]> Git Repo - J-linux.git/blob - arch/parisc/kernel/perf.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / arch / parisc / kernel / perf.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Parisc performance counters
4  *  Copyright (C) 2001 Randolph Chung <[email protected]>
5  *
6  *  This code is derived, with permission, from HP/UX sources.
7  */
8
9 /*
10  *  Edited comment from original sources:
11  *
12  *  This driver programs the PCX-U/PCX-W performance counters
13  *  on the PA-RISC 2.0 chips.  The driver keeps all images now
14  *  internally to the kernel to hopefully eliminate the possibility
15  *  of a bad image halting the CPU.  Also, there are different
16  *  images for the PCX-W and later chips vs the PCX-U chips.
17  *
18  *  Only 1 process is allowed to access the driver at any time,
19  *  so the only protection that is needed is at open and close.
20  *  A variable "perf_enabled" is used to hold the state of the
21  *  driver.  The spinlock "perf_lock" is used to protect the
22  *  modification of the state during open/close operations so
23  *  multiple processes don't get into the driver simultaneously.
24  *
25  *  This driver accesses the processor directly vs going through
26  *  the PDC INTRIGUE calls.  This is done to eliminate bugs introduced
27  *  in various PDC revisions.  The code is much more maintainable
28  *  and reliable this way vs having to debug on every version of PDC
29  *  on every box.
30  */
31
32 #include <linux/capability.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/miscdevice.h>
36 #include <linux/spinlock.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/perf.h>
40 #include <asm/parisc-device.h>
41 #include <asm/processor.h>
42 #include <asm/runway.h>
43 #include <asm/io.h>             /* for __raw_read() */
44
45 #include "perf_images.h"
46
47 #define MAX_RDR_WORDS   24
48 #define PERF_VERSION    2       /* derived from hpux's PI v2 interface */
49
50 /* definition of RDR regs */
51 struct rdr_tbl_ent {
52         uint16_t        width;
53         uint8_t         num_words;
54         uint8_t         write_control;
55 };
56
57 static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
58 static int perf_enabled __read_mostly;
59 static DEFINE_SPINLOCK(perf_lock);
60 static struct parisc_device *cpu_device __read_mostly;
61
62 /* RDRs to write for PCX-W */
63 static const int perf_rdrs_W[] =
64         { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
65
66 /* RDRs to write for PCX-U */
67 static const int perf_rdrs_U[] =
68         { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
69
70 /* RDR register descriptions for PCX-W */
71 static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
72         { 19,   1,      8 },   /* RDR 0 */
73         { 16,   1,      16 },  /* RDR 1 */
74         { 72,   2,      0 },   /* RDR 2 */
75         { 81,   2,      0 },   /* RDR 3 */
76         { 328,  6,      0 },   /* RDR 4 */
77         { 160,  3,      0 },   /* RDR 5 */
78         { 336,  6,      0 },   /* RDR 6 */
79         { 164,  3,      0 },   /* RDR 7 */
80         { 0,    0,      0 },   /* RDR 8 */
81         { 35,   1,      0 },   /* RDR 9 */
82         { 6,    1,      0 },   /* RDR 10 */
83         { 18,   1,      0 },   /* RDR 11 */
84         { 13,   1,      0 },   /* RDR 12 */
85         { 8,    1,      0 },   /* RDR 13 */
86         { 8,    1,      0 },   /* RDR 14 */
87         { 8,    1,      0 },   /* RDR 15 */
88         { 1530, 24,     0 },   /* RDR 16 */
89         { 16,   1,      0 },   /* RDR 17 */
90         { 4,    1,      0 },   /* RDR 18 */
91         { 0,    0,      0 },   /* RDR 19 */
92         { 152,  3,      24 },  /* RDR 20 */
93         { 152,  3,      24 },  /* RDR 21 */
94         { 233,  4,      48 },  /* RDR 22 */
95         { 233,  4,      48 },  /* RDR 23 */
96         { 71,   2,      0 },   /* RDR 24 */
97         { 71,   2,      0 },   /* RDR 25 */
98         { 11,   1,      0 },   /* RDR 26 */
99         { 18,   1,      0 },   /* RDR 27 */
100         { 128,  2,      0 },   /* RDR 28 */
101         { 0,    0,      0 },   /* RDR 29 */
102         { 16,   1,      0 },   /* RDR 30 */
103         { 16,   1,      0 },   /* RDR 31 */
104 };
105
106 /* RDR register descriptions for PCX-U */
107 static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
108         { 19,   1,      8 },              /* RDR 0 */
109         { 32,   1,      16 },             /* RDR 1 */
110         { 20,   1,      0 },              /* RDR 2 */
111         { 0,    0,      0 },              /* RDR 3 */
112         { 344,  6,      0 },              /* RDR 4 */
113         { 176,  3,      0 },              /* RDR 5 */
114         { 336,  6,      0 },              /* RDR 6 */
115         { 0,    0,      0 },              /* RDR 7 */
116         { 0,    0,      0 },              /* RDR 8 */
117         { 0,    0,      0 },              /* RDR 9 */
118         { 28,   1,      0 },              /* RDR 10 */
119         { 33,   1,      0 },              /* RDR 11 */
120         { 0,    0,      0 },              /* RDR 12 */
121         { 230,  4,      0 },              /* RDR 13 */
122         { 32,   1,      0 },              /* RDR 14 */
123         { 128,  2,      0 },              /* RDR 15 */
124         { 1494, 24,     0 },              /* RDR 16 */
125         { 18,   1,      0 },              /* RDR 17 */
126         { 4,    1,      0 },              /* RDR 18 */
127         { 0,    0,      0 },              /* RDR 19 */
128         { 158,  3,      24 },             /* RDR 20 */
129         { 158,  3,      24 },             /* RDR 21 */
130         { 194,  4,      48 },             /* RDR 22 */
131         { 194,  4,      48 },             /* RDR 23 */
132         { 71,   2,      0 },              /* RDR 24 */
133         { 71,   2,      0 },              /* RDR 25 */
134         { 28,   1,      0 },              /* RDR 26 */
135         { 33,   1,      0 },              /* RDR 27 */
136         { 88,   2,      0 },              /* RDR 28 */
137         { 32,   1,      0 },              /* RDR 29 */
138         { 24,   1,      0 },              /* RDR 30 */
139         { 16,   1,      0 },              /* RDR 31 */
140 };
141
142 /*
143  * A non-zero write_control in the above tables is a byte offset into
144  * this array.
145  */
146 static const uint64_t perf_bitmasks[] = {
147         0x0000000000000000ul,     /* first dbl word must be zero */
148         0xfdffe00000000000ul,     /* RDR0 bitmask */
149         0x003f000000000000ul,     /* RDR1 bitmask */
150         0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (152 bits) */
151         0xfffffffffffffffful,
152         0xfffffffc00000000ul,
153         0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (233 bits) */
154         0xfffffffffffffffful,
155         0xfffffffffffffffcul,
156         0xff00000000000000ul
157 };
158
159 /*
160  * Write control bitmasks for Pa-8700 processor given
161  * some things have changed slightly.
162  */
163 static const uint64_t perf_bitmasks_piranha[] = {
164         0x0000000000000000ul,     /* first dbl word must be zero */
165         0xfdffe00000000000ul,     /* RDR0 bitmask */
166         0x003f000000000000ul,     /* RDR1 bitmask */
167         0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (158 bits) */
168         0xfffffffffffffffful,
169         0xfffffffc00000000ul,
170         0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (210 bits) */
171         0xfffffffffffffffful,
172         0xfffffffffffffffful,
173         0xfffc000000000000ul
174 };
175
176 static const uint64_t *bitmask_array;   /* array of bitmasks to use */
177
178 /******************************************************************************
179  * Function Prototypes
180  *****************************************************************************/
181 static int perf_config(uint32_t *image_ptr);
182 static int perf_release(struct inode *inode, struct file *file);
183 static int perf_open(struct inode *inode, struct file *file);
184 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
185 static ssize_t perf_write(struct file *file, const char __user *buf,
186         size_t count, loff_t *ppos);
187 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
188 static void perf_start_counters(void);
189 static int perf_stop_counters(uint32_t *raddr);
190 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
191 static int perf_rdr_read_ubuf(uint32_t  rdr_num, uint64_t *buffer);
192 static int perf_rdr_clear(uint32_t rdr_num);
193 static int perf_write_image(uint64_t *memaddr);
194 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
195
196 /* External Assembly Routines */
197 extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
198 extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
199 extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
200 extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
201 extern void perf_intrigue_enable_perf_counters (void);
202 extern void perf_intrigue_disable_perf_counters (void);
203
204 /******************************************************************************
205  * Function Definitions
206  *****************************************************************************/
207
208
209 /*
210  * configure:
211  *
212  * Configure the cpu with a given data image.  First turn off the counters,
213  * then download the image, then turn the counters back on.
214  */
215 static int perf_config(uint32_t *image_ptr)
216 {
217         long error;
218         uint32_t raddr[4];
219
220         /* Stop the counters*/
221         error = perf_stop_counters(raddr);
222         if (error != 0) {
223                 printk("perf_config: perf_stop_counters = %ld\n", error);
224                 return -EINVAL;
225         }
226
227 printk("Preparing to write image\n");
228         /* Write the image to the chip */
229         error = perf_write_image((uint64_t *)image_ptr);
230         if (error != 0) {
231                 printk("perf_config: DOWNLOAD = %ld\n", error);
232                 return -EINVAL;
233         }
234
235 printk("Preparing to start counters\n");
236
237         /* Start the counters */
238         perf_start_counters();
239
240         return sizeof(uint32_t);
241 }
242
243 /*
244  * Open the device and initialize all of its memory.  The device is only
245  * opened once, but can be "queried" by multiple processes that know its
246  * file descriptor.
247  */
248 static int perf_open(struct inode *inode, struct file *file)
249 {
250         spin_lock(&perf_lock);
251         if (perf_enabled) {
252                 spin_unlock(&perf_lock);
253                 return -EBUSY;
254         }
255         perf_enabled = 1;
256         spin_unlock(&perf_lock);
257
258         return 0;
259 }
260
261 /*
262  * Close the device.
263  */
264 static int perf_release(struct inode *inode, struct file *file)
265 {
266         spin_lock(&perf_lock);
267         perf_enabled = 0;
268         spin_unlock(&perf_lock);
269
270         return 0;
271 }
272
273 /*
274  * Read does nothing for this driver
275  */
276 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
277 {
278         return 0;
279 }
280
281 /*
282  * write:
283  *
284  * This routine downloads the image to the chip.  It must be
285  * called on the processor that the download should happen
286  * on.
287  */
288 static ssize_t perf_write(struct file *file, const char __user *buf,
289         size_t count, loff_t *ppos)
290 {
291         size_t image_size __maybe_unused;
292         uint32_t image_type;
293         uint32_t interface_type;
294         uint32_t test;
295
296         if (perf_processor_interface == ONYX_INTF)
297                 image_size = PCXU_IMAGE_SIZE;
298         else if (perf_processor_interface == CUDA_INTF)
299                 image_size = PCXW_IMAGE_SIZE;
300         else
301                 return -EFAULT;
302
303         if (!perfmon_capable())
304                 return -EACCES;
305
306         if (count != sizeof(uint32_t))
307                 return -EIO;
308
309         if (copy_from_user(&image_type, buf, sizeof(uint32_t)))
310                 return -EFAULT;
311
312         /* Get the interface type and test type */
313         interface_type = (image_type >> 16) & 0xffff;
314         test           = (image_type & 0xffff);
315
316         /* Make sure everything makes sense */
317
318         /* First check the machine type is correct for
319            the requested image */
320         if (((perf_processor_interface == CUDA_INTF) &&
321                         (interface_type != CUDA_INTF)) ||
322                 ((perf_processor_interface == ONYX_INTF) &&
323                         (interface_type != ONYX_INTF)))
324                 return -EINVAL;
325
326         /* Next check to make sure the requested image
327            is valid */
328         if (((interface_type == CUDA_INTF) &&
329                        (test >= MAX_CUDA_IMAGES)) ||
330             ((interface_type == ONYX_INTF) &&
331                        (test >= MAX_ONYX_IMAGES)))
332                 return -EINVAL;
333
334         /* Copy the image into the processor */
335         if (interface_type == CUDA_INTF)
336                 return perf_config(cuda_images[test]);
337         else
338                 return perf_config(onyx_images[test]);
339
340         return count;
341 }
342
343 /*
344  * Patch the images that need to know the IVA addresses.
345  */
346 static void perf_patch_images(void)
347 {
348 #if 0 /* FIXME!! */
349 /*
350  * NOTE:  this routine is VERY specific to the current TLB image.
351  * If the image is changed, this routine might also need to be changed.
352  */
353         extern void $i_itlb_miss_2_0();
354         extern void $i_dtlb_miss_2_0();
355         extern void PA2_0_iva();
356
357         /*
358          * We can only use the lower 32-bits, the upper 32-bits should be 0
359          * anyway given this is in the kernel
360          */
361         uint32_t itlb_addr  = (uint32_t)&($i_itlb_miss_2_0);
362         uint32_t dtlb_addr  = (uint32_t)&($i_dtlb_miss_2_0);
363         uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
364
365         if (perf_processor_interface == ONYX_INTF) {
366                 /* clear last 2 bytes */
367                 onyx_images[TLBMISS][15] &= 0xffffff00;
368                 /* set 2 bytes */
369                 onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
370                 onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
371                 onyx_images[TLBMISS][17] = itlb_addr;
372
373                 /* clear last 2 bytes */
374                 onyx_images[TLBHANDMISS][15] &= 0xffffff00;
375                 /* set 2 bytes */
376                 onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
377                 onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
378                 onyx_images[TLBHANDMISS][17] = itlb_addr;
379
380                 /* clear last 2 bytes */
381                 onyx_images[BIG_CPI][15] &= 0xffffff00;
382                 /* set 2 bytes */
383                 onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
384                 onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
385                 onyx_images[BIG_CPI][17] = itlb_addr;
386
387             onyx_images[PANIC][15] &= 0xffffff00;  /* clear last 2 bytes */
388                 onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
389                 onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
390
391
392         } else if (perf_processor_interface == CUDA_INTF) {
393                 /* Cuda interface */
394                 cuda_images[TLBMISS][16] =
395                         (cuda_images[TLBMISS][16]&0xffff0000) |
396                         ((dtlb_addr >> 8)&0x0000ffff);
397                 cuda_images[TLBMISS][17] =
398                         ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
399                 cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
400
401                 cuda_images[TLBHANDMISS][16] =
402                         (cuda_images[TLBHANDMISS][16]&0xffff0000) |
403                         ((dtlb_addr >> 8)&0x0000ffff);
404                 cuda_images[TLBHANDMISS][17] =
405                         ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
406                 cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
407
408                 cuda_images[BIG_CPI][16] =
409                         (cuda_images[BIG_CPI][16]&0xffff0000) |
410                         ((dtlb_addr >> 8)&0x0000ffff);
411                 cuda_images[BIG_CPI][17] =
412                         ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
413                 cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
414         } else {
415                 /* Unknown type */
416         }
417 #endif
418 }
419
420
421 /*
422  * ioctl routine
423  * All routines effect the processor that they are executed on.  Thus you
424  * must be running on the processor that you wish to change.
425  */
426
427 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
428 {
429         long error_start;
430         uint32_t raddr[4];
431         int error = 0;
432
433         switch (cmd) {
434
435             case PA_PERF_ON:
436                         /* Start the counters */
437                         perf_start_counters();
438                         break;
439
440             case PA_PERF_OFF:
441                         error_start = perf_stop_counters(raddr);
442                         if (error_start != 0) {
443                                 printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
444                                 error = -EFAULT;
445                                 break;
446                         }
447
448                         /* copy out the Counters */
449                         if (copy_to_user((void __user *)arg, raddr,
450                                         sizeof (raddr)) != 0) {
451                                 error =  -EFAULT;
452                                 break;
453                         }
454                         break;
455
456             case PA_PERF_VERSION:
457                         /* Return the version # */
458                         error = put_user(PERF_VERSION, (int *)arg);
459                         break;
460
461             default:
462                         error = -ENOTTY;
463         }
464
465         return error;
466 }
467
468 static const struct file_operations perf_fops = {
469         .read = perf_read,
470         .write = perf_write,
471         .unlocked_ioctl = perf_ioctl,
472         .compat_ioctl = perf_ioctl,
473         .open = perf_open,
474         .release = perf_release
475 };
476
477 static struct miscdevice perf_dev = {
478         MISC_DYNAMIC_MINOR,
479         PA_PERF_DEV,
480         &perf_fops
481 };
482
483 /*
484  * Initialize the module
485  */
486 static int __init perf_init(void)
487 {
488         int ret;
489
490         /* Determine correct processor interface to use */
491         bitmask_array = perf_bitmasks;
492
493         if (boot_cpu_data.cpu_type == pcxu ||
494             boot_cpu_data.cpu_type == pcxu_) {
495                 perf_processor_interface = ONYX_INTF;
496         } else if (boot_cpu_data.cpu_type == pcxw ||
497                  boot_cpu_data.cpu_type == pcxw_ ||
498                  boot_cpu_data.cpu_type == pcxw2 ||
499                  boot_cpu_data.cpu_type == mako ||
500                  boot_cpu_data.cpu_type == mako2) {
501                 perf_processor_interface = CUDA_INTF;
502                 if (boot_cpu_data.cpu_type == pcxw2 ||
503                     boot_cpu_data.cpu_type == mako ||
504                     boot_cpu_data.cpu_type == mako2)
505                         bitmask_array = perf_bitmasks_piranha;
506         } else {
507                 perf_processor_interface = UNKNOWN_INTF;
508                 printk("Performance monitoring counters not supported on this processor\n");
509                 return -ENODEV;
510         }
511
512         ret = misc_register(&perf_dev);
513         if (ret) {
514                 printk(KERN_ERR "Performance monitoring counters: "
515                         "cannot register misc device.\n");
516                 return ret;
517         }
518
519         /* Patch the images to match the system */
520         perf_patch_images();
521
522         /* TODO: this only lets us access the first cpu.. what to do for SMP? */
523         cpu_device = per_cpu(cpu_data, 0).dev;
524         printk("Performance monitoring counters enabled for %s\n",
525                 per_cpu(cpu_data, 0).dev->name);
526
527         return 0;
528 }
529 device_initcall(perf_init);
530
531 /*
532  * perf_start_counters(void)
533  *
534  * Start the counters.
535  */
536 static void perf_start_counters(void)
537 {
538         /* Enable performance monitor counters */
539         perf_intrigue_enable_perf_counters();
540 }
541
542 /*
543  * perf_stop_counters
544  *
545  * Stop the performance counters and save counts
546  * in a per_processor array.
547  */
548 static int perf_stop_counters(uint32_t *raddr)
549 {
550         uint64_t userbuf[MAX_RDR_WORDS];
551
552         /* Disable performance counters */
553         perf_intrigue_disable_perf_counters();
554
555         if (perf_processor_interface == ONYX_INTF) {
556                 uint64_t tmp64;
557                 /*
558                  * Read the counters
559                  */
560                 if (!perf_rdr_read_ubuf(16, userbuf))
561                         return -13;
562
563                 /* Counter0 is bits 1398 to 1429 */
564                 tmp64 =  (userbuf[21] << 22) & 0x00000000ffc00000;
565                 tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
566                 /* OR sticky0 (bit 1430) to counter0 bit 32 */
567                 tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
568                 raddr[0] = (uint32_t)tmp64;
569
570                 /* Counter1 is bits 1431 to 1462 */
571                 tmp64 =  (userbuf[22] >> 9) & 0x00000000ffffffff;
572                 /* OR sticky1 (bit 1463) to counter1 bit 32 */
573                 tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
574                 raddr[1] = (uint32_t)tmp64;
575
576                 /* Counter2 is bits 1464 to 1495 */
577                 tmp64 =  (userbuf[22] << 24) & 0x00000000ff000000;
578                 tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
579                 /* OR sticky2 (bit 1496) to counter2 bit 32 */
580                 tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
581                 raddr[2] = (uint32_t)tmp64;
582
583                 /* Counter3 is bits 1497 to 1528 */
584                 tmp64 =  (userbuf[23] >> 7) & 0x00000000ffffffff;
585                 /* OR sticky3 (bit 1529) to counter3 bit 32 */
586                 tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
587                 raddr[3] = (uint32_t)tmp64;
588
589                 /*
590                  * Zero out the counters
591                  */
592
593                 /*
594                  * The counters and sticky-bits comprise the last 132 bits
595                  * (1398 - 1529) of RDR16 on a U chip.  We'll zero these
596                  * out the easy way: zero out last 10 bits of dword 21,
597                  * all of dword 22 and 58 bits (plus 6 don't care bits) of
598                  * dword 23.
599                  */
600                 userbuf[21] &= 0xfffffffffffffc00ul;    /* 0 to last 10 bits */
601                 userbuf[22] = 0;
602                 userbuf[23] = 0;
603
604                 /*
605                  * Write back the zeroed bytes + the image given
606                  * the read was destructive.
607                  */
608                 perf_rdr_write(16, userbuf);
609         } else {
610
611                 /*
612                  * Read RDR-15 which contains the counters and sticky bits
613                  */
614                 if (!perf_rdr_read_ubuf(15, userbuf)) {
615                         return -13;
616                 }
617
618                 /*
619                  * Clear out the counters
620                  */
621                 perf_rdr_clear(15);
622
623                 /*
624                  * Copy the counters 
625                  */
626                 raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
627                 raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
628                 raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
629                 raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
630         }
631
632         return 0;
633 }
634
635 /*
636  * perf_rdr_get_entry
637  *
638  * Retrieve a pointer to the description of what this
639  * RDR contains.
640  */
641 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
642 {
643         if (perf_processor_interface == ONYX_INTF) {
644                 return &perf_rdr_tbl_U[rdr_num];
645         } else {
646                 return &perf_rdr_tbl_W[rdr_num];
647         }
648 }
649
650 /*
651  * perf_rdr_read_ubuf
652  *
653  * Read the RDR value into the buffer specified.
654  */
655 static int perf_rdr_read_ubuf(uint32_t  rdr_num, uint64_t *buffer)
656 {
657         uint64_t        data, data_mask = 0;
658         uint32_t        width, xbits, i;
659         const struct rdr_tbl_ent *tentry;
660
661         tentry = perf_rdr_get_entry(rdr_num);
662         if ((width = tentry->width) == 0)
663                 return 0;
664
665         /* Clear out buffer */
666         i = tentry->num_words;
667         while (i--) {
668                 buffer[i] = 0;
669         }
670
671         /* Check for bits an even number of 64 */
672         if ((xbits = width & 0x03f) != 0) {
673                 data_mask = 1;
674                 data_mask <<= (64 - xbits);
675                 data_mask--;
676         }
677
678         /* Grab all of the data */
679         i = tentry->num_words;
680         while (i--) {
681
682                 if (perf_processor_interface == ONYX_INTF) {
683                         data = perf_rdr_shift_in_U(rdr_num, width);
684                 } else {
685                         data = perf_rdr_shift_in_W(rdr_num, width);
686                 }
687                 if (xbits) {
688                         buffer[i] |= (data << (64 - xbits));
689                         if (i) {
690                                 buffer[i-1] |= ((data >> xbits) & data_mask);
691                         }
692                 } else {
693                         buffer[i] = data;
694                 }
695         }
696
697         return 1;
698 }
699
700 /*
701  * perf_rdr_clear
702  *
703  * Zero out the given RDR register
704  */
705 static int perf_rdr_clear(uint32_t      rdr_num)
706 {
707         const struct rdr_tbl_ent *tentry;
708         int32_t         i;
709
710         tentry = perf_rdr_get_entry(rdr_num);
711
712         if (tentry->width == 0) {
713                 return -1;
714         }
715
716         i = tentry->num_words;
717         while (i--) {
718                 if (perf_processor_interface == ONYX_INTF) {
719                         perf_rdr_shift_out_U(rdr_num, 0UL);
720                 } else {
721                         perf_rdr_shift_out_W(rdr_num, 0UL);
722                 }
723         }
724
725         return 0;
726 }
727
728
729 /*
730  * perf_write_image
731  *
732  * Write the given image out to the processor
733  */
734 static int perf_write_image(uint64_t *memaddr)
735 {
736         uint64_t buffer[MAX_RDR_WORDS];
737         uint64_t *bptr;
738         uint32_t dwords;
739         const uint32_t *intrigue_rdr;
740         const uint64_t *intrigue_bitmask;
741         uint64_t tmp64;
742         void __iomem *runway;
743         const struct rdr_tbl_ent *tentry;
744         int i;
745
746         /* Clear out counters */
747         if (perf_processor_interface == ONYX_INTF) {
748
749                 perf_rdr_clear(16);
750
751                 /* Toggle performance monitor */
752                 perf_intrigue_enable_perf_counters();
753                 perf_intrigue_disable_perf_counters();
754
755                 intrigue_rdr = perf_rdrs_U;
756         } else {
757                 perf_rdr_clear(15);
758                 intrigue_rdr = perf_rdrs_W;
759         }
760
761         /* Write all RDRs */
762         while (*intrigue_rdr != -1) {
763                 tentry = perf_rdr_get_entry(*intrigue_rdr);
764                 perf_rdr_read_ubuf(*intrigue_rdr, buffer);
765                 bptr   = &buffer[0];
766                 dwords = tentry->num_words;
767                 if (tentry->write_control) {
768                         intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
769                         while (dwords--) {
770                                 tmp64 = *intrigue_bitmask & *memaddr++;
771                                 tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
772                                 *bptr++ = tmp64;
773                         }
774                 } else {
775                         while (dwords--) {
776                                 *bptr++ = *memaddr++;
777                         }
778                 }
779
780                 perf_rdr_write(*intrigue_rdr, buffer);
781                 intrigue_rdr++;
782         }
783
784         /*
785          * Now copy out the Runway stuff which is not in RDRs
786          */
787
788         if (cpu_device == NULL)
789         {
790                 printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
791                 return -1;
792         }
793
794         runway = ioremap(cpu_device->hpa.start, 4096);
795         if (!runway) {
796                 pr_err("perf_write_image: ioremap failed!\n");
797                 return -ENOMEM;
798         }
799
800         /* Merge intrigue bits into Runway STATUS 0 */
801         tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
802         __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
803                      runway + RUNWAY_STATUS);
804
805         /* Write RUNWAY DEBUG registers */
806         for (i = 0; i < 8; i++) {
807                 __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
808         }
809
810         return 0;
811 }
812
813 /*
814  * perf_rdr_write
815  *
816  * Write the given RDR register with the contents
817  * of the given buffer.
818  */
819 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
820 {
821         const struct rdr_tbl_ent *tentry;
822         int32_t         i;
823
824 printk("perf_rdr_write\n");
825         tentry = perf_rdr_get_entry(rdr_num);
826         if (tentry->width == 0) { return; }
827
828         i = tentry->num_words;
829         while (i--) {
830                 if (perf_processor_interface == ONYX_INTF) {
831                         perf_rdr_shift_out_U(rdr_num, buffer[i]);
832                 } else {
833                         perf_rdr_shift_out_W(rdr_num, buffer[i]);
834                 }
835         }
836 printk("perf_rdr_write done\n");
837 }
This page took 0.074915 seconds and 4 git commands to generate.