]> Git Repo - J-linux.git/blob - arch/parisc/kernel/time.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / parisc / kernel / time.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common time service routines for parisc machines.
4  * based on arch/loongarch/kernel/time.c
5  *
6  * Copyright (C) 2024 Helge Deller <[email protected]>
7  */
8 #include <linux/clockchips.h>
9 #include <linux/delay.h>
10 #include <linux/export.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/sched_clock.h>
15 #include <linux/spinlock.h>
16 #include <linux/rtc.h>
17 #include <linux/platform_device.h>
18 #include <asm/processor.h>
19
20 static u64 cr16_clock_freq;
21 static unsigned long clocktick;
22
23 int time_keeper_id;     /* CPU used for timekeeping */
24
25 static DEFINE_PER_CPU(struct clock_event_device, parisc_clockevent_device);
26
27 static void parisc_event_handler(struct clock_event_device *dev)
28 {
29 }
30
31 static int parisc_timer_next_event(unsigned long delta, struct clock_event_device *evt)
32 {
33         unsigned long new_cr16;
34
35         new_cr16 = mfctl(16) + delta;
36         mtctl(new_cr16, 16);
37
38         return 0;
39 }
40
41 irqreturn_t timer_interrupt(int irq, void *data)
42 {
43         struct clock_event_device *cd;
44         int cpu = smp_processor_id();
45
46         cd = &per_cpu(parisc_clockevent_device, cpu);
47
48         if (clockevent_state_periodic(cd))
49                 parisc_timer_next_event(clocktick, cd);
50
51         if (clockevent_state_periodic(cd) || clockevent_state_oneshot(cd))
52                 cd->event_handler(cd);
53
54         return IRQ_HANDLED;
55 }
56
57 static int parisc_set_state_oneshot(struct clock_event_device *evt)
58 {
59         parisc_timer_next_event(clocktick, evt);
60
61         return 0;
62 }
63
64 static int parisc_set_state_periodic(struct clock_event_device *evt)
65 {
66         parisc_timer_next_event(clocktick, evt);
67
68         return 0;
69 }
70
71 static int parisc_set_state_shutdown(struct clock_event_device *evt)
72 {
73         return 0;
74 }
75
76 void parisc_clockevent_init(void)
77 {
78         unsigned int cpu = smp_processor_id();
79         unsigned long min_delta = 0x600;        /* XXX */
80         unsigned long max_delta = (1UL << (BITS_PER_LONG - 1));
81         struct clock_event_device *cd;
82
83         cd = &per_cpu(parisc_clockevent_device, cpu);
84
85         cd->name = "cr16_clockevent";
86         cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC |
87                         CLOCK_EVT_FEAT_PERCPU;
88
89         cd->irq = TIMER_IRQ;
90         cd->rating = 320;
91         cd->cpumask = cpumask_of(cpu);
92         cd->set_state_oneshot = parisc_set_state_oneshot;
93         cd->set_state_oneshot_stopped = parisc_set_state_shutdown;
94         cd->set_state_periodic = parisc_set_state_periodic;
95         cd->set_state_shutdown = parisc_set_state_shutdown;
96         cd->set_next_event = parisc_timer_next_event;
97         cd->event_handler = parisc_event_handler;
98
99         clockevents_config_and_register(cd, cr16_clock_freq, min_delta, max_delta);
100 }
101
102 unsigned long notrace profile_pc(struct pt_regs *regs)
103 {
104         unsigned long pc = instruction_pointer(regs);
105
106         if (regs->gr[0] & PSW_N)
107                 pc -= 4;
108
109 #ifdef CONFIG_SMP
110         if (in_lock_functions(pc))
111                 pc = regs->gr[2];
112 #endif
113
114         return pc;
115 }
116 EXPORT_SYMBOL(profile_pc);
117
118 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
119 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
120 {
121         struct pdc_tod tod_data;
122
123         memset(tm, 0, sizeof(*tm));
124         if (pdc_tod_read(&tod_data) < 0)
125                 return -EOPNOTSUPP;
126
127         /* we treat tod_sec as unsigned, so this can work until year 2106 */
128         rtc_time64_to_tm(tod_data.tod_sec, tm);
129         return 0;
130 }
131
132 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
133 {
134         time64_t secs = rtc_tm_to_time64(tm);
135         int ret;
136
137         /* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
138         ret = pdc_tod_set(secs, 0);
139         if (ret != 0) {
140                 pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
141                 if (ret == PDC_INVALID_ARG)
142                         return -EINVAL;
143                 return -EOPNOTSUPP;
144         }
145
146         return 0;
147 }
148
149 static const struct rtc_class_ops rtc_generic_ops = {
150         .read_time = rtc_generic_get_time,
151         .set_time = rtc_generic_set_time,
152 };
153
154 static int __init rtc_init(void)
155 {
156         struct platform_device *pdev;
157
158         pdev = platform_device_register_data(NULL, "rtc-generic", -1,
159                                              &rtc_generic_ops,
160                                              sizeof(rtc_generic_ops));
161
162         return PTR_ERR_OR_ZERO(pdev);
163 }
164 device_initcall(rtc_init);
165 #endif
166
167 void read_persistent_clock64(struct timespec64 *ts)
168 {
169         static struct pdc_tod tod_data;
170         if (pdc_tod_read(&tod_data) == 0) {
171                 ts->tv_sec = tod_data.tod_sec;
172                 ts->tv_nsec = tod_data.tod_usec * 1000;
173         } else {
174                 printk(KERN_ERR "Error reading tod clock\n");
175                 ts->tv_sec = 0;
176                 ts->tv_nsec = 0;
177         }
178 }
179
180 static u64 notrace read_cr16_sched_clock(void)
181 {
182         return get_cycles();
183 }
184
185 static u64 notrace read_cr16(struct clocksource *cs)
186 {
187         return get_cycles();
188 }
189
190 static struct clocksource clocksource_cr16 = {
191         .name                   = "cr16",
192         .rating                 = 300,
193         .read                   = read_cr16,
194         .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
195         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
196                                         CLOCK_SOURCE_VALID_FOR_HRES |
197                                         CLOCK_SOURCE_MUST_VERIFY |
198                                         CLOCK_SOURCE_VERIFY_PERCPU,
199 };
200
201
202 /*
203  * timer interrupt and sched_clock() initialization
204  */
205
206 void __init time_init(void)
207 {
208         cr16_clock_freq = 100 * PAGE0->mem_10msec;  /* Hz */
209         clocktick = cr16_clock_freq / HZ;
210
211         /* register as sched_clock source */
212         sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_clock_freq);
213
214         parisc_clockevent_init();
215
216         /* register at clocksource framework */
217         clocksource_register_hz(&clocksource_cr16, cr16_clock_freq);
218 }
This page took 0.038198 seconds and 4 git commands to generate.