. See also @banned_for_syscall_on_le.
69  * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
70  *                            but specifically restricted on ppc64le. Such
71  *                            functions are believed to have no users on
72  *                            ppc64le, and we want to keep it that way. It does
73  *                            not make sense for this to be set when @filter
74  *                            is NULL.
75  * @lock: Pointer to an optional dedicated per-function mutex. This
76  *        should be set for functions that require multiple calls in
77  *        sequence to complete a single operation, and such sequences
78  *        will disrupt each other if allowed to interleave. Users of
79  *        this function are required to hold the associated lock for
80  *        the duration of the call sequence. Add an explanatory
81  *        comment to the function table entry if setting this member.
82  */
83 struct rtas_function {
84         s32 token;
85         const bool banned_for_syscall_on_le:1;
86         const char * const name;
87         const struct rtas_filter *filter;
88         struct mutex *lock;
89 };
90
91 /*
92  * Per-function locks for sequence-based RTAS functions.
93  */
94 static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
95 static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
96 static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
97 static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
98 static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
99 static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
100 DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
101
102 static struct rtas_function rtas_function_table[] __ro_after_init = {
103         [RTAS_FNIDX__CHECK_EXCEPTION] = {
104                 .name = "check-exception",
105         },
106         [RTAS_FNIDX__DISPLAY_CHARACTER] = {
107                 .name = "display-character",
108                 .filter = &(const struct rtas_filter) {
109                         .buf_idx1 = -1, .size_idx1 = -1,
110                         .buf_idx2 = -1, .size_idx2 = -1,
111                 },
112         },
113         [RTAS_FNIDX__EVENT_SCAN] = {
114                 .name = "event-scan",
115         },
116         [RTAS_FNIDX__FREEZE_TIME_BASE] = {
117                 .name = "freeze-time-base",
118         },
119         [RTAS_FNIDX__GET_POWER_LEVEL] = {
120                 .name = "get-power-level",
121                 .filter = &(const struct rtas_filter) {
122                         .buf_idx1 = -1, .size_idx1 = -1,
123                         .buf_idx2 = -1, .size_idx2 = -1,
124                 },
125         },
126         [RTAS_FNIDX__GET_SENSOR_STATE] = {
127                 .name = "get-sensor-state",
128                 .filter = &(const struct rtas_filter) {
129                         .buf_idx1 = -1, .size_idx1 = -1,
130                         .buf_idx2 = -1, .size_idx2 = -1,
131                 },
132         },
133         [RTAS_FNIDX__GET_TERM_CHAR] = {
134                 .name = "get-term-char",
135         },
136         [RTAS_FNIDX__GET_TIME_OF_DAY] = {
137                 .name = "get-time-of-day",
138                 .filter = &(const struct rtas_filter) {
139                         .buf_idx1 = -1, .size_idx1 = -1,
140                         .buf_idx2 = -1, .size_idx2 = -1,
141                 },
142         },
143         [RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
144                 .name = "ibm,activate-firmware",
145                 .filter = &(const struct rtas_filter) {
146                         .buf_idx1 = -1, .size_idx1 = -1,
147                         .buf_idx2 = -1, .size_idx2 = -1,
148                 },
149                 /*
150                  * PAPR+ as of v2.13 doesn't explicitly impose any
151                  * restriction, but this typically requires multiple
152                  * calls before success, and there's no reason to
153                  * allow sequences to interleave.
154                  */
155                 .lock = &rtas_ibm_activate_firmware_lock,
156         },
157         [RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
158                 .name = "ibm,cbe-start-ptcal",
159         },
160         [RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
161                 .name = "ibm,cbe-stop-ptcal",
162         },
163         [RTAS_FNIDX__IBM_CHANGE_MSI] = {
164                 .name = "ibm,change-msi",
165         },
166         [RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
167                 .name = "ibm,close-errinjct",
168                 .filter = &(const struct rtas_filter) {
169                         .buf_idx1 = -1, .size_idx1 = -1,
170                         .buf_idx2 = -1, .size_idx2 = -1,
171                 },
172         },
173         [RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
174                 .name = "ibm,configure-bridge",
175         },
176         [RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
177                 .name = "ibm,configure-connector",
178                 .filter = &(const struct rtas_filter) {
179                         .buf_idx1 = 0, .size_idx1 = -1,
180                         .buf_idx2 = 1, .size_idx2 = -1,
181                         .fixed_size = 4096,
182                 },
183         },
184         [RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
185                 .name = "ibm,configure-kernel-dump",
186         },
187         [RTAS_FNIDX__IBM_CONFIGURE_PE] = {
188                 .name = "ibm,configure-pe",
189         },
190         [RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
191                 .name = "ibm,create-pe-dma-window",
192         },
193         [RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
194                 .name = "ibm,display-message",
195                 .filter = &(const struct rtas_filter) {
196                         .buf_idx1 = 0, .size_idx1 = -1,
197                         .buf_idx2 = -1, .size_idx2 = -1,
198                 },
199         },
200         [RTAS_FNIDX__IBM_ERRINJCT] = {
201                 .name = "ibm,errinjct",
202                 .filter = &(const struct rtas_filter) {
203                         .buf_idx1 = 2, .size_idx1 = -1,
204                         .buf_idx2 = -1, .size_idx2 = -1,
205                         .fixed_size = 1024,
206                 },
207         },
208         [RTAS_FNIDX__IBM_EXTI2C] = {
209                 .name = "ibm,exti2c",
210         },
211         [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
212                 .name = "ibm,get-config-addr-info",
213         },
214         [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
215                 .name = "ibm,get-config-addr-info2",
216                 .filter = &(const struct rtas_filter) {
217                         .buf_idx1 = -1, .size_idx1 = -1,
218                         .buf_idx2 = -1, .size_idx2 = -1,
219                 },
220         },
221         [RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
222                 .name = "ibm,get-dynamic-sensor-state",
223                 .filter = &(const struct rtas_filter) {
224                         .buf_idx1 = 1, .size_idx1 = -1,
225                         .buf_idx2 = -1, .size_idx2 = -1,
226                 },
227                 /*
228                  * PAPR+ v2.13 R1–7.3.19–3 is explicit that the OS
229                  * must not call ibm,get-dynamic-sensor-state with
230                  * different inputs until a non-retry status has been
231                  * returned.
232                  */
233                 .lock = &rtas_ibm_get_dynamic_sensor_state_lock,
234         },
235         [RTAS_FNIDX__IBM_GET_INDICES] = {
236                 .name = "ibm,get-indices",
237                 .filter = &(const struct rtas_filter) {
238                         .buf_idx1 = 2, .size_idx1 = 3,
239                         .buf_idx2 = -1, .size_idx2 = -1,
240                 },
241                 /*
242                  * PAPR+ v2.13 R1–7.3.17–2 says that the OS must not
243                  * interleave ibm,get-indices call sequences with
244                  * different inputs.
245                  */
246                 .lock = &rtas_ibm_get_indices_lock,
247         },
248         [RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
249                 .name = "ibm,get-rio-topology",
250         },
251         [RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
252                 .name = "ibm,get-system-parameter",
253                 .filter = &(const struct rtas_filter) {
254                         .buf_idx1 = 1, .size_idx1 = 2,
255                         .buf_idx2 = -1, .size_idx2 = -1,
256                 },
257         },
258         [RTAS_FNIDX__IBM_GET_VPD] = {
259                 .name = "ibm,get-vpd",
260                 .filter = &(const struct rtas_filter) {
261                         .buf_idx1 = 0, .size_idx1 = -1,
262                         .buf_idx2 = 1, .size_idx2 = 2,
263                 },
264                 /*
265                  * PAPR+ v2.13 R1–7.3.20–4 indicates that sequences
266                  * should not be allowed to interleave.
267                  */
268                 .lock = &rtas_ibm_get_vpd_lock,
269         },
270         [RTAS_FNIDX__IBM_GET_XIVE] = {
271                 .name = "ibm,get-xive",
272         },
273         [RTAS_FNIDX__IBM_INT_OFF] = {
274                 .name = "ibm,int-off",
275         },
276         [RTAS_FNIDX__IBM_INT_ON] = {
277                 .name = "ibm,int-on",
278         },
279         [RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
280                 .name = "ibm,io-quiesce-ack",
281         },
282         [RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
283                 .name = "ibm,lpar-perftools",
284                 .filter = &(const struct rtas_filter) {
285                         .buf_idx1 = 2, .size_idx1 = 3,
286                         .buf_idx2 = -1, .size_idx2 = -1,
287                 },
288                 /*
289                  * PAPR+ v2.13 R1–7.3.26–6 says the OS should allow
290                  * only one call sequence in progress at a time.
291                  */
292                 .lock = &rtas_ibm_lpar_perftools_lock,
293         },
294         [RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
295                 .name = "ibm,manage-flash-image",
296         },
297         [RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
298                 .name = "ibm,manage-storage-preservation",
299         },
300         [RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
301                 .name = "ibm,nmi-interlock",
302         },
303         [RTAS_FNIDX__IBM_NMI_REGISTER] = {
304                 .name = "ibm,nmi-register",
305         },
306         [RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
307                 .name = "ibm,open-errinjct",
308                 .filter = &(const struct rtas_filter) {
309                         .buf_idx1 = -1, .size_idx1 = -1,
310                         .buf_idx2 = -1, .size_idx2 = -1,
311                 },
312         },
313         [RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
314                 .name = "ibm,open-sriov-allow-unfreeze",
315         },
316         [RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
317                 .name = "ibm,open-sriov-map-pe-number",
318         },
319         [RTAS_FNIDX__IBM_OS_TERM] = {
320                 .name = "ibm,os-term",
321         },
322         [RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
323                 .name = "ibm,partner-control",
324         },
325         [RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
326                 .name = "ibm,physical-attestation",
327                 .filter = &(const struct rtas_filter) {
328                         .buf_idx1 = 0, .size_idx1 = 1,
329                         .buf_idx2 = -1, .size_idx2 = -1,
330                 },
331                 /*
332                  * This follows a sequence-based pattern similar to
333                  * ibm,get-vpd et al. Since PAPR+ restricts
334                  * interleaving call sequences for other functions of
335                  * this style, assume the restriction applies here,
336                  * even though it's not explicit in the spec.
337                  */
338                 .lock = &rtas_ibm_physical_attestation_lock,
339         },
340         [RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
341                 .name = "ibm,platform-dump",
342                 .filter = &(const struct rtas_filter) {
343                         .buf_idx1 = 4, .size_idx1 = 5,
344                         .buf_idx2 = -1, .size_idx2 = -1,
345                 },
346                 /*
347                  * PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
348                  * sequences of ibm,platform-dump are allowed if they
349                  * are operating on different dump tags. So leave the
350                  * lock pointer unset for now. This may need
351                  * reconsideration if kernel-internal users appear.
352                  */
353         },
354         [RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
355                 .name = "ibm,power-off-ups",
356         },
357         [RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
358                 .name = "ibm,query-interrupt-source-number",
359         },
360         [RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
361                 .name = "ibm,query-pe-dma-window",
362         },
363         [RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
364                 .name = "ibm,read-pci-config",
365         },
366         [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
367                 .name = "ibm,read-slot-reset-state",
368                 .filter = &(const struct rtas_filter) {
369                         .buf_idx1 = -1, .size_idx1 = -1,
370                         .buf_idx2 = -1, .size_idx2 = -1,
371                 },
372         },
373         [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
374                 .name = "ibm,read-slot-reset-state2",
375         },
376         [RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
377                 .name = "ibm,remove-pe-dma-window",
378         },
379         [RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
380                 /*
381                  * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
382                  * "ibm,reset-pe-dma-windows" (plural), but RTAS
383                  * implementations use the singular form in practice.
384                  */
385                 .name = "ibm,reset-pe-dma-window",
386         },
387         [RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
388                 .name = "ibm,scan-log-dump",
389                 .filter = &(const struct rtas_filter) {
390                         .buf_idx1 = 0, .size_idx1 = 1,
391                         .buf_idx2 = -1, .size_idx2 = -1,
392                 },
393         },
394         [RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
395                 .name = "ibm,set-dynamic-indicator",
396                 .filter = &(const struct rtas_filter) {
397                         .buf_idx1 = 2, .size_idx1 = -1,
398                         .buf_idx2 = -1, .size_idx2 = -1,
399                 },
400                 /*
401                  * PAPR+ v2.13 R1–7.3.18–3 says the OS must not call
402                  * this function with different inputs until a
403                  * non-retry status has been returned.
404                  */
405                 .lock = &rtas_ibm_set_dynamic_indicator_lock,
406         },
407         [RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
408                 .name = "ibm,set-eeh-option",
409                 .filter = &(const struct rtas_filter) {
410                         .buf_idx1 = -1, .size_idx1 = -1,
411                         .buf_idx2 = -1, .size_idx2 = -1,
412                 },
413         },
414         [RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
415                 .name = "ibm,set-slot-reset",
416         },
417         [RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
418                 .name = "ibm,set-system-parameter",
419                 .filter = &(const struct rtas_filter) {
420                         .buf_idx1 = 1, .size_idx1 = -1,
421                         .buf_idx2 = -1, .size_idx2 = -1,
422                 },
423         },
424         [RTAS_FNIDX__IBM_SET_XIVE] = {
425                 .name = "ibm,set-xive",
426         },
427         [RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
428                 .name = "ibm,slot-error-detail",
429         },
430         [RTAS_FNIDX__IBM_SUSPEND_ME] = {
431                 .name = "ibm,suspend-me",
432                 .banned_for_syscall_on_le = true,
433                 .filter = &(const struct rtas_filter) {
434                         .buf_idx1 = -1, .size_idx1 = -1,
435                         .buf_idx2 = -1, .size_idx2 = -1,
436                 },
437         },
438         [RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
439                 .name = "ibm,tune-dma-parms",
440         },
441         [RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
442                 .name = "ibm,update-flash-64-and-reboot",
443         },
444         [RTAS_FNIDX__IBM_UPDATE_NODES] = {
445                 .name = "ibm,update-nodes",
446                 .banned_for_syscall_on_le = true,
447                 .filter = &(const struct rtas_filter) {
448                         .buf_idx1 = 0, .size_idx1 = -1,
449                         .buf_idx2 = -1, .size_idx2 = -1,
450                         .fixed_size = 4096,
451                 },
452         },
453         [RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
454                 .name = "ibm,update-properties",
455                 .banned_for_syscall_on_le = true,
456                 .filter = &(const struct rtas_filter) {
457                         .buf_idx1 = 0, .size_idx1 = -1,
458                         .buf_idx2 = -1, .size_idx2 = -1,
459                         .fixed_size = 4096,
460                 },
461         },
462         [RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
463                 .name = "ibm,validate-flash-image",
464         },
465         [RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
466                 .name = "ibm,write-pci-config",
467         },
468         [RTAS_FNIDX__NVRAM_FETCH] = {
469                 .name = "nvram-fetch",
470         },
471         [RTAS_FNIDX__NVRAM_STORE] = {
472                 .name = "nvram-store",
473         },
474         [RTAS_FNIDX__POWER_OFF] = {
475                 .name = "power-off",
476         },
477         [RTAS_FNIDX__PUT_TERM_CHAR] = {
478                 .name = "put-term-char",
479         },
480         [RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
481                 .name = "query-cpu-stopped-state",
482         },
483         [RTAS_FNIDX__READ_PCI_CONFIG] = {
484                 .name = "read-pci-config",
485         },
486         [RTAS_FNIDX__RTAS_LAST_ERROR] = {
487                 .name = "rtas-last-error",
488         },
489         [RTAS_FNIDX__SET_INDICATOR] = {
490                 .name = "set-indicator",
491                 .filter = &(const struct rtas_filter) {
492                         .buf_idx1 = -1, .size_idx1 = -1,
493                         .buf_idx2 = -1, .size_idx2 = -1,
494                 },
495         },
496         [RTAS_FNIDX__SET_POWER_LEVEL] = {
497                 .name = "set-power-level",
498                 .filter = &(const struct rtas_filter) {
499                         .buf_idx1 = -1, .size_idx1 = -1,
500                         .buf_idx2 = -1, .size_idx2 = -1,
501                 },
502         },
503         [RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
504                 .name = "set-time-for-power-on",
505                 .filter = &(const struct rtas_filter) {
506                         .buf_idx1 = -1, .size_idx1 = -1,
507                         .buf_idx2 = -1, .size_idx2 = -1,
508                 },
509         },
510         [RTAS_FNIDX__SET_TIME_OF_DAY] = {
511                 .name = "set-time-of-day",
512                 .filter = &(const struct rtas_filter) {
513                         .buf_idx1 = -1, .size_idx1 = -1,
514                         .buf_idx2 = -1, .size_idx2 = -1,
515                 },
516         },
517         [RTAS_FNIDX__START_CPU] = {
518                 .name = "start-cpu",
519         },
520         [RTAS_FNIDX__STOP_SELF] = {
521                 .name = "stop-self",
522         },
523         [RTAS_FNIDX__SYSTEM_REBOOT] = {
524                 .name = "system-reboot",
525         },
526         [RTAS_FNIDX__THAW_TIME_BASE] = {
527                 .name = "thaw-time-base",
528         },
529         [RTAS_FNIDX__WRITE_PCI_CONFIG] = {
530                 .name = "write-pci-config",
531         },
532 };
533
534 #define for_each_rtas_function(funcp)                                       \
535         for (funcp = &rtas_function_table[0];                               \
536              funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
537              ++funcp)
538
539 /*
540  * Nearly all RTAS calls need to be serialized. All uses of the
541  * default rtas_args block must hold rtas_lock.
542  *
543  * Exceptions to the RTAS serialization requirement (e.g. stop-self)
544  * must use a separate rtas_args structure.
545  */
546 static DEFINE_RAW_SPINLOCK(rtas_lock);
547 static struct rtas_args rtas_args;
548
549 /**
550  * rtas_function_token() - RTAS function token lookup.
551  * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
552  *
553  * Context: Any context.
554  * Return: the token value for the function if implemented by this platform,
555  *         otherwise RTAS_UNKNOWN_SERVICE.
556  */
557 s32 rtas_function_token(const rtas_fn_handle_t handle)
558 {
559         const size_t index = handle.index;
560         const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
561
562         if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
563                 return RTAS_UNKNOWN_SERVICE;
564         /*
565          * Various drivers attempt token lookups on non-RTAS
566          * platforms.
567          */
568         if (!rtas.dev)
569                 return RTAS_UNKNOWN_SERVICE;
570
571         return rtas_function_table[index].token;
572 }
573 EXPORT_SYMBOL_GPL(rtas_function_token);
574
575 static int rtas_function_cmp(const void *a, const void *b)
576 {
577         const struct rtas_function *f1 = a;
578         const struct rtas_function *f2 = b;
579
580         return strcmp(f1->name, f2->name);
581 }
582
583 /*
584  * Boot-time initialization of the function table needs the lookup to
585  * return a non-const-qualified object. Use rtas_name_to_function()
586  * in all other contexts.
587  */
588 static struct rtas_function *__rtas_name_to_function(const char *name)
589 {
590         const struct rtas_function key = {
591                 .name = name,
592         };
593         struct rtas_function *found;
594
595         found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
596                         sizeof(rtas_function_table[0]), rtas_function_cmp);
597
598         return found;
599 }
600
601 static const struct rtas_function *rtas_name_to_function(const char *name)
602 {
603         return __rtas_name_to_function(name);
604 }
605
606 static DEFINE_XARRAY(rtas_token_to_function_xarray);
607
608 static int __init rtas_token_to_function_xarray_init(void)
609 {
610         const struct rtas_function *func;
611         int err = 0;
612
613         for_each_rtas_function(func) {
614                 const s32 token = func->token;
615
616                 if (token == RTAS_UNKNOWN_SERVICE)
617                         continue;
618
619                 err = xa_err(xa_store(&rtas_token_to_function_xarray,
620                                       token, (void *)func, GFP_KERNEL));
621                 if (err)
622                         break;
623         }
624
625         return err;
626 }
627 arch_initcall(rtas_token_to_function_xarray_init);
628
629 /*
630  * For use by sys_rtas(), where the token value is provided by user
631  * space and we don't want to warn on failed lookups.
632  */
633 static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
634 {
635         return xa_load(&rtas_token_to_function_xarray, token);
636 }
637
638 /*
639  * Reverse lookup for deriving the function descriptor from a
640  * known-good token value in contexts where the former is not already
641  * available. @token must be valid, e.g. derived from the result of a
642  * prior lookup against the function table.
643  */
644 static const struct rtas_function *rtas_token_to_function(s32 token)
645 {
646         const struct rtas_function *func;
647
648         if (WARN_ONCE(token < 0, "invalid token %d", token))
649                 return NULL;
650
651         func = rtas_token_to_function_untrusted(token);
652         if (func)
653                 return func;
654         /*
655          * Fall back to linear scan in case the reverse mapping hasn't
656          * been initialized yet.
657          */
658         if (xa_empty(&rtas_token_to_function_xarray)) {
659                 for_each_rtas_function(func) {
660                         if (func->token == token)
661                                 return func;
662                 }
663         }
664
665         WARN_ONCE(true, "unexpected failed lookup for token %d", token);
666         return NULL;
667 }
668
669 /* This is here deliberately so it's only used in this file */
670 void enter_rtas(unsigned long);
671
672 static void __do_enter_rtas(struct rtas_args *args)
673 {
674         enter_rtas(__pa(args));
675         srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
676 }
677
678 static void __do_enter_rtas_trace(struct rtas_args *args)
679 {
680         const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
681
682         /*
683          * If there is a per-function lock, it must be held by the
684          * caller.
685          */
686         if (func->lock)
687                 lockdep_assert_held(func->lock);
688
689         if (args == &rtas_args)
690                 lockdep_assert_held(&rtas_lock);
691
692         trace_rtas_input(args, func->name);
693         trace_rtas_ll_entry(args);
694
695         __do_enter_rtas(args);
696
697         trace_rtas_ll_exit(args);
698         trace_rtas_output(args, func->name);
699 }
700
701 static void do_enter_rtas(struct rtas_args *args)
702 {
703         const unsigned long msr = mfmsr();
704         /*
705          * Situations where we want to skip any active tracepoints for
706          * safety reasons:
707          *
708          * 1. The last code executed on an offline CPU as it stops,
709          *    i.e. we're about to call stop-self. The tracepoints'
710          *    function name lookup uses xarray, which uses RCU, which
711          *    isn't valid to call on an offline CPU.  Any events
712          *    emitted on an offline CPU will be discarded anyway.
713          *
714          * 2. In real mode, as when invoking ibm,nmi-interlock from
715          *    the pseries MCE handler. We cannot count on trace
716          *    buffers or the entries in rtas_token_to_function_xarray
717          *    to be contained in the RMO.
718          */
719         const unsigned long mask = MSR_IR | MSR_DR;
720         const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
721                                       (msr & mask) == mask);
722         /*
723          * Make sure MSR[RI] is currently enabled as it will be forced later
724          * in enter_rtas.
725          */
726         BUG_ON(!(msr & MSR_RI));
727
728         BUG_ON(!irqs_disabled());
729
730         hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
731
732         if (can_trace)
733                 __do_enter_rtas_trace(args);
734         else
735                 __do_enter_rtas(args);
736 }
737
738 struct rtas_t rtas;
739
740 DEFINE_SPINLOCK(rtas_data_buf_lock);
741 EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
742
743 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
744 EXPORT_SYMBOL_GPL(rtas_data_buf);
745
746 unsigned long rtas_rmo_buf;
747
748 /*
749  * If non-NULL, this gets called when the kernel terminates.
750  * This is done like this so rtas_flash can be a module.
751  */
752 void (*rtas_flash_term_hook)(int);
753 EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
754
755 /*
756  * call_rtas_display_status and call_rtas_display_status_delay
757  * are designed only for very early low-level debugging, which
758  * is why the token is hard-coded to 10.
759  */
760 static void call_rtas_display_status(unsigned char c)
761 {
762         unsigned long flags;
763
764         if (!rtas.base)
765                 return;
766
767         raw_spin_lock_irqsave(&rtas_lock, flags);
768         rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
769         raw_spin_unlock_irqrestore(&rtas_lock, flags);
770 }
771
772 static void call_rtas_display_status_delay(char c)
773 {
774         static int pending_newline = 0;  /* did last write end with unprinted newline? */
775         static int width = 16;
776
777         if (c == '\n') {
778                 while (width-- > 0)
779                         call_rtas_display_status(' ');
780                 width = 16;
781                 mdelay(500);
782                 pending_newline = 1;
783         } else {
784                 if (pending_newline) {
785                         call_rtas_display_status('\r');
786                         call_rtas_display_status('\n');
787                 }
788                 pending_newline = 0;
789                 if (width--) {
790                         call_rtas_display_status(c);
791                         udelay(10000);
792                 }
793         }
794 }
795
796 void __init udbg_init_rtas_panel(void)
797 {
798         udbg_putc = call_rtas_display_status_delay;
799 }
800
801 #ifdef CONFIG_UDBG_RTAS_CONSOLE
802
803 /* If you think you're dying before early_init_dt_scan_rtas() does its
804  * work, you can hard code the token values for your firmware here and
805  * hardcode rtas.base/entry etc.
806  */
807 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
808 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
809
810 static void udbg_rtascon_putc(char c)
811 {
812         int tries;
813
814         if (!rtas.base)
815                 return;
816
817         /* Add CRs before LFs */
818         if (c == '\n')
819                 udbg_rtascon_putc('\r');
820
821         /* if there is more than one character to be displayed, wait a bit */
822         for (tries = 0; tries < 16; tries++) {
823                 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
824                         break;
825                 udelay(1000);
826         }
827 }
828
829 static int udbg_rtascon_getc_poll(void)
830 {
831         int c;
832
833         if (!rtas.base)
834                 return -1;
835
836         if (rtas_call(rtas_getchar_token, 0, 2, &c))
837                 return -1;
838
839         return c;
840 }
841
842 static int udbg_rtascon_getc(void)
843 {
844         int c;
845
846         while ((c = udbg_rtascon_getc_poll()) == -1)
847                 ;
848
849         return c;
850 }
851
852
853 void __init udbg_init_rtas_console(void)
854 {
855         udbg_putc = udbg_rtascon_putc;
856         udbg_getc = udbg_rtascon_getc;
857         udbg_getc_poll = udbg_rtascon_getc_poll;
858 }
859 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
860
861 void rtas_progress(char *s, unsigned short hex)
862 {
863         struct device_node *root;
864         int width;
865         const __be32 *p;
866         char *os;
867         static int display_character, set_indicator;
868         static int display_width, display_lines, form_feed;
869         static const int *row_width;
870         static DEFINE_SPINLOCK(progress_lock);
871         static int current_line;
872         static int pending_newline = 0;  /* did last write end with unprinted newline? */
873
874         if (!rtas.base)
875                 return;
876
877         if (display_width == 0) {
878                 display_width = 0x10;
879                 if ((root = of_find_node_by_path("/rtas"))) {
880                         if ((p = of_get_property(root,
881                                         "ibm,display-line-length", NULL)))
882                                 display_width = be32_to_cpu(*p);
883                         if ((p = of_get_property(root,
884                                         "ibm,form-feed", NULL)))
885                                 form_feed = be32_to_cpu(*p);
886                         if ((p = of_get_property(root,
887                                         "ibm,display-number-of-lines", NULL)))
888                                 display_lines = be32_to_cpu(*p);
889                         row_width = of_get_property(root,
890                                         "ibm,display-truncation-length", NULL);
891                         of_node_put(root);
892                 }
893                 display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
894                 set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
895         }
896
897         if (display_character == RTAS_UNKNOWN_SERVICE) {
898                 /* use hex display if available */
899                 if (set_indicator != RTAS_UNKNOWN_SERVICE)
900                         rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
901                 return;
902         }
903
904         spin_lock(&progress_lock);
905
906         /*
907          * Last write ended with newline, but we didn't print it since
908          * it would just clear the bottom line of output. Print it now
909          * instead.
910          *
911          * If no newline is pending and form feed is supported, clear the
912          * display with a form feed; otherwise, print a CR to start output
913          * at the beginning of the line.
914          */
915         if (pending_newline) {
916                 rtas_call(display_character, 1, 1, NULL, '\r');
917                 rtas_call(display_character, 1, 1, NULL, '\n');
918                 pending_newline = 0;
919         } else {
920                 current_line = 0;
921                 if (form_feed)
922                         rtas_call(display_character, 1, 1, NULL,
923                                   (char)form_feed);
924                 else
925                         rtas_call(display_character, 1, 1, NULL, '\r');
926         }
927
928         if (row_width)
929                 width = row_width[current_line];
930         else
931                 width = display_width;
932         os = s;
933         while (*os) {
934                 if (*os == '\n' || *os == '\r') {
935                         /* If newline is the last character, save it
936                          * until next call to avoid bumping up the
937                          * display output.
938                          */
939                         if (*os == '\n' && !os[1]) {
940                                 pending_newline = 1;
941                                 current_line++;
942                                 if (current_line > display_lines-1)
943                                         current_line = display_lines-1;
944                                 spin_unlock(&progress_lock);
945                                 return;
946                         }
947
948                         /* RTAS wants CR-LF, not just LF */
949
950                         if (*os == '\n') {
951                                 rtas_call(display_character, 1, 1, NULL, '\r');
952                                 rtas_call(display_character, 1, 1, NULL, '\n');
953                         } else {
954                                 /* CR might be used to re-draw a line, so we'll
955                                  * leave it alone and not add LF.
956                                  */
957                                 rtas_call(display_character, 1, 1, NULL, *os);
958                         }
959
960                         if (row_width)
961                                 width = row_width[current_line];
962                         else
963                                 width = display_width;
964                 } else {
965                         width--;
966                         rtas_call(display_character, 1, 1, NULL, *os);
967                 }
968
969                 os++;
970
971                 /* if we overwrite the screen length */
972                 if (width <= 0)
973                         while ((*os != 0) && (*os != '\n') && (*os != '\r'))
974                                 os++;
975         }
976
977         spin_unlock(&progress_lock);
978 }
979 EXPORT_SYMBOL_GPL(rtas_progress);               /* needed by rtas_flash module */
980
981 int rtas_token(const char *service)
982 {
983         const struct rtas_function *func;
984         const __be32 *tokp;
985
986         if (rtas.dev == NULL)
987                 return RTAS_UNKNOWN_SERVICE;
988
989         func = rtas_name_to_function(service);
990         if (func)
991                 return func->token;
992         /*
993          * The caller is looking up a name that is not known to be an
994          * RTAS function. Either it's a function that needs to be
995          * added to the table, or they're misusing rtas_token() to
996          * access non-function properties of the /rtas node. Warn and
997          * fall back to the legacy behavior.
998          */
999         WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
1000                   service);
1001
1002         tokp = of_get_property(rtas.dev, service, NULL);
1003         return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
1004 }
1005 EXPORT_SYMBOL_GPL(rtas_token);
1006
1007 #ifdef CONFIG_RTAS_ERROR_LOGGING
1008
1009 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
1010
1011 /*
1012  * Return the firmware-specified size of the error log buffer
1013  *  for all rtas calls that require an error buffer argument.
1014  *  This includes 'check-exception' and 'rtas-last-error'.
1015  */
1016 int rtas_get_error_log_max(void)
1017 {
1018         return rtas_error_log_max;
1019 }
1020
1021 static void __init init_error_log_max(void)
1022 {
1023         static const char propname[] __initconst = "rtas-error-log-max";
1024         u32 max;
1025
1026         if (of_property_read_u32(rtas.dev, propname, &max)) {
1027                 pr_warn("%s not found, using default of %u\n",
1028                         propname, RTAS_ERROR_LOG_MAX);
1029                 max = RTAS_ERROR_LOG_MAX;
1030         }
1031
1032         if (max > RTAS_ERROR_LOG_MAX) {
1033                 pr_warn("%s = %u, clamping max error log size to %u\n",
1034                         propname, max, RTAS_ERROR_LOG_MAX);
1035                 max = RTAS_ERROR_LOG_MAX;
1036         }
1037
1038         rtas_error_log_max = max;
1039 }
1040
1041
1042 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
1043
1044 /** Return a copy of the detailed error text associated with the
1045  *  most recent failed call to rtas.  Because the error text
1046  *  might go stale if there are any other intervening rtas calls,
1047  *  this routine must be called atomically with whatever produced
1048  *  the error (i.e. with rtas_lock still held from the previous call).
1049  */
1050 static char *__fetch_rtas_last_error(char *altbuf)
1051 {
1052         const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
1053         struct rtas_args err_args, save_args;
1054         u32 bufsz;
1055         char *buf = NULL;
1056
1057         lockdep_assert_held(&rtas_lock);
1058
1059         if (token == -1)
1060                 return NULL;
1061
1062         bufsz = rtas_get_error_log_max();
1063
1064         err_args.token = cpu_to_be32(token);
1065         err_args.nargs = cpu_to_be32(2);
1066         err_args.nret = cpu_to_be32(1);
1067         err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
1068         err_args.args[1] = cpu_to_be32(bufsz);
1069         err_args.args[2] = 0;
1070
1071         save_args = rtas_args;
1072         rtas_args = err_args;
1073
1074         do_enter_rtas(&rtas_args);
1075
1076         err_args = rtas_args;
1077         rtas_args = save_args;
1078
1079         /* Log the error in the unlikely case that there was one. */
1080         if (unlikely(err_args.args[2] == 0)) {
1081                 if (altbuf) {
1082                         buf = altbuf;
1083                 } else {
1084                         buf = rtas_err_buf;
1085                         if (slab_is_available())
1086                                 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1087                 }
1088                 if (buf)
1089                         memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1090         }
1091
1092         return buf;
1093 }
1094
1095 #define get_errorlog_buffer()   kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1096
1097 #else /* CONFIG_RTAS_ERROR_LOGGING */
1098 #define __fetch_rtas_last_error(x)      NULL
1099 #define get_errorlog_buffer()           NULL
1100 static void __init init_error_log_max(void) {}
1101 #endif
1102
1103
1104 static void
1105 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1106                       va_list list)
1107 {
1108         int i;
1109
1110         args->token = cpu_to_be32(token);
1111         args->nargs = cpu_to_be32(nargs);
1112         args->nret  = cpu_to_be32(nret);
1113         args->rets  = &(args->args[nargs]);
1114
1115         for (i = 0; i < nargs; ++i)
1116                 args->args[i] = cpu_to_be32(va_arg(list, __u32));
1117
1118         for (i = 0; i < nret; ++i)
1119                 args->rets[i] = 0;
1120
1121         do_enter_rtas(args);
1122 }
1123
1124 /**
1125  * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1126  * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1127  *        constraints.
1128  * @token: Identifies the function being invoked.
1129  * @nargs: Number of input parameters. Does not include token.
1130  * @nret: Number of output parameters, including the call status.
1131  * @....: List of @nargs input parameters.
1132  *
1133  * Invokes the RTAS function indicated by @token, which the caller
1134  * should obtain via rtas_function_token().
1135  *
1136  * This function is similar to rtas_call(), but must be used with a
1137  * limited set of RTAS calls specifically exempted from the general
1138  * requirement that only one RTAS call may be in progress at any
1139  * time. Examples include stop-self and ibm,nmi-interlock.
1140  */
1141 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1142 {
1143         va_list list;
1144
1145         va_start(list, nret);
1146         va_rtas_call_unlocked(args, token, nargs, nret, list);
1147         va_end(list);
1148 }
1149
1150 static bool token_is_restricted_errinjct(s32 token)
1151 {
1152         return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1153                token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1154 }
1155
1156 /**
1157  * rtas_call() - Invoke an RTAS firmware function.
1158  * @token: Identifies the function being invoked.
1159  * @nargs: Number of input parameters. Does not include token.
1160  * @nret: Number of output parameters, including the call status.
1161  * @outputs: Array of @nret output words.
1162  * @....: List of @nargs input parameters.
1163  *
1164  * Invokes the RTAS function indicated by @token, which the caller
1165  * should obtain via rtas_function_token().
1166  *
1167  * The @nargs and @nret arguments must match the number of input and
1168  * output parameters specified for the RTAS function.
1169  *
1170  * rtas_call() returns RTAS status codes, not conventional Linux errno
1171  * values. Callers must translate any failure to an appropriate errno
1172  * in syscall context. Most callers of RTAS functions that can return
1173  * -2 or 990x should use rtas_busy_delay() to correctly handle those
1174  * statuses before calling again.
1175  *
1176  * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1177  * Codes of the PAPR and CHRP specifications.
1178  *
1179  * Context: Process context preferably, interrupt context if
1180  *          necessary.  Acquires an internal spinlock and may perform
1181  *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1182  *          context.
1183  * Return:
1184  * *                          0 - RTAS function call succeeded.
1185  * *                         -1 - RTAS function encountered a hardware or
1186  *                                platform error, or the token is invalid,
1187  *                                or the function is restricted by kernel policy.
1188  * *                         -2 - Specs say "A necessary hardware device was busy,
1189  *                                and the requested function could not be
1190  *                                performed. The operation should be retried at
1191  *                                a later time." This is misleading, at least with
1192  *                                respect to current RTAS implementations. What it
1193  *                                usually means in practice is that the function
1194  *                                could not be completed while meeting RTAS's
1195  *                                deadline for returning control to the OS (250us
1196  *                                for PAPR/PowerVM, typically), but the call may be
1197  *                                immediately reattempted to resume work on it.
1198  * *                         -3 - Parameter error.
1199  * *                         -7 - Unexpected state change.
1200  * *                9000...9899 - Vendor-specific success codes.
1201  * *                9900...9905 - Advisory extended delay. Caller should try
1202  *                                again after ~10^x ms has elapsed, where x is
1203  *                                the last digit of the status [0-5]. Again going
1204  *                                beyond the PAPR text, 990x on PowerVM indicates
1205  *                                contention for RTAS-internal resources. Other
1206  *                                RTAS call sequences in progress should be
1207  *                                allowed to complete before reattempting the
1208  *                                call.
1209  * *                      -9000 - Multi-level isolation error.
1210  * *              -9999...-9004 - Vendor-specific error codes.
1211  * * Additional negative values - Function-specific error.
1212  * * Additional positive values - Function-specific success.
1213  */
1214 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1215 {
1216         struct pin_cookie cookie;
1217         va_list list;
1218         int i;
1219         unsigned long flags;
1220         struct rtas_args *args;
1221         char *buff_copy = NULL;
1222         int ret;
1223
1224         if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1225                 return -1;
1226
1227         if (token_is_restricted_errinjct(token)) {
1228                 /*
1229                  * It would be nicer to not discard the error value
1230                  * from security_locked_down(), but callers expect an
1231                  * RTAS status, not an errno.
1232                  */
1233                 if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1234                         return -1;
1235         }
1236
1237         if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1238                 WARN_ON_ONCE(1);
1239                 return -1;
1240         }
1241
1242         raw_spin_lock_irqsave(&rtas_lock, flags);
1243         cookie = lockdep_pin_lock(&rtas_lock);
1244
1245         /* We use the global rtas args buffer */
1246         args = &rtas_args;
1247
1248         va_start(list, outputs);
1249         va_rtas_call_unlocked(args, token, nargs, nret, list);
1250         va_end(list);
1251
1252         /* A -1 return code indicates that the last command couldn't
1253            be completed due to a hardware error. */
1254         if (be32_to_cpu(args->rets[0]) == -1)
1255                 buff_copy = __fetch_rtas_last_error(NULL);
1256
1257         if (nret > 1 && outputs != NULL)
1258                 for (i = 0; i < nret-1; ++i)
1259                         outputs[i] = be32_to_cpu(args->rets[i + 1]);
1260         ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1261
1262         lockdep_unpin_lock(&rtas_lock, cookie);
1263         raw_spin_unlock_irqrestore(&rtas_lock, flags);
1264
1265         if (buff_copy) {
1266                 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1267                 if (slab_is_available())
1268                         kfree(buff_copy);
1269         }
1270         return ret;
1271 }
1272 EXPORT_SYMBOL_GPL(rtas_call);
1273
1274 /**
1275  * rtas_busy_delay_time() - From an RTAS status value, calculate the
1276  *                          suggested delay time in milliseconds.
1277  *
1278  * @status: a value returned from rtas_call() or similar APIs which return
1279  *          the status of a RTAS function call.
1280  *
1281  * Context: Any context.
1282  *
1283  * Return:
1284  * * 100000 - If @status is 9905.
1285  * * 10000  - If @status is 9904.
1286  * * 1000   - If @status is 9903.
1287  * * 100    - If @status is 9902.
1288  * * 10     - If @status is 9901.
1289  * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1290  *            some callers depend on this behavior, and the worst outcome
1291  *            is that they will delay for longer than necessary.
1292  * * 0      - If @status is not a busy or extended delay value.
1293  */
1294 unsigned int rtas_busy_delay_time(int status)
1295 {
1296         int order;
1297         unsigned int ms = 0;
1298
1299         if (status == RTAS_BUSY) {
1300                 ms = 1;
1301         } else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1302                    status <= RTAS_EXTENDED_DELAY_MAX) {
1303                 order = status - RTAS_EXTENDED_DELAY_MIN;
1304                 for (ms = 1; order > 0; order--)
1305                         ms *= 10;
1306         }
1307
1308         return ms;
1309 }
1310
1311 /*
1312  * Early boot fallback for rtas_busy_delay().
1313  */
1314 static bool __init rtas_busy_delay_early(int status)
1315 {
1316         static size_t successive_ext_delays __initdata;
1317         bool retry;
1318
1319         switch (status) {
1320         case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1321                 /*
1322                  * In the unlikely case that we receive an extended
1323                  * delay status in early boot, the OS is probably not
1324                  * the cause, and there's nothing we can do to clear
1325                  * the condition. Best we can do is delay for a bit
1326                  * and hope it's transient. Lie to the caller if it
1327                  * seems like we're stuck in a retry loop.
1328                  */
1329                 mdelay(1);
1330                 retry = true;
1331                 successive_ext_delays += 1;
1332                 if (successive_ext_delays > 1000) {
1333                         pr_err("too many extended delays, giving up\n");
1334                         dump_stack();
1335                         retry = false;
1336                         successive_ext_delays = 0;
1337                 }
1338                 break;
1339         case RTAS_BUSY:
1340                 retry = true;
1341                 successive_ext_delays = 0;
1342                 break;
1343         default:
1344                 retry = false;
1345                 successive_ext_delays = 0;
1346                 break;
1347         }
1348
1349         return retry;
1350 }
1351
1352 /**
1353  * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1354  *
1355  * @status: a value returned from rtas_call() or similar APIs which return
1356  *          the status of a RTAS function call.
1357  *
1358  * Context: Process context. May sleep or schedule.
1359  *
1360  * Return:
1361  * * true  - @status is RTAS_BUSY or an extended delay hint. The
1362  *           caller may assume that the CPU has been yielded if necessary,
1363  *           and that an appropriate delay for @status has elapsed.
1364  *           Generally the caller should reattempt the RTAS call which
1365  *           yielded @status.
1366  *
1367  * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1368  *           caller is responsible for handling @status.
1369  */
1370 bool __ref rtas_busy_delay(int status)
1371 {
1372         unsigned int ms;
1373         bool ret;
1374
1375         /*
1376          * Can't do timed sleeps before timekeeping is up.
1377          */
1378         if (system_state < SYSTEM_SCHEDULING)
1379                 return rtas_busy_delay_early(status);
1380
1381         switch (status) {
1382         case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1383                 ret = true;
1384                 ms = rtas_busy_delay_time(status);
1385                 /*
1386                  * The extended delay hint can be as high as 100 seconds.
1387                  * Surely any function returning such a status is either
1388                  * buggy or isn't going to be significantly slowed by us
1389                  * polling at 1HZ. Clamp the sleep time to one second.
1390                  */
1391                 ms = clamp(ms, 1U, 1000U);
1392                 /*
1393                  * The delay hint is an order-of-magnitude suggestion, not a
1394                  * minimum. It is fine, possibly even advantageous, for us to
1395                  * pause for less time than hinted. To make sure pause time will
1396                  * not be way longer than requested independent of HZ
1397                  * configuration, use fsleep(). See fsleep() for details of
1398                  * used sleeping functions.
1399                  */
1400                 fsleep(ms * 1000);
1401                 break;
1402         case RTAS_BUSY:
1403                 ret = true;
1404                 /*
1405                  * We should call again immediately if there's no other
1406                  * work to do.
1407                  */
1408                 cond_resched();
1409                 break;
1410         default:
1411                 ret = false;
1412                 /*
1413                  * Not a busy or extended delay status; the caller should
1414                  * handle @status itself. Ensure we warn on misuses in
1415                  * atomic context regardless.
1416                  */
1417                 might_sleep();
1418                 break;
1419         }
1420
1421         return ret;
1422 }
1423 EXPORT_SYMBOL_GPL(rtas_busy_delay);
1424
1425 int rtas_error_rc(int rtas_rc)
1426 {
1427         int rc;
1428
1429         switch (rtas_rc) {
1430         case RTAS_HARDWARE_ERROR:       /* Hardware Error */
1431                 rc = -EIO;
1432                 break;
1433         case RTAS_INVALID_PARAMETER:    /* Bad indicator/domain/etc */
1434                 rc = -EINVAL;
1435                 break;
1436         case -9000:                     /* Isolation error */
1437                 rc = -EFAULT;
1438                 break;
1439         case -9001:                     /* Outstanding TCE/PTE */
1440                 rc = -EEXIST;
1441                 break;
1442         case -9002:                     /* No usable slot */
1443                 rc = -ENODEV;
1444                 break;
1445         default:
1446                 pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1447                 rc = -ERANGE;
1448                 break;
1449         }
1450         return rc;
1451 }
1452 EXPORT_SYMBOL_GPL(rtas_error_rc);
1453
1454 int rtas_get_power_level(int powerdomain, int *level)
1455 {
1456         int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1457         int rc;
1458
1459         if (token == RTAS_UNKNOWN_SERVICE)
1460                 return -ENOENT;
1461
1462         while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1463                 udelay(1);
1464
1465         if (rc < 0)
1466                 return rtas_error_rc(rc);
1467         return rc;
1468 }
1469 EXPORT_SYMBOL_GPL(rtas_get_power_level);
1470
1471 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1472 {
1473         int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1474         int rc;
1475
1476         if (token == RTAS_UNKNOWN_SERVICE)
1477                 return -ENOENT;
1478
1479         do {
1480                 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1481         } while (rtas_busy_delay(rc));
1482
1483         if (rc < 0)
1484                 return rtas_error_rc(rc);
1485         return rc;
1486 }
1487 EXPORT_SYMBOL_GPL(rtas_set_power_level);
1488
1489 int rtas_get_sensor(int sensor, int index, int *state)
1490 {
1491         int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1492         int rc;
1493
1494         if (token == RTAS_UNKNOWN_SERVICE)
1495                 return -ENOENT;
1496
1497         do {
1498                 rc = rtas_call(token, 2, 2, state, sensor, index);
1499         } while (rtas_busy_delay(rc));
1500
1501         if (rc < 0)
1502                 return rtas_error_rc(rc);
1503         return rc;
1504 }
1505 EXPORT_SYMBOL_GPL(rtas_get_sensor);
1506
1507 int rtas_get_sensor_fast(int sensor, int index, int *state)
1508 {
1509         int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1510         int rc;
1511
1512         if (token == RTAS_UNKNOWN_SERVICE)
1513                 return -ENOENT;
1514
1515         rc = rtas_call(token, 2, 2, state, sensor, index);
1516         WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1517                                     rc <= RTAS_EXTENDED_DELAY_MAX));
1518
1519         if (rc < 0)
1520                 return rtas_error_rc(rc);
1521         return rc;
1522 }
1523
1524 bool rtas_indicator_present(int token, int *maxindex)
1525 {
1526         int proplen, count, i;
1527         const struct indicator_elem {
1528                 __be32 token;
1529                 __be32 maxindex;
1530         } *indicators;
1531
1532         indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1533         if (!indicators)
1534                 return false;
1535
1536         count = proplen / sizeof(struct indicator_elem);
1537
1538         for (i = 0; i < count; i++) {
1539                 if (__be32_to_cpu(indicators[i].token) != token)
1540                         continue;
1541                 if (maxindex)
1542                         *maxindex = __be32_to_cpu(indicators[i].maxindex);
1543                 return true;
1544         }
1545
1546         return false;
1547 }
1548
1549 int rtas_set_indicator(int indicator, int index, int new_value)
1550 {
1551         int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1552         int rc;
1553
1554         if (token == RTAS_UNKNOWN_SERVICE)
1555                 return -ENOENT;
1556
1557         do {
1558                 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1559         } while (rtas_busy_delay(rc));
1560
1561         if (rc < 0)
1562                 return rtas_error_rc(rc);
1563         return rc;
1564 }
1565 EXPORT_SYMBOL_GPL(rtas_set_indicator);
1566
1567 /*
1568  * Ignoring RTAS extended delay
1569  */
1570 int rtas_set_indicator_fast(int indicator, int index, int new_value)
1571 {
1572         int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1573         int rc;
1574
1575         if (token == RTAS_UNKNOWN_SERVICE)
1576                 return -ENOENT;
1577
1578         rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1579
1580         WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1581                                     rc <= RTAS_EXTENDED_DELAY_MAX));
1582
1583         if (rc < 0)
1584                 return rtas_error_rc(rc);
1585
1586         return rc;
1587 }
1588
1589 /**
1590  * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1591  *
1592  * @fw_status: RTAS call status will be placed here if not NULL.
1593  *
1594  * rtas_ibm_suspend_me() should be called only on a CPU which has
1595  * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1596  * should be waiting to return from H_JOIN.
1597  *
1598  * rtas_ibm_suspend_me() may suspend execution of the OS
1599  * indefinitely. Callers should take appropriate measures upon return, such as
1600  * resetting watchdog facilities.
1601  *
1602  * Callers may choose to retry this call if @fw_status is
1603  * %RTAS_THREADS_ACTIVE.
1604  *
1605  * Return:
1606  * 0          - The partition has resumed from suspend, possibly after
1607  *              migration to a different host.
1608  * -ECANCELED - The operation was aborted.
1609  * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1610  * -EBUSY     - Some other condition prevented the suspend from succeeding.
1611  * -EIO       - Hardware/platform error.
1612  */
1613 int rtas_ibm_suspend_me(int *fw_status)
1614 {
1615         int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1616         int fwrc;
1617         int ret;
1618
1619         fwrc = rtas_call(token, 0, 1, NULL);
1620
1621         switch (fwrc) {
1622         case 0:
1623                 ret = 0;
1624                 break;
1625         case RTAS_SUSPEND_ABORTED:
1626                 ret = -ECANCELED;
1627                 break;
1628         case RTAS_THREADS_ACTIVE:
1629                 ret = -EAGAIN;
1630                 break;
1631         case RTAS_NOT_SUSPENDABLE:
1632         case RTAS_OUTSTANDING_COPROC:
1633                 ret = -EBUSY;
1634                 break;
1635         case -1:
1636         default:
1637                 ret = -EIO;
1638                 break;
1639         }
1640
1641         if (fw_status)
1642                 *fw_status = fwrc;
1643
1644         return ret;
1645 }
1646
1647 void __noreturn rtas_restart(char *cmd)
1648 {
1649         if (rtas_flash_term_hook)
1650                 rtas_flash_term_hook(SYS_RESTART);
1651         pr_emerg("system-reboot returned %d\n",
1652                  rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1653         for (;;);
1654 }
1655
1656 void rtas_power_off(void)
1657 {
1658         if (rtas_flash_term_hook)
1659                 rtas_flash_term_hook(SYS_POWER_OFF);
1660         /* allow power on only with power button press */
1661         pr_emerg("power-off returned %d\n",
1662                  rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1663         for (;;);
1664 }
1665
1666 void __noreturn rtas_halt(void)
1667 {
1668         if (rtas_flash_term_hook)
1669                 rtas_flash_term_hook(SYS_HALT);
1670         /* allow power on only with power button press */
1671         pr_emerg("power-off returned %d\n",
1672                  rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1673         for (;;);
1674 }
1675
1676 /* Must be in the RMO region, so we place it here */
1677 static char rtas_os_term_buf[2048];
1678 static bool ibm_extended_os_term;
1679
1680 void rtas_os_term(char *str)
1681 {
1682         s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1683         static struct rtas_args args;
1684         int status;
1685
1686         /*
1687          * Firmware with the ibm,extended-os-term property is guaranteed
1688          * to always return from an ibm,os-term call. Earlier versions without
1689          * this property may terminate the partition which we want to avoid
1690          * since it interferes with panic_timeout.
1691          */
1692
1693         if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1694                 return;
1695
1696         snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1697
1698         /*
1699          * Keep calling as long as RTAS returns a "try again" status,
1700          * but don't use rtas_busy_delay(), which potentially
1701          * schedules.
1702          */
1703         do {
1704                 rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1705                 status = be32_to_cpu(args.rets[0]);
1706         } while (rtas_busy_delay_time(status));
1707
1708         if (status != 0)
1709                 pr_emerg("ibm,os-term call failed %d\n", status);
1710 }
1711
1712 /**
1713  * rtas_activate_firmware() - Activate a new version of firmware.
1714  *
1715  * Context: This function may sleep.
1716  *
1717  * Activate a new version of partition firmware. The OS must call this
1718  * after resuming from a partition hibernation or migration in order
1719  * to maintain the ability to perform live firmware updates. It's not
1720  * catastrophic for this method to be absent or to fail; just log the
1721  * condition in that case.
1722  */
1723 void rtas_activate_firmware(void)
1724 {
1725         int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1726         int fwrc;
1727
1728         if (token == RTAS_UNKNOWN_SERVICE) {
1729                 pr_notice("ibm,activate-firmware method unavailable\n");
1730                 return;
1731         }
1732
1733         mutex_lock(&rtas_ibm_activate_firmware_lock);
1734
1735         do {
1736                 fwrc = rtas_call(token, 0, 1, NULL);
1737         } while (rtas_busy_delay(fwrc));
1738
1739         mutex_unlock(&rtas_ibm_activate_firmware_lock);
1740
1741         if (fwrc)
1742                 pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1743 }
1744
1745 /**
1746  * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1747  *                          extended event log.
1748  * @log: RTAS error/event log
1749  * @section_id: two character section identifier
1750  *
1751  * Return: A pointer to the specified errorlog or NULL if not found.
1752  */
1753 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1754                                                       uint16_t section_id)
1755 {
1756         struct rtas_ext_event_log_v6 *ext_log =
1757                 (struct rtas_ext_event_log_v6 *)log->buffer;
1758         struct pseries_errorlog *sect;
1759         unsigned char *p, *log_end;
1760         uint32_t ext_log_length = rtas_error_extended_log_length(log);
1761         uint8_t log_format = rtas_ext_event_log_format(ext_log);
1762         uint32_t company_id = rtas_ext_event_company_id(ext_log);
1763
1764         /* Check that we understand the format */
1765         if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1766             log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1767             company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1768                 return NULL;
1769
1770         log_end = log->buffer + ext_log_length;
1771         p = ext_log->vendor_log;
1772
1773         while (p < log_end) {
1774                 sect = (struct pseries_errorlog *)p;
1775                 if (pseries_errorlog_id(sect) == section_id)
1776                         return sect;
1777                 p += pseries_errorlog_length(sect);
1778         }
1779
1780         return NULL;
1781 }
1782
1783 /*
1784  * The sys_rtas syscall, as originally designed, allows root to pass
1785  * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1786  * can be abused to write to arbitrary memory and do other things that
1787  * are potentially harmful to system integrity, and thus should only
1788  * be used inside the kernel and not exposed to userspace.
1789  *
1790  * All known legitimate users of the sys_rtas syscall will only ever
1791  * pass addresses that fall within the RMO buffer, and use a known
1792  * subset of RTAS calls.
1793  *
1794  * Accordingly, we filter RTAS requests to check that the call is
1795  * permitted, and that provided pointers fall within the RMO buffer.
1796  * If a function is allowed to be invoked via the syscall, then its
1797  * entry in the rtas_functions table points to a rtas_filter that
1798  * describes its constraints, with the indexes of the parameters which
1799  * are expected to contain addresses and sizes of buffers allocated
1800  * inside the RMO buffer.
1801  */
1802
1803 static bool in_rmo_buf(u32 base, u32 end)
1804 {
1805         return base >= rtas_rmo_buf &&
1806                 base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1807                 base <= end &&
1808                 end >= rtas_rmo_buf &&
1809                 end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1810 }
1811
1812 static bool block_rtas_call(const struct rtas_function *func, int nargs,
1813                             struct rtas_args *args)
1814 {
1815         const struct rtas_filter *f;
1816         const bool is_platform_dump =
1817                 func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
1818         const bool is_config_conn =
1819                 func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
1820         u32 base, size, end;
1821
1822         /*
1823          * Only functions with filters attached are allowed.
1824          */
1825         f = func->filter;
1826         if (!f)
1827                 goto err;
1828         /*
1829          * And some functions aren't allowed on LE.
1830          */
1831         if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1832                 goto err;
1833
1834         if (f->buf_idx1 != -1) {
1835                 base = be32_to_cpu(args->args[f->buf_idx1]);
1836                 if (f->size_idx1 != -1)
1837                         size = be32_to_cpu(args->args[f->size_idx1]);
1838                 else if (f->fixed_size)
1839                         size = f->fixed_size;
1840                 else
1841                         size = 1;
1842
1843                 end = base + size - 1;
1844
1845                 /*
1846                  * Special case for ibm,platform-dump - NULL buffer
1847                  * address is used to indicate end of dump processing
1848                  */
1849                 if (is_platform_dump && base == 0)
1850                         return false;
1851
1852                 if (!in_rmo_buf(base, end))
1853                         goto err;
1854         }
1855
1856         if (f->buf_idx2 != -1) {
1857                 base = be32_to_cpu(args->args[f->buf_idx2]);
1858                 if (f->size_idx2 != -1)
1859                         size = be32_to_cpu(args->args[f->size_idx2]);
1860                 else if (f->fixed_size)
1861                         size = f->fixed_size;
1862                 else
1863                         size = 1;
1864                 end = base + size - 1;
1865
1866                 /*
1867                  * Special case for ibm,configure-connector where the
1868                  * address can be 0
1869                  */
1870                 if (is_config_conn && base == 0)
1871                         return false;
1872
1873                 if (!in_rmo_buf(base, end))
1874                         goto err;
1875         }
1876
1877         return false;
1878 err:
1879         pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1880         pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
1881                            func->name, nargs, current->comm);
1882         return true;
1883 }
1884
1885 /* We assume to be passed big endian arguments */
1886 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1887 {
1888         const struct rtas_function *func;
1889         struct pin_cookie cookie;
1890         struct rtas_args args;
1891         unsigned long flags;
1892         char *buff_copy, *errbuf = NULL;
1893         int nargs, nret, token;
1894
1895         if (!capable(CAP_SYS_ADMIN))
1896                 return -EPERM;
1897
1898         if (!rtas.entry)
1899                 return -EINVAL;
1900
1901         if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1902                 return -EFAULT;
1903
1904         nargs = be32_to_cpu(args.nargs);
1905         nret  = be32_to_cpu(args.nret);
1906         token = be32_to_cpu(args.token);
1907
1908         if (nargs >= ARRAY_SIZE(args.args)
1909             || nret > ARRAY_SIZE(args.args)
1910             || nargs + nret > ARRAY_SIZE(args.args))
1911                 return -EINVAL;
1912
1913         nargs = array_index_nospec(nargs, ARRAY_SIZE(args.args));
1914         nret = array_index_nospec(nret, ARRAY_SIZE(args.args) - nargs);
1915
1916         /* Copy in args. */
1917         if (copy_from_user(args.args, uargs->args,
1918                            nargs * sizeof(rtas_arg_t)) != 0)
1919                 return -EFAULT;
1920
1921         /*
1922          * If this token doesn't correspond to a function the kernel
1923          * understands, you're not allowed to call it.
1924          */
1925         func = rtas_token_to_function_untrusted(token);
1926         if (!func)
1927                 return -EINVAL;
1928
1929         args.rets = &args.args[nargs];
1930         memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1931
1932         if (block_rtas_call(func, nargs, &args))
1933                 return -EINVAL;
1934
1935         if (token_is_restricted_errinjct(token)) {
1936                 int err;
1937
1938                 err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1939                 if (err)
1940                         return err;
1941         }
1942
1943         /* Need to handle ibm,suspend_me call specially */
1944         if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1945
1946                 /*
1947                  * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1948                  * endian, or at least the hcall within it requires it.
1949                  */
1950                 int rc = 0;
1951                 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1952                               | be32_to_cpu(args.args[1]);
1953                 rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1954                 if (rc == -EAGAIN)
1955                         args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1956                 else if (rc == -EIO)
1957                         args.rets[0] = cpu_to_be32(-1);
1958                 else if (rc)
1959                         return rc;
1960                 goto copy_return;
1961         }
1962
1963         buff_copy = get_errorlog_buffer();
1964
1965         /*
1966          * If this function has a mutex assigned to it, we must
1967          * acquire it to avoid interleaving with any kernel-based uses
1968          * of the same function. Kernel-based sequences acquire the
1969          * appropriate mutex explicitly.
1970          */
1971         if (func->lock)
1972                 mutex_lock(func->lock);
1973
1974         raw_spin_lock_irqsave(&rtas_lock, flags);
1975         cookie = lockdep_pin_lock(&rtas_lock);
1976
1977         rtas_args = args;
1978         do_enter_rtas(&rtas_args);
1979         args = rtas_args;
1980
1981         /* A -1 return code indicates that the last command couldn't
1982            be completed due to a hardware error. */
1983         if (be32_to_cpu(args.rets[0]) == -1)
1984                 errbuf = __fetch_rtas_last_error(buff_copy);
1985
1986         lockdep_unpin_lock(&rtas_lock, cookie);
1987         raw_spin_unlock_irqrestore(&rtas_lock, flags);
1988
1989         if (func->lock)
1990                 mutex_unlock(func->lock);
1991
1992         if (buff_copy) {
1993                 if (errbuf)
1994                         log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1995                 kfree(buff_copy);
1996         }
1997
1998  copy_return:
1999         /* Copy out args. */
2000         if (copy_to_user(uargs->args + nargs,
2001                          args.args + nargs,
2002                          nret * sizeof(rtas_arg_t)) != 0)
2003                 return -EFAULT;
2004
2005         return 0;
2006 }
2007
2008 static void __init rtas_function_table_init(void)
2009 {
2010         struct property *prop;
2011
2012         for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
2013                 struct rtas_function *curr = &rtas_function_table[i];
2014                 struct rtas_function *prior;
2015                 int cmp;
2016
2017                 curr->token = RTAS_UNKNOWN_SERVICE;
2018
2019                 if (i == 0)
2020                         continue;
2021                 /*
2022                  * Ensure table is sorted correctly for binary search
2023                  * on function names.
2024                  */
2025                 prior = &rtas_function_table[i - 1];
2026
2027                 cmp = strcmp(prior->name, curr->name);
2028                 if (cmp < 0)
2029                         continue;
2030
2031                 if (cmp == 0) {
2032                         pr_err("'%s' has duplicate function table entries\n",
2033                                curr->name);
2034                 } else {
2035                         pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
2036                                prior->name, curr->name);
2037                 }
2038         }
2039
2040         for_each_property_of_node(rtas.dev, prop) {
2041                 struct rtas_function *func;
2042
2043                 if (prop->length != sizeof(u32))
2044                         continue;
2045
2046                 func = __rtas_name_to_function(prop->name);
2047                 if (!func)
2048                         continue;
2049
2050                 func->token = be32_to_cpup((__be32 *)prop->value);
2051
2052                 pr_debug("function %s has token %u\n", func->name, func->token);
2053         }
2054 }
2055
2056 /*
2057  * Call early during boot, before mem init, to retrieve the RTAS
2058  * information from the device-tree and allocate the RMO buffer for userland
2059  * accesses.
2060  */
2061 void __init rtas_initialize(void)
2062 {
2063         unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
2064         u32 base, size, entry;
2065         int no_base, no_size, no_entry;
2066
2067         /* Get RTAS dev node and fill up our "rtas" structure with infos
2068          * about it.
2069          */
2070         rtas.dev = of_find_node_by_name(NULL, "rtas");
2071         if (!rtas.dev)
2072                 return;
2073
2074         no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
2075         no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
2076         if (no_base || no_size) {
2077                 of_node_put(rtas.dev);
2078                 rtas.dev = NULL;
2079                 return;
2080         }
2081
2082         rtas.base = base;
2083         rtas.size = size;
2084         no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
2085         rtas.entry = no_entry ? rtas.base : entry;
2086
2087         init_error_log_max();
2088
2089         /* Must be called before any function token lookups */
2090         rtas_function_table_init();
2091
2092         /*
2093          * Discover this now to avoid a device tree lookup in the
2094          * panic path.
2095          */
2096         ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2097
2098         /* If RTAS was found, allocate the RMO buffer for it and look for
2099          * the stop-self token if any
2100          */
2101 #ifdef CONFIG_PPC64
2102         if (firmware_has_feature(FW_FEATURE_LPAR))
2103                 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2104 #endif
2105         rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2106                                                  0, rtas_region);
2107         if (!rtas_rmo_buf)
2108                 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2109                       PAGE_SIZE, &rtas_region);
2110
2111         rtas_work_area_reserve_arena(rtas_region);
2112 }
2113
2114 int __init early_init_dt_scan_rtas(unsigned long node,
2115                 const char *uname, int depth, void *data)
2116 {
2117         const u32 *basep, *entryp, *sizep;
2118
2119         if (depth != 1 || strcmp(uname, "rtas") != 0)
2120                 return 0;
2121
2122         basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2123         entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2124         sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2125
2126 #ifdef CONFIG_PPC64
2127         /* need this feature to decide the crashkernel offset */
2128         if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2129                 powerpc_firmware_features |= FW_FEATURE_LPAR;
2130 #endif
2131
2132         if (basep && entryp && sizep) {
2133                 rtas.base = *basep;
2134                 rtas.entry = *entryp;
2135                 rtas.size = *sizep;
2136         }
2137
2138 #ifdef CONFIG_UDBG_RTAS_CONSOLE
2139         basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2140         if (basep)
2141                 rtas_putchar_token = *basep;
2142
2143         basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2144         if (basep)
2145                 rtas_getchar_token = *basep;
2146
2147         if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2148             rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2149                 udbg_init_rtas_console();
2150
2151 #endif
2152
2153         /* break now */
2154         return 1;
2155 }
2156
2157 static DEFINE_RAW_SPINLOCK(timebase_lock);
2158 static u64 timebase = 0;
2159
2160 void rtas_give_timebase(void)
2161 {
2162         unsigned long flags;
2163
2164         raw_spin_lock_irqsave(&timebase_lock, flags);
2165         hard_irq_disable();
2166         rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2167         timebase = get_tb();
2168         raw_spin_unlock(&timebase_lock);
2169
2170         while (timebase)
2171                 barrier();
2172         rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2173         local_irq_restore(flags);
2174 }
2175
2176 void rtas_take_timebase(void)
2177 {
2178         while (!timebase)
2179                 barrier();
2180         raw_spin_lock(&timebase_lock);
2181         set_tb(timebase >> 32, timebase & 0xffffffff);
2182         timebase = 0;
2183         raw_spin_unlock(&timebase_lock);
2184 }
This page took 0.152826 seconds and 4 git commands to generate.