1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2013 Imagination Technologies
8 #include <linux/delay.h>
10 #include <linux/memblock.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/slab.h>
14 #include <linux/smp.h>
15 #include <linux/types.h>
16 #include <linux/irq.h>
18 #include <asm/bcache.h>
19 #include <asm/mips-cps.h>
20 #include <asm/mips_mt.h>
21 #include <asm/mipsregs.h>
22 #include <asm/pm-cps.h>
23 #include <asm/r4kcache.h>
24 #include <asm/regdef.h>
26 #include <asm/smp-cps.h>
30 #define BEV_VEC_SIZE 0x500
31 #define BEV_VEC_ALIGN 0x1000
39 static DECLARE_BITMAP(core_power, NR_CPUS);
40 static u64 core_entry_reg;
41 static phys_addr_t cps_vec_pa;
43 struct core_boot_config *mips_cps_core_bootcfg;
45 static unsigned __init core_vpe_count(unsigned int cluster, unsigned core)
47 return min(smp_max_threads, mips_cps_numvps(cluster, core));
50 static void __init *mips_cps_build_core_entry(void *addr)
52 extern void (*nmi_handler)(void);
55 struct uasm_label labels[2];
56 struct uasm_reloc relocs[2];
57 struct uasm_label *l = labels;
58 struct uasm_reloc *r = relocs;
60 memset(labels, 0, sizeof(labels));
61 memset(relocs, 0, sizeof(relocs));
63 uasm_i_mfc0(&p, GPR_K0, C0_STATUS);
64 UASM_i_LA(&p, GPR_T9, ST0_NMI);
65 uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T9);
67 uasm_il_bnez(&p, &r, GPR_K0, label_not_nmi);
69 UASM_i_LA(&p, GPR_K0, (long)&nmi_handler);
71 uasm_l_not_nmi(&l, p);
74 uasm_i_lui(&p, GPR_K0, val >> 16);
75 uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
76 uasm_i_mtc0(&p, GPR_K0, C0_CAUSE);
77 val = ST0_CU1 | ST0_CU0 | ST0_BEV | ST0_KX_IF_64;
78 uasm_i_lui(&p, GPR_K0, val >> 16);
79 uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
80 uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
82 uasm_i_ori(&p, GPR_A0, 0, read_c0_config() & CONF_CM_CMASK);
83 UASM_i_LA(&p, GPR_A1, (long)mips_gcr_base);
84 #if defined(KBUILD_64BIT_SYM32) || defined(CONFIG_32BIT)
85 UASM_i_LA(&p, GPR_T9, CKSEG1ADDR(__pa_symbol(mips_cps_core_boot)));
87 UASM_i_LA(&p, GPR_T9, TO_UNCAC(__pa_symbol(mips_cps_core_boot)));
89 uasm_i_jr(&p, GPR_T9);
92 uasm_resolve_relocs(relocs, labels);
97 static bool __init check_64bit_reset(void)
99 bool cx_64bit_reset = false;
101 mips_cm_lock_other(0, 0, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
102 write_gcr_co_reset64_base(CM_GCR_Cx_RESET64_BASE_BEVEXCBASE);
103 if ((read_gcr_co_reset64_base() & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) ==
104 CM_GCR_Cx_RESET64_BASE_BEVEXCBASE)
105 cx_64bit_reset = true;
106 mips_cm_unlock_other();
108 return cx_64bit_reset;
111 static int __init allocate_cps_vecs(void)
113 /* Try to allocate in KSEG1 first */
114 cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN,
115 0x0, CSEGX_SIZE - 1);
118 core_entry_reg = CKSEG1ADDR(cps_vec_pa) &
119 CM_GCR_Cx_RESET_BASE_BEVEXCBASE;
121 if (!cps_vec_pa && mips_cm_is64) {
124 if (check_64bit_reset()) {
125 pr_info("VP Local Reset Exception Base support 47 bits address\n");
126 end = MEMBLOCK_ALLOC_ANYWHERE;
130 cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN, 0, end);
132 if (check_64bit_reset())
133 core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET64_BASE_BEVEXCBASE) |
134 CM_GCR_Cx_RESET_BASE_MODE;
136 core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET_BASE_BEVEXCBASE) |
137 CM_GCR_Cx_RESET_BASE_MODE;
147 static void __init setup_cps_vecs(void)
151 cps_vec = (void *)CKSEG1ADDR_OR_64BIT(cps_vec_pa);
152 mips_cps_build_core_entry(cps_vec);
154 memcpy(cps_vec + 0x200, &excep_tlbfill, 0x80);
155 memcpy(cps_vec + 0x280, &excep_xtlbfill, 0x80);
156 memcpy(cps_vec + 0x300, &excep_cache, 0x80);
157 memcpy(cps_vec + 0x380, &excep_genex, 0x80);
158 memcpy(cps_vec + 0x400, &excep_intex, 0x80);
159 memcpy(cps_vec + 0x480, &excep_ejtag, 0x80);
161 /* Make sure no prefetched data in cache */
162 blast_inv_dcache_range(CKSEG0ADDR_OR_64BIT(cps_vec_pa), CKSEG0ADDR_OR_64BIT(cps_vec_pa) + BEV_VEC_SIZE);
163 bc_inv(CKSEG0ADDR_OR_64BIT(cps_vec_pa), BEV_VEC_SIZE);
167 static void __init cps_smp_setup(void)
169 unsigned int nclusters, ncores, nvpes, core_vpes;
172 /* Detect & record VPE topology */
174 nclusters = mips_cps_numclusters();
175 pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
176 for (cl = 0; cl < nclusters; cl++) {
181 ncores = mips_cps_numcores(cl);
182 for (c = 0; c < ncores; c++) {
183 core_vpes = core_vpe_count(cl, c);
187 pr_cont("%u", core_vpes);
189 /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
191 smp_num_siblings = core_vpes;
193 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
194 cpu_set_cluster(&cpu_data[nvpes + v], cl);
195 cpu_set_core(&cpu_data[nvpes + v], c);
196 cpu_set_vpe_id(&cpu_data[nvpes + v], v);
204 pr_cont(" total %u\n", nvpes);
206 /* Indicate present CPUs (CPU being synonymous with VPE) */
207 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
208 set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
209 set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
210 __cpu_number_map[v] = v;
211 __cpu_logical_map[v] = v;
214 /* Set a coherent default CCA (CWB) */
215 change_c0_config(CONF_CM_CMASK, 0x5);
217 /* Core 0 is powered up (we're running on it) */
218 bitmap_set(core_power, 0, 1);
220 /* Initialise core 0 */
221 mips_cps_core_init();
223 /* Make core 0 coherent with everything */
224 write_gcr_cl_coherence(0xff);
226 if (allocate_cps_vecs())
227 pr_err("Failed to allocate CPS vectors\n");
229 if (core_entry_reg && mips_cm_revision() >= CM_REV_CM3)
230 write_gcr_bev_base(core_entry_reg);
232 #ifdef CONFIG_MIPS_MT_FPAFF
233 /* If we have an FPU, enroll ourselves in the FPU-full mask */
235 cpumask_set_cpu(0, &mt_fpu_cpumask);
236 #endif /* CONFIG_MIPS_MT_FPAFF */
239 static void __init cps_prepare_cpus(unsigned int max_cpus)
241 unsigned ncores, core_vpes, c, cca;
242 bool cca_unsuitable, cores_limited;
244 mips_mt_set_cpuoptions();
246 if (!core_entry_reg) {
247 pr_err("core_entry address unsuitable, disabling smp-cps\n");
251 /* Detect whether the CCA is unsuited to multi-core SMP */
252 cca = read_c0_config() & CONF_CM_CMASK;
256 /* The CCA is coherent, multi-core is fine */
257 cca_unsuitable = false;
261 /* CCA is not coherent, multi-core is not usable */
262 cca_unsuitable = true;
265 /* Warn the user if the CCA prevents multi-core */
266 cores_limited = false;
267 if (cca_unsuitable || cpu_has_dc_aliases) {
268 for_each_present_cpu(c) {
269 if (cpus_are_siblings(smp_processor_id(), c))
272 set_cpu_present(c, false);
273 cores_limited = true;
277 pr_warn("Using only one core due to %s%s%s\n",
278 cca_unsuitable ? "unsuitable CCA" : "",
279 (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
280 cpu_has_dc_aliases ? "dcache aliasing" : "");
284 /* Allocate core boot configuration structs */
285 ncores = mips_cps_numcores(0);
286 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
288 if (!mips_cps_core_bootcfg) {
289 pr_err("Failed to allocate boot config for %u cores\n", ncores);
293 /* Allocate VPE boot configuration structs */
294 for (c = 0; c < ncores; c++) {
295 core_vpes = core_vpe_count(0, c);
296 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
297 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
299 if (!mips_cps_core_bootcfg[c].vpe_config) {
300 pr_err("Failed to allocate %u VPE boot configs\n",
306 /* Mark this CPU as booted */
307 atomic_set(&mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)].vpe_mask,
308 1 << cpu_vpe_id(¤t_cpu_data));
312 /* Clean up allocations */
313 if (mips_cps_core_bootcfg) {
314 for (c = 0; c < ncores; c++)
315 kfree(mips_cps_core_bootcfg[c].vpe_config);
316 kfree(mips_cps_core_bootcfg);
317 mips_cps_core_bootcfg = NULL;
320 /* Effectively disable SMP by declaring CPUs not present */
321 for_each_possible_cpu(c) {
324 set_cpu_present(c, false);
328 static void boot_core(unsigned int core, unsigned int vpe_id)
333 /* Select the appropriate core */
334 mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
336 /* Set its reset vector */
338 write_gcr_co_reset64_base(core_entry_reg);
340 write_gcr_co_reset_base(core_entry_reg);
342 /* Ensure its coherency is disabled */
343 write_gcr_co_coherence(0);
345 /* Start it with the legacy memory map and exception base */
346 write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
348 /* Ensure the core can access the GCRs */
349 if (mips_cm_revision() < CM_REV_CM3)
350 set_gcr_access(1 << core);
352 set_gcr_access_cm3(1 << core);
354 if (mips_cpc_present()) {
356 mips_cpc_lock_other(core);
358 if (mips_cm_revision() >= CM_REV_CM3) {
359 /* Run only the requested VP following the reset */
360 write_cpc_co_vp_stop(0xf);
361 write_cpc_co_vp_run(1 << vpe_id);
364 * Ensure that the VP_RUN register is written before the
370 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
374 stat = read_cpc_co_stat_conf();
375 seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
376 seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
378 /* U6 == coherent execution, ie. the core is up */
379 if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
382 /* Delay a little while before we start warning */
389 pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
394 mips_cpc_unlock_other();
396 /* Take the core out of reset */
397 write_gcr_co_reset_release(0);
400 mips_cm_unlock_other();
402 /* The core is now powered up */
403 bitmap_set(core_power, core, 1);
406 static void remote_vpe_boot(void *dummy)
408 unsigned core = cpu_core(¤t_cpu_data);
409 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
411 mips_cps_boot_vpes(core_cfg, cpu_vpe_id(¤t_cpu_data));
414 static int cps_boot_secondary(int cpu, struct task_struct *idle)
416 unsigned core = cpu_core(&cpu_data[cpu]);
417 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
418 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
419 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
423 /* We don't yet support booting CPUs in other clusters */
424 if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
427 vpe_cfg->pc = (unsigned long)&smp_bootstrap;
428 vpe_cfg->sp = __KSTK_TOS(idle);
429 vpe_cfg->gp = (unsigned long)task_thread_info(idle);
431 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
435 if (!test_bit(core, core_power)) {
436 /* Boot a VPE on a powered down core */
437 boot_core(core, vpe_id);
442 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
444 write_gcr_co_reset64_base(core_entry_reg);
446 write_gcr_co_reset_base(core_entry_reg);
447 mips_cm_unlock_other();
450 if (!cpus_are_siblings(cpu, smp_processor_id())) {
451 /* Boot a VPE on another powered up core */
452 for (remote = 0; remote < NR_CPUS; remote++) {
453 if (!cpus_are_siblings(cpu, remote))
455 if (cpu_online(remote))
458 if (remote >= NR_CPUS) {
459 pr_crit("No online CPU in core %u to start CPU%d\n",
464 err = smp_call_function_single(remote, remote_vpe_boot,
467 panic("Failed to call remote CPU\n");
471 BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
473 /* Boot a VPE on this core */
474 mips_cps_boot_vpes(core_cfg, vpe_id);
480 static void cps_init_secondary(void)
482 int core = cpu_core(¤t_cpu_data);
484 /* Disable MT - we only want to run 1 TC per VPE */
488 if (mips_cm_revision() >= CM_REV_CM3) {
489 unsigned int ident = read_gic_vl_ident();
492 * Ensure that our calculation of the VP ID matches up with
493 * what the GIC reports, otherwise we'll have configured
494 * interrupts incorrectly.
496 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
499 if (core > 0 && !read_gcr_cl_coherence())
500 pr_warn("Core %u is not in coherent domain\n", core);
503 clear_c0_status(ST0_IM);
505 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
506 STATUSF_IP4 | STATUSF_IP5 |
507 STATUSF_IP6 | STATUSF_IP7);
510 static void cps_smp_finish(void)
512 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
514 #ifdef CONFIG_MIPS_MT_FPAFF
515 /* If we have an FPU, enroll ourselves in the FPU-full mask */
517 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
518 #endif /* CONFIG_MIPS_MT_FPAFF */
523 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC_CORE)
530 static void cps_shutdown_this_cpu(enum cpu_death death)
532 unsigned int cpu, core, vpe_id;
534 cpu = smp_processor_id();
535 core = cpu_core(&cpu_data[cpu]);
537 if (death == CPU_DEATH_HALT) {
538 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
540 pr_debug("Halting core %d VP%d\n", core, vpe_id);
541 if (cpu_has_mipsmt) {
543 write_c0_tchalt(TCHALT_H);
544 instruction_hazard();
545 } else if (cpu_has_vp) {
546 write_cpc_cl_vp_stop(1 << vpe_id);
548 /* Ensure that the VP_STOP register is written */
552 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
553 pr_debug("Gating power to core %d\n", core);
554 /* Power down the core */
555 cps_pm_enter_state(CPS_PM_POWER_GATED);
560 #ifdef CONFIG_KEXEC_CORE
562 static void cps_kexec_nonboot_cpu(void)
564 if (cpu_has_mipsmt || cpu_has_vp)
565 cps_shutdown_this_cpu(CPU_DEATH_HALT);
567 cps_shutdown_this_cpu(CPU_DEATH_POWER);
570 #endif /* CONFIG_KEXEC_CORE */
572 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC_CORE */
574 #ifdef CONFIG_HOTPLUG_CPU
576 static int cps_cpu_disable(void)
578 unsigned cpu = smp_processor_id();
579 struct core_boot_config *core_cfg;
581 if (!cps_pm_support_state(CPS_PM_POWER_GATED))
584 core_cfg = &mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)];
585 atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask);
586 smp_mb__after_atomic();
587 set_cpu_online(cpu, false);
588 calculate_cpu_foreign_map();
589 irq_migrate_all_off_this_cpu();
594 static unsigned cpu_death_sibling;
595 static enum cpu_death cpu_death;
603 cpu = smp_processor_id();
604 cpu_death = CPU_DEATH_POWER;
606 pr_debug("CPU%d going offline\n", cpu);
608 if (cpu_has_mipsmt || cpu_has_vp) {
609 /* Look for another online VPE within the core */
610 for_each_online_cpu(cpu_death_sibling) {
611 if (!cpus_are_siblings(cpu, cpu_death_sibling))
615 * There is an online VPE within the core. Just halt
616 * this TC and leave the core alone.
618 cpu_death = CPU_DEATH_HALT;
623 cpuhp_ap_report_dead();
625 cps_shutdown_this_cpu(cpu_death);
627 /* This should never be reached */
628 panic("Failed to offline CPU %u", cpu);
631 static void wait_for_sibling_halt(void *ptr_cpu)
633 unsigned cpu = (unsigned long)ptr_cpu;
634 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
639 local_irq_save(flags);
641 halted = read_tc_c0_tchalt();
642 local_irq_restore(flags);
643 } while (!(halted & TCHALT_H));
646 static void cps_cpu_die(unsigned int cpu) { }
648 static void cps_cleanup_dead_cpu(unsigned cpu)
650 unsigned core = cpu_core(&cpu_data[cpu]);
651 unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
657 * Now wait for the CPU to actually offline. Without doing this that
658 * offlining may race with one or more of:
660 * - Onlining the CPU again.
661 * - Powering down the core if another VPE within it is offlined.
662 * - A sibling VPE entering a non-coherent state.
664 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
665 * with which we could race, so do nothing.
667 if (cpu_death == CPU_DEATH_POWER) {
669 * Wait for the core to enter a powered down or clock gated
670 * state, the latter happening when a JTAG probe is connected
671 * in which case the CPC will refuse to power down the core.
673 fail_time = ktime_add_ms(ktime_get(), 2000);
675 mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
676 mips_cpc_lock_other(core);
677 stat = read_cpc_co_stat_conf();
678 stat &= CPC_Cx_STAT_CONF_SEQSTATE;
679 stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
680 mips_cpc_unlock_other();
681 mips_cm_unlock_other();
683 if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
684 stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
685 stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
689 * The core ought to have powered down, but didn't &
690 * now we don't really know what state it's in. It's
691 * likely that its _pwr_up pin has been wired to logic
692 * 1 & it powered back up as soon as we powered it
695 * The best we can do is warn the user & continue in
696 * the hope that the core is doing nothing harmful &
697 * might behave properly if we online it later.
699 if (WARN(ktime_after(ktime_get(), fail_time),
700 "CPU%u hasn't powered down, seq. state %u\n",
705 /* Indicate the core is powered off */
706 bitmap_clear(core_power, core, 1);
707 } else if (cpu_has_mipsmt) {
709 * Have a CPU with access to the offlined CPUs registers wait
710 * for its TC to halt.
712 err = smp_call_function_single(cpu_death_sibling,
713 wait_for_sibling_halt,
714 (void *)(unsigned long)cpu, 1);
716 panic("Failed to call remote sibling CPU\n");
717 } else if (cpu_has_vp) {
719 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
720 stat = read_cpc_co_vp_running();
721 mips_cm_unlock_other();
722 } while (stat & (1 << vpe_id));
726 #endif /* CONFIG_HOTPLUG_CPU */
728 static const struct plat_smp_ops cps_smp_ops = {
729 .smp_setup = cps_smp_setup,
730 .prepare_cpus = cps_prepare_cpus,
731 .boot_secondary = cps_boot_secondary,
732 .init_secondary = cps_init_secondary,
733 .smp_finish = cps_smp_finish,
734 .send_ipi_single = mips_smp_send_ipi_single,
735 .send_ipi_mask = mips_smp_send_ipi_mask,
736 #ifdef CONFIG_HOTPLUG_CPU
737 .cpu_disable = cps_cpu_disable,
738 .cpu_die = cps_cpu_die,
739 .cleanup_dead_cpu = cps_cleanup_dead_cpu,
741 #ifdef CONFIG_KEXEC_CORE
742 .kexec_nonboot_cpu = cps_kexec_nonboot_cpu,
746 bool mips_cps_smp_in_use(void)
748 extern const struct plat_smp_ops *mp_ops;
749 return mp_ops == &cps_smp_ops;
752 int register_cps_smp_ops(void)
754 if (!mips_cm_present()) {
755 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
759 /* check we have a GIC - we need one for IPIs */
760 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
761 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
765 register_smp_ops(&cps_smp_ops);